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Abstract.

A new algorithm is proposed for efficient stereo and novel view synthesis. Given the video streams acquired by

two synchronized cameras the proposed algorithm synthesises images from a virtual camera in arbitrary position

near the physical cameras. The new technique is based on an improved, dynamic-programming, stereo algorithm

for efficient novel view generation. The two main contributions of this paper are: i) a new four state matching

graph for dense stereo dynamic programming, that supports accurate occlusion labelling; ii) a compact geometric

derivation for novel view synthesis by direct projection of the minimum cost surface. Furthermore, the paper

presents an algorithm for the temporal maintenance of a background model to enhance the rendering of occlusions

and reduce temporal artefacts (flicker); and a cost aggregation algorithm that acts directly in the three-dimensional

matching cost space.

The proposed algorithm has been designed to work with input images with large disparity range, a common

practical situation. The enhanced occlusion handling capabilities of the new dynamic programming algorithm are

evaluated against those of the most powerful state-of-the-art dynamic programming and graph-cut techniques. The

accuracy of disparities is also evaluated against the standard Middlebury error metrics. A number of examples

demonstrate the robustness of the algorithm to artefacts in stereo video streams. This includes demonstrations of

cyclopean view synthesis in extended conversational sequences, synthesis from a freely translating virtual camera

and, finally, basic 3D scene editing.

Keywords: Dense stereo, image-based rendering, video-conferencing, gaze correction.

1. Introduction

This paper addresses the problem of novel-view syn-

thesis from a pair of rectified video streams with spe-

cific emphasis on gaze correction for one-to-one tele-

conferencing. With the rise of live chat technologies1,

it is envisaged that the PC will increasingly be used for

interactive visual communication. One pressing prob-

lem is that any camera used to capture images of one

of the participants has to be positioned offset from his

or her gaze (cf. fig. 1 and fig. 2). This can lead to lack

of eye contact and hence undesirable consequences for

human interaction [GTZ+00].

One might think that if it were possible to drill a

hole in the centre of a computer screen and place a

camera there, that would achieve the desired view-

point. The first problem with this solution is that

“porous” screens do not exist; but even if they did the

user would be required always to look at the centre

of the monitor, where the extra camera had been in-

serted. However in a messaging session the user looks

at the communication window (where the other per-

son’s face appears) which can be displaced and moved

around the screen at will (fig. 2). Therefore, the cam-

era needs to be placed behind the communication win-

dow on the screen; but this cannot be achieved with

available hardware and therefore a software solution

is sought.

Previously proposed approaches can be broadly cat-

egorized as model-based or image-based. One model-

based technique is to use a detailed 3D head model,
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input left image input right image

Fig. 1. Failure of eye contact. In one-to-one video-

conferencing, cameras located on the frame of the computer

monitor fail to capture gaze correctly. Here a person looks at

the centre of the screen but, in the images captured by cam-

eras mounted on either side of the computer monitor, he does

not appear to be looking directly ahead. The proposed algo-

rithm is capable of synthesizing a virtual view that procures

eye contact.

texture map it and re-project it into the required view-

points. Whilst this can be successful [Vet98, YZ02],

it is limited to imaging heads with no hair or neck.

Nor can it deal with occlusion events such as a hand

in front of the face. A more general approach, pro-

posed here, is to use image-based rendering techniques

(IBR [CW93]) to synthesize novel views from two in-

put images. The entire input images, as opposed to the

head only, are processed, thus avoiding the detection

and modeling of heads with all the associated prob-

lems. Though we focus on the gaze correction applica-

tion, the algorithm developed in this paper is of general

nature and can be applied to different IBR scenarios.

Many popular IBR algorithms combine a depth

map with input images to produce synthetic images.

In order to generate a depth map a dense stereo algo-

rithm is required, a substantial review of which can

be found in [SS02], in which the authors evaluate

a number of existing dense-stereo techniques. But

this evaluation may not be sufficient for our purposes

as: (i) the range of disparities considered in [SS02]

is smaller than in our application (0-29 pixels there,

whereas we typically consider 0-80 pixel disparities);

(ii) we are primarily interested in new-view synthesis

so it does not matter if the disparities are relatively

inaccurate in texture-less image regions; all that mat-

ters is that the new view is well synthesized (as noted

in [Sch99, Sze99]); (iii) we consider long video se-

quences so temporal stability is a significant issue.

In the past, research on dense stereo reconstruction

has been directed largely towards the accurate recov-

ery of disparity maps, though not entirely [BM92]. We

have found that while inaccurate disparities may still

Input right imageInput left image
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screen

Right

camera
Messaging

window

Fig. 2. The basic teleconferencing setup considers two

cameras placed on the frame of a computer monitor. A win-

dow for viewing the remote participant is marked in blue on

the computer screen. The algorithm described in this pa-

per achieves a corrected gaze image in an efficient and com-

pelling way.

produce acceptable synthesized images over matched

regions, inconsistent occlusion maps lead to unaccept-

able artefacts. Therefore, in this paper we focus on

accurate occlusion modelling and detection.

According to the evaluation in [SS02], two of the

most powerful dense stereo techniques use Graph cut

(GC) [KZ02] and loopy belief propagation [SSZ02].

However, both of these are currently too computation-

ally intensive for real-time applications and, since near

real time performance is one of the goals of this paper,

we turned our attention to more efficient algorithms

such as Epipolar-line Dynamic Programming [OK85],

commonly referred to as DP. The DP algorithm de-

scribed in [CHRM96] has previously been demon-

strated for cyclopean view interpolation [COL93] in

video2. In the basic form of the DP algorithm, in order

to obtain computational efficiency, observations con-

sist of single-pixel intensities. This, together with the

fact that pairs of corresponding scanlines are consid-

ered independently, introduces a number of artefacts

which corrupt the quality of the output reconstruction,

especially for large disparity ranges as fig. 3b shows.

In particular, DP-based algorithms for novel view

synthesis are characterized by three kinds of arte-

facts: (i) artefacts produced by mismatches (horizon-

tal streaks due to inconsistencies between adjacent

scanlines); (ii) the “halo” in the regions where the

background is visible in only one of the two input

views (occlusion); and (iii) flickering synthesized pix-

els, caused by matching ambiguities. The first two

kinds of artefacts are static, while the latter is tem-

poral in that it appears when processing sequences of

stereo images. This paper sets out to address and solve

those kinds of artefacts while maintaining high com-

putational efficiency.

Our new contributions have two aspects: accurate

generation of occlusion maps and efficient new-view
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a b c

Fig. 3. Fast cyclopean view synthesis by conventional DP.

(a,c) Input left and right views, respectively; (b) Cyclopen

view synthesized by dynamic-programming [COL93]. Note

that gaze is correct in the cyclopean view. The algorithm

runs at near real-time rate, but produces significant artefacts

in the synthesized cyclopean image.

rendering. For the first we propose a new DP algo-

rithm acting on a four-state matching graph. New la-

bels are introduced for occlusions, and the cost func-

tion is extended to favour: (a) good grouping of oc-

clusions, (b) formation of solid occlusion regions at

the boundaries of foreground objects, and (c) inter-

scanline consistency. For the second aspect we intro-

duce minimum-cost surface projection as a compact

technique for generating synthetic views from arbi-

trary virtual cameras, directly from the minimum-cost

surface obtained during the DP process3. This tech-

nique avoids the explicit construction of a 3D mesh

model or depth map.
Paper outline. Section 2 reviews the state of the art

in dense stereo via DP, and consequent issues for novel

view rendering, particularly of occluded regions. The

main contribution of this paper is described in sec-

tions 3 and 4 which introduce our improved multi-

state, dense-stereo algorithm. Section 5 illustrates the

cost filtering algorithm for inter-scanline consistency.

Section 6 presents a comparative evaluation of perfor-

mance of our technique with respect to disparity esti-

mation and occlusion detection. Realistic synthesis of

occluded regions is discussed in section 7 and virtual-

view generation and rendering in section 8. Finally,

section 9 demonstrates the effectiveness of the pro-

posed techniques with a number of examples where

both static images and entire sequences are generated

for various virtual camera locations.

2. Background on Dynamic Programming

and Novel-view Synthesis

This section reviews the principles of dynamic-

programming algorithms for dense stereo [CHRM96,

OK85] and discusses issues related to the synthesis of

cyclopean images from the two input views.

P (X,Y,Z)
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l r

Ol Or

X

Z
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Y

O

Left

camera

Right

camera

Fig. 4. Basic camera configuration and notation. Ol and

Or are the optical centres of left and right cameras respec-

tively, f is the focal length of the cameras (assumed identical

for both cameras) and B is the baseline between the two op-

tical centres. The origin of the reference coordinate system

X, Y, Z is denoted O.

2.1. Conventional dynamic-programming

Figure 4 shows a plan view of the camera setup. The

left and right cameras provide us with the synchro-

nized and epipolar-rectified input videos4 . The focal

length is denoted f , and B is the distance between the

two optical centres (the baseline). A Cartesian coor-

dinate system is chosen with origin at the mid-point

between the left and right optical centres. A 3D scene

point P is projected into the two input image planes in

corresponding image points at positions l and r rel-

ative to the respective image centres. The distance

d = l−r is commonly known as disparity. We refer to

the images corresponding to a virtual camera, with op-

tical centre in the origin O, as cyclopean images. As

will be demonstrated, our algorithm is not restricted

to cyclopean views only but is capable of generating

virtual images from arbitrary viewpoints.

The diagram in fig. 5a represents the matching

graph for a pair of corresponding scanlines in the

two input images [OK85, CHRM96]. Note that, since

l >= r ∀P (i.e. disparities d = l − r are always non-

negative), then it is only ever necessary to consider the

lower half of the matching graph (grey area in fig. 5a).

The limiting, zero-disparity case l = r corresponds

to points at infinity. The 45-degree line in fig. 5a is

termed the “virtual scanline” for reasons that will be-

come obvious in the next section. The local cost of

matching a pixel at position l along the left scanline

with a pixel at position r along the right scanline is

denoted M(l, r). In conventional DP, the cost M(l, r)
may be defined simply as the square difference of pixel

intensities, though more elaborate measures based on

patches, colour, wavelets etc., can be used.
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Fig. 5. Conventional dynamic-programming. (a) The

two-dimensional matching graph on which DP is based.

Each node in the planar graph corresponds to a pair of pix-

els, in the left and right scanlines. A matching cost M(l, r)
is associated to each node and the goal is to find a minimum-

cost path (shown in red) joining the two opposite corners of

the graph. Bright colouring indicates high pixel similarity,

i.e. low values of M(l, r). (b) A blown-up view of (a) show-

ing the three allowed moves between pixel pairs [COL93];

circles represent nodes of the graph in (a).

Standard 3-move DP. Dynamic-programming con-

sists of two passes: forward and backward [CHRM96].

The forward step constructs a matrix of cumulative

matching costs C by the following recurrence:

C(l, r) = min







C(l − 1, r) + β
C(l − 1, r − 1) + M(l, r)
C(l, r − 1) + β

(1)

where C(l, r) indicates the cumulative cost of the path

from the point (0, 0) to the point (l, r). Note that

only three moves are permitted: a horizontal, possi-

bly occluded, move, a diagonal matched move and a

vertical, possibly occluded move (fig. 5b). Thus, 45-

degree segments in the minimum cost path correspond

to fronto-parallel surfaces (constant disparity); vertical

and horizontal segments represent either occlusions or

non-fronto-parallel surfaces. The cost of a horizon-

tal/vertical move, which may indicate occlusion, is β.

When matching costs M(l, r) are normalised so that

0 ≤ M(l, r) ≤ 1, a value of β = 0.3 yields good re-

sults on a variety of images. At each iteration the min-

imum cost between the three possible moves is chosen

and a table of backward links is stored for use in the

second pass of DP.

The backward pass of the algorithm follows the

saved back-links; starting from (l = W, r = W )

For each pair of scanlines, given their matching path P:

• For each point p ∈ P

1. take the colours Il(l) and Ir(r) of the correspond-

ing pixels l and r in the left and right scanlines,

respectively;

2. compute the average value Ĩ = 1

2
(Il(l) + Ir(r));

3. project the newly obtained pixel orthogonally to the

virtual image scanline, into the virtual image point

v; i.e. Iv(v) = Ĩ .

Fig. 6. Cyclopean view synthesis from direct projection of the

minimum-cost path.

where W is the image width, to the origin (l = 0, r =
0). This defines the minimum-cost path P as the se-

quence of visited nodes.

Limitations of conventional DP. The three-move

model is limited since it fails to distinguish completely

between occluded and non-occluded moves. One of

the main contributions of this paper will be to expand

the set of permitted moves to support unambiguous de-

tection and classification of occlusion events.

2.2. Direct cyclopean-view synthesis from DP

This introductory section explains how cyclopean

views can be generated directly from the minimum-

cost paths estimated by conventional DP. Special at-

tention is paid to the synthesis of pixels in occluded re-

gions. The basic cyclopean-view synthesis algorithm

is described in fig. 6 and illustrated in fig. 7a.

The algorithm in fig. 6 applies to matched pixels

only and occluded areas must be treated differently.

Indiscriminate application of the algorithm in fig. 6 to

occluded and unoccluded points alike, would produce

a distorting effect, a “halo” around the foreground ob-

jects in the cyclopean view. An example is shown in

fig. 8 where the frame of the door and the edge of the

whiteboard have been deformed into curves which fol-

low the outline of the foreground head. The “halo”

artefact is much more noticeable and disturbing when

video sequences are reconstructed in this way.

Fronto-parallel assumption for occlusion filling.

In order to overcome the halo effect occluded pix-

els must first be reliably detected. For those pixels

it is necessary to make a plausible assumption about

underlying 3D structure since this information is not

available given the absence of a stereo match. One

effective assumption is that of a fronto-parallel back-

ground [Sch99]. As illustrated in fig. 7c, filling of the
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Fig. 7. Generating the cyclopean view. (a) A matched point p ∈ P is projected orthogonally onto its corresponding point v

on the virtual scanline. The luminance value of the virtual pixel v is the average of the corresponding pixels l and r on left and

right images, respectively. (b) Halo: treating the occluded segments in P in the same way as the matched segments produces a

lens-like effect that we call the “halo” artefact (fig. 8). (c) Fronto-parallel occlusion synthesis: the halo effect is largely removed

if a fronto-parallel background assumption is made: an occluded point p on the continuation of the background is projected

orthogonally onto its corresponding point v on the virtual scanline.

a b

Fig. 8. Halo artefact. (a) A cyclopean view reconstructed

by applying the algorithm in fig. 6 to both matched and oc-

cluded segments of the recovered minimum-cost path. A

“halo” of deformed background objects is visible around the

head. (b) Regions over which the halo effect occurs are high-

lighted.

occluded regions can be achieved under the fronto-

parallel assumption by extending the background at

constant disparity. Fig. 7c shows how, for a left oc-

clusion (vertical dashed line), the values of the virtual

pixels are taken only from the right image: Iv(v) =
Ir(r), and vice-versa.

The reset artefact. The fronto-parallel approxima-

tion can be applied only if occluded regions are cor-

rectly detected. Detection errors (fig. 9b) cause the

sampling of “source” pixel values from incorrect lo-

cations in the input images — the reset artefact (cf.

fig. 22). Accurate detection of occlusion is clearly

paramount.
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Fig. 9. The reset effect. (a) The fronto-parallel approxima-

tion used for filling occluded regions. For the left occlusion

marked in red (dashed), the region Av in the cyclopean im-

age is copied from the corresponding region Ar in the right

image. See also fig. 7c. (b) A small error in the detection

of the occluded region, e.g. a small matched region inside a

large occlusion, produces a large error in the cyclopean syn-

thesized scanline. In fact, the “source” regions Br and Cr

are quite different from Ar and far apart from each other.

This produces visible artefacts as illustrated later.

The next two sections introduce our improved DP

algorithm for accurate occlusion detection.

3. Extending the set of basic moves for un-

ambiguous occlusion modelling

In the standard DP approach slanted (i.e. non fronto-

parallel) surfaces in space are modelled as a combi-
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a b c

Fig. 10. The proposed four-state model for DP. The graph associated with our new DP algorithm occupies four planes, with

14 allowed state transitions: (a) state-preserving transitions and (b,c) between-state transitions. Each permitted state transition

(shown by arrows) has been labelled with the associated cost — see text.
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Fig. 11. The four-move model for Dynamic Program-

ming allows two matched moves (marked in magenta and

cyan), and two occluded moves (green and red).

nation of diagonal and horizontal or vertical moves in

the matching graph. In order to disambiguate between

horizontal/vertical matched moves and true occlusion

events, the new model has two types of horizontal

moves and two types of vertical moves, matched and

occluded. Since a line at any orientation can always be

approximated by a sequence of horizontal and vertical

matched moves, the diagonal matched move of the ba-

sic DP model is eliminated without loss. This defines

the four-move model of fig. 11, to be compared with

fig. 5b.

In recent work [CSBT03] we have tried the five-

move model, including a matched diagonal move, as

suggested also by Ishikawa et al. [HD98]; but we have

found the four-move model as reliable as the five-

move model and simpler. In the four-move model,

every possible path through the cost space has equal

length (Manhattan distance) so that the costs of alter-

native paths are truly comparable. Finally, the four

move model lends itself to a proper statistical inter-

pretation [KCB+05b].

4. Imposing constraints on occlusions by

DP on a four-state graph

Thanks to the four-move model, matches and oc-

clusions are now unambiguously labelled here, un-

like the conventional three-move model. This sec-

tion describes another evolution of our DP model

which imposes prior constraints on runs of occluded

and matched pixels. This is achieved by a four-state

matching graph with two occluded states L0 (occluded

in left image) and R0 (occluded in right image) and

two matched states Lm (left-matched) and Rm (right-

matched) (see fig. 10 and fig. 13). In contrast, conven-

tional DP runs on a single planar graph.

The four-state model reflects naturally the persis-

tence of each of the states. For instance long runs of

occlusions can be favoured by setting a high cost for

entering or leaving an occluded state (Lo or Ro). Sim-

ilarly, it is desirable to bias against runs of matched

moves in Rm or Lm, ensuring that surfaces close to
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‘

‘

‘

‘

Fig. 12. Finite State Machine Representation. Our 4-state

algorithm can be represented as a finite state machine. The

four states correspond to the basic four permitted matched

and occluded moves. The edge labels represent the costs

associated to the 14 different transitions between states.

fronto-parallel are preferred, as in the conventional

DP. Slanted surfaces are thus described by oscillations

of the optimal path between the Lm and Rm states

(fig. 13). The 4-states framework includes four dif-

ferent cumulative cost matrices: CLo, CRo, CLm and

CRm, one for each state in the graph. The elements

of the cumulative cost matrices are initialised to +∞

everywhere except in one row of the right occluded

plane, where:

CRo[i, 0] = iα ∀i = 0 . . . W − 1 . (2)

The forward step of 4-state DP computes the four

cumulative cost matrices according to the following

recursion:

CLo[l, r] = min







CLo[l, r − 1] + α
CLm[l, r − 1] + β
CRm[l, r − 1] + β

(3)

CLm[l, r] = M(l, r) + min















CLo[l, r − 1] + β′

CLm[l, r − 1] + γ
CRm[l, r − 1]
CRo[l, r − 1] + β′

where M(l, r) is the cost of matching the lth pixel in

the left scanline with the rth pixel in the right scan-

line. In this section we are assuming given the match-

ing costs M(l, r) and focus on the DP algorithm only.

Section 5 will describe how the cost function is com-

puted.

The two other cost matrices CRo[l, r] and CRm[l, r]
are defined by invoking symmetry on the definitions

of CLo and CLm above. Note that there are 14 allowed

state transitions, as illustrated in fig. 10. The cost

structure defined by the four-state DP algorithm and

the related state transitions can be represented com-

pactly as a finite state machine as in figure 12.

In the forward pass, the computation of the four

cumulative cost matrices proceeds from the corner

(l = 0, r = 0) in the left occluded state (Lo) and

continues up to (l = W − 1, r = W − 1) in the

right occluded state (Ro), where W is the image width.

At each iteration, as the cumulative costs matrices are

built, backward pointers to the nodes with minimum

cumulative cost are stored, similarly to conventional

DP. In the backward pass, the minimum-cost path is

recovered by following the fourteen different kinds of

back-pointers from the (l = W − 1, r = W − 1) cor-

ner on the left occluded state Lo to (l = 0, r = 0) on

the Ro state.

Setting the transition costs. The penalty parame-

ters α, β, β′ and γ are chosen as follows:

• The parameter α is set to 1/2, a value chosen just

sufficient to exceed the typical cost M(l, r) (0 ≤

M(l, r) ≤ 1) of a good match.
• The penalty cost β is set to 1.0 – large enough to

avoid erroneous labelling of weak true matches as

occlusions, but not so large as to prevent the min-

imum cost path ever entering an occluded state.
• The parameter β′ is set to 1.0 – large enough to

avoid reset artefacts (leaving an occluded state too

soon), but not so large as to prevent the minimum

cost path ever entering a matched state.
• The cost γ is set to 1/4 to bias against runs

of transitions within the same matched state.

Clearly we do not want to disallow these tran-

sitions as these are used to approximate slanted

surfaces, but it is envisioned that in most cases,

the minimum cost path will oscillate between the

left and right matched states, approximating a

roughly fronto-parallel surface in a stair-step fash-

ion (fig. 13d).

It can be proven that the optimal path solution de-

pends only on the sum β + β′. Therefore, we can

set β = β′ without loss of generality, thus reducing

the number of parameters to three. Optimal values for

all these parameters may be learnt from input ground-

truth data [KCB+05b]. Sensitivity of our algorithm

with respect to its parameters is discussed in sec. 6.5.
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a b

c d

Fig. 13. Minimum-cost 3D path in the four-state graph for DP. (a,b,c) Different views of the 3D minimum-cost path es-

timated for a pair of input scanlines. The rapid oscillations between the two matched states (Lm and Rm) illustrate the way

matched, slanted surfaces are represented as alternate horizontal and vertical matched moves. (d) A detail from (c) highlighting

the matched oscillations.

Figure 13 shows an example of the recovered

minimum-cost 3D path for a pair of corresponding

scanlines extracted from real stereo images. The 3D

minimum cost path resulting from the application of

our DP algorithm weaves its way through the four

states of the graph. Note the two large occlusions

(red and green segments) lying on the correspond-

ing occluded states. As expected, slanted surfaces

are tracked as series of oscillations between the two

matched states.

Next, we discuss the details of the cost function con-

struction and cost aggregation.

5. Matching cost definition and aggrega-

tion

This section describes the computation of matching

costs between pixels pairs and their aggregation to im-

prove inter-scanline consistency.

Computation of matching costs. The use of neigh-

bourhood windows in computing the cost of match-

ing two pixels has already been shown to help reduce

streaky artefacts [SS02]. The matching cost M(l, r)
we employ in this paper is calculated for every pair

of pixels along corresponding epipolar lines with a

windowed Normalised Sum of Squared Differences
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(NSSD), defined as:

M(l, r) = (4)

1

2

∑

δ∈Ω

[

(I l
pl+δ

− I l
pl

) − (Ir
pr+δ

− Ir
pr

)
]2

∑

δ∈Ω(I l
pl+δ

− I l
pl

)2 +
∑

δ∈Ω(Ir
pr+δ

− Ir
pr

)2

where Ω is an n × m generic template patch centred

at the origin of the coordinate system; pl and pr are

the pixels positions (2-vectors) in the left and right im-

ages, respectively; and δ is a variable 2D displacement

vector. The bar indicates the mean operator.

The mean subtraction and rescaling operations

in (13) help deal with changes in the photomet-

ric settings of the two input cameras and possibly

with limited non-Lambertian effects. Our experi-

ments showed that for horizontally rectified images

taller neighborhood windows (e.g. 7 × 3) help incor-

porate inter-scanline information better than square

windows of similar area, with obvious advantages in

terms of speed. Furthermore, the costs M(l, r) can

be computed efficiently using moving average tech-

niques [SS02]. The normalization property of (13)

(0 ≤ M(l, r) ≤ 1 ∀l, r) will turn out to be ex-

tremely convenient when setting the costs of the graph

edges defined in the next sections.

In our experiments we have compared the Normal-

ized SSD cost with the Normalized Cross-Correlation

(NCC) matching cost defined as:

Mncc(l, r) =
1

2
× (5)



1 −

∑

δ∈Ω(I l
pl+δ

− I l
pl

)(Ir
pr+δ

− Ir
pr

)
√

∑

δ∈Ω(I l
pl+δ

− I l
pl

)2
∑

δ∈Ω(Ir
pr+δ

− Ir
pr

)2





We have found little difference, in terms of results, be-

tween the two implementations but NSSD is consider-

ably faster than NCC (despite our efforts to improve

the efficiency of the NCC code5). Interesting linearity

and consistency properties of the NSSD cost function

are discussed in [KCB+05b].

One of the biggest problems of dynamic program-

ming, dense stereo algorithms is that scanlines are

treated independently. This induces visible “streaky”

artefacts in the output disparity maps and related syn-

thesized images. This issue is addressed here by filter-

ing the matching cost matrix across scanlines, over a

three-dimensional cost space.

a

b

Fig. 14. The 3D cost space for a pair of stereo images. (a)

Match cost space, as fig. 5a, now shown for full 3D volume.

(b) In order to propagate cost information across scanlines a

2D Gaussian filter (represented by the red ellipse) parallel to

the virtual image plane is applied to the 3D cost space.

5.1. Inter-scanline consistency and cost aggrega-

tion

A solution to the issue of inter-scanline consis-

tency [OK85] is to propagate information across scan-

lines by detecting and matching vertical edges. This

has two drawbacks however: (i) the robust matching

of edges is an open issue, especially for occluding con-

tours (precisely where we need most accuracy); (ii)

edge detection and matching algorithms are slow. Our

solution to the problem of encouraging the propaga-

tion of information across scanlines efficiently is to

use small window neighborhoods in the cost computa-

tion step followed by a separate cost aggregation step.

The algorithm proceeds as follows: Firstly the cost

matrices M(l, r), associated with each pair of scan-

lines, are built and stacked to form a three-dimensional

cost space as in fig. 14a. Secondly, a 2D Gaussian fil-

ter is applied with principal axes a parallel to the vir-

tual image plane (fig. 14b). The axis a of the Gaus-

sian kernel orthogonal to the left and right scanline

axes is responsible for enforcing inter-scanline con-
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a b

c d

Conventional DP 4-state DPInput stereo pair

Fig. 15. Comparing the different DP models. (a,b) Occlusion maps obtained from the conventional DP and the 4-state DP algorithms,

respectively. Red indicates left occlusions and right occlusions are green. (a) In conventional DP numerous matched pixels are incorrectly

classified as occluded. True occlusions around the head show as broken up maps of ambiguous labels, and would cause “reset” artefacts in the

synthesized cyclopean view. (b) In 4-state DP true occlusions around the head are correctly detected as unfragmented regions. Throughout,

7 × 3 window patches were used in the computation of matching costs; a value of σa = 2.0 has been used for the cost filtering step. (c,d)

Disparities corresponding to (a,b), respectively. Removal of spurious occlusion labels helps also to clean up the disparity map. The disparity

values have been scaled up 1.5 times for ease of visualization.

sistency of the costs; the other axis a′ produces ad-

ditional smoothing of sharp corners in the occlusion

map by encouraging fronto-parallel surfaces [SS02].

Typical values for Gaussian smoothing parameters are:

σa = 3 pixels along the a axis and σa′ = 2 pixels
along the a′ axis.

Cost-filtering acts directly on the matching cost

function rather than on the final matching path or the

disparity map. In fact, cost aggregation precedes the

optimal path finding step. The result is effective in-

formation propagation across scanlines with improved

occlusion positioning without necessarily smoothing

disparities (fig. 16). Furthermore, the cost filtering

step, being a separable 2D convolution can be imple-

mented efficiently by using two 1D convolutions.

Note that if we had used standard, un-normalized

SSD in the cost computation step, then the use of

large window neighborhoods (with Gaussian weight-

ing) would have been equivalent to the cost aggrega-

tion performed in this section. Furthermore, we have

found that normalized SSD costs on small windows

works considerably better than standard SSD. Further

research is necessary here to assess an optimal match-

ing cost function.

The output of the cost aggregation process is the

new set of M(l, r) costs used, as input to the 4-state

DP algorithm already described in section 4.

6. Evaluating the estimated disparity and

occlusion maps

The goal of this section is two-fold: i) demonstrating

the advantages of our new DP algorithm with respect

to other techniques and, ii) defining measures of accu-

racy of occlusion detection for comparison with state

of the art Graph-Cut techniques.

6.1. Advantages of four-state model for DP

Four-state vs conventional DP. Figure 15 demon-

strates the effect of moving from the conventional

DP algorithm to the four-state DP one. Comparing

fig. 15a and fig. 15b one can see that the four-state

model removes most of the incorrect occlusion events

which occur in the background of fig. 15a (isolated
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Fig. 16. Inter-scanline consistency by cost filtering. Occlusion maps obtained by 4-state DP for different values of σa

(section 5.1). In this experiment the value of σa′ has been kept fixed at σa′ = 2 pixel. Cost filtering helps achieve more

“compact” occlusion regions.

red and green points). The black pixels in fig. 15a,b

correspond to matched moves. The four-state model

correctly classifies small jumps in disparity levels as

matched moves discretizing slanted surfaces (e.g. the

face or the slanted walls in the background). Fur-

thermore, this new graph structure is used to favour

long runs of occlusions. In fig. 15b the occlusions are:

(i) correctly located along the boundary of the fore-

ground object, and (ii) detected as compact, solid re-

gions. This, in turn, leads to better occlusion maps and

more convincing synthesis, as will be demonstrated in

section 9.

The effect of cost-space smoothing on inter-

scanline consistency. Figure 16 shows the effect of

varying the σa parameter for cost-space smoothing.

As the value of the standard deviation σa of the Gaus-

sian kernel increases the runs of occlusions become

correctly aligned with the outline of the foreground

head. Importantly, above a certain value of σa the re-

sults become quite stable.

6.2. Evaluating accuracy of disparities

Here we compare the computed disparities with those

in the standard Middlebury database. Fig. 17 shows a

snapshot of the stereo algorithm evaluation table in

http://www.middlebury.edu/stereo/. The

Middlebury error metrics show our algorithm amongst

the most accurate of the efficient techniques (e.g.

Tree DP, Comp. win, Realtime). Proper han-

dling of occlusions vs slanted surfaces in large-

disparity images is an advantage of 4-state DP. In this

evaluation identical parameters have been used for all

four tests. Due to its thin structures the “tsukuba”

image pair presents most difficulties. This problem

is typical of scanline dynamic programming tech-

niques which impose the ordering constraint. How-

ever, note that thin structures do not arise often in

video-conferencing kind of images.

While we cannot expect 4-state DP to beat the fully

two-dimensional MRF techniques, its near real-time

performance and accurate occlusion modelling present

considerable advantages, especially for live view syn-

thesis applications. Since realistic new view synthesis

is the main objective of this paper the next sections

will focus on evaluating the accuracy of the recovered

occlusion maps.

6.3. Assessing the quality of occlusions.

Figure 18a,· · ·d illustrates the results of applying 4-

state DP to four of the Middlebury test image pairs.

Occlusions are recovered correctly only where they

occur, while slanted surfaces are modelled by matched

moves only. In all the above experiments the pa-

rameters were kept fixed for all image pairs and

identical to those used in sec. 6.2. For compari-

son, ground-truth occlusion maps for the Middlebury

datasets (fig. 18a’,· · ·d’) were computed by taking the

left and the right disparity maps and cross-projecting

them. The presence of both disparity maps enabled un-

ambiguous detection of true occlusion while correctly

modeling slanted surfaces.

The results of estimating (left) occlusion and dis-

parity maps are quite convincing, even for non

videoconferencing-like images. However, our algo-

rithm has been designed to cope with situations in-

volving much greater disparity ranges than the ones

shown in [SS02]. For the next experiment we have cre-

ated our own test stereo pair, characterized by a much

larger disparity and occlusion range.
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Fig. 17. Evaluating 4-state DP with respect to the disparity error metrics in [SS02]. A snapshot of the evaluation table in

http://www.middlebury.edu/stereo/. The red stars indicate different levels of reported algorithmic efficiency: double star for

high efficiency (> 1fps), single star for medium (< 1fps) and no star for either low (<< 1fps) or un-reported frame-rate. Four-state DP ranks

amongst the best of the fast techniques. Additionally, proper handling of occlusions vs slanted surfaces (missing for example in Tree DP) is

provided. However, being at the top of this table is not the main objective of this paper; while accurate new-view synthesis is.

a b c d

a’ b’ c’ d’

Fig. 18. Accuracy of occlusion estimation on the Middlebury stereo pairs. (a,· · ·,d) Estimated occlusions and disparities for the left view

of Map, Sawtooth, Cones and Teddy stereo pairs, respectively. (a’,· · ·,d’) Corresponding ground-truth occlusions and disparities (blue

pixels denote unlabelled pixels). Good correspondence between the ground-truth occlusions and those estimated by 4-state DP is evident. The

maximum occlusion gap of 55 pixels (12% of image width) occurs at the edge of the Cones image. The maximum occlusion for Map is about

9% of the image width.

6.4. Quantitative assessment of occlusion errors.

Figure 19 compares our results with the ones obtained

by three well known graph-cut techniques which es-

timate occlusions [BGCM02, HD98, KZ01] and the

conventional 3-move DP [CHRM96]. Excepting the

graph-cut method in [KZ01]6, the other algorithms are

based on our own implementations.

Figure 19a,b are the two input images used in this

experiment. The photographed scene is made of two

background slanted planes and one foreground fronto-
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a b

c d

e f

g h

Fig. 19. Comparing the occlusion maps returned by dif-

ferent algorithms. (a,b) Input left and right images, re-

spectively. (c) Ground-truth occlusion (and disparity) map

with reference to the left camera. As usual, green indicates

right-occlusion. (d-h) Left-referenced occlusion maps re-

covered by using: (d) 4-state DP; (e) Buehler et al. graph-

cut algorithm [BGCM02]; (f) Kolmogorov et al. graph-

cut algorithm [KZ01]; (g) Ishikawa et al. graph-cut algo-

rithm [HD98]; (h) Cox et al. dynamic-programming algo-

rithm [CHRM96].

parallel plane. The stereo pair is characterized by a

maximum disparity range of 90 pixels and a maxi-

mum occlusion gap of 72 pixels which corresponds

to 22.5% of the image width (image dimensions are

320 × 240); more than twice the occlusion gap of the

Map stereo pair in fig. 18. The ground truth disparity

and occlusion map (fig. 19c) was obtained by least-

square fitting of the two planes in the background and

the planar surface of the foreground object. The fitting

process was initialised by dense matches produced by

Algorithm Misclass. rate Runtime

4-state DP 2.61% 1.57s

Buehler et al. [BGCM02] 6.45% 468 s

Kolmogorov et al. [KZ01] 6.57% 65 s

Ishikawa et al. [HD98] 6.61% 912 s

Cox et al. [CHRM96] 8.17% 0.31 s

Fig. 20. Accuracy of occlusion detection. Comparing accuracy

and performance of different state-of-the-art dense stereo algorithm

in estimating occlusion maps.

DP. The segmentation of the foreground object was

perfomed manually and the correctness of the result-

ing ground truth was verified by manual inspection.

Some graph-cut algorithms such as [KZ01] produce

left and right occlusion maps and not the cyclopean

map. Therefore, in order to reduce the possibility of

error we have decided to compare the performance of

the selected algorithms always with reference to the

left camera. Fig. 19d-h show the results of computing

the left-referenced occlusion and disparity maps via

different algorithms.

In order to quantify the occlusion accuracy we de-

fine a new error measure, the Misclassification rate.

Misclassification rate is estimated by comparing

the occlusion maps recovered by each algorithm with

ground truth (fig. 19c) and counting the number Nm

of misclassified pixels (both false positives and false

negatives).

Comparative results. The misclassification rate has

been measured for all the occlusion maps in fig. 19d-h

and the results collected in the table in fig. 20.

The three graph-cut algorithms [BGCM02, HD98,

KZ01] perform comparably and considerably better

than conventional DP. The reduced misclassification

error obtained by 4-state DP is due to the extended

four-label pixel classification and the enforcement of

occlusion-run constraints. While the GC framework

in [KZ01] supports runs of occlusions, these are not

correctly modeled in the sense that occluded moves are

used to approximate slanted surfaces. Furthermore,

right and left occlusions are not differentiated. An al-

ternative GC algorithm [HD98] that does use explicit

labels for occlusion produces poor results for lack of

constraint enforcement. The effect of approximating

slanted surfaces with occluded moves can be observed

in figs. 19e,f,h; where the background is constellated

by a large number of vertically aligned occluded pixels
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Fig. 21. Sensitivity to parameters. (a) Sensitivity of the

“percentage of bad pixels” error metric with respect to α.

Note the flat behaviour for α > 0.35. (b) Sensitivity of oc-

clusion misclassification rate with respect to α. In all cases

errors are measured on standard Middlebury stereo pairs.

Occlusion errors are measured on the two stereo pairs with

the largest occlusions. 4-state DP is not particularly sensitive

to values of α varying within a reasonable range.

(marked in green). These results show that the combi-

nation of both an extended occlusion model for correct

pixel classification and the enforcement of constraints

on occluded areas achieves the best results. Figure 20

also shows our algorithm being the second fastest, im-

mediately after the very efficient (but relatively poor

quality) Cox DP.

Further notes on our experimental procedure.

The different energy minimization algorithms anal-

ysed in this section have been applied to exactly the

same cost space, which was computed only once7.

This was done to eliminate variability due to different

matching cost functions or cost smoothing parameters.

Furthermore, for each algorithm we have selected the

combination of parameters which has lead to the best

results for that specific algorithm. In the case of the al-

gorithm in [KZ01] the parameters were automatically

selected by the original implementation. Finally, all

algorithms were run on the same machine, a 3GHz,

1Gb RAM Pentium IV desktop computer.

Our results place 4-state DP amongst the most ac-

curate efficient algorithms for shape and occlusion re-

covery from large-disparity image stereo pairs. Fur-

thermore, we propose a novel error metric (for occlu-

sions) which should be added to the set of metrics de-

fined in [SS02].

6.5. Parameter sensitivity.

In order to assess the sensitivity of our algorithm with

respect to its parameters we have measured the “per-

centage of bad pixels” [SS02] and misclassification

rate for different values of α, β and γ. Fig. 21 shows

some exemplary error plots illustrating sensitivity of

α. Both disparity-based (fig. 21a) and occlusion-based

(fig. 21b) error metrics show a flat behaviour in the

range α ∈ [0.35, 0.65]. Sensitivity with respect to

the β and γ parameters has been found to be about

ten times lower. Generally, good stability of the out-

put errors has been found for relatively large ranges

of parameter values and for both disparity-based and

occlusion-based error metrics.

The previous sections have: i) illustrated 4-state DP

for the reliable estimation of occlusion and disparity

maps and ii) evaluated our algorithm against state of

the art techniques. The next sections focus on the new-

view rendering problem, how to best make use of the

extracted geometric information for the purposes of ef-

ficient virtual-image generation.

7. Rendering occlusions

High-quality virtual image generation requires effec-

tive synthesis over occluded regions. We have investi-

gated two strategies for occlusion filling: static filling,

which applies to single pairs of stereo images and tem-

poral filling which, instead, models what lies behind

the occlusions from long sequences of stereo images.
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Conventional Dynamic Programming 4-State Dynamic Programming

a b

Synthetic cyclopean Synthetic cyclopeanDisparity Disparity

Fig. 22. Eliminating the reset artefact. (a) Occlusion map and reconstructed cyclopean view for conventional DP. Small

islands of spurious matched pixels inside occlusion regions cause the reconstruction of the occluded areas to fail. Note also that

many pixels on slanted surfaces have been incorrectly classified as occluded. (b) Occlusion map and reconstructed cyclopean

view for the proposed four-state DP. The compactness of the recovered occlusion regions produces a more accurate cyclopean

reconstruction: the background door frame is now straight and almost completely artefact-free.

Static occlusion filling. Given an input stereo pair

of images ‘fronto-parallel’ synthesis of the occluded

regions is done via the algorithm illustrated in fig. 7c.

As discussed in section 2.2 effective filling of the oc-

clusions is disrupted by inaccurate labelling. Fig-

ure 22b shows an example of realistic occlusion syn-

thesis achieved by 4-state DP. Note that fig. 22b is free

from any “halo” or “reset” artefacts.

Temporal occlusion filling. When the static filling

algorithm is applied to long image sequences, tem-

poral artefacts become visible in occluded regions.

Moreover, because of the lack of pixel correspon-

dence, stability of synthesis is a particular issue in the

occluded areas. One solution to this problem is the

construction and dynamic update of a model of the

background used to fill in the regions of missing in-

formation. The algorithm is in two steps: the first

step segments the foreground from the background at

each time instance; the second step uses the newly un-

covered (disoccluded) pixels of the background to im-

prove the background model.

The segmentation step, performed at each time in-

stance, proceeds as follows:

Given the estimated min-cost surface S:

1. Along each scanline in the min-cost surface, for

each run of occlusions, the disparity at the highest

disparity end of the run is histogrammed (fig. 24).

2. The valley in the resulting bi-modal histogram

determines the adaptive threshold disparity value

d̂ that is used for the background/foreground seg-

mentation.

Figure 24b shows a typical histogram. The peak

near the origin is due to the long and thin occlusion

bands at the edges of the image, while the peak at

higher disparity values is due to the foreground object

and is the one we are mostly interested in. This kind

of bi-modal histogram turns out to be characteristic of

sequences of talking heads. This approach for auto-

matic threshold detection works better than histogram-

ming the whole set of estimated disparities. This is be-

cause the selected pixels (marked in white in fig. 24a)

are more representative of the foreground object. The

technique has been proven to work also in situations

where part of the background are very close (in depth)

to the talking head (e.g. a receding wall).
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frame number 0 70 170

synth. cyc. image

background model

Fig. 23. Temporal background generation. (top row) Synthesized cyclopean views for different frames. More examples

of synthesised cyclopean views are provided in the results section. (bottom row) Corresponding background models. As new

regions of the background are discovered the background model is updated and the blank region (occlusion) progressively filled.

In the second step of the algorithm a background

model is constructed and updated at each time in-

stance. The background model is made of three ele-

ments: its disparity map DB in cyclopean coordinates,

and the corresponding left and right images I l
B and Ir

B ,

respectively. At each time instance t the background

model is updated by the following rule:

Dt
B(p) = φDt−1

B (p) + (1 − φ)Dt(p)

I lt

B(pl) = φI lt−1

B (pl) + (1 − φ)I lt(pl)

Irt

B (pr) = φIrt−1

B (pr) + (1 − φ)Irt

(pr) (6)

where p is a pixel whose disparity D(p) falls be-

low the automatically computed foreground threshold

d̂ (and thus belongs to the background). The points

pl and pr are the corresponding positions on left and

right input images, respectively. Dt
B(p) is the dispar-

ity of the pixel p in the current background model at

time t. The scalar factor φ represents a decay constant

(0 ≤ φ ≤ 1). The update rule in (6) applies to all the

pixels which belong to the background and are visible

and does not apply to occluded pixels. The use of the

exponential memory parameter φ allows for a relax-

ation of the static background assumption. In our ex-

periments φ = 0.9 achieves a good balance between

keeping the previous values of the background pixels

and updating them in the case of dynamic events on

the background.

Figure 23 illustrates the results of the temporal

background filling algorithm. During the video-

communication session the head moves and disoc-

cludes portions of the background. The background

model is updated and, after a few frames, if the head

moves substantially, the background is completely re-

constructed.

Advantages and disadvantages of static and tem-

poral filling strategies. The static occlusion filling

strategy is based on the assumption of a fronto-parallel

background, which, although most of the time pro-

duces good results, may not make sense for scenes

with very slanted surfaces. Furthermore, the static

occlusion filling requires solid and accurate occlu-

sion areas which are achieved by four-state DP but

are not in conventional DP or graph-cut techniques.

On the other hand, in temporal occlusion filling, the

background model is learnt from the disocclusions of

previous frames. This introduces the need for back-

ground/foreground segmentation and the assumption

of a quasi-static background.

Temporal occlusion filling and background model-

ing is especially useful in the next section which in-

troduces the three-dimensional motion of the virtual

camera. In fact, as the virtual camera centre moves

away from the baseline of the two input cameras less

information is available from the current pair of stereo

frames about the occluded regions, and temporally

acquired background information becomes extremely
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Fig. 24. Foreground/background segmentation. (a) The

pixels corresponding to the higher-disparity end in each hor-

izontal run of occlusion is marked in white. (b) The his-

togram corresponding to the disparities extracted in (a).

useful for reconstructing unseen regions. Overall, we

have found that a combination of the two techniques

works best: we use static filling in the half-occluded

areas which have not yet been observed, and tempo-

ral filling in those occluded regions which have been

disoccluded in previous frames.

8. Rendering from variable viewpoint

The ability to create virtual images from generic view-

points is of considerable interest both for interactive

video and teleconferencing applications. Convention-

ally, one way of generating novel views from virtual

camera locations is by: (i) transforming the computed

disparity map into a 3D surface (e.g. by means of a tri-

angle mesh), (ii) texture mapping it with one of the

two images, (iii) projecting the texture-mapped sur-

face into the plane of the virtual camera. This sec-

tion describes a novel, compact technique for render-

P (X,Y,Z)

f

xl
xv

xr

Ol

Ov

Or

X

Z

Y

O

Left

camera

Right

camera

Virtual

camera

Fig. 25. Notation for virtual image generation. Ol, Or

and Ov are the optical centres of left, right and virtual cam-

eras respectively. The optical centre of the virtual camera

can be placed anywhere in space and the corresponding vir-

tual image is synthesized by our algorithm.

ing virtual views directly from the estimated disparity

surface, thus overriding the need to construct an ex-

plicit 3D model of the scene.

The geometry of the virtual camera. Figure 25

shows a plan view of the system with the optical centre

of the virtual camera being placed in the generic loca-

tion denoted Ov . A 3D scene point P is projected on

the left and right images into the points pl = (xl, yl)
⊤

and pr = (xr, yr)
⊤, respectively. Also, P is pro-

jected on the cyclopean camera (with optical centre

in Oc = O) in the point pc = (xc, yc)
⊤ (not shown

in the figure) and on the virtual camera in the point

pv = (xv, yv)⊤. The disparity between the cor-

responding left and right image points is easily com-

puted as

d = xl − xr = f
B

Z
. (7)

In the cyclopean camera, by triangle similarity we

can compute

xc = f
X

Z
. (8)

For a virtual camera with optical center in Ov =
(Tx, Ty, Tz)

⊤ we can write: (X − Tx) : xv = (Z −

Tz) : f , from which

xv = f
X − Tx

Z − Tz
. (9)

By substituting (7) and (8) into (9) we obtain:

xv = xc−dTx/B
1−dTz/(fB) which, together with the analo-

gous equation for the yv coordinate, can be rewritten

in homogeneous coordinates as:





xv

yv

w



 =





1 0 −Tx/B 0
0 1 −Ty/B 0
0 0 −Tz/(fB) 1













xc

yc

d
1









(10)
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Fig. 26. Virtual camera motion. (a) The 3D motion of the virtual camera is achieved by direct projections of points on the

minimum cost surface onto the virtual image plane. The reference coordinate system (xc, yc, d) has origin in the centre of the

virtual image plane. (b) The virtual image is generated directly by projecting points from the minimum-cost surface S into

the virtual image plane. (c) Moving the centre of projection Q corresponds to translating the virtual camera. The coloured

arrows indicate the mapping between moving the centre of projection Q in our diagram and the corresponding translations of

the virtual camera in the scene.
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Fig. 27. Occlusion filling for generic virtual camera

placement. The only difference with respect to the cyclo-

pean occlusion filling illustrated in fig. 7c is that now the

generic direction of projection is dictated by the position of

the centre Q.

Equation (10) represents a projection of 3D points into

a plane [HZ00]. It can be proven that (10) corresponds

to projecting points of the min-cost surface into the

corresponding points on the plane of the virtual im-

age (up to a scale, diagonal matrix) as illustrated in

fig. 26a.

From (10) the centre of projection Q is readily com-

puted as the null vector of the projection matrix, thus

yielding: Q =
(

Tx

B
Ty

B 1 Tz

fB

)⊤

. Note that for

Tz = 0 the transformation (10) is a parallel projection

(Q is at infinity). This, in turn means that sidewise

motion (in the X direction) and up/down motion (in

the Y direction) of the virtual camera can be easily

simulated by projecting points of the disparity surface

S onto the virtual image plane via parallel rays. On

the contrary, the inwards/outwards translation of the

virtual camera (Tz 6= 0) is achieved by means of a

central projection with finite centre of projection Q.

The simple mapping between the motion of the centre

of projection Q and the corresponding translation of

the virtual camera is illustrated in 26c,d. For instance,

inwards camera translation (not zoom) is achieved by

moving the centre Q from +∞ towards the plane of

the virtual image.

Note that for Q = (−1/2, 0, 1, 0)⊤ (i.e. Ov =
(−B/2, 0, 0)⊤) the virtual image corresponds to the

input left image, for Q = (1/2, 0, 1, 0)⊤ (i.e. Ov =
(B/2, 0, 0)⊤) the virtual image corresponds to the in-

put right image, and for Q = (0, 0, 1, 0)⊤ (i.e. Ov =
(0, 0, 0)⊤) the virtual image corresponds to the cyclo-

pean image.

Synthesizing virtual images from generic view-

points. Given a point p on the minimum-cost sur-

face and its corresponding virtual position pv (fig. 26a

and cf. fig. 7a), the corresponding pixel value (inten-

sity or colour) is given by a combination of the pixel

values of the corresponding pixels pl and pr in the

input images according to the following equation8:

Iv(pv) = (1 − µ)I l(pl) + µIr(pr) (11)

with µ =
|Ov

x−Ol
x|

B ; where the subscript indicates the x
component of optical centres of the two input cameras.

Occlusion filling and rendering. The filling of oc-

clusions for generic virtual view placement is very

similar to the cyclopean case illustrated in fig. 7c. As
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a b

Fig. 28. Example of gaze correction. (a) Cyclopean im-

age synthesized via the algorithm in [COL93]. This image

is identical to that in fig. 3b and is repeated here for clar-

ity. The input left and right images are shown in fig. 3a,c,

respectively. (b) The cyclopean, gaze-corrected view gener-

ated by our algorithm. The gaze has been corrected while

eliminating the artefacts of (a).

a b c

Fig. 29. Another example of gaze correction. The central

image, (b) has been generated from the two input views (a,c)

and shows correct gaze (the person is looking at us). There

are no significant “halo” effects or streaky artefacts.

shown in fig. 27 now the direction of projection is dic-

tated by the position of the centre Q, the cyclopean

case being a special case of this general projection.

The rendering algorithm described here is an ex-

tension of the cyclopean rendering presented in sec-

tion 2.2. By inspection of (11) one can see that in

the cases where Ov = Ol or Ov = Or, the origi-

nal left and right views are resynthesised exactly, and

independently from the recovered disparities, as ex-

pected. Further advantages of our rendering technique

are: (i) direct view-dependent texture rendering which

negates the need for surface triangulation and (ii) ef-

fortless occlusion reconstruction by simple projection

of the minimum-cost surface. High-quality output im-

ages are obtained by standard reverse mapping and

bilinear interpolation techniques. Note that rotations

of the virtual camera have not been considered here.

Rotations may be achieved by homography-based im-

age warping. However, virtual-camera rotation does

not seem to be an important requirement in video-

conferencing.

9. New view synthesis results

This section presents a number of synthesis results

achieved on real input sequences. In particular, we

demonstrate: gaze correction, cyclopean view genera-

tion, three-dimensional translation of the virtual cam-

era, simple editing such as background substitution.

Gaze correction by cyclopean view synthesis. Fig-

ure 28 shows an example where the input left and right

images of fig. 3 have been used to generate the cy-

clopean view via the proposed algorithm. Note that

the spatial artefacts (streaks in fig. 3b) have been re-

moved. In the output image (fig. 28) the gaze has been

corrected. Another example of gaze correction from

stereo images is illustrated in fig. 29.

3D translation of the virtual camera. Figure 30

shows an example of translating the virtual camera to-

wards and away from the visualized scene. Note that

this is different from simple zooming or cropping of

the output image. Parallax effect may be noticed in

the boundary between the head and the background,

thus providing the correct three-dimensional feel.

Figure 31 shows an example of in-plane translation

(with Ov on the XY plane) of the virtual camera. No-

tice the relative displacement of the head with respect

to the background.

Cyclopean view generation in long sequences.

Figure 32 and 33 demonstrate the effectiveness of

the proposed algorithm for reconstructing cyclo-

pean views of extended temporal sequences. It can

be observed that most of the spatial artefacts (e.g.

streaks, halo) and temporal artefacts (e.g. flicker-

ing) are attenuated. The background close to the

foreground/background transitions is correctly synthe-

sized. Exemplary synthesized videos are available

at http://research.microsoft.com/vision/

cambridge/i2i/movies/4pdp.zip

Basic 3D scene editing. The proposed algorithm

generates novel, virtual views, but also, as a by-

product, a 3D representation of the observed scene.

The latter can be advantageous for 3D scene edit-

ing. As an example, fig. 34 demonstrates the pos-

sibility of replacing the original background with

a different one, either taken from real photographs

or artificially generated. This is made possible

thanks to the foreground/background segmentation

step described in section 7. Recent developments of
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BackwardForward

Input left view Input right view

Fig. 30. Forward/backward translation of virtual camera. The bottom row shows the synthesized cyclopean views with

(left) forward virtual camera translation, (centre) no virtual camera translation, (right) backward virtual camera translation.

Notice the parallax effect around the head.
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Fig. 31. In-plane translation of virtual camera. The left and right input images are the same as in fig. 30. This table shows

the synthesized images corresponding to translation of the virtual camera along the x and y axes. Notice the parallax effect

around the head. Also, the door frame is reconstructed nicely despite it being partially occluded in the right input view.

the background substitution technique may be found

in [KCB+05a]. Sophisticated matting techniques for

high-quality layer compositing are not the focus of this

paper.

10. Conclusions and future work

This paper has described an efficient algorithm for the

synthesis and geometric manipulation of high-quality



Efficient Dense Stereo with Occlusions for New View-Synthesis using Four-State Dynamic Programming 21

Fig. 32. Cyclopean image synthesis for long sequences. Some frames of a cyclopean video sequence synthesized by 4-state

DP. The two input left and right sequences are not shown here.

Fig. 33. Another example of virtual image synthesis in sequences. Frames extracted from a reconstructed cyclopean se-

quence. The input images are not shown here. Notice the quality of the synthesized images.

virtual images generated from a pair of synchronized

stereo sequences with large disparities. In this paper

we have focused on one-to-one teleconferencing appli-

cations but the techniques are more general and can be

employed in other fields requiring high-quality novel

view generation and dense stereo.

The main contributions of the paper can be summa-

rized as:
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Fig. 34. Background replacement. Four-state DP allows,

amongst other things, for the foreground to be segmented

from the background. This, in turn, allows the real back-

ground to be replaced by alternative images, or videos.

• A new four-state DP algorithm for the correct de-

tection and classification of occlusion events;
• A compact geometric technique for the rendering

of novel views directly from the minimum-cost

surface estimated by the DP algorithm.

The effectiveness of the new algorithmic components

has been demonstrated in a number of examples where

the artefacts typical of DP techniques have been elim-

inated while keeping quite a high frame rate. The

current implementation exploits SSE2 instructions and

produces virtual images at about 7 frames per second

(on 320 × 240 images, on a 3.0Ghz Pentium IV with

1Gb RAM). The viability of the proposed algorithm

has also been demonstrated by comparing the accuracy

of the estimated occlusion maps with the ones gener-

ated by state of the art techniques amongst which three

of the most recent graph-cut algorithms.

Despite recent progress, the depth maps obtained by

4-state DP still lack the level of accuracy necessary

for seamless background substitution. Fusion of dif-

ferent cues, such as depth, motion, colour ans contrast

seems very promising. Progress to date in this area is

reported in [KCB+05a, KCB+05b].

Acknowledgements. The authors would like to

thank G. Smyth, G. Cross, V. Kolmogorov, I. Cox,

D. Scharstein, R. Szeliski, Y. Boykov, for their useful

comments and inspiring discussions.

Notes

1. e.g. messenger.msn.co.uk/, messenger.yahoo.com/,

www.aol.co.uk/aim/

2. We refer to cyclopean view as the image generated from a virtual

camera located in the mid-point between the two input cameras.

3. The minimum-cost surface is defined to be the collection of all

the minimum-cost paths estimated (independently) by the DP

algorithm at each scanline.

4. We used the epipolar rectification technique described in [HZ00].

5. www.idiom.com/∼zilla/Work/nvisionInterface/

6. Original algorithm available from

www.cs.cornell.edu/People/vnk/software.html

7. Note that we had to adapt the source code in [KZ01] to read our

filtered cost space as input. Then, graph-cut was used for energy

minimization only.

8. Equation 11 is strictly valid only for matched pixels; while val-

ues of occluded pixels are taken only from the image where they

are visible (fig. 7b).
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