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Many fundamental tests performed by geometric algorithms can be formulated in terms of finding

the sign of a determinant. When these tests are implemented using fixed-precision arithmetic such

es floating point, they can produce incorrect answers; when they are implemented using arbitrary-

precision arithmetic, they are expensive to compute. We present adaptive-precision algorithms for

finding the signs of determinant of matrices with integer and rational elements. These algorithms

were developed and tested by integrating them into the Guibas–Stolfi Delaunay triangulation

algorithm. Through a combination of algorithm design and careful engineering of the implementation,

the resulting program can triangulate a set of random rational points in the unit circle only four to

five times slower than can a floating-point implementation of the algorithm. The algorithms,

engineering process, and software tools developed are described.
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1. INTRODUCTION

Lack of robustness is a serious practical problem in finite-precision implemen-

tations of geometric algorithms. It is folklore that most solid modeling systems

fail on some problems of practical interest [7]. The same is true even for

implementations of much simpler geometric algorithms. Further, the use of

ad hoc approaches to achieving robustness, often based on ‘epsilon” tolerances,

dramatically increases the complexity of practical implementations of geometric

algorithms. The problems are twofold: geometric degeneracies and numerical

error.

It is very difficult to ensure that an implementation deaIs with all of the special

cases caused by geometric degeneracies. Numerical error is caused by the substi-

tution of floating point for real numbers. Because of the complexity of many
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geometric algorithms, it is difficuIt to obtain symbolic bounds (as distinguished

from running error analyses) on numerical error that are tight enough to be

useful [6]. Moreover, numerical error is often magnified “near” geometric de-

generacies, precisely when the most accuracy is needed. Indeed, techniques for

avoiding geometric degeneracies through conceptual perturbation of the input

data [5, 28] require exact computation.

The growing recognition that numerical error is a serious impediment to

practical, efficient, and robust implementations of geometric algorithms haa led

to increased attention to the problem [3, 4, 8-10, 12, 14, 17-19, 21, 23]. Recent

surveys appear in [6] and [13]. There appears to be a fundamental dichotomy in

the approaches taken between the use of exact computation over restricted

domains (e.g., rational and algebraic numbers) and the use of fixed-precision

approximations to real numbers (e.g., floating point).

Exact computation provides simplicity and assured robustness at the expense

of computational efficiency. It provides simplicity in the sense that algorithms

formulated over the restricted domain map directly to implementations, without

need to treat numerical error. Moreover, the handling of geometric degeneracies

is vastly simplified by the absence of complex interactions between numerical

error and tests for degeneracy. However, exact computation must be implemented

using arbitrary-precision arithmetic, implying that each operation takes time

that is a function of operand sizes. Consequently, algorithms that minimize the

number of arithmetic operations do not necessarily minimize running time.

Sugihara [26] obtains constant-time arithmetic operations by bounding the

precision of input data that, in turn, fixes the precision needed for exact

computation. In particular, he implements set operations on polyhedra repre-

sented as combinations of plane equations (numerical data) and adjacency

relationships among vertices, edges, and faces (combinatorial data). Given bounds

on the precision of the plane equation coefficients, it is straightforward to

compute a priori bounds on the precision needed throughout. Although this

approach limits the cost of exact computation, restrictions on input precision

introduce difficult new problems, as described in [13].

Alternatively, fixed-precision arithmetic can be used together with techniques

that consistently resolve ambiguities arising from numerical error. Geometric

algorithms generally use data structures that contain numerical data and com-

binatorial data. Problems arise because of inconsistencies between the two,

Karasick [14], in his work on robust intersection of polyhedra, resolves the

inconsistencies by altering the numerical data to be consistent with the combi-

natorial data. Unfortunately, some of these alterations may have global effects

or, in the case of degeneracies, may not be possible. Nevertheless, Karasick’s

polyhedral intersection program is very robust in practice. Milenkovic [17, 18],

in his work on robust line arrangement algorithms, resolves ambiguities by

altering both the numerical and combinatorial data to ensure that point/line

incidence tests can be done reliably in fixed-precision arithmetic. His datu

normalization approach shlfta vertices that are too close and shMta vertices and

“cracks” edges when an edge and a vertex are too close, In the worst case, data

normalization can be computationally expensive and can make arbitrarily large

changes in the geometry. Milenkovic’s hidden variabk approach approximates
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the line arrangement problem with a related curve arrangement problem that

allows reliable incidence tests in fixed-precision arithmetic. Fortune [8] describes

an algorithm that triangulates a point set using finite-precision arithmetic, and

Sugihara and Iri [27] describe an algorithm that constructs a Voronoi diagram

using finite-precision arithmetic. Both algorithms guarantee topological consis-

tency even in the presence of unreliable numerical computations. Guibas et al.

[10] describe the construction of robust algorithms using “epsilon predicates,”

relational predicates that incorporate numerical uncertainty. This approach leads

to elegant algorithms, but at the expense of efficiency.

Most primitive tests used in geometric algorithms can be formulated as a

function that maps input parameters to a small number of discrete values. In

particular, many such primitive tests, including orientation of d + 1 points in @

and point-hyperplane classification, can be formulated as the sign of the determ-

inant of a matrix. Since computing values of determinants is very expensive in

arbitrary-precision arithmetic, it is natural to ask whether it is possible to

compute the sign without computing the value. We are not aware of any general

way to do this. However, given a matrix A, we might be able to find sign( IA I)

by transforming A into another matrix A‘, finding sign( IA‘ I), and then using

the properties of the transformation to map sign( IA‘ I) into the sign of IA 1.

This strategy is effective if the two mappings, A + A‘ and sign( 1A‘ I) +
sign( IA I), can be done more efficiently than finding sign( IA I) directly.

Below, we develop several variations on this theme, all of which approximate

matrix elements by intervals with low-precision endpoints. For low enough

precision, the savings in arithmetic cost can far outweigh the additional cost of

doing interval arithmetic. The simplest approach takes a matrix A with integer

elements and transforms it into a matrix A‘ whose elements are integer intervals,

and then uses interval arithmetic to find IA‘ [. For example,

IA(=
–191,285,375,129,284,278,128 -193,294,274,204,273,238,012

242,474,290,147,147,023,937 234,294,274,294,973,293,384

has the same sign as

IA’ I =
[-192,-191] [-194,-193]

[242,243] [234,234] .

If the interval 1A‘ ] does not span zero, then sign( IA ] ) is sign( IA‘ I); otherwise

more precision is necessary. In the worst case the matrix is singular, and no

advantage is to be had by using less than full precision.

In practice the worst case might not occur very often, and these transformation

approaches might yield a large savings. To test this hypothesis, we replaced

floating-point arithmetic with an existing arbitrary-precision rational-arithmetic

package in the Guibas–Stolfi Delaunay triangulation algorithm [11]. The rational

implementation was more than 10,000 times slower than the floating-point one.

By a combination of engineering and application of the above ideas, we were able

to reduce this factor to about four or five for random points in the unit circle.

In particular, we developed procedures that take a matrix with arbitrary-

precision integer or rational elements and adaptively compute the sign of the

matrix determinant. Since our objective was to obtain a reliable and efficient
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implementation of the Guibas-Stolfi algorithm, we were guided by repeated

experimentation: At each stage, we measured its performance on a simple

example, and then either modified the sign-of-determinant procedure or engi-

neered the code. As the running time decreased, we used larger and larger

examples, varying both the number of input points and their precision (number

of bits in their coordinates).

The weakness of this approach is that the algorithm and code improvements

are not independent, and so it is difficult to draw quantitative conclusions about

the value of a particular improvement. For example, improvements in a greatest

common divisor procedure might greatly reduce the running time of rational

arithmetic computations. However, such an improvement might later be obviated

by reformulating the computations. This demonstrates that early experiments

can be inconchsive. However, they are necessary to identify and eliminate the

program “hot spots” that typically dominate the running time of an implemented

algorithm [2].

The remainder of this paper describes the sign-of-determinant procedures, the

experiments performed, and the software techniques that facilitated the experi-

mentation.

2. BACKGROUND

2.1 The Guibas-Stolfi Delaunay Triangulation Algorithm

The Delaunay diagram of a set S of points in the plane is the subdivision of the

plane induced by those directed line segments (a,b) that connect points of S and

have either of the following properties:

(1) (a, b) is an edge of the convex hull of ~ or

(2) for every point c G S and d G S on the left and right of (a, b), respectively,

the oriented circle abc does not contain din its interior

If no four points of S are cocircular, then the Delaunay diagram is a triangu-

lation, called the Defmuuzy triangulation of S. Otherwise, the Delaunay diagram

of S can be transformed into a (nonunique) Delaunay triangulation by adding

edges to the diagram.

Guibas and Stolfi [11] describe an elegant recursive algorithm that merges

Delaunay triangulations of linearly separated point sets L and R into a Delaunay

triangulation of L U R. This merge is done by repeatedly deleting edges from the

triangulations of L and R and then creating a new edge that connects a point of

L to a point of R. The algorithm uses two simple geometric tests. The InCircle

predicate,
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is true if and only if property 2 above holds for four points a, b, c, and d. The

CCW predicate,

1 z= y.

1 x~ y~ >0,

1 xc yc

is true if and only if the points a, b, and c have a counterclockwise orientation.

The Guibas-Stolfi algorithm does O(n log n) InCircle and CCW tests to trian-

gulate n points.

As a starting point, we began with a floating-point implementation of the

Guibas-Stolfi algorithm and directly replaced the floating-point arithmetic with

rational arithmetic. Rational numbers were implemented as pairs of arbitrary-

precision integers, and results of arithmetic operations were simplified using the

binary GCD algorithm [15]. Arbitrary-precision integers were represented as

arrays of radix-216 digits. We chose this radix because the implementation

language, C++, uses 32-bit arithmetic and does not detect integer overflow.

Arithmetic operations were implemented using classical algorithms [15], assign-

ment was implemented by copying, and the digit arrays were allocated and

reclaimed using the C’+-provided storage management procedures. The CCW

and InCircle tests used by the Guibas-Stolfi algorithm were implemented by

finding the sign of the appropriate determinant using cofactor expansion down

the 1‘s column.

Our first experiment was to triangulate ten random points in the unit circle.

For double-precision points, the implementation using floating-point arithmetic

took 0.1 seconds; for rational points with comparable precision (2-digit numerator

and 3-digit denominator), the implementation using arbitrary-precision rational

arithmetic took 1200 seconds, generating intermediate values with as many as

81 digits.

Even though we expected the rational implementation to be slower than the

floating-point implementation, we were surprised by the size of the disparity. We

concluded that we had to reduce both the number of operations and the cost of

individual operations. We began by investigating better ways to compute the sign

of the determinant of a matrix with arbitrary-precision integer elements.

2.2 Simulation Model of Computation

To accurately predict the performance of an algorithm implemented using exact

integer arithmetic, the model of computation must capture the behavior of

the implementation. Several models of computation are described in [1]. The

simplest, which we call the unit-cost model, allows arithmetic and com-

parison operations on arbitrary-precision integers in constant time. In the

log-cost model, an integer a is manipulated as a bit string of length

{

llgla[J+l, a#O
l(a) = ~

a = o,

and arithmetic operations take time that is a function of this size. However, on

most computers data is manipulated in word-sized “chunks,” or digits. Therefore,
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we use a simulation model of computation in which integers are manipulated as

radix-r numbers with

{

Llog, [al J+l, a#O
l(a) = ~

* a=O

digits.

To determine the cost of arithmetic operations in the simulation model, we

assume that they are implemented using the classical algorithms described in

[15].’ If a and b are integers with a and B digits, respectively, then addition,

subtraction, and comparison take O(a + B) time, multiplication takes O (c@)

time, and division takes O(CY13– 62) time.

3. USING INTEGER INTERVALS

Since we are not aware of any general way to compute the sign of a determinant

without first computing its value, we take the approach discussed in Section 1:

A matrix A is transformed into a matrix A‘ for which IA‘ [ is often faster to

compute than IA 1, and then properties of the transformation are used to obtain

sign( [A I). Specifically, a matrix of rationals is first transformed into a matrix

of integer intervals with low-precision endpoints, and then the determinant is

computed. If the resulting interval IA‘ I does not include zero, then sign( [A I)

is known; otherwise, higher precision endpoints are used, and the process is

repeated. Regardless, it is necessary ta find efficient means to compute the

determinant of a matrix of integers.

The determinant IA I of an n x n matrix A can be found efficiently using

cofactor expansion [20] if n is small. A variant on classical Gaussian elimination,

Sgauss, finds the sign of the determinant using only integer arithmetic. We first

present the Sgauss algorithm and then compare Sgauss with cofactor expansion

using the simulation model.

Classical Gaussian elimination replaces element aij of matrix A with

ail

aij - — ~lj,
all

which can be rewritten as

If A is an n X n matrix, then after the first elimination step (involving all) the

first row of A remains unchanged, the n – 1 elements below all are zero, and

the remaining (n – 1)2 elements form a submatix of intergers divided by all. For

‘We uee the classical algorithms becauee they are simple to implement and more efficient for

relatively small operande than the more sophisticated algorithm deecribed in [1] and[15].
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example, if A is a 4 X 4 matrix, then this first elimination step yields

1
T
all

al 1 a12 all a13 al 1 a14

a21 a22 a21 a23 %1 a24

al 1 a12 all a13 al 1 a14

a31 a32 a31 a33 a31 a34

al 1 alz a,, a13 al 1 a14

a41 a42 a4~ a43 a41 a44 I
The second elimination step reduces A to a 2 X 2 matrix, and produces the factor

1
.

all a12

q a22

In general, if A is an n x rI matrix, then Sgauss transforms IA I into a product of

n – 2 factors and the determinant of a 2 x 2 matrix S. The sign of IA I is found

by examining the sign of IS{ and the signs of the factors with odd powers. Note

that unlike standard Gaussian elimination, Sgau.ss need not do any division

because only the sign of IA I is desired. A simple analysis shows that given an

n x n integer matrix with &digit elements, Sgauss uses O(~24n) time. A more

careful analysis is possible using the following idea: The ith Sgauss elimination

step transforms the determinant of an n x n matrix into the product of a scalar

D(i) raised to the power n – 1 – i and the determinant of an (n – 1) x (TZ - 1)

matrix. It is easy to see that

n-2

D(n – 1) = 1A I ~ Dn-l-l(i).
i= 1

Using Hadamard’s inequality to bound IA [ in the above recurrence relation, we

can bound D(n). This in turn is used to bound the number of single-digit

operations used by Sgauss. The resulting analysis is shown graphically in

Figure 1. Sgau.ss becomes significantly more efficient than cofactor expansion

for n a 5.

Since Sgauss is only marginally less efficient than cofactor expansion for n =

3, 4, and because we want to generalize the procedures to larger matrices, we

used only Sgaum for the CCW and InCircle tests in subsequent experiments.

Unfortunately, even Sgauss with exact computation is far too inefficient for

practical implementation of the Guibas–Stolfi algorithm. By approximating the

elements of the CCW and InCircle matrices using integer intervals (with low-

precision endpoints), the running time can often be reduced. In fact, this can be

done adaptively: if the determinant computed with interval arithmetic spans

zero, the computation is repeated with higher precision interval endpoints,

continuing until the sign is obtained. This remains an expensive computation if

the determinant is zero. This algorithm is implemented by Program Sga~si”tiw.l,

shown in Figure 2.
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Lzd=2 Liiii!d=4 ‘

md=32

Ww
234567 234567

n(size of matrix)

Fig. 1. Theoretical number of single-digit operations required by cofactor expansion

and Sgauss. The data plotted above are ratios of the number of single-digit operations

for Sgauss and cofactor expansion, varying matrix sise (n) and matrix-element size

(d). For n = 2, the two algorithms are identical; for n = 3, 4, cofactor expansion is

slightly better, and for n 2 5, Sgauss is better. The data are obtained using

Hadamard’s inequality to bound the &terminant magnitudes.

Using Sga~si.@Wal reduced the time required to triangulate ten random points

from 1200 to 97 seconds. Sga~si.tin,l reduced the time by an order of magnitude

because it often found the sign on the first iteration: the 96 CCW tests and

31 InCircle tests required only 176 interval determinants to be computed by

Sga~si.@W,l. We concluded that the approach is effective, but that the run-

ning time was still unacceptably high (i.e., 1000 times slower than floating

point). We therefore decided to try

the implementation.

3.1 Engineering the Implementation

Several straightforward changes to

t; reduce the running time by engineerin~

the implementation of rational arithmetic

reduced the running time of the triangulation algorithm from 97 to 75 seconds

(1) Digit-shift operators were implemented and used to speed the boxing opera-
tion in step 3 Of Sg(lUsSin~W~.

(2) Operations like a = a + 1 were replaced with compound-assignment operators.
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(3)

(1)

(2)

(3)

(4)

(5)

Transform the rational matrix into integer matrix, e.g.,

$ * Q13 a,,b,zb,~ b,, a,,b,s b,,b,zal~—
b,, blz bl~ q,b%b, &,&, b,, bz,%,b

~*~ as,bS2b~ &l a~zb~ b~lb~za~
.

b,, ~, b,, b,lb,zb,~~lhzb,~b,,b~zbw

~ * ~

b,, & b=

and discard the denominators, which are positive.

Let h be the number of digits in the matrix element with smallest magnitu&.

“Box” each element with a low-precision integer interval, as follows

(a) Let k = r’-’ , where r is the radix.

(b) Drop the h - 1 least significant digits of each element au by replacing a,,

with the interval [ [ a,,/k j , [ a,,/k1 ].

Compute the sign of the determinant using Sgauss with integer-interval

arithmetic.

If this sign is [–1, 1], then repeat steps 3 and 4 with a smaller h.

Fig. 2. Program Sgauss,n~N.,. Given a matrix with rational elements, compute the

sign of its determinant adaptively.

Rational number comparison, originally performed by examining the sign of

the difference, was reimplemented to try special case tests (sign and size

comparison) first, and then to compute the sign of the numerator of the

difference. This improvement was important because rational number com-

parison is used in sorting the points, the first step in the Guibas-Stolfi

algorithm.

Statistics gathered by the rational-arithmetic package indicated that simpli-

fying rational numbers after every arithmetic operation rarely reduced the

numerator and denominator sizes by more than one digit. Consequently, we

dispensed with simplification altogether. This reduced the running time from 75

to 30 seconds. The size of the largest intermediate value increased from 108 to

110 digits. Initially, we believed that simplification would be worthwhile because

two random integers have a nontrivial greatest common dhrisor about 40 percent

of the time (Theorem 4.5.2D, [15]). However, in the simulation model of com-

putation, there is no effect unless the greatest common divisor is at least a digit

in size. We found, at least for our experiment, that this was not the case very

often.

Nevertheless, we were surprised by the large size of the intermediate results

generated. When we investigated, we found that some InCircle determinants

were zero. This was surprising given the random input data.

3.2 A Superfluous Numerical Test in the Guibes-Stolfi Algorithm

Close inspection of the Guibas-Stolfi algorithm reveals a boundary condition for

which a combinatorial test can detect a zero InCircle determinant, thus avoiding

the expense of computing a zero determinant. This boundary condition appears
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in the merge loop in Figure 23 of [11]:

WHILE InCircle
[basel.flest, b&.OqDlcarrd.Dest, lcand.Onext.Dest]

. . .

It is possible that basel.Org and lcand.Onext.Dest are the same vertex.2 This

happens if there are only two edges incident to vertex basel.Dest. Since the

InCircle test returns fcdse when the determinant is zero, the code can be modified

to check for this case:

DO
IF basel.Org= lcand.Onext.Dest

THEN EXIT Fl;
IF NOT lnCir~basel.Dest, basel.erg, kand.Dest, lcand.Onext.Dest]

THEN EXIT Fl;

06;“
Similarly, the symmetric case can be modified to read

Do
IF basel.Dest = rcand.Oprev.Dest

THEN EXIT Fl;
IF NOT lnCircle[basel.Dest, basel.Org, rcand.Dest,rcand.Oprev.Dest]

THEN EXIT Fl;

Oii “

These changes reduced the number of InCircle tests from 31 ta 28, which

decreased the running time from 30 to 20 seconds and the size of the largest

intermediate value from 110 to 20 digits. Note that evaluating zero determinants

was very expensive.

3.3 Storage Management

The improvements described thus far have focussed on reducing the number of

machine arithmetic operations required. With these improvements in place, we

observed that 70 percent of the running time was spent executing the C storage

management functions, mdoc and tree. In our experiment, storage was allocated

and reclaimed for approximately 120,000 integers, of which 90,000 had at most

ten digits.

Therefore, we augmented the integer data structure to contain preallocated

space for 31 digits. We also added a pointer to the data structure that points to

either the preailocated storage or to storage obtained from rnolloc for integers

exceeding 31 digits. (This self reference complicated the assignment operation.)

Running time decreased from 20 to 6 seconds, effectively eliminating storage

management overhead for our experiment.

2It is interestingto ask why floating-pointimplementationsof the unmodifiedalgorithmdo not
encounternumericaferrorin thissituation.If eithercofactorexpansionor Gaussianeliminationis
ueadto computethe determinan~it is not diffkult to see that zero will he producedeven with
floating-pointarithmetic.However,if the determinantis evaluatedse a polynomial,the resultwill
dependon theorderin whichthe termsaresummed.
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Further improvement was obtained by implementing the assignment operation

to copy using the iargest possible “single-instruction chunks” available on our

machine (32 bita). Previously, copying had been done one byte at a time. This

reduced the running time from 6 to 5 seconds.

3.4 Reformulating the InCircle and CCW Determinants

The first columns of the CCW and InCircle determinants are all 1s. This fact

can be exploited to further reduce the running time by performing the first

Gaussian elimination step directly on the rational matrix, immediately reducing

the effective size of the matrix by one, but substantially increasing the cost of

converting from a rational to an integer matrix.

Another way to exploit these columns of 1s is to convert from an integer to a

rational matrix by multiplying down columns instead of along rows (as in

Program SgausS.@W.l of Figure 2). Then, the first Gaussian elimination step can

be done efficiently using integer arithmetic. When this is done, the x’ + yz

column of the InCircle matrix has much larger integers than the other columns.

For our experiment, the resulting x and y columns could have at most n-digit

elements, but the X2 + yz column could have 68-digit elements. This disparity

can be eliminated by boxing the columns independently, which does not change

the sign of the determinant.

When we integrated this modification of Sga~sin,,W.l into the Guibas-Stolfi

algorithm, the running time decreased from 5 to 3.5 seconds even though the size

of the largest intermediate value increased from 20 to 45 digits.

3.5 Incremental Computation of the Determinant of a Matrix

If rational numbers are represented as ratios of scaled integers, Z = m x r’, where

m is an arbitrary-precision integer, r is the radix, and e is an exponent, then the

elements of the CCW and InCircle matrices can be scaled independently by the

boxing step of program Sgaussin,,w.l. For example, the positive integer anr” +

an_lrm-l + . . . + alr + a. can be bounded in the interval [a., a. + 1] X r“, thus

requiring only one digit to approximate each element.

For our experiment, this did not yield any improvement because the elements

in each column of the CCW and InCircle determinants had approximately the

same size. Therefore, the extra overhead of constructing and normalizing the

scalar integer representation just increased the running time.

Often, ordy the high-order digit or two of the integer matrix elements need be

examined when finding the sign of the determinant. If arithmetic could be carried

out most-significant digits first, the entire computation could be terminated when

the sign becomes available. In particular, it might not be necessary to complete

the conversion of the rational matrix into an integer matrix.

This can be done by representing rational numbers as ratios of scaled integers

and using a simple incremental algorithm for the conversion. Using this approach,

the Guibas–Stolfi algorithm runs six times slower than Sga~si.,,w,l on our test

data. The overhead of maintaining the state of the incremental multiplier is far

too high unless the elements have a huge number of digits.
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Another approach is to use Preparata and Vuillemin’s [22] algorithm for

computing the product of two integers in left-to-right digit order. Their algorithm,

which uses a redundant digit representation, obtains the most significant digit of

the product after examining each digit of the two integers. (This digit may be

zero even though the product is nonzero). We dld not investigate this approach,

and it would be an interesting topic to pursue. However, the next section describes

a way to entirely avoid the rational- to integer-matrix conversion.

4. USING INTEGER-INTERVAL RATIOS

Thus far, we have been converting a rational matrix to an integer matrix before

finding the sign of its determinant. The multiplications required can be a

significant part of the total time required to find the sign of the determinant. If

the conversion cost can be reduced, the total time might be reduced.

Recall that the primitive Sgauss elimination step replaces each element ay of

a matrix A with

If each element of A is a rational number ati/6ij, then the above elimination step

replaces it with

bll—
all

all U1j allbil aljbij

G&= ail hl ah

ail ati
(lllbilbljbij

——

If A is of size n, then after the first elimination step (using all/blJ, the first row

of A remains unchanged, the n – 1 elements below a,, /b,, are zero, and the

remaining (n – 1)2 elements form a submatrix of size n - 1. If A is a 4 x 4

matrix, then the first elimination step produces

allbzl alzbzz

azlbll qzblz

o
allbzlblzbzz

allbzl a13bz3 allbzl a14bw

azlbll a23b13 azlbll a2dbll

allbzlb&3 all b21bll b2d

allb31 alzbsz allbsl alsbss
aslbll a32b12, aslbll assbls

o
allbslblzbsz allbslblsbss

o

a11b41 alzblz allbdl a13b43 allbll a14b44

allbll alzblz adlbll a43b13 a41bll au bll

allbllblzblz allbllblsbds allbllbllbti

I
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In general, the result of an elimination step can be simplified by the following

sign-preserving transformations:

(1) Drop the positive ccmrnon denominator b,, from every element of column j.

(2) Drop the positive common denominator bil from every element of row i.

(3) Factor out al, from the first column and I/a,, from the others, yieldlng factor
l/al in-2.

After applying these transformations to the preceding example, we obtain

1

T
all

a11b21 alzbzz a11b2, a,sbza allbzl al~bz~
azlbll azzblz az, bl, azabla azlbll a24b14

b22

allbal alzb~z
aalb,, aszblz

b23

allbal alabaa

aalbl, aaabla

bm

allb~, alabda

adlbll a43b13

&

allbal aldbad

aalbll asdbl,

h,

allb~l a14b44
adlbll addbld

The entire process can then be repeated, reducing the size of the matrix each

time, until a 2 x 2 matrix is obtained. In general, this elimination procedure,

which we call S’ga~s~~~iO~~l,transforms the determinant of a rational matrix A of

size n into a product of n – 2 factors and the determinant of a 2 x 2 matrix S.

The sign of IA I is found by examining the sign of IS I and the signs of the

factors having odd exponents. Given an n x n matrix with rational elements that

have v-digit numerators and &digit denominators, Sga~sr.tion.l uses O((U + 6)24”)

single-digit arithmetic operations.

A more useful result is obtained by comparing the number of operations

required by Sga~s,e~iO.al to the number required by an algorithm that first

converts the rational matrix to an integer matrix and then uses Sgauss. Using

Hadamard’s inequality to bound the sizes of the determinants, we obtain the

data in Figure 3. These plots show that the total time required is almost

independent of d. Thus, the total time required depends both on n and the

amount of precision necessary. If Sga~s,.tiOn.l evaluates the determinant to full

precision, then it is better for matrices of size n s & on the other hand, as the

precision needed decreases, Sga~s,.~iO..l becomes more attractive. This can be

exploited by an adaptive-precision version of Sga~s,.~iO..l, obtained by observing

that a rational number can be “boxed” by a ratio of integer intervals. For example,

the rational number

–284.283.293.293.002.348

209,078,384,027,273,234
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f)~
2345678910 23456789!0

Hd=4

❑d=32

❑d=256

2345678910

n(size of matrix)

Fig.3. Theoretical number of operations requiredbySgauss.,ti. The dataplotted
compare the time required by Sgauss.,ti to compute the sign of the determinant of

a rational matrix with the time required to convert the rational matrix to an integer

matrix, and then use Sgau.rs to compute the sign of the determinant. Matrix elements

have d-digit numerators and denominators.

is contained in the ratio of intervals

[-285, -284]

[209, 210] -

Program Sga~sin@N.l.,atiO(see Figure 4) implements these ideas. It increased the

mnning time of the Guibas-$tolfi algorithm on our test set from 3.5 to 5.6

seconds. The size of the largest intermediate value decreased from 45 to 38 digits.

For our experiment, the test points have numerators and denominates with

few digits, and so the cost of converting from a rational to an integer matrix is
. .

cheap enough that Sgauss,”bw~l IS stall more efflclent than sga~sirrtervd-ratio. If the

numerators and denominators have more digits, the time required to convert

from a rational to an integer matrix will begin to dominate the computation time

of Sga~si.mWd; conversely, we do not expect the computation time required by

Sga~si.tiWd.,.tiO to increase significantly. This conjecture is supported by the data

of Figure 5, which measures the time required to triangulate fixed-size point sets

whose coordinates have numerators and denominators with successively larger

magnitudes. Both Sga~si~@Wd.r~tiOand Sga~si.@W.l usually converge on the first

iteration, and so the times in Figure 5 dominate the time required by Sga~si.@Nd

to convert from a rational to an integer matrix.
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(1)

(2)

(3)

(4)

Obtain the interval-ratio matrix A by boxing each element of the rational

matrix using an integer-interval ratio. (If a numerator has u digita and its

corresponding denominator has 6 digits, then drop the low order min(v,d) – 1

digits from each,)

Subtract the first row of A from the other rows of A, simplify the result by

factoring, and drop the first row and column.

Find the sign of IAI using Sgau.rs_,i..ol with integer-interval arithmetic.

If sign( IA I ) is [–1,1 ], then repeat steps 1 to 3 with additional precision.

Fig. 4. Program Sgau.ss,.~w.i.,.,,.. Given an InCircle or CCW matrix A with

rational elements, compute the sign of its determinant adaptively.

Pig. 5. Times required to triangula~

50 points using Sgauas,ntiN., and

:’!= ‘bans’a’s’n”’”d””’’”ifeachnumerator

Sga~si.t.rv.l.,tii.. For random points in the

unit circle, Sgaus*nww.lis more efficient

and denominator has fewer than four dig-

its. As the magnitudes of the nurnera -

tore and denominators increase, the time

o 10 20 30 40 used by Sgauss.~., to convert from ra-

Oigits in numeratorand denominator tional CCW and InCircle matrices to

integer matrices begins to dominate the

computation.

4.1 Continuad Fractions

Another way to approximate rational elements using lower precision is to use

simple continued fraction expansions. Given a rational number a and an integer

Q, there is an algorithm that finda the best approximation to a with denominator

no greater than Q [16]. In fact, if q = Q is the denominator in the best

approximation, the error is no greater than l/(qQ). Despite the low error, the

cost of computing the approximation outweighs the benefit. Furthermore, the

denominators of the matrix elements are potentially different from one another.

Thus, the sign of the matrix determinant must be computed using rational

arithmetic. In the next section, a more efficient approximation technique is

developed.

5. A FIXED-PRECISION-INTERVAL FILTER

When all of the improvements we have discussed were integrated into the Guibas-

Stolfi algorithm, it became fast enough that we could use a larger test case. The

new test data consisted of 500 random points in the unit circle, computed initially

in double precision. For input to the rational implementation, these were con-

verted to their rational equivalents. We compared the floating-point implemen-

tation to our fastest rational implementation, the one that uses Sgauss,nwn,l. The

floating-point implementation took 14 seconds, while the rational implementa-

tion took 470 seconds. Although this ratio was three ordera of magnitude better

than our initial baseline experiment, the rational implementation remained

impractically slow.

Measurements revealed that the adaptive algorithms often found the sign

of the CC W and InCircle determinants on the first iteration using single-digit
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(16-bit) approximations of the elements. Nevertheless, these calculations in-

curred the large expense of arbitrary-precision arithmetic. To avoid this expense,

we implemented a fixed-precision “filter” that uses machine arithmetic directly

on low-precision approximations. If this succeeds, the determinant’s sign is found

very quickly. If not, the adaptive algorithms continue until the sign is found.

Since the objective was a fast filter, we used a simple approximation. A rational

number a/b can be approximated by the interval [p/q, (p + 1)/q], where q is

positive and p is computed as follows:

(1) Choose denominator q; and set p = aq/b, r = aq mod b.

(2) If r is zero, then form the approximation [p, p]/q and exit.

(3) Otherwise, if r is negative, then subtract 1 from p.

(4) Finally, form the approximation, [p, p + 1]/q.

If q is chosen to be a power of two, then the multiplication can be done by

shifting. If the same value of q is used to approximate every element of a matrix,

then q can be factored out of the matrix and Sga~sintinal used directly to find

the sign. Using 32-bit (hardware) integer arithmetic, a CCW test with 15-bit

elements and an InCircle test with 6-bit elements can be implemented in

this way.

With our 500-point test set, these approximations find the sign in 13,272 of

the 13,277 CCW tests, but in only 65 of the 6,780 InCircle tests. We therefore

decided that a 32-bit fixed precision filter was ineffective. However, 53-bit

integers can be manipulated using the 53-bit mantissas provided by our machine’s

(IEEE standard) floating-point hardware, In addition, somewhat higher precision

element approximations can be used if integer overflow is detected by examining

the floating-point exponent after each arithmetic operation. If examining the

exponent indicates that overflow has occurred, the interval is widened.

These ideas were incorporated in a new procedure, Sga~srJo.trl..j.terval,which

finds the sign of the determinant of a matrix with double-precision interval

elements. We used Sgawsdo.bl,.i”~wal in the Guibas–Stolfi algorithm as a fixed-

224 For points in the unit circle, this allows CCWprecision filter and with q = .

tests to be done without overflow and InCircle tests to be done with overflow

possible only in the last elimination step. If Sgaussdo.bl..imtiw,lfailed to find the

determinant’s sign, then Sga~sin@w.l was used, starting with 2-digit (32-bit)

integer-interval endpoints and doubling the number of digits used in successive

iterations until the sign was found. Using this approach, the running time for

our 500-point test case decreased from 470 to 316 seconds.

5.1 Caching Frequently Computed Values

Double-precision intervals are computed each time Sgauwdo.ble.i.kwel is invoked.

However, these interval approximations do not change between invocations

because they are associated with the coordinates of the point set to be triangu-

lated. Thus it makes sense to retain the approximations so that they need not be

recomputed. Since we approximate a rational number by

[n, n + 1]

2d ‘
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we cache n (a scaled integer represented using double precision) with the rational

number that it approximates. This trivial optimization reduced the running time

from 316 to 195 seconds. Likewise, caching with each point the X2 + yz used in

the InCircle test reduced the running time from 195 to 59 seconds.

6. SOFTWARE

The experimental approach that we adopted was feasible only because we had

appropriate software tools. In particular, it was essential to be able to easily

define arithmetic operations on various domains. For example, once we had

matrix operations and interval arithmetic, it was trivial to obtain matrices with

interval elements. Those same software techniques yield efficient, modular, and

maintainable programs, Because of their importance to this work, we describe

the tools in this section.

6.1 Mapping Arithmetic Domains into C++ Classes

Our software was written in C++ [24], a language that allows efficient manipu-

lation of low-level machine entities like bits and words, but also allows the

construction of abstract data types (classes) and hierarchies thereof. C++ provides

a concise notation for initializing objects, copying them, displaying them, and

manipulating them with functions and operators. Together with a compiler-

enforced discipline for creating objects as they “enter scope” and destroying them

when they “leave scope,” these facilities permit algorithms to be written clearly,

debugged easily, and changed quickly (thereby encouraging experimentation)

while retaining most of the execution efficiency of a more primitive programming

language such as C.

We used the C++ class mechanism to construct and manipulate numbers from

different arithmetic domains and to define a set of functions and operators

common across all these domains. We implemented the following arithmetic

classes:

int

integer

Integer

double

Rational

Interval

Ratio

Matrix

the class of numbers representable as 32-bit two’s complement

integers,

the class of numbers representable as 53-bit signed magnitude

integers,

the class of unlimited precision integers,

the class of numbers represented as 53-bit mantissas scaled by

1l-bit exponents,

the class of numbers represented as ratios of Integers,

the class of numbers represented as intervals with int-, integer-,

Integer-, double-, and Rational-endpoints,

the class of numbers represented as ratios of Intervals of Integers,

the class of square matrices with elements of type Integer, double,

Rational, Interval of integer, Interval of double, Interval of Integer,

Interval of Rational, and Ratio of Interval of Integer

Many versions of the Interval, Ratio, and Matrix classes could be implemented

the above list shows some of the ones we actually used.
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The following example shows a code fragment, which implements two of the

addition operators for rational numbers.

Rational operator + (const Rational& x, const Rational& y)

{
return Ratiial(x.num * y.den + x.den * y.num, x.den * y.den~

}

Rationaloperator + (corrstInteger&x, const Rational&y)

I
return Rational(x * y.den + y.num, y.den);

I

We actually defined five different versions of the “+” operator, corresponding

to possible operand pairings that might be encountered. C++ automatically

invokes the correct one, depending on the situation at hand. For example, in the

code fragment:

Integera(l);
Rationalb(l ,2);
Rationalc = a + b;

C++ would automatically invoke the function “operator + (Integer, Rational).”

6.2 Class Templates

Frequently, the same source code could describe several classes, perhaps with

additions or omissions of a few lines of code. For example, the source code for

any matrix class is independent of the matrix element type, and the source code

for any interval class is independent of the type of interval endpoints.

We wanted to write such source code once, as a template parameterized by one

or more types, and use it to automatically generate object code for the desired

types. The C++ language currently lacks such a template mechanism (but see

[25] ), so we implemented it straightforwardly using the UNIX@ macro processor,

m4. Consider the following (incomplete) template for Ratio classes:

// GenericRatio Arithmetic
GENERIC_def_C(Ratio,’Den’,’Num’)
# include“Ratio(Num,Den).h”
// Sum.
R:tio(Num,Den) operator+(constRatio(Num,Den)&x, const Ratio(Num,Den)&y)

return Ratio(Num,Den)(x. num * y.den + x.den * y.num, x.den * y.den~

1

The template corresponds closely to a regular C++ class definition, except that

the type of the numerator and denominator is parameterized. The GENERIC-

def-C directive tells our template preprocessor the “base” name of the template

and the names by which the template is to be parametrized. For example,

invoking the template preprocessor with “Num = int” and “Den = int” would

e UNIX is a trademark of AT&T Bell Laboratories.
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generate a file named “Ratio_int_int.C” containing

# include“Ratio_int_int.h”
// sum.
Ratii_int_int operator+ (const Ratio_int_int&x, const Ratio_int_int&y)

I
returnRatio_int_int(x.num * y.den + x.den ● y.num, x.den * y.den);

I

7. CONCLUSIONS AND FUTURE WORK

A combination of algorithm improvements and engineering have reduced the

running time of a rational arithmetic implementation of the Guibas-Stolfi

Delaunay triangulation algorithm by more than three orders of magnitude. Our

current program is able to correctly triangulate a set of 500 points in 59 seconds;

a floating-point implementation requires 14 seconds, with no guarantee of cor-

rect ness. Thus we have obtained the robustness guaranteed by rational arith -

metic, paying for this with a five-fold increase in running time.

In the course of refining and testing our code, we gained several insights about

implementing rational arithmetic and using it in the Guibas-Stolfi algorithm:

(1)

(2)

(3)

(4)

(5)

It is rarely necessary to examine every bit of every element of a rational or

integer matrix to compute the sign of its determinant. But when it is

necessary (i.e., when the determinant is zero), the computation is very

expensive. Therefore, it is important to replace degenerate determinant

calculations with combinatorial tests whenever possible. For example, mod-

ifying the Guibas-Stolfi algorithm to avoid calculating certain zero determi-

nants significantly reduced the running time.

Simplifying rational numbers after arithmetic operations does not pay be-

cause it rarely reduces the size of a number by more than one digit.

Memory management can be a major cost it seems worthwhile to increase

memory usage to simplify and lower the cost of memory management. For

example, preallocating a fixed amount of storage sufficient to hold small

integers is effective.

Arbitrary-precision arithmetic is very expensive, so it is worthwhile to use

memory for caching wherever possible.

If hardware support is available for arithmetic on sufficiently large integers,

a fixed-precision filter used to quickly cull cases that can be evaluated in low

precision is very effective.

Appropriate software tools are essential to the experimentation that drives

algorithm development and engineering. By using an object-oriented program-

ming language like C++, we were able to write our algorithms in a clear and

natural notation, using standard arithmetic operators and functions. By defining

a standard set of operators and fimctions, we were able to switch between different

arithmetic domains by simply changing a few # define or # include lines in the

C++ source and recompiling. Class templates allowed us during the course of our

experimentation to quickly and easily create many different versions of classes

like Interval, Ratio, and &fatrix.
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Although many important geometric tests can be formulated in terms of the

sign of a determinant, it is not yet clear how well the techniques described in

this paper will work on other algorithms or with nonrandom data. However, we

are heartened by the fact that our experience in tuning this algorithm mirrors

the techniques for writing efficient programs described in [2]. Also, it is likely

that data encountered in practical applications of Delaunay triangulation will

include some input that leads to zero determinants. If the proportion of such

determinants remains small, the techniques we have described are likely to

remain effective. Otherwise, it might become necessary to devise a fast test for a

zero determinant. One possibility would be to use modular arithmetic [15] to

compute the determinant. Since sign determination (other than zero) is expensive

in modular arithmetic, it might best be used to cull zero determinants after using

the fixed-precision filter described previously.
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