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Abstract. This paper presents a technique for estimating the three-
dimensional velocity vector field that describes the motion of each
visible scene point (scene flow). The technique presented uses two con-
secutive image pairs from a stereo sequence. The main contribution is
to decouple the position and velocity estimation steps, and to estimate
dense velocities using a variational approach. We enforce the scene flow
to yield consistent displacement vectors in the left and right images. The
decoupling strategy has two main advantages: Firstly, we are indepen-
dent in choosing a disparity estimation technique, which can yield either
sparse or dense correspondences, and secondly, we can achieve frame
rates of 5 fps on standard consumer hardware. The approach provides
dense velocity estimates with accurate results at distances up to 50 me-
ters.

1 Introduction

A very important feature to extract from a moving scene is the velocity of visible
objects. In the scope of the human nerve system such perception of motion is
referred to as kinaesthesia. The motion in 3D space is called scene flow and can
be described by a three-dimensional velocity field.

Fig. 1. Scene flow example. Despite similar distance from the viewer, the moving car
(red) can be clearly distinguished from the parked vehicles (green).
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With images from a single camera, scene flow computation is clearly under-
determined, due to the projection on to the image plane. Even if the camera
is moving, there arise ambiguities between the camera motion and the motion
of objects in the scene. These ambiguities are largely resolved when using a
second camera. Ambiguities only remain due to missing structure in local parts
of the image. In 2D motion estimation, this is known as the aperture problem. A
common way to deal with this problem is by using a variational framework (e.g.
[6]), which includes a smoothness assumption on the velocity field. This allows
for dense motion estimation, despite missing structure in parts of the image.

In the case of 3D motion estimation, we can also make use of a variational
technique in order to achieve dense estimates (as done in [7]). However, it should
be clear that only the motion of visible parts of the scene can be estimated. For
our purposes, we refer to dense scene flow as the 3D velocity vector at each 3D
point that can be seen by both cameras.

Scene flow estimation, with known camera parameters, involves estimating
the 3D velocity in consecutive stereo frames, and also the disparity needed to
calculate the absolute position of the world point. In this paper, we suggest
performing the velocity estimation and the disparity estimation separately, while
still ensuring consistency of all involved frames. The decoupling of depth (3D
position) and motion (3D scene flow) estimation implies that we do not enforce
depth consistency between t and t+1. While splitting the problem into two sub-
problems might look unfavourable at a first glance, it only affects the accuracy
of the disparity estimate and has two important advantages.

Firstly, the challenges in motion estimation and disparity estimation are very
different. With disparity estimation, thanks to the epipolar constraint, only a
scalar field needs to be estimated. This enables the use of efficient global op-
timisation methods, such as dynamic programming or graph-cuts, to establish
point correspondences. Optical flow estimation, on the other hand, requires the
estimation of a vector field, which rules out such global optimisation strategies.
Additionally, motion vectors are usually much smaller in magnitude than dispar-
ities. With optical flow, occlusion handling is less important than the sub-pixel
accuracy provided by variational methods. Splitting scene flow computation into
the estimation sub-problems, disparity and optical flow, allows us to choose the
optimal technique for each task.

Secondly, the two sub-problems can be solved more efficiently than the joint
problem. This allows for real-time computation of scene flow, with a frame rate of
5 fps on QVGA images (320×240 pixel). This is about 500 times faster compared
to the recent technique for joint scene flow computation in [7]. Nevertheless, we
achieve accuracy that is at least as good as the joint estimation method.

1.1 Related Work

2D motion vectors are obtained by optical flow estimation techniques. There
are dense as well as sparse techniques. Sparse optical flow techniques, such as
KLT tracking [16], usually perform some kind of feature tracking and are pre-
ferred in time-critical applications, due to computational benefits. Dense optical
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flow is mostly provided by variational models based on the method of Horn
and Schunck [6]. Local variational optimisation is used to minimise an energy
function that assumes constant pixel intensities and a smooth flow field. The
basic framework of Horn and Schunck has been improved over time to cope
with discontinuities in the flow field, and to obtain robust solutions with the
presence of outliers in image intensities [9]. Furthermore, larger displacements
can be estimated thanks to image warping and non-linearised model equations
[1,9]. Currently, variational techniques yield the most accurate optical flow in
the literature. Real-time methods have been proposed in [2,18].

Scene flow involves an additional disparity estimation problem, as well as the
task to estimate the change of disparity over time. The work in [11] introduced
scene flow as a joint motion and disparity estimation method. The succeeding
works in [7,10,19] presented energy minimisation frameworks including regulari-
sation constraints to provide dense scene flow. Other dense scene flow algorithms
have been presented in multiple camera set-ups [13,17]. However, these allow for
non-consistent flow fields in single image pairs. At this point it is worth noting
that, although we separate the problems of disparity estimation and motion es-
timation, the method still involves a coupling of these two tasks, as the optical
flow is enforced to be consistent with the computed disparities.

None of the above approaches run in real-time, giving best performances in the
scale of minutes. Real-time scene flow algorithms, such as the one presented in
[14], provide only sparse results both for the disparity and the velocity estimates.
The work in [8] presents a probabilistic scene flow algorithm with computation
times in the range of seconds, but yielding only integer pixel-accurate results. In
contrast, the method we present in this paper provides sub-pixel accurate scene
flow in real-time for reasonable image sizes. Furthermore, in combination with
a dense disparity map the scene flow field is dense.

2 Scene Flow and Its Constraints on Image Motion

2.1 Stereo Computation

Assume we are given a pair of stereo images. Normal stereo epipolar geometry is
assumed, such that pixel rows y for the left and right images coincide. In practice,
this is achieved by a rectification step, which warps the images according to the
known intrinsic and relative extrinsic configuration of the two involved cameras
[4,12]. In addition, the principal points of both images are rearranged, such that
they lie on the same image coordinates (x0, y0). A world point (X, Y, Z) given
in the camera coordinate system is projected onto the image point (x, y) in the
left image, and the image point (x + d, y) in the right image according to
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with the focal lengths fx and fy, in pixels, and the distance b as baseline,
in metres, between the two camera projection centres. The disparity value d
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therefore encodes the difference in the x-coordinate of an image correspondence.
With known camera parameters, the position of a world point can easily be
recovered from an (x, y, d) measurement according to Equation (1).

The goal of any stereo algorithm is to determine the disparity d, in order
to reconstruct the 3D scene. This is accomplished by either matching a small
window from the the left image to an area in the right image, or by calculating
a globally consistent solution, using energy minimisation techniques. The issue
with the presented scene flow framework is that we can employ any stereo algo-
rithm. In Section 5 this is demonstrated, as we show results with various sparse
and dense stereo algorithms.

2.2 Constraints on Image Motion

Assume we are given two consecutive pairs of stereo images at time t and t + 1.
Analogous to the optical flow field, the scene flow field is the projection of the
three-dimensional motion field. It provides for each pixel a change in the image
space (u, v, d′) between the two stereo image pairs, where u and v is the change
in image x and y respectively, and d′ is the change in disparity, all in pixels.
The three-dimensional velocity field can be reconstructed, if both the image
measurement (x, y, d) and its change (u, v, d′) are known. Leaving the estimation
of d to an arbitrary stereo algorithm, we will now derive the constraints for
estimating (u, v, d′).

Let I(x, y, t)l, I(x, y, t)r be the intensity value of the left and right image,
respectively, at time t and image position (x, y). Using Equation (1), a corre-
spondence between the left and right stereo image at time t can be represented
as I(x, y, t)l and I(x + d, y, t)r. Since the flow in y-direction has to be equal in
both images due to rectification, the constraints for the optical flow in the left
and right images are:

I(x, y, t)l = I(x + u, y + v, t + 1)l (2)

I(x + d, y, t)r = I(x + d + d′ + u, y + v, t + 1)r (3)

If the disparity d is known, the right image at time t is redundant for solv-
ing the scene flow problem, because I(x, y, t)l = I(x + d, y, t)r. In practice,
I(x, y, t)l = I(x + d, y, t)r does not hold exactly even for perfect d, since we
have illumination changes between two different cameras. Therefore, we use the
optical flow constraints for the left and right camera images separately, as stated
in the above formulas.

Calculating optical flow in the left and right image separately, we could derive
the disparity change d′ = ur−ul, where ur and ul denote the estimated flow fields
in the left and right image, respectively. However, we introduce an additional
constraint, enforcing consistency of the left and right image at t + 1:

I(x + u, y + v, t + 1)l − I(x + d + d′ + u, y + v, t + 1)r = 0 (4)
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3 A Variational Framework for Scene Flow

Scene flow estimates according to the constraints formulated in Section 2 can
be computed in a variational framework by minimising an energy functional
consisting of a constraint deviation term and a smoothness term that enforces
smooth and dense scene flow:

E(u, v, d′) = EData(u, v, d′) + ESmooth(u, v, d′) (5)

Integrating the constraints from Section 2 over the image domain Ω, we obtain
the following data term:

EData =

∫

Ω

Ψ

(

(

I(x + u, y + v, t + 1)l − I(x, y, t)l
)2

)

dxdy

+

∫

Ω

c(x, y)Ψ

(

(

I(xd + d′ + u, y + v, t + 1)r − I(xd, y, t)r
)2

)

dxdy

+

∫

Ω

c(x, y)Ψ

(

(

I(xd + d′ + u, y + v, t + 1)r − I(x + u, y + v, t + 1)l
)2

)

dxdy

(6)

where Ψ(s2) =
√

s2 + ε (ε = 0.0001) denotes a robust function that compensates
for outliers [1], and xd := x + d for simpler notation. The indicator function
c(x, y) : Ω → {0, 1} returns 0 if there is no disparity known at (x, y). This can
be due to a point seen only in one camera (occlusion) or due to a non-dense stereo
method. Otherwise c(x, y) returns 1. The first term in Equation (6) imposes the
brightness constancy for the left images, the second one for the right images,
and the third one assures consistency of the estimated motion between left and
right images.

The smoothness term penalises local deviations in the scene flow components
and employs the same robust function as the data term in order to deal with
discontinuities in the velocity field:

ESmooth =

∫

Ω

Ψ
(

λ|∇u|2 + λ|∇v|2 + γ|∇d′|2
)

dxdy (7)

where ∇ = (∂/∂x, ∂/∂y). The parameters λ and γ regulate the importance of
the smoothness constraint, weighting for optic flow and disparity change respec-
tively. Interestingly, due to the fill-in effect of the above regularizer, the proposed
variational formulation provides dense scene flow estimates (u, v, d′), even if the
disparity d is non-dense.

4 Minimisation of the Energy

For minimising the above energy we compute its Euler-Lagrange equations:

Ψ ′((I l
z)

2)I l
zI l

x + c Ψ ′((Ir
z )2)Ir

z Ir
x + c Ψ ′((Id

z )2)Id
z Ir

x

−λ div
(

Ψ ′(λ|∇u|2 + λ|∇v|2 + γ|∇d′|2)∇u
)

= 0
(8)
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z Ir
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z Ir
y
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(
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c Ψ ′((Ir
z )2)Ir

z Ir
x + c Ψ ′((Id

z )2)Id
z Ir

x

−γ div
(
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where Ψ ′(s2) denotes the derivative of Ψ with respect to s2. We define I l
z :=

I(x + u, y + v, t + 1)l − I(x, y, t)l, Ir
z := I(xd + d′ + u, y + v, t + 1)r − I(xd, y, t)r,

and Id
z := I(xd + d′ + u, y + v, t + 1)r − I(x + u, y + v, t + 1)l, and subscripts

x and y denote the respective partial derivatives of I(x + u, y + v, t + 1)l and
I(xd + d′ + u, y + v, t + 1)r.

These equations are non-linear in the unknowns, so we stick to the strategy
of two nested fixed point iteration loops as suggested in [1]. This comes down
to a warping scheme as also employed in [9]. The basic idea is to have an outer
fixed point iteration loop that comprises linearisation of the Iz expressions. In
each iteration, an increment of the unknowns is estimated and the second image
is then warped according to the new estimate. The warping is combined with
a coarse-to-fine strategy, where we work with down-sampled images that are
successively refined with the number of iterations. Since we are interested in
real-time estimates, we use only 4 scales with 2 outer fixed point iterations at
each scale.

In the present case, we have the following linearisation, where k denotes the
iteration index. We start the iterations with (u0, v0, d′0)⊤ = (0, 0, 0)⊤:

I(x+uk +δuk, y+vk+δvk, t+1)l ≈ I(x+uk, y+vk, t+1)l+δukI l
x +δvkI l

y (11)

I(xd + d′k + δd′k + uk + δuk, y + vk + δvk, t + 1)r

≈ I(xd + d′k + uk, y + vk, t + 1)r + δukIr
xd

+ δd′kIr
xd

+ δvkIr
y

(12)

From these expressions we can derive linearised versions of I∗z . The remaining
non-linearity in the Euler-Lagrange equations is due to the robust function. In
the inner fixed point iteration loop the Ψ ′ expressions are kept constant and
are recomputed after each iteration. This finally leads to the following linear
equations:

0 = Ψ ′((I l,k+1
z )2)(I l,k

z + I l,k
x δuk + I l,k

y δvk)I l,k
x

+c Ψ ′((Ir,k+1
z )2)(Ir,k

z + Ir,k
x (δuk + δd′k) + Ir,k

y δvk)Ir,k
x

−λ div
(

Ψ ′(λ|∇uk+1|2 + λ|∇vk+1|2 + γ|∇d′k+1|2)∇(uk + δuk)
)

(13)

0 = Ψ ′((I l,k+1
z )2)(I l,k

z + I l,k
x δuk + I l,k

y δvk)I l,k
y

+c Ψ ′((Ir,k+1
z )2)(Ir,k

z + Ir,k
x (δuk + δd′k) + Ir,k

y δvk)Ir,k
y

−λ div
(

Ψ ′(λ|∇uk+1|2 + λ|∇vk+1|2 + γ|∇d′k+1|2)∇(vk + δvk)
)

(14)

0 = c Ψ ′((Ir,k+1
z )2)(Ir,k

z + Ir,k
x (δuk + δd′k) + Ir,k

y δvk)Ir,k
x

+c Ψ ′((Id,k+1
z )2)(Id,k

z + Ir,k
x δd′k)Ir,k

x

−γ div
(

Ψ ′(λ|∇uk+1|2 + λ|∇vk+1|2 + γ|∇d′k+1|2)∇(d′k + δd′k)
)

(15)

where we omitted the iteration index of the inner fixed point iteration loop
to keep the notation uncluttered. Expressions with iteration index k + 1 are
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Image Size SOR Steps Warps Total Time
(pixels) per Warp per Level

640 × 480 45 2 975 ms

512 × 512 20 3 756 ms

320 × 240 45 2 205 ms

Fig. 2. Break down of computational time for our algorithm (3.0GHz Intel R©CoreTM2).
The pie graph shows the time distribution for the 640 × 480 images. The real-time
applicability of the algorithm for image sizes of (320 × 240) is indicated in the table.

computed using the current increments δuk, δvk, δd′k. We see that some terms
of the original Euler-Lagrange equations have vanished as we have made use
of I(xd, y, t)r = I(x, y, t)l in the linearised third constraint (Equation 4). Af-
ter discretisation, the corresponding linear system is solved via successive over-
relaxation. It is worth noting that, for efficiency reasons, it is advantageous to
update the Ψ ′ after a few iterations of SOR.The shares of computation time
taken by the different operations are shown in Figure 2.

5 Results

To assess the quality of our scene flow algorithm, it was tested on synthetic se-
quences, where the ground truth is known1. In a second set of experiments, we
used real images to demonstrate the accuracy and practicality of our algorithms
under real world conditions.

Synthetic scenes. The first ground truth experiment is the rotating sphere
sequence from [7] depicted in Figure 3. In this sequence the spotty sphere rotates
around its y-axis to the left, while the two hemispheres of the sphere rotate in
opposing vertical directions. The resolution is 512× 512 pixels.
We tested the scene flow method together with four different stereo algorithms:
semi-global matching (SGM [5]), SGM with hole filling (favours smaller dispari-
ties), correlation pyramid stereo [3], and an integer accurate census-based stereo
algorithm [15]. The ground truth disparity was also used for comparison. For
each stereo algorithm, we calculated the absolute angular error (AAE) and the
root mean square (RMS) error

RMSu,v,d,d′ :=

√

1

n

∑

Ω

‖(ui, vi, di, d′i)
⊤ − (u∗

i , v
∗
i , d∗i , d

′∗
i )⊤‖2 (16)

where a superscript∗ denotes the ground truth solution and n is the number
of pixels. In our notation for RMS, if a subscript is omitted, then both the

1 The authors would like to thank Huguet et al. for providing their sphere scene.
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Fig. 3. Ground truth test: rotating sphere. Quantitative results are shown in Table 1.
Top: Optical flow and disparity change are computed on the basis of SGM stereo [5].
Colour encodes the direction of the optical flow (key in bottom right), intensity its
magnitude. Disparity change is encoded from black (increasing) to white (decreasing).
Bright parts of the RMS figure indicate high RMSu,v,d′ error values of the computed
scene flow. Bottom: Disparity images are colour encoded green to orange (low to
high). Black areas indicate missing disparity estimates or occluded areas.

respective ground truth and estimated value are set to zero. The errors were
calculated in using two types of Ω: firstly, calculating statistics over all non-
occluded areas, and secondly calculating over the whole sphere. As in [7], pixels
from the background were not included in the statistics.

The smoothing parameters were set to λ = 0.2 and γ = 2. We used 60
SOR iterations at each pyramid level, resulting in an average runtime of 756
milliseconds. Additionally, we let the algorithm run to convergence (change in
RMS ≤ ε) for better accuracy without changing λ and γ; this increased the
computational time to around 3 seconds.

The resulting summary can be seen in Table 1. We achieve lower errors than
the Huguet et al. method, when we let the method converge. Particularly, the
RMS error of the scene flow is much smaller and we are still considerably faster.
This is explained by the higher flexibility in choosing the disparity estimation
method. Furthermore, we achieve real-time performance with little loss in ac-
curacy. The table shows that SGM with hole filling yields inferior results than
the other stereo methods. This is due to false disparity measurements in the
occluded area. It is better to feed the sparse measurements of SGM to the varia-
tional framework, which yields dense estimates as well, but with higher accuracy.
SGM was used in the remainder of the results section, as it gives the best results
and is available on dedicated hardware without any extra computational cost.

In a second ground truth example we use a Povray-rendered traffic scene. The
scene includes common features such as mixture of high and low textured areas
on the ground plane and background, occlusions, reflections, and transparency
of car windscreens. The vehicle in front of the camera (and its shadow) moves
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Table 1. Root mean square (pixels) and average angular error (degrees) for scene flow
of the rotating sphere sequence. Various stereo algorithms are used as input for our scene
flow estimation, generating varying results. A ∗ denotes running until convergence.
SGM (highlighted) is the best solution for its speed to accuracy ratio. “Flow Only”
does not include stereo correspondences, thus calculates 2D optical flow only. For the

evaluation we used the formula AAEu,v := 1

n

�
Ω arctan

�
uv∗

−u∗v

uu∗+vv∗

�
to calculate the

error to the ground truth flow (u∗, v∗) as used in [7].

Stereo RMSd Without occluded areas With occluded areas
Algorithm (density) RMSu,v RMSu,v,d′ AAEu,v RMSu,v RMSu,v,d′ AAEu,v

Huguet et al. [7] 3.8 (100%) 0.37 0.83 1.24 0.69 2.51 1.75

Flow Only d′ = 0 for 0.34 1.46 1.26 0.67 2.85 1.72

Flow Only∗ evaluation 0.30 1.46 0.95 0.64 2.85 1.36

Ground truth 0.33 0.58 1.25 0.67 2.40 1.78

Ground truth∗ 0.31 0.56 0.91 0.65 2.40 1.40

SGM [5] 2.9 (87%) 0.35 0.64 1.33 0.66 2.45 1.82

SGM∗ 0.34 0.63 1.04 0.66 2.45 1.50

Fill-SGM 10.9 (100%) 0.43 0.75 2.18 0.77 2.55 2.99

Fill-SGM∗ 0.45 0.76 1.99 0.77 2.55 2.76

Correlation [3] 2.6 (43%) 0.34 0.75 1.31 0.67 2.51 1.84

Correlation∗ 0.33 0.73 1.02 0.65 2.50 1.52

Census based [15] 7.8 (16%) 0.36 1.08 1.30 0.67 2.65 1.75

Census based∗ 0.32 1.14 1.01 0.65 2.68 1.43

straight ahead. There are vehicles entering the main road from the left and the
right. The camera system is also moving orthogonal to the image plane. We
calculated the RMSu,v,d′ error and the 4D angular error defined by:

AAE4D :=
1

n

∑

Ω

arccos

(

uu∗ + vv∗ + d′d′∗ + 1
√

(u2 + v2 + d′2 + 1) ((u∗)2 + (v∗)2 + (d′∗)2 + 1)

)

Results are shown in Figures 4 and 5. They compare favourably to the results
obtained when running the code from [7]. The average RMSu,v,d′ error for the
whole sequence (subregion as in Figure 4) was 0.64 px and the 4D angular error
was 3.01◦. The sequence will be made publicly available in the internet to allow
evaluation of future scene flow algorithms (http://citr.auckland.ac.nz/6D/ ).

Real world scenes. Figure 6 and Figure 7 show scene flow results in real world
scenes with a moving camera. A result video of the scene shown in Figure 1 is
included in the supplemental material. Ego motion of the camera is known from
vehicle odometry and compensated in the depicted results.

Figure 6 shows an image from a sequence where the ego-vehicle is driving past
a bicyclist. The depicted scene flow shows that most parts of the scene, including
the vehicle stopping at the traffic lights, are correctly estimated as stationary.
Only the bicyclist is moving and its motion is accurately estimated.
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Fig. 4. Povray-rendered traffic scene (Frame 11). Top: Colour encodes direction (bor-
der = direction key) and intensity the magnitude of the optical flow vectors. Brighter
areas in the error images denote larger errors. For comparison, running the code from
[7] generates an RMS error of 0.91px and AAE of 6.83◦. Bottom right: 3D views of
the scene flow vectors. Colour encodes their direction and brightness their magnitude
(black = stationary). The results from the scene are clipped at a distance of 100m.
Accurate results are obtained even at greater distances.

Fig. 5. More frames from the traffic scene in Figure 4. The top row highlights the
problems such as transparency of the windshield, reflectance, and moving shadows.
The bottom row demonstrates that we still maintain accuracy at distances of 50 m.

Figure 7 shows results from a scene where a person runs from behind a parked
vehicle. The ego-vehicle is driving forward at 30 km/h and turning to the left.
The measurements on the ground plane and in the background are not shown to
focus visual attention on the person. The results show that points on the parked
vehicle are estimated as stationary, where as points on the person are registered
as moving. The accurate motion results can be well observed for the person’s
legs, where the different velocities of each leg are well estimated.
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Fig. 6. Dense scene flow in a traffic scene. The colour in the lower left image encodes
distance from red to green (close to far); the colour in the scene flow image (right)
shows vector lengths after ego-motion compensation (green to red = 0 to 0.4m/s).
Only the cyclist is moving.

Fig. 7. Scene with a person running from behind a parked vehicle. The colour encoding
is as in Figure 6.

6 Conclusions

We presented a variational framework for dense scene flow estimation, which
is based on a decoupling of the disparity estimation from the velocity estima-
tion, while enforcing consistent motion in all involved images. We showed that
this strategy has two main advantages: Firstly, we can choose optimal meth-
ods for estimating both disparity and velocity. In particular, we can combine
occlusion handling and global (combinatorial) optimisation for disparity estima-
tion with dense, sub-pixel accurate velocity estimation. Secondly, for the first
time, we obtain dense scene flow results very efficiently in real-time. We showed
that the approach works well on both synthetic and real sequences, and that
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it provides highly accurate velocity estimates, which compare favourably to the
literature. Ongoing work will include temporal consistency by employing, for
instance, Kalman filters. Another interesting aspect is the segmentation of the
3D velocity field.
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