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Abstract

The Kalman filter is commonly used in neural interface systems to decode neural activity and

estimate the desired movement kinematics. We analyze a low-complexity Kalman filter

implementation in which the filter gain is approximated by its steady-state form, computed offline

before real-time decoding commences. We evaluate its performance using human motor cortical

spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical

trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-

state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity

decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the

two decoded velocities over the session length. We also find that the steady-state Kalman filter

reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3

single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be

much higher in systems with larger neural ensembles. The steady-state filter can thus provide

substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient

neural decoding approach will facilitate the practical implementation of future large-dimensional,

multisignal neural interface systems.
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I. Introduction

NEURAL interfaces systems (NISs) have the potential to restore communication and control
abilities for people with tetraplegia secondary to spinal cord injury, amyotrophic lateral
sclerosis (ALS), or brainstem stroke [1]–[11]. Intracortical NISs use multielectrode arrays
implanted in the cortex to acquire relevant signals from neuronal ensembles. NISs require
accurate decoding models to decipher intended movements from neuromotor activity and
generate appropriate command signals to control a computer cursor, prosthetic limb,
functional electrical stimulation device, or other assistive devices.

At the beginning of the BrainGate1 NIS pilot clinical trial, a linear decoder was used to
predict cursor position from neural activity measured from a neuronal ensemble [6].
Subsequent analysis showed that a Kalman filter (KF), which modeled the movement
kinematics as a random walk process, improved the decoding accuracy [12]–[14]. A
recursive Bayesian decoder with guaranteed stability and robustness, the Kalman filter
provides optimal state estimates along with the associated confidence regions for a linear
Gaussian dynamical system [15]–[17]. While other decoding strategies have been proposed
[18]–[23], the relative simplicity and good performance of the KF have made it a popular
choice for neural decoding in NISs [10], [11], [24]–[29]. The KF used in these studies
consisted of the most common implementation in which the observation and state-transition
matrices and corresponding noise covariance matrices are assumed to be constant and
estimated from training data, while the Kalman gain is adaptive and computed during each
filter recursion.

With rapid advances in NIS technology, we anticipate the potential to harness large-
dimensional signal sets, such as those as will eventually be obtained from multiple
intracortical recoding arrays, as well as more complex signals with increased computational
requirements, such as continuous-time multiunit activity (MUA) [30], [31] and local field
potentials (LFP) [6], [32]. The KF may, however, be too computationally intensive for real-
time decoding of such complex neurophysiological signal sets. Increasing interest in
embedded wireless NISs also motivates improved algorithmic efficiency which would lower
hardware requirements and extend battery life [33], [34]. We are, therefore, interested in
determining whether we can exploit a decoding approach with lower complexity than the
KF, bearing in mind that in the decoding accuracy-efficiency tradeoff, we are generally
reluctant to sacrifice accuracy merely to decrease computational load or time.

The optimal Kalman gain depends only on the system matrices and initial conditions, and
not on the incoming measurements [15]. It is therefore possible to precompute the gain
offline and store it for subsequent decoding sessions to reduce real-time decoding
complexity. However, the large memory requirement associated with the storage and
processing of large Kalman gain matrices to decode complex, multidimensional signal sets
renders this approach impracticable.

1The research is conducted under an Investigational Device Exemption and approval from the local Institutional Review Board
(Caution: Investigational Device. Limited by Federal Law to Investigational Use).
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Another alternative, with the potential to improve efficiency with little loss in accuracy, is
the steady-state KF (SSKF) [15], [16]. In a time-invariant stochastic system, such as that
assumed by the standard KF implementation commonly used in neural decoding [12], the
optimal gain of the KF converges to a steady-state value after only a few recursions [16],
which motivates the use of the SSKF. Equivalent to an infinite-length digital Wiener filter,
the SSKF approximates the optimal time-varying KF gain with a precomputed constant
matrix that represents the steady-state value of the filter gain.

Given a state space model with s states and n observations, the algorithmic complexity of

optimal Kalman gain computation for a single decoding recursion is , as
described in Table I [35]. The state space of a KF-based NIS decoder comprises the motion
kinematics (usually position, velocity, and acceleration) in accordance with the encoding
properties of motor cortical neurons. A multielectrode array typically spans 40–100 neuronal

units (n). Since n >> s in this case, from Table I the KF complexity is effectively ,
while the SSKF complexity is only . The relative efficiency of the SSKF therefore
varies as the square of the ensemble size, which can be consequential for a resource-
constrained NIS with large-dimensional signal sets.

In this paper, we investigate the potential utility of SSKF in unique data sets generated by
our clinical trial participants. We hypothesize that using neural spiking data, the filter gain
could be replaced by its steady-state estimate, reducing the runtime complexity considerably
with an acceptably small loss in estimation accuracy during the initial recursions. We
analyze and compare the performance of KF and SSKF, investigating whether the latter can
simplify practical NIS implementation.

II. Neural Data Acquisition

A. Clinical Trial

The neural data examined here are derived from two participants in the BrainGate pilot
clinical trials. These trials were conducted with a U.S. Food and Drug Administration (FDA)
Investigational Device Exemption (IDE) and with Institutional Review Board (IRB)
approval from Rhode Island Hospital, New England IRB, Spaulding Rehabilitation Hospital
and Massachusetts General Hospital.

B. Trial Participants

1) Participant S1—A 24-year-old man with complete tetraplegia due to C4 spinal cord
injury from a knife wound sustained three years prior to trial recruitment. The data analyzed
here were recorded on two separate days three months after array implantation.

2) Participant S3—A 55-year-old woman with tetraplegia and anarthria secondary to
brainstem stroke. She had thrombosis of the basilar artery and extensive pontine infarction
nine years before trial recruitment. The data analyzed here were recorded on two separate
days 33 months after array implantation.

C. Surgical Procedures

The BrainGate microelectrode array was implanted using a pneumatic technique in the
precentral gyrus contralateral to the dominant hand in the region of the arm representation of
each participant [6], [36]. The intracortical array consisted of 10 × 10 silicon
microelectrodes that protruded 1 mm (S1) or 1.5 mm (S3) from a 4 × 4 mm platform. Neural
data were recorded from this chronically implanted array.
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D. Behavioral Tasks

We collected neural and motion kinematics data during 2-D behavioral pursuit-tracking and
center-out tasks [13], [23].

The filter-building data was recorded under open-loop motor imagery, during which the
participants observed a training cursor moving on a 19-in screen. The training cursor was
controlled by a technician using a standard handheld mouse (random pursuit-tracking for
S1) or computer (four-target center-out for S3). The participants imagined controlling the
training cursor movement with their own dominant hand. In the pursuit-tracking task, the
training cursor moved from a starting location towards a target randomly placed on the
screen [Fig. 1(a)]. On acquisition, the target vanished from the screen and the next target
appeared simultaneously. The cursor trajectory in this task spanned much of the screen area
over the course of each data-acquisition block. In the center-out task, four peripheral targets
(0°, 90°, 180°, and 270°) and one center target were displayed during the filter-building
phase. One of the targets, selected pseudorandomly, was highlighted and the computer-
controlled training cursor moved toward it with a Gaussian velocity profile [Fig. 1(b)]. On
reaching the target, the cursor remained stationary for 0.5 s before retracing its path back to
the center target.

During the subsequent closed-loop assessment phase for S3, there were eight radial targets
and one center target in our center-out task. Successful target acquisition required reaching
the target with the neurally driven cursor and simulating a click within the target area. The
data recorded during the filter-building period were used to train the filter that was used for
closed-loop assessment to drive a neural cursor volitionally by estimating its velocity from
the participant's neural activity. The closed-loop assessment for S1, the first participant in
our clinical trial, was performed before the implementation of the KF in our decoding
platform, and those data are thus not analyzed here.

For the analysis in this paper, we organize the data recorded from the two participants into
six sessions, as summarized in Table II. Of these, Sessions 1, 2, 3, and 5 consist of open-
loop motor imagery while Sessions 4 and 6 involve closed-loop neural cursor control.

1) Session 1—Motor imagery data were collected from Participant S1 under an open-loop
pursuit-tracking task with random target placement in four blocks of about 1 min length
each. The data were recorded on Day 86 after array implantation. The participant observed a
training cursor controlled by a technician and imagined controlling the cursor movement
with his own hand. For our analysis, we divided this 4 min length of data into N trial runs
lasting 10 s each, carefully taking into account the block discontinuities. Under an N-fold
cross-validation scheme, we decoded each of the N trials sequentially by training the filter
on the rest of the trials.

2) Session 2—This data set is similar to Session 1 but the research session occurred on
Day 90.

3) Session 3—For filter building by participant S3, an open-loop center-out task was used.
She imagined moving a computer-controlled cursor to four fixed-location radial targets. The
data contain four blocks of about 90 s each, of which two blocks contain seven slow-speed
trials of 12 s each and the other two blocks contain 11 high-speed trials of 8 s each. Each
trial consists of the epoch culminating at target acquisition defined as reaching the target
location. The remaining session data length consists of brief rest periods between
consecutive trials. These data were recorded on Day 1002 after implantation.
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4) Session 4—These closed-loop data were collected from Participant S3 also on Day
1002. The entire open-loop data set of Session 3 was used to train the Kalman filter that
decoded the closed-loop neural activity during an 8-target center-out task in a single 10 min
block.

5) Session 5—This open-loop data set is similar to Session 3 but the research session was
conducted on Day 1003.

6) Session 6—This closed-loop data set is similar to Session 4 but the research session
was conducted on Day 1003.

E. Data Preprocessing

In each session, we recorded neural signals from the 96-channel array with digitization at 30
kHz (analog bandpass 0.3–7500 Hz; digital highpass with cutoff at 250 Hz) and used real-
time, amplitude-thresholding software for waveshape discrimination [37]. Putative single
neurons and apparent multineuron activity with consistent waveforms were accepted or
rejected for inclusion in the study at the beginning of each session based on visual inspection
of the isolated waveforms. Following the identification of single-unit spikes, the spike times
were recorded and the spikes were collected in nonover-lapping 100 ms time-bins to obtain
the firing rates. The 2-D Cartesian coordinates of the cursor position were recorded
periodically and their first-order derivative was used to obtain the cursor velocity used in our
state space model. We used a firing rate threshold of 1 Hz, and units firing at a rate lower
than this threshold were not used for decoding. In our data, 20–29 units were found to meet
this criterion in each session, as described in Table II. Using these data sets for offline
analysis, we first trained the KF and SSKF, and then decoded the cursor velocity from which
we obtained a reconstruction of the cursor trajectory by integration.

III. Neural Decoding

A. State Space Model

The s kinematic states and the associated firing rates of n spike-sorted units can be related in
terms of a time-invariant linear dynamical system [12]. We use the following discrete-time
stationary Gauss-Markov stochastic system model:

(1)

(2)

where Φ and H denote the constant s × s state-transition matrix and n × s observation
matrix, respectively. The s × 1 vector wk and n × 1 vector vk denote the process and
measurement noise, respectively. With the states xk and observations yk representing
movement velocity and single-unit firing rates respectively, this state space model implicitly
assumes cosine tuning of motor neurons to velocity [12]. The filter is initialized with a
multivariate Gaussian state estimate . We choose x0 = 0 and P0 = Q for the
decoding problem in this paper. Similar to [12] and [13], we assume that
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(3)

where (.)′ and  denote transposition and expectation, respectively. The firing rate of each
unit is centered at zero, i.e., .

B. Kalman Filter Recursions

The time update equations provide the a priori state estimate and its covariance at the kth (k
= 1, . . . , N) recursion

(4)

(5)

where  with , and (5) is the discrete-time algebraic Lyapunov
equation. If we define

(6)

as the s × n filter gain matrix, the a posteriori state estimate and its covariance are given by
the measurement update equations

(7)

(8)

where , ek = xk − x ̂k, and Is is the s × s identity matrix.

C. Filter Training

The state and observation matrices, Φ and H, are estimated from training data using the
ordinary least squares procedure

(9)

(10)
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where X = [x1, . . . , xM], X1 = [x1, . . . , xM − 1], X2 = [x2, . . . , xM], Y = [y1, . . . , yM], and
M is the length of the training data. Then the minimum mean-square error estimates of the
time-invariant noise covariance matrices are [12]

(11)

(12)

D. Kalman Filter Gain Convergence

From KF theory, if the eigenvalues of Φ lie inside the unit circle, then the eigenvalues of Φ
(Is – KH) also lie within the unit circle and the linear dynamic system is said to be
controllable and observable [16], [17]. Then, Pk → P as k → ∞ with a geometric order of
convergence, where P is a unique constant symmetric matrix. Due to (6), the optimal gain,
Kk, also converges exponentially to the steady-state gain, K = limk→∞ {Kk}, with rate r. At
the kth filter recursion, the distance between the KF and SSKF gains is bounded as [16]

(13)

where λi,k are the eigenvalues of (Kk − K) (Kk − K)′, 0 < r < 1 and c > 0 are constants, and
tr {.} denotes matrix trace. Let x ̂k and x̃k denote the state estimates obtained with the KF and
SSKF, respectively. Then, from (13), x̃k is an asymptotially optimal estimate of x̂k with
exponential convergence, and the Euclidean distance, Δxk, between the two estimates is
bounded as

(14)

where ∥.∥ denotes the  of a vector. From (13), we obtain the upper bounds on the
constants c and r as

(15)

(16)

E. Steady-State Gain Computation

We note from (6) that the expression for the KF gain, Kk, does not involve the observed
firing rates, yk, and depends only on the constant system matrices Φ, H, Q, and R, and the
initial state covarriance matrix P0. It follows that Kk can be computed recursively a priori

during the filter training phase and stored for use later during decoding in order to reduce
runtime complexity. In the steady-state approach, K can be obtained from these recursions
as K = limk−∞ Kk. In this paper, however, we compute K with an efficient nonrecursive
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procedure based on the solution of the discrete algebraic Riccati equation (DARE) using the
MacFarlane–Potter–Fath eigenstructure method [15]. The steady-state value, P, of the a
priori estimate of the posterior error covariance, Pk, is the solution to the steady-state
DARE, given by

(17)

A stabilizing solution to (17) can be found in closed form by constructing a basis for the
stable invariant subspace of the 2s × 2s Hamiltonian matrix

(18)

which is a symplectic matrix. Let represent {λi; i = 1, . . . , 2s} represent the eigenvalues of S

such that det {S} = 1. Each 1/λi is also an eigenvalue of S with the same multiplicity as λi.
Assuming λi ≠ 1, there are s eigenvalues inside the unit circle and s outside. We can express
S in its Jordan form as

(19)

where D = diag{λi} is a diagonal matrix containing the eigenvalues of S, the ith column of
2s × 2s matrix V contains the eigenvector corresponding to λi, and Λ = diag{λj} such that λj

> 1. We can partition V conformably into four s × s blocks, Vab, i.e.,

(20)

where Ṽ1 and Ṽ2 contain the eigenvectors corresponding to the stable and unstable
eigenvalues of S, respectively. As Ṽ12 is nonsingular, the unique and stable solution to (17)

is obtained as the matrix fraction . Then from (6),

(21)

The constant gain, K, can be used to calculate the SSKF-based a posteriori state estimates
x̃k from (7) without recomputing the gain and covariance matrices at each recursion.

Note that if Φ is singular or ill-conditioned, or S has multiple or nearly multiple eigenvalues,
then other methods should be used to obtain the solution to the DARE. For example, the
gain can be obtained from (17) via an iterative Newton–Raphson procedure (which may be
prone to error accumulation) or a nonrecursive inverse-free generalized Schur method
(which is a deflating subspace technique with good numerical integrity) [17], [38]. However,
the need to use these alternative approaches does not usually arise if the structure of the
dynamical system is modeled correctly.
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IV. Experimental Results

We evaluated the decoding accuracy and complexity of the SSKF algorithm and compared
them to those of the standard KF in [12] using data from our clinical trial participants.

A. Convergence of the Kalman Gain

We first analyzed the temporal evolution of the KF gain in order to investigate its
convergence properties. We observed that the difference between the KF and SSKF gains,
ΔKk, vanishes rapidly in all trials for all of our session data (Fig. 2). Throughout this
analysis, we found the system matrices to be well-conditioned and consequently the
eigenstructure method to be robust for SSKF gain computation. For our data, Kk converged
to within 95% of K in 0.7–2.1 s (see Table III) and to within 99% in 3.3 s. We also
confirmed that the convergence of ΔKk was exponential in k. From (16), the regression line
of log ΔKk on k gives us the convergence rate upper bound, r ̂max. The values of r ̂max thus
obtained ranged between 0.6 and 0.9, as listed in Table III. We note that even the slowest
observed convergence rate of 0.9 translates into a 95% convergence time of only about 2 s.
Since in a decoding setting the filter gain is not reset during a session, the initial transient
duration of 2 s is insignificant in comparison to that of a typical decoding session that
typically lasts several minutes (such as Sessions 4 and 6).

B. State Estimation Accuracy

We examined the effect of the steady-state gain approximation on the accuracy of state
estimation. We decoded neuronal firing rate data with both KF and SSKF, and evaluated the
Euclidean distance, Δxk, between the velocity estimates provided by the two filters at each

time-step. From (14), we expect Δxk to decay asymptotically to zero with rate  which is
slower than the convergence rate, r, of ΔKk. Our results in Fig. 3 confirm the expected
exponential decay, with Δxk falling below 0.5°/s within 5 s under both open-loop and
closed-loop conditions. Note that Δx0 = 0 for all sessions since we initialize the filters with
x ̂0 = x̃0 = x0 = 0. Averaged over the first 7 s, ε {Δxk} < 2°/s, and is typically 0°/s afterwards.

For Sessions 1 and 2, Δxk has a sharp peak reaching 3.8°/s (Session 2) at 0.5 s, followed by
rapid decay, while for Sessions 3–6, Δxk generally does not exceed 1°/s. The data in
Sessions 1 and 2 consisted of multiple target-acquisition epochs with different durations, but
we divided these data into 10 s trials for our offline decoding analysis. We initialized the
decoder with x ̂0 = 0 in accordance with our general scheme, instead of the actual nonzero
velocity. The KF and SSKF treat this initialization error differently due to large difference in
their gains at small k, resulting in considerable different state estimates during the first few
recursions. Even though the incorrect initialization renders Δxk relatively large initially, the
distance nevertheless decays as rapidly as in the other sessions. Thus the SSKF approach is
robust to inaccurate state initialization and leads to the same estimates as the KF after a short
period irrespective of the initial state estimates provided.

The comparison of KF and SSKF state estimates, obtained offline for the closed-loop data
from Session 6, confirms the convergence of the state component estimates within 5 s (Fig.
4). We also note that the KF posterior error covariance estimates converge to the SSKF
covariance estimate within the same duration. Our results show that once the estimates have
converged, they remain identical for the remaining 10 min decoding session. As a result, the
states decoded by the KF and SSKF in a session have an average correlation coefficient of
0.99 (Table III). This also can be observed in terms of the corresponding cursor trajectory
reconstruction over 2-D space, obtained from the state (velocity) estimates by numerical
integration, shown in Fig. 5 for the entire 10 min duration of the closed-loop center-out task
in Session 6. The filters perform identically except for a minor over-excursion by the SSKF
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in reaching the very first target at the bottom-center of the screen. On the basis of these
observations, we conclude that the SSKF state estimation accuracy is essentially identical to
that of the KF.

C. Gain in Computational Efficiency

Having verified the decoding accuracy of the SSKF, we next evaluated the advantage in
computational efficiency achieved with the SSKF. To extend the above theoretical
discussion on algorithmic complexity, we conducted runtime performance tests based on the
time taken for actual program execution. Our computational platform for this purpose
consisted of a laptop computer with an Intel Core 2 Duo CPU with T7700 chipset and 2.4-
GHz clock running Matlab 2010a on 32-bit Windows 7 operating system. The exact
runtimes will depend on the computing hardware and software, but we expect the runtime
reduction factor to remain approximately constant across platforms. For each of the sessions,
we performed the decoding 25 times to obtain a reliable estimate of the execution time.

We found that the average execution time per recursion to decode the neural data in Session
6 is 0.13 ms for the KF and 0.015 ms for the SSKF; the former is almost an order of
magnitude larger. From Fig. 6, we observe that the time to decode each session's neural data
with the KF is several times larger than that of the SSKF. For instance, the KF and SSKF
mean decoding times for Session 6 are 0.84 and 0.10 s, respectively. Comparing the times in
Fig. 6 against session details in Table II, we find that the execution time is proportional to
the length of the decoding session. The reason is that the complexity for K recursions of the
decoder is K times the complexity for a single recursion. This is the basis of the execution
time difference between Sessions 3 and 4, as these two sessions differ in the decoded data
length and thus the number of filter recursions.

To assess the reduction in complexity per recursion, we define the runtime efficiency factor
as the ratio of the KF and SSKF execution times to decode the session data. This quantity is
independent of the number of filter recursions in a decoding session, since the execution
time is linearly related to the number of recursions which is identical for both filters. The
efficiency factors, listed in Table III, range from 5.8 to 8.3 for our data. We see that the
efficiency due to SSKF has a clear relation with the number of units selected for decoding,
and is higher in sessions with more units. This empirical observation confirms the earlier
theoretical discussion (Table I) according to which the SSKF efficiency improvement
increases as the square of the observation vector dimension, n. Therefore we can expect that
when neural data from just 50 units is decoded, the relative efficiency of the SSKF will
approach an order of magnitude, and will be even larger for larger ensembles.

On the basis of the above discussion, if we use 50 ms time-bins to calculate the firing rates
for our data, the number of filter recursions will increase, and so will the execution times of
both filters. The difference in the KF and SSKF execution times would then be even larger.
To confirm the effect of higher sample rate signals, we conducted the execution time
analysis with Session 6 data using 50 ms time-bins. In this case, the decoding times for this
session with KF and SSKF were found to be 1.52 and 0.19 s, respectively, and the efficiency
factor was 8.2. Although the total execution times were longer than those obtained with 100
ms bins due to a greater number of recursions, the efficiency factor was consistent.

V. Discussion

Our analysis of the motor cortical activity decoded from two pilot clinical trial participants
with tetraplegia demonstrates that the SSKF could be used for efficient decoding in neural
interface systems. This finding has implications not just for our current relatively small data
sets but also for larger and more complex data obtained with neural interface systems.
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A. Implications for Large-Dimensional Systems

The gain in computational efficiency from using SSKF would be massive when the neuronal
ensemble used for decoding is large, as may be considered for some future clinical NISs (see
Table I). It is not uncommon for an intracortical microelectrode array to record neural data
simultaneously from a population of over 100 units. In that case, with larger n, as might also
occur with more than one array, we would expect the SSKF to exhibit increased relative
efficiency. For a dual-state Kalman filter and a 100-neuron population, state estimation at
each recursion will involve over 106 floating point operations with the KF, but only 204
operations with the SSKF.

B. Decoding Complex Signal Sets

The execution time for decoding neural data from a session is directly related to the session
length, due to which the SSKF becomes increasingly advantageous as more time-samples
are processed. This has important implications for decoding with neural signals besides a
firing rate signal with 10 Hz sampling. For the same duration, a neural signal with a higher
sampling rate will involve a larger number of recursions, and so the relative computational
cost of the SSKF will be correspondingly lower. One example of such a neural signal is
multiunit activity (MUA) sampled at 500 Hz [30]. Decoding the MUA signal for a given
length of time will therefore involve 50 times as many recursions as the firing rate signal
sampled at 10 Hz, and the comparative reduction in execution time with the SSKF will be
more pronounced.

A fundamental requirement for real-time decoding is that the computations involved in one
decoder recursion must complete before the next data sample becomes available for
processing. Thus for the MUA signal sampled at 500 Hz, we are constrained to complete a
single recursion within 2 ms. Decoding such high-rate signals becomes particularly
challenging for a large-dimensional system with, say, 100 MUA channels. In such scenarios,
the SSKF is especially useful in enabling real-time implementation.

C. Using Precomputed Optimal Kalman Gain

One possibility for avoiding real-time KF gain computation in each recursion is to
precompute and store the time-series of adaptive KF gain matrices, Kk, k = 1, . . . , N, before
decoding commences, as discussed in Section III-E. For a NIS decoding 9 kinematic states
(3-D position, velocity, and acceleration) from 100 MUA channels, the N time-samples of
the s × n Kalman gain matrix for one 24-h decoding session on a 64-bit computer would
consume 300 GB of storage space. Storing, transmitting and processing such large volumes
of data would challenge the capabilities of current hardware, software and communications
architectures used in practical NIS computing platforms. This simple example demonstrates
the impracticability of using precomputed adaptive Kalman gain matrices for high-rate
neural signals and confirms that the SSKF approach is critical for both online and offline
neural decoding in such a setting.

D. Effect of Signal Non-Stationarity

The training paradigms of KF and SSKF are identical, in which the open-loop training data
are used to compute the constant matrices Φ, H, Q, and R that are then used for closed-loop
decoding. This training approach is based on the assumption of neural signal stationarity
within a session. It is worth emphasizing that the SSKF does not impose any stationarity
conditions beyond those assumed by the KF. Considerable temporal variability in motor
cortical neural signals has, however, been reported [39], [40]. This variability may arise
from routine anatomical and physiological processes in the brain as well as
electromechanical imperfections in the interface system. The impact of this nonstationarity
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on decoding accuracy has been addressed and strategies to cope with it have been proposed
[10], [26]. Most of these approaches assume pseudo-stationarity over short periods and use a
block estimation paradigm with periodic filter updates. Within that period, the state and
observation matrices and noise covariances are assumed to remain constant, as is the case
with the standard KF [12] and SSKF, so the underlying state space model and filter structure
are essentially the same. The SSKF can be easily incorporated into the block-estimation
adaptive framework, since the calculation of the steady-state Kalman gain (see Section III-
E) is computationally inexpensive and can be repeated along with filter training as often as
needed.

E. Performance Under Feedback

In our offline analysis, we have found that the SSKF estimates differ from the KF estimates
during the initial recursions, which leads to a slight error in cursor trajectory estimation
during that period (Fig. 5). In an online closed-loop task with visual feedback, however, the
participant is able to compensate for such effects by altering the neural activity accordingly.
Thus, if the SSKF is used in closed-loop, we expect that the participant would compensate
for the initial difference and prevent the overshoot observed in Fig. 5. Therefore, we expect
that in a practical decoding setting with closed-loop control, the SSKF and KF accuracy
levels would have no perceptible difference.

VI. Conclusion

Our analysis establishes the utility of the steady-state Kalman filter for neural decoding. The
steady-state Kalman filter significantly increases the computational efficiency for even
relatively simple neural spiking data sets from a human NIS. From our analysis, the SSKF
converges to within 95% of the KF in about 2 s. Once convergence is attained, the estimates
from the two filters are identical. The decoding complexity is reduced dramatically by the
SSKF, resulting in approximately seven-fold reduction in the execution time for decoding a
typical neuronal firing rate signal. This improved efficiency is important for online
neuroprosthetic control applications and offline performance analyses. We anticipate that the
accurate and low-complexity decoding performance obtained with SSKF will make this
approach useful for practical implementation of future neural interface systems, including
fully embedded systems exploiting complex signal sets, where computational efficiency will
be particularly beneficial.
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Fig. 1.

Behavioral tasks. (a) In the pursuit-tracking task, the training cursor (blue circle) acquires
the selected target (red circle) placed pseudorandomly on the screen. Previous targets (gray
circles) vanish from the screen upon acquisition. The nominal cursor trajectory is also
shown (dotted line) for clarity. (b) In the center-out task, there are four (during training) or
eight (during assessment) radial targets and one center target in this center-out task (gray
circles), one of which is selected for acquisition (red circle). The velocity of the cursor (blue
circle) is computer-controlled in the open-loop filter-building phase and decoded from the
participant's neural activity in the closed-loop assessment phase. (a) Pursuit-tracking. (b)
Center-out.
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Fig. 2.

Filter convergence. Distance, ΔKk, between the Kalman and steady-state Kalman filter
gains, normalized to ΔK0. The ΔKk curves for Sessions 3 and 4 overlap since they use the
same training data; the same is the case for Sessions 5 and 6. The curves for Sessions 1, 2, 3,
and 5 are obtained from multiple trials and show the mean ± sem across trials, but the sem's

are too small to be discernible.
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Fig. 3.

State estimate convergence. Euclidean distance, Δxk, between the Kalman filter and steady-
state Kalman filter state (velocity) estimates. Solid lines and shaded regions show the mean
± sem, respectively, across trials. The sem's are not obtained for closed-loop Sessions 4 and

6 since they consist of a single decoding trial each.
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Fig. 4.

A posteriori estimates of the system states (neural cursor velocity) obtained with KF and
SSKF for Session 6 (closed loop). State vector components, horizontal (x1, k) and vertical
(x2, k) velocity, are shown in units of visual angle per unit time for the first 10 s out of the 10
min session duration. For each dimension, the KF and SSKF estimates of both the mean
state estimates and their 95% confidence intervals (not shown) converge within 5 s.
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Fig. 5.

Reconstructed 2-D neural cursor trajectory estimation for Session 6 (closed loop) obtained
from the decoded velocities for the entire 10 min duration. The radial targets in this center-
out task are shown as gray circles. The only salient difference among the trajectories is an
overshoot in (b) toward the bottom target when using the SSKF, which reflects the fact that
the first excursion of the neural cursor was from the center to the bottom target. (a) Kalman
filter. (b) Steady-state Kalman filter.
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Fig. 6.

Program execution time for neural decoding using the KF and SSKF filters on a standard
computing platform (mean ± sem). These execution times are for offline decoding of the

entire length of a session's firing rate signals with 100 ms time-bins, e.g., 0.21 s to decode

240 s of session 1-s firing rate data with the KF, etc.
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TABLE I

Theoretical Algorithmic Complexityof a Single Recursion of the Kalman Filter for Decoding s-Dimensional
State Vector With n-Dimensional Observation Vector

Estimate KF SSKF

A priori state
O(s 2) O(s 2)

A priori covariance
O(s 3) –

A posteriori state O(sn) O(sn)
A posteriori covariance

O(s 2 + s 2n) –

Kalman filter gain
O(s 2n + sn 2 + n 3) –

Full recursion
O(s 3 + s 2n + sn 2 + n 3) O(s 2 + sn)
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