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Efficient Derivative Pricing by Extended Method of Moments

Abstract

In this paper we consider an incomplete market framework and explain
how to use jointly observed prices of the underlying asset and of some deriv-
atives written on this asset for an efficient pricing of other derivatives. This
question involves two types of moment restrictions, which can be written
either for a given value of the conditioning variable or can be uniform with
respect to this conditioning variable. This distinction between local and uni-
form conditional moment restrictions leads to an extension of the Generalized
Method of Moments (GMM), a method in which all restrictions are assumed
uniform. The Extended Method of Moments (XMM) provides estimators of
the parameters with different rates of convergence: the rate is the standard
parametric one for the parameters which are identifiable from the uniform
restrictions, whereas the rate can be nonparametric for the risk premium
parameters. We derive the (kernel) nonparametric efficiency bounds for esti-
mating a conditional moment of interest and prove the asymptotic efficiency
of XMM. To avoid misleading arbitrage opportunities in estimated derivative
prices, an XMM estimator based on an information criterion is introduced.
The general results are applied in a stochastic volatility model to get effi-
cient derivatice prices, to measure the uncertainty of estimated prices and to
estimate the risk premium parameters.

Keywords: Generalized Method of Moments, Weak Instruments, Informa-
tion Based Estimation, Nonparametric Efficiency, Limited and Full Informa-
tion, Derivative Pricing, Stochastic Volatility, Risk Premium.

JEL number: C13, C14, G12.



1 Introduction

The Generalized Method of Moments (GMM) has been initially introduced
by Hansen (1982), Hansen, Singleton (1982) to estimate parameters defined
by Euler conditions. Typically in a Consumption based CAPM [Lucas (1978)]
the moment restrictions at date t are:

pi,t = Et [pi,t+1δ (qt/qt+1)U
′(Ct+1; γ)/U

′(Ct; γ)] , i = 1, . . . , n, (1)

where U is a utility function, pi,t the observed prices of the n financial as-
sets, qt the price of the consumption good, Ct the consumption level and
Et denotes the conditional expectation given the available information in-
cluding the lagged values of prices and income. The parameters of interest
are the preference parameter γ and the psychological discount rate δ. The

model is semi-parametric. GMM focuses on the estimation of θ =
(
γ

′
, δ
)′

and disregards the nuisance parameter, that is the joint conditional distrib-
ution of prices pi,t+1, i = 1, . . . , n, and consumption Ct+1. Recently different
approaches, called empirical likelihood, minimum chi-square or information
based approach, have been proposed to simplify the derivation of a GMM
parameter and to improve its finite sample properties1. The basic idea is to
estimate jointly the structural parameter θ and the nuisance infinite dimen-
sional parameter under the moment restrictions.

However the Euler conditions are not only useful to estimate the pref-
erence parameters or test a structural equilibrium model. They are also
used in Finance for pricing derivatives. More precisely the Euler condition
is considered as a pricing formula :

pi,t = Et [Mt,t+1(θ)pi,t+1] , i = 1, . . . , n, ∀t, (2)

where Mt,t+1(θ) = δ (qt/qt+1)U
′(Ct+1; γ)/U

′(Ct; γ) is a parameterized sto-
chastic discount factor (sdf) [see e.g. Hansen, Richard (1987), Hansen, Ja-
gannathan (1991), Bansal, Viswanathan (1993), Cochrane (2001)]. This pric-
ing formula is assumed to be valid also for the other assets, whose payoffs
are written on p1,t, . . . , pn,t and whose current prices are not observed. For

1See e.g. Owen (1991), (2001), Qin, Lawless (1994), Hansen, Heaton, Yaron (1996),
Kitamura, Stutzer (1997), Imbens (1997), Smith (1997), Imbens, Spady, Johnson (1998),
Baggerly (1998), Kitamura (2001), Kitamura, Tripathi, Ahn (2004), Ai, Chen (2003),
Newey, Smith (2004), Bonnal, Renault (2004).
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instance the price at date t0 of a European call, written on p1, with strike K
and residual maturity 1 is:

ct0(1, K) = Et0

[
Mt0,t0+1(θ)(p1,t0+1 −K)+

]
. (3)

It is naturally estimated by :

ĉt0(1, K) = Êt0

[
Mt0,t0+1(θ̂)(p1,t0+1 −K)+

]
, (4)

where θ̂ is a GMM estimator of θ and Êt0 is a (functional) estimator of the
conditional expectation. For the application to derivative pricing the interest
is focused on the conditional moment ct0(1, K) = Et0 (a) of the function
a = Mt0,t0+1(p1,t0+1 −K)+, which is the product of the sdf by the derivative
payoff. Clearly this problem requires the joint estimation of the parameter θ
and of the conditional distribution.

However the problem becomes much more complicated if we want to
account for the observed prices of assets which are less actively traded (such
as derivatives) when estimating θ and the conditional distribution. Typically
we can observe the prices of the short term zero-coupon bond:

B(t, t+ 1) = Et [Mt,t+1 (θ)] , t = 1, ..., T, (5)

the prices of the underlying asset:

p1,t = Et [Mt,t+1 (θ) p1,t+1] , t = 1, ..., T, (6)

and for instance the at-the money call price at date t0:

ct0(1, p1,t0) = Et0

[
Mt0,t0+1(θ)(p1,t0+1 − p1,t0)

+
]
. (7)

In this situation the structural parameter θ is subject to two types of moment
restrictions, which can be satisfied either for multiple environments [uniform
moment restrictions, equations (5) and (6)] or only for a given one [local
moment restrictions, equation (7)]. The two types of moment restrictions
are difficult to take into account jointly. This explains in practice (but also
in the academic literature) the approaches which have been followed:

i) The observations of derivative prices can be neglected, the parameter
θ estimated by a standard GMM method and the derivative price of interest
approximated by (4). The drawback of this approach is that the risk premium
parameters are generally non identifiable and are fixed a priori to zero.
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ii) An alternative is the so-called cross-sectional approach which is based
on derivative prices at date t0 only. However the convergence of the estima-
tors requires a large number of liquid derivatives and the condition is far to
be satisfied on derivative markets.

The aim of this paper is to use jointly observed prices of the underlying
asset and of some derivatives written on this asset for an efficient pricing of
other derivatives. Technically we explain how to estimate conditional mo-
ments under both types of conditional moment restrictions, which are either
uniform or local with respect to the conditioning variable. In particular we
derive the nonparametric efficiency bound of the conditional moment(s) of
interest and explain how to reach this bound. In Section 2 we study the
set of moment estimators for both structural parameters and the conditional
moment of interest. The two types of moment restrictions are carefully stud-
ied, since they have different consequences concerning the identifiability of
structural parameters and the accuracy of the estimator of the conditional
moment of interest. In particular, the linear combinations of structural para-
meters which are identifiable from uniform moment restrictions converge at a
parametric rate, whereas the other linear combinations have a nonparametric
rate of convergence. We show that there exists an optimal moment method,
called extended method of moments (XMM), for the conditional moment
of interest, that is which minimizes its asymptotic variance. This minimal
variance defines the so-called (kernel) nonparametric efficiency bound. We
derive the explicit expression of the efficiency bound in the general frame-
work. Finally we consider the special cases of limited information, when all
constraints are conditional on a given environment, and of full information,
when all constraints are uniform with respect to the environment.

By definition the extended method of moments is (kernel) nonparamet-
rically efficient. However it does not provide in general a coherent estimator
of the whole conditional distribution. The aim of Section 3 is to consider an
information based approach to estimate jointly the structural parameter and
the conditional distribution. The associated information based estimators of
the moments of interest are also (kernel) nonparametrically efficient.

Section 4 is concerned with the application to efficient derivative pricing
from both observed underlying asset prices and derivative prices. We dis-
cuss in detail the moment restrictions for this problem and distinguish these
constraints depending whether they are uniform or local with respect to the
conditioning variable. The approach is applied in Section 5 to a stochas-
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tic volatility model. We discuss carefully the identifiability of the different
parameters from the uniform restrictions. Based on the (kernel) nonpara-
metric efficiency bounds, we provide the patterns of the confidence bands on
derivative prices according to maturity and strike. This allows us to measure
the uncertainty on estimated derivative prices, when the sole informational
content of no-arbitrage is taken into account. We discuss the finite sample
properties of the estimated derivative prices and of the structural parameters
by Monte-Carlo. The estimators of the structural parameters which corre-
spond to the risk premium on volatility converge at a nonparametric rate,
whereas the estimators of the other components of the structural parameter
converge at a parametric rate. These different behaviours are consequences
of market incompleteness and the lack of liquidity on derivative markets.
Section 6 concludes. The proofs are gathered in appendices. Since the focus
of the paper is mainly on the structural interpretations of moment restric-
tions and on the application to derivative pricing, the proofs of asymptotic
results are sketched with the purpose of deriving the forms of the limiting dis-
tributions and of the efficiency bounds. Detailed technical results including
regularity conditions are available upon request.

2 Extended Method of Moments

In this section we consider the estimation of conditional moments
E0[a(Y ; θ0)|X = x] under moment restrictions E0[g(Y, θ0)|X = x] = 0 from a
sample of observations (xt, yt), t = 1, ..., T, where process (Xt, Yt) is assumed
stationary. In this framework it is important to discuss carefully the set of
estimating constraints.

i) Firstly we can be interested in a conditional moment E0 (a|x0) =
E0 [a(Y ; θ0)|X = x0] for a given value x0, under the set of constraints
E0 [g(Y ; θ0)|X = x] = 0,∀x. The moment to be estimated has a local inter-
pretation, whereas parameter θ0 is defined uniformly in x. Equivalently we
can consider that we are interested in a conditional moment E0 (a|x0) under
marginal moment restrictions E0 [g1(Y,X; θ0)] = 0, where g1 is derived by
multiplying function g(Y ; θ) by appropriate instrumental variables. This ex-
plains the different rates of convergence for the different parameters, that are
a parametric rate for the estimator of θ (based on marginal moments) and a
nonparametric rate for the estimator of the conditional moment E0 (a|x0). As
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a consequence the asymptotic accuracy of the estimated moment of interest
is not influenced by the estimation of θ0.

ii) Secondly we can be interested in a conditional moment E0 (a|x0) =
E0[a(Y ; θ0)|X = x0], given the constraints E0 [g(Y ; θ0)|X = x0] = 0. Both
the moment of interest E0 (a|x0) and the parameter θ0 have local interpre-
tations. The rates of convergence are nonparametric for both parameter θ0

and conditional moment E0 (a|x0). The asymptotic accuracy of the estimated
conditional moment E0 (a|x0) will take into account the estimation of θ0.

These two cases are said with full- and limited information, respectively.
In Subsection 2.1 we consider the general framework in which the structural
parameter θ is subject to both types of moment restrictions, that are uniform
or local restrictions. We study the set of moment estimators of the conditional
moment of interest, look for an optimal one and compute the nonparametric
efficiency bound. In Subsection 2.2 the result is applied to the pure limiting
cases of full and limited information, respectively.

2.1 General framework

Let us consider a general framework with both uniform and local constraints:

E [g(Y ; θ) | X = x] = 0, ∀x,
E [g̃(Y ; θ) | X = x0] = 0, (8)

where θ is an unknown structural parameter with dimension p. As usual in
GMM approach, we assume in a first step that the uniform restrictions have
been replaced by a set of marginal restrictions, by introducing a finite number
of appropriate instrumental variables. Then in a second step we discuss the
optimal choice of the instruments.

2.1.1 Efficiency bound for given instruments

i) Identification condition

Let us introduce instruments Z = H(X) and let function g1 define the cor-
responding marginal restrictions: E0 [Z · g(Y ; θ0)] = E0 [g1(Y,X; θ0)] = 0.
Therefore structural parameter θ satisfies both marginal and conditional (lo-
cal) restrictions:

E0 [g1(Y,X; θ0)] = 0, E0 [g2(Y ; θ0) | X = x0] = 0, (9)
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where g2 =
(
g̃

′
, g

′)′
is obtained by gathering all conditional restrictions for

environment x0. Intuitively there are different situations concerning the iden-
tifiability of parameter θ.

i) If θ is identifiable from the marginal restrictions only, the conditional
ones E0 [g2(Y ; θ0) | X = x0] = 0 provide a negligible additional infor-
mation, and the efficient estimator of θ will converge at a parametric
rate.

ii) If θ is not identifiable from the marginal restrictions only, but is identifi-
able from both types of restrictions, we can expect different parametric,
or nonparametric rates of convergence according to the function (com-
ponent) of parameter θ which is considered. This will be the general
situation.

More precisely, the identification assumptions are the following.

Assumption A.1: Parameter θ is globally identifiable from marginal and
conditional moment restrictions, that is the application:

θ →
(
E0 [g1(Y,X; θ)]

′
, E0 [g2(Y ; θ) | X = x0]

′)′

is one-to-one.

Assumption A.2: Parameter θ is locally identifiable from marginal and
conditional moment restrictions, that is the matrix: E0

[
∂g1
∂θ

′ (Y,X; θ0)
]

E0

[
∂g2
∂θ

′ (Y ; θ0) | X = x0

]  has full column rank.
The above rank condition implies the order condition K1+K2 ≥ p, where

K1 [resp. K2] denotes the number of marginal restrictions (resp. conditional
restrictions). If matrix E0

[
∂g1/∂θ

′
(Y,X; θ0)

]
has full column rank, then

parameter θ is locally identifiable from the marginal restrictions only and is
said to be full information identifiable.

Assumptions A.1 and A.2 provide the identification conditions for struc-
tural parameter θ. However, the parameter of primary interest for our pur-
poses is the conditional moment:

β0 = E0 [a(Y ; θ0)|X = x0] ,
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where a is a function of dimension L. At this step it is important to discuss
the interpretation of parameter of interest β0, which corresponds to a set of
derivative prices at some given date in the application. More precisely we
have to distinguish the mapping:

x 
−→ E0 [a (Y ; θ0) | X = x] ,

which is a function, usually interpreted in terms of prediction, and its value at
a given point x0, that is β0 = E0 [a (Y ; θ0) | X = x0], which can be considered
as a standard parameter. The latter interpretation is used for developing our
estimation approach. To this end, the parameters to be estimated can be

written in an extended vector θ∗ =
(
θ
′
, β

′)′
[see e.g. Back, Brown (1992)],

whose true value
(
θ
′
0, β

′
0

)′
satisfies the extended set of moment restrictions: E0 [g1(Y,X; θ0)]

E0 [g2 (Y ; θ0) | X = x0]
E0 [a (Y ; θ0)− β0 | X = x0]

 = 0.

Since the dimension of β is equal to the number of moments of interest, that
is the dimension of a, the extended parameter θ∗ is also globally or locally
identified under Assumptions A.1, A.2. Note that the extended problem
always involves restrictions conditional on a given value of the conditioning
variable (the restriction defining β0), even if θ0 is defined by means of uniform
restrictions only.

ii) Moment estimator

We will now consider moment estimators for θ∗ based on the approximated
moment restrictions:  Ê [g1(Y,X; θ)]

Ẽ [g2(Y ; θ)|x0]

Ẽ [a (Y ; θ)− β|x0]

 � 0,

where Ê and Ẽ [.|x0] denote a sample average and a kernel estimator of the
conditional moment, respectively. More precisely let us introduce a kernel
estimator2 of the conditional density f0(y|x0). For expository purpose we

2Another type of nonparametric estimator of the conditional density could have been
used.
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assume that processes Xt and Yt have identical dimension d, say, which is
generally the case in applications to derivative pricing. The kernel density
estimator is defined by:

f̂(y|x0) =
1

hd
T

T∑
t=1

K

(
yt − y

hT

)
K

(
xt − x0

hT

)
/

T∑
t=1

K

(
xt − x0

hT

)
, (10)

where K is the d-dimensional kernel and hT the bandwidth. The kernel K
is a non-negative symmetric function satisfying:∫

Rd

K(u)du = 1, w2 =

∫
Rd

K2(u)du < ∞.

The kernel density estimator can be used to approach a conditional moment
E0 (g2|x0) = E0 [g2(Y ; θ)|X = x0] by:

Ẽ (g2|x0) =

∫
g2(y; θ)f̂(y|x0)dy �

T∑
t=1

g2(yt; θ)K

(
xt − x0

hT

)
/

T∑
t=1

K

(
xt − x0

hT

)
.

Under standard regularity conditions including the bandwidth conditions:

Thd
T → ∞,

(
Thd

T

)1/2
h2
T → 0 as T → ∞, the estimator Ẽ (g2|x0) is consistent

and asymptotically normal:√
Thd

T

(
Ẽ (g2|x0)− E0 (g2|x0)

)
d−→ N

(
0, w2V0 (g2|x0) /fX(x0)

)
,

where fX denotes the marginal density of process (Xt). In particular the
different estimated moments have different rates of convergence, that are√
T for Ê,

√
Thd

T for Ẽ (.|x0).

Definition 1: A (kernel) moment estimator θ̂∗ =
(
θ̂
′
, β̂

′
)′

of parameter θ∗

is defined by:

θ̂∗ (Ω) = arg min
θ∗=(θ′ ,β′)

′

(√
TÊ [g1(Y,X; θ)]

′
,
√
Thd

T Ẽ [g2(Y ; θ)|x0]
′
,
√
Thd

T Ẽ [a (Y ; θ)− β|x0]
′
)

Ω

(√
TÊ [g1(Y,X; θ)]

′
,
√
Thd

T Ẽ [g2(Y ; θ)|x0]
′
,
√
Thd

T Ẽ [a (Y ; θ)− β|x0]
′
)′

,

where Ω is a weighting matrix.
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Under standard regularity conditions, the associated (kernel) moment esti-
mator of parameter β is consistent, converges at a nonparametric rate

√
Thd

T ,
and is asymptotically normal with a variance-covariance matrix w2VZ (Ω) de-
pending on the weighting matrix Ω.

iii) Semi-parametric efficiency bound

Definition 2: The (kernel) semi-parametric efficiency bound BZ (x0, a) for
β0 = E0 (a|x0) and given instruments Z is the minimal asymptotic variance
VZ (Ω) corresponding to the optimal choice of Ω.

The main result of this subsection is that the (kernel) semi-parametric
efficiency bound for β0 depends on the selected instrument Z only through
the local identification content of the corresponding marginal restrictions:

g1(Y,X, θ0) = Z · g (Y, θ0) .

More precisely, what really matters is the null space of matrix JZ
1 = E0

[
∂g1 (Y,X; θ0) /∂θ

′]
.

If sZ denotes the rank of this matrix, its null space is characterized by a
p× (p− sZ) matrix RZ such that:

E0

[
∂g1

∂θ′ (Y,X; θ0)

]
RZ = 0.

The columns of RZ generate the null space of matrix JZ
1 . Moreover let us

denote by R̃ a p× sZ matrix whose columns complete those of RZ to a basis

of R
p. Then, the p× p matrix R1 =

(
R̃, RZ

)
is non singular and allows to

define a new parameterization:

η = R−1
1 θ =

(
η

′
1, η

′
2

)′

.

The vector η1 defines sZ linear combinations of structural parameters θ0

which are identified from the marginal restrictions, while η2 corresponds to
p− sZ linear combinations for which the marginal restrictions are not infor-
mative, since:

E0

[
∂g1

∂η
′
2

(Y,X; θ0)

]
= E0

[
∂g1

∂θ′ (Y,X; θ0)

]
RZ = 0.
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This implies that parameters η1 can be estimated at a standard parametric
rate, whereas η2 features a nonparametric rate of convergence induced by the
local conditional moment restrictions. Then the intuition of the main result
below is the following: as far as the semi-parametric efficiency bound for β0

is concerned, parameters η1 can be considered as known without estimation
error, since they are actually estimated with a parametric rate of convergence,
which is infinitely faster than the non-parametric rate of convergence for
estimation of β0. This is why the efficiency bound for β0 depends on the
instrument Z only through the information matrix I0,Z :

I0,Z = fX(x0)

 E0

(
∂g2
∂η

′
2

)
0

E0

(
∂a

∂η
′
2

)
−IdL

′ (
V0 (g2) Cov0 (g2, a)

Cov0 (a, g2) V0 (a)

)−1
 E0

(
∂g2
∂η

′
2

)
0

E0

(
∂a

∂η
′
2

)
−IdL

 ,

(11)
where all moments are conditional on X = x0. Note that I−1

0,Z is similar

to a standard GMM efficiency bound for estimation of parameters
(
η

′
2, β

′)′
from moment restrictions based on functions

(
g

′
2, a

′ − β
)′
, but, by contrast

with the standard setting [Hansen (1982), Back, Brown (1992)], both true
unknown values of parameters and restrictions are defined conditional on the
given value x0 of X.

Proposition 1 : Let instruments Z satisfying Assumptions A.1 and A.2 be
given and the associated information matrix I0,Z be defined by (11). Then, the
(kernel) semi-parametric efficiency bound BZ (x0, a) for conditional moment
β0 = E0 (a|x0) is the lower diagonal L× L block of matrix I−1

0,Z, that is:

BZ (x0, a) = 1
fX(x0)

{
V0a− Cov0(a, g)(V0g)

−1Cov0(g, a)

+
[
E0

(
∂a
∂θ′

)
RZ − Cov0(a, g)(V0g)

−1E0

(
∂g

∂θ′

)
RZ

]
[
R

′
ZE0

(
∂g

′

∂θ

)
(V0g)

−1E0

(
∂g

∂θ′

)
RZ

]−1

[
R

′
ZE0

(
∂a

′

∂θ

)
−R

′
ZE0

(
∂g

′

∂θ

)
(V0g)

−1Cov0(g, a)
]}

,

where all moments are conditional on X = x0 and evaluated at the true
parameter value θ0.

10



Proof. See Appendix 1.

The matrix RZ is not unique, but is defined up to a post-multiplication by
a non-singular square matrix. The above semi-parametric efficiency bound
is not modified by such a post-multiplication.

iv) Interpretation in terms of weak instruments

The problem considered above is related to the use of weak instruments. More
precisely, the marginal moment restrictions in (9) are obtained by introduc-
ing standard instruments satisfying the usual conditions. At the contrary,
the moment restrictions corresponding to a given value of the conditioning
variable can be approximately written as:

E0 [g2 (Y ; θ0) | X = x0] � E0

[
1

fX(x0)hT

K

(
X − x0

hT

)
g2 (Y ; θ0)

]
.

Thus they correspond to a marginal moment restriction constructed from

instrument K
(

X−x0

hT

)
/ [hTfX(x0)]. This instrument admits a local interpre-

tation which explains the different rate of convergence of the structural pa-
rameters when this ”weak” instrument is used3. Despite this interpretation,
the problem considered above is not a special case of the usual literature on
weak instruments [see e.g. Stock, Wright (2000)]. For instance the functions
of the parameters which are weakly [resp. strongly] identified are not known
a priori, and the asymptotic properties, especially the rates of convergence, of
the associated GMM estimator differ from the rates of convergence obtained
in the other types of applications which have been considered earlier in the
literature.

2.1.2 Nonparametric efficiency bound

i) Optimal instruments

The main lesson of the previous subsection is that the instrument Z only mat-
ters for estimation of β0 through the null space of matrix JZ

1 = E0

[
∂g1 (Y,X; θ0) /∂θ

′]
.

3The corresponding sample moment
√

Thd
T Ẽ [g2(θ)|x0] in Definition 1 of the estimator

is of order
√

Thd
T for θ �= θ0, which is lower than

√
T , as in the standard case of weak

instruments [see Stock, Wright (2000)].
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Larger this null space, larger is the vector η2 of structural parameters which
are non-identified from marginal restrictions and must be estimated at a
non-parametric rate jointly with β, leading to the asymptotic joint covari-
ance matrix I−1

0,Z . Therefore, if Z and W are two alternative sets of instru-

ments such that the null space of JZ
1 is included in the null space of JW

1 , the
semi-parametric efficiency bound BZ (x0, a) cannot be larger than BW (x0, a).

It turns out that there are many ways to choose instruments Z in order
to get a minimal null set for JZ

1 . Let us define the subspace N0 of vectors v
of R

p such that:

E0

[
∂g

∂θ′ (Y ; θ0) | X = x

]
v = 0 , (12)

almost surely for the marginal distribution PX ofX. Vectors inN0 correspond
to linear combinations of parameters θ that cannot be identified from the
uniform restrictions. Subspace N0 is included in the null space of JZ

1 for any
choice of the instruments Z. Therefore, this null space will be minimal as
soon as it coincides with N0. Let us consider in particular:

Z = E0

(
∂g

′

∂θ
(Y ; θ0) |X

)
W (X) , (13)

where W (X) is (PX-almost surely) a positive definite matrix. Then, for v
in the null space of JZ

1 , we have:

E0

[
E0

(
∂g

′

∂θ
(Y ; θ0) |X

)
W (X)E0

(
∂g

∂θ′ (Y ; θ0) |X
)
v

]
= 0,

or:

v
′
E0

(
∂g

′

∂θ
(Y ; θ0) |X

)
W (X)E0

(
∂g

∂θ′ (Y ; θ0) |X
)
v = 0, PX-almost surely,

or:

E0

(
∂g

∂θ′ (Y ; θ0) |X
)
v = 0, PX-almost surely,

that is v belongs to N0. Therefore, the choice (13) of instruments Z provides
the minimal null set JZ

1 and is optimal whenever it fulfils the identification
Assumptions A.1 and A.2. Moreover, for this special choice of instruments,
Assumption A.2 is clearly tantamount to the following identification assump-
tion:
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Assumption A.2∗: The structural parameter θ is locally identifiable from
the conditional restrictions, that is v = 0 is the only vector which fulfils
jointly:

(i) the uniform restrictions: E0

[
∂g

∂θ
′ (Y ; θ0) |X = x

]
v = 0, PX-almost

surely,

(ii) the conditional restrictions: E0

[
∂g2
∂θ′ (Y ; θ0) |X = x0

]
v = 0, for the

given value x0 of X.

Thus, we have shown:

Lemma 1: Under Assumption A.2 ∗ any instrument Z = E0

(
∂g

′

∂θ
|X
)
W (X),

where W (X) is a positive definite matrix, satisfies Assumption A.2 and is
an optimal instrument for estimating β0 = E0(a|x0).

Since we focus on nonparametric estimation of β0, the set of optimal
instruments is larger than the standard one derived by Hansen (1982) and
Chamberlain (1987) for efficient estimation of the structural parameters θ.
While in the standard framework W (X) = [V ar0 (g(Y, θ0)|X)]−1 is the effi-
cient weighting of the conditionally heteroskedastic moment conditions, any
choice of a positive definite matrix W (X) is valid when β is the parameter of
interest. Moreover, the optimality result given in Lemma 1 is more general
than the standard one, since it does not require full (parametric) identifica-
tion of θ.

ii) The identification assumption

Another useful formulation of Assumption A.2∗ can be derived by consider-
ing a p× (p− s) matrix R whose columns constitute a basis of the space N0

defined in (12). Indeed any vector v satisfying Assumption A.2∗ i) can be
written as v = Rc for some (p− s)-dimensional vector c. Then, Assumption
A.2∗ ii) becomes:

E0

[
∂g2

∂θ′ (Y ; θ0) |X = x0

]
Rc = 0 =⇒ c = 0,

that is E0

[
∂g2 (Y ; θ0) /∂θ

′ |X = x0

]
R is full column rank. Thus, Assumption

A.2∗ can be rewritten as:

13



Assumption A.2∗: The matrix:

E0

[
∂g2

∂θ′ (Y ; θ0) |X = x0

]
R is full column rank,

for any p× (p− s) matrix R whose columns generate the space:

N0 =

{
v∈R

p : E0

[
∂g

∂θ′ (Y ; θ0) |X = x

]
v = 0, PX-almost surely

}
.

iii) Kernel nonparametric efficiency bound

Let us now derive the (kernel) nonparametric efficiency bound. By the
above results, the matrix R coincides with the matrix RZ corresponding to
the optimal instrument Z in Lemma 1. A new parameterization:

η = R−1
1 θ =

(
η

′
1, η

′
2

)′

,

can be defined as above with R1 =
(
R̃, R

)
, where matrix R̃ completes the

basis of R
p. The vector η1 represents the maximal set of structural parameters

that can be identified from uniform restrictions only. Then the information
matrix I0 corresponding to parameters (η

′
2, β

′
)
′
is defined from (11) by:

I0 = fX(x0)

 E0

(
∂g2
∂θ′

)
R 0

E0

(
∂a
∂θ′

)
R −IdL

′ (
V0 (g2) Cov0 (g2, a)

Cov0 (a, g2) V0 (a)

)−1
 E0

(
∂g2
∂θ′

)
R 0

E0

(
∂a
∂θ′

)
R −IdL

 .

The main result of this section is a direct consequence of Proposition 1.

Proposition 2 : Let Assumption A.2∗ be satisfied. Then the (kernel) non-
parametric efficiency bound a → B (x0, a) for conditional moment E0 (a|x0)
is the lower diagonal L× L block of matrix I−1

0 , that is:

B (x0, a) = 1
fX(x0)

{
V0a− Cov0(a, g)(V0g)

−1Cov0(g, a)

+
[
E0

(
∂a
∂θ

′

)
R− Cov0(a, g)(V0g)

−1E0

(
∂g

∂θ
′

)
R
]

[
R

′
E0

(
∂g

′

∂θ

)
(V0g)

−1E0

(
∂g

∂θ
′

)
R
]−1

[
R

′
E0

(
∂a

′

∂θ

)
−R

′
E0

(
∂g

′

∂θ

)
(V0g)

−1Cov0(g, a)
]}

, ∀a,
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where all moments are conditional on X = x0, evaluated at the true parame-
ter value θ0 and matrix R is defined in Assumption A.2∗.

The efficiency bound of Proposition 2 is not modified by post-multiplication
of the matrix R by a non-singular matrix.

2.2 Special cases

Proposition 2 can be applied to the limiting cases of full and limited infor-
mation, respectively.

2.2.1 Full information identifiability

When the structural parameter θ is full information identifiable, the space
N0 = {0} and the column space of matrix R in Proposition 2 is zero. We get
the corollary below.

Corollary 1: The full information (kernel) nonparametric efficiency bound
is :

B(x0, a) =
1

fX(x0)

{
V0(a|x0)− Cov0(a, g2|x0)V0(g2|x0)

−1 Cov0(g2, a|x0)
}
.

This result is easily understood when all moment restrictions
E0 [g(Y ; θ0)|X = x] = 0 are uniform and θ is full information identifiable.
Since θ can be estimated at a parametric rate using the marginal moment re-
strictions, it can be assumed known for the computation of the nonparametric
efficiency bound. This explains why the second term of the decomposition
of the efficiency bound involving derivatives with respect to θ vanishes.

The same reasoning applies when θ is full information identifiable and
satisfies both uniform and local restrictions, since the additional local restric-
tions are not informative for the estimation of θ. Note however that they
are informative for the estimation of the moment of interest β0 = E0 (a|x).
Indeed the nonparametric efficiency bound in Corollary 1 involves the whole

set of constraints g2 =
(
g̃

′
, g

′)′
.

Finally, note that the conditional moment of interest is also equal to:

E0 (a|x0) = E0

[
a(Y ; θ0)− Cov0 (a, g2|x0)V0 (g2|x0)

−1 g2(Y ; θ0) | x0

]
.
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The bound is nothing but the variance-covariance matrix of the residual
term in the affine regression of a on g2. A similar interpretation has already
been put forward by Back and Brown (1993) in an unconditional setting and
extended to a conditional framework by Bonnal and Renault (2004).

2.2.2 Limited information

Let us now assume that all moment restrictions are conditional on the given
value X = x0 :

E [g̃(Y ; θ0)|X = x0] = 0.

Corollary 2: The limited information (kernel) nonparametric efficiency
bound is given by:

B (x0, a) = 1
fX(x0)

{
V0a− Cov0(a, g̃)(V0g̃)

−1Cov0(g̃, a)

+
[
E0

(
∂a
∂θ

′

)
− Cov0(a, g̃)(V0g̃)

−1E0

(
∂eg

∂θ
′

)]
[
E0

(
∂eg

′

∂θ

)
(V0g̃)

−1E0

(
∂eg

∂θ′

)]−1

[
E0

(
∂a

′

∂θ

)
− E0

(
∂eg

′

∂θ

)
(V0g̃)

−1Cov0(g̃, a)
]}

,

where all moments are conditional on X = x0 and evaluated at θ0.

This is the formula in Proposition 2 with g2 = g̃ and R = Id, since no linear
combination of parameter θ is full-information identifiable.

3 Information based estimator

The estimation of optimal instruments and the derivation of the associated
optimal weighting matrix in a moment method may be difficult to imple-
ment in practice and provide rather erratic results in finite sample [see e.g.
Altonji, Segal (1996), Hansen, Heaton, Yaron (1996)]. It has been proposed
in the literature (see the Introduction) to derive the optimal moment es-
timator in a single step by optimizing with respect to both the structural
parameter and the conditional pdf an appropriate measure of discrepancy
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between the distribution and the unconstrained kernel density subject to the
moment restrictions. The discrepancy measure is usually chosen among the
Cressie-Read family of divergences [Cressie, Read (1984)], leading to the so-
called empirical likelihood, chi-square or Kullback-Leibler information based
(KLIC) approach. The whole existing literature assumes the full informa-
tion identifiability of parameter θ. In this section we develop an approach
for the mixed framework by combining in an appropriate way chi-square and
KLIC measures. The aim of this approach is to get an estimator of the condi-
tional pdf, which satisfies the unit mass and non-negativity restrictions, while
keeping the estimator tractable. Note that these conditions are required for
derivative pricing where the conditional (risk neutral) pdf is interpreted as a
state price density. It avoids misleading arbitrage opportunities in estimated
option prices.

In the first subsection, we explain why the XMM approach features a
lack of coherency, and does not provide an appropriate approximation of the
conditional density. The information based estimator is introduced in Section
3.2 and its (kernel) nonparametric efficiency is proved. Finally Section 3.3
considers the limiting cases of full and limited information.

3.1 A lack of coherency of XMM

It is well-known that a GMM approach can feature a lack of coherency,
when the conditional moments of interest are multiple. More precisely, it
is expected that an estimation approach for E0(a|x0) = E [a(Y ; θ0)|X = x0]
provides an estimator of the type:

Ê(a|x0) =

∫
a(y; θ̃)f̃(y|x0)dy,

where θ̃ is an estimator of θ and f̃ is an estimator of the conditional density.
The XMM approach does not satisfy this requirement.

i) For instance in the full-information case with full information identifi-
able parameter, the XMM estimator of the moment of interest coincides with
the estimator of the moment of the residual:

E0

[
a(Y ; θ0)− Cov0 (a, g|x0)V0 (g|x0)

−1 g(Y ; θ0) | x0

]
,

which can be written as:∫
a(y; θ0)f̂(y|x0)

[
1− g(y; θ0)

′
V0 (g|x0)

−1 E0 (g|x0)
]
dy.
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This is an integral expression, with respect to a measure which does not
depend on a, satisfies the unit mass restriction, but is not necessarily positive.

ii) Moreover in the general mixed framework such an integral represen-
tation can even not exist, since the XMM estimator of θ depends on the
moment of interest a.

Therefore, it is important to introduce an estimation method, which is
both coherent and (kernel) nonparametrically efficient.

3.2 Information based estimator

The (unconstrained) kernel estimator f̂ (y|x) is a consistent estimator of the
conditional pdf. However it is not nonparametrically efficient, since it does
not take into account the parameterized moment restrictions. The kernel
density estimator can be improved by looking for the pdf which is the closest
to f̂ (y|x) and satisfies the moment restrictions.

In this section we consider the joint estimator defined by:(
f̂0 (.|x0) , f̂0 (.|x1) , ..., f̂0 (.|xT ) , θ̂

)
= arg min

f0,f1,...,fT ,θ

1

T

T∑
t=1

∫ [f̂(y|xt)− f t(y)
]2

f̂(y|xt)
dy + hd

T

∫
log
[
f 0(y)/f̂(y|x0)

]
f 0(y)dy,

s.t.
∫
f t(y)dy = 1, t = 1, ..., T,∫
f 0(y)dy = 1,∫
g (y; θ) f t(y)dy = 0, t = 1, ..., T,∫
g2 (y; θ) f

0(y)dy = 0.

The objective function includes two components: a chi-square distance is
used for the optimization with respect to the conditional distributions as-
sociated with the sample values of the conditioning variable, whereas an
information criterion is used for the conditioning value x0 corresponding to
the conditional moment of interest. Moreover two types of constraints are in-
troduced: the uniform restrictions are written for all observations x1, ..., xT ,
whereas the conditional restrictions are written for x0 only. The chi-square
component allows for closed form solutions f 1 (θ), ..., fT (θ) for a given θ
without ensuring positivity. Therefore the objective function is easily con-
centrated with respect to f 1, ..., fT . Then the information criterion will
allow a solution f̂0 (.|x0) satisfying the unit mass and positivity restrictions
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4. In particular, the computation of the estimator only involves the optimiza-
tion of a concentrated criterion with respect to parameter θ and a Lagrange
multiplier of dimension dim(g2) [see Appendix 2 i) for the concentration of
the objective function].

Then the information based estimator of the conditional moment is de-
fined by:

Ê(a|x0) =

∫
a(y; θ̂)f̂0 (y|x0) dy.

The (kernel) nonparametric efficiency of the information based estimator of
f0(y|x0) is established in Appendix 2.

Proposition 3 The estimator Ê (a|x0) is consistent, converges at rate
√
Thd

T ,
is asymptotically normal and (kernel) nonparametrically efficient:√

Thd
T

w
(Ê (a|x0)− E0(a|x0))

d→ N(0,B(x0, a)),

for any a.

3.3 Special cases

3.3.1 Limited information

When the moment restrictions are:

E0[g̃(Y ; θ0)|X = x0] =

∫
g̃(y; θ0)f0(y|x0)dy = 0,

the optimization problem becomes:

(f̂0 (.|x0) , θ̂) = argminf,θ

∫
log
[
f(y)/f̂(y|x0)

]
f(y)dy

s.t.
∫
f(y)dy = 1,

∫
f(y)g̃(y; θ)dy = 0.

(14)

The associated estimator Ê (a|x0) =
∫
a(Y ; θ̂)f̂0 (y|x0) dy is (kernel) non-

parametrically efficient. Its asymptotic variance is given by the expression of
B(x0, a) in Corollary 2.

4See e.g. Kitamura-Stutzer (1997).
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3.3.2 Full information

In the full information case a (kernel) nonparametrically efficient estimator
can be defined by optimizing the mixed chi-square/information criterion with
respect to both θ and the conditional distribution [see Section 3.2]. Our ap-
proach extends results derived in the literature in the special case of pure
uniform restrictions and i.i.d. observations. For instance Bonnal and Re-
nault (2004) derive a result similar to Proposition 3, but without imposing
positivity of the estimated conditional distribution. Kitamura, Tripathi, Ahn
(2004) and Smith (2004) focus on estimation and inference about structural
parameter θ only in a smooth empirical likelihood and Generalized Empirical
Likelihood (GEL) setting, respectively5.

In the full information case, a (kernel) efficient estimator of the moment
of interest can also be derived in a two step approach. Indeed the structural
parameter θ can be estimated consistently (and efficiently) by means of the
uniform restrictions only. This allows to separate the estimation of θ and the
estimation of the conditional pdf of interest f(y|x0). A two step estimator is
defined by:

Ê (a|x0) =

∫
a(y; θ̂)f̂0(y|x0)dy,

where:

f̂0(.|x0) = argmin
f

∫
log[f(y)/f̂(y|x0)]f(y)dy,

s.t.

∫
f(y)dy = 1,

∫
f(y)g2(y; θ̂)dy = 0, (15)

and θ̂ is any estimator of θ converging at a parametric rate. This esti-
mator can be a consistent (but possibly inefficient) moment estimator, a
GMM estimator, or a continuously updated estimator [see Hansen, Heaton,

Yaron (1996)]. Insofar as θ̂ is consistent and root-T asymptotically normal,

Ê (a|x0) reaches the (kernel) nonparametric efficiency bound in Corollary 1.
By contrast with standard GMM, the two-step procedure does not imply any
efficiency loss since the rates of convergence are different in the two steps.

5See also Ai-Chen (2003).
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4 Derivative pricing

Usually derivative pricing formulas involve two types of parameters charac-
terizing the dynamic of the underlying asset returns and the risk premia,
respectively. The parameters can be finite dimensional or functional, leading
in practice to parametric or nonparametric pricing methods.

i) When the markets are complete, the only parameter concerns the dy-
namics of the underlying asset returns and can be estimated from return
data. When the parameter is finite dimensional, it is usually estimated by
maximum likelihood6. Alternatively the estimation of some parameters can
be based on derivative data only. For instance, if the Black-Scholes model is
well-specified, the volatility can be estimated by an implied volatility com-
puted from an observed option price. However the drift is not identifiable
from option prices observed at a given data, that is by a cross-sectional ap-
proach.

ii) In the incomplete market framework, the model includes in general
both dynamic and risk premia parameters. These parameters can be es-
timated by an appropriate use of both historical and cross-sectional data.
Such approaches have already been considered in the literature for paramet-
ric models [see e.g. Garcia, Luger, Renault (2003) for estimation, De Munnik,
Schotman (1994), Bams (1998) for specification tests]. Some of the parame-
ters can also be estimated by a pure cross-sectional approach using option
data only, the typical example being the parametric fit of Black-Scholes im-
plied volatility surfaces. Different nonparametric approaches have also been
considered in the literature. They are based for instance on the nonparamet-
ric approximation of the implied volatility surface [see e.g. Hutchinson, Lo,
Poggio (1994) for using neural networks, and Ait-Sahalia, Lo (1998), who use
a kernel approach and deduce a nonparametric estimator of the state price
density]. An alternative approach relies on maximum entropy risk neutral
densities for given maturity, derived by using both asset and option data [see
e.g. Rubinstein (1994), Jackwerth, Rubinstein (1996), Buchen, Kelly (1996),
Stutzer (1996), Jondeau, Rockinger (2000)].

In this section, we consider a semi-nonparametric approach, in which
the historical parameter is functional and the risk premia parameter is finite
dimensional. We explain how to use jointly underlying returns and derivative

6This approach can be extended to functional parameter, leading for instance to indirect
spline estimation of the state price density [see e.g. Gourieroux, Monfort (2001)].
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prices for efficient pricing of other derivatives.

4.1 The estimating constraints

For expository purpose let us consider European calls written on an underly-
ing asset with geometric return yt. We assume that the return series (Yt) is
a Markov process of order one under the historical probability and that the
price at t of a European call with moneyness strike s and residual maturity
one can be written as7 :

ct(s) = Et

[
m(Yt+1, θ)(expYt+1 − s)+

]
, (16)

where m(Yt+1; θ) is the stochastic discount factor. The finite dimensional
parameter θ characterizes the risk premia, whereas the historical conditional
distribution of Yt+1 given Yt is let unspecified.

Let us now assume observations of a finite number of derivative prices
ct0(sk), k = 1, . . . , K, at a given date t0 and observations of underlying asset
returns for earlier dates t = t0 −T +1, . . . , t0. Then the moment restrictions
are twofold. Some constraints concern the derivatives and are given by :

ct0(sk) = E
[
m(Yt+1; θ)(expYt+1 − sk)

+|Yt = yt0
]
, k = 1, . . . , K. (17)

Other constraints concern the pricing formula for the underlying asset and
the riskfree asset. They are :

E[m(Yt+1; θ)| Yt = yt ] = 1,∀yt,
E[m(Yt+1; θ) expYt+1| Yt = yt ] = 1,∀yt, (18)

assuming for simplicity a deterministic zero risk-free rate.
The second subset of constraints on θ are uniform with respect to the

conditioning value, whereas the conditioning value is fixed in the first subset.
The distinction between the two types of moment restrictions is due to the
lack of liquidity of some assets. If the asset is highly liquid, its price can be
observed at any date leading to uniform conditional moment restrictions (if
the number of observation dates is large and the return process stationary

7Since (pt+1 − spt)+ = pt(exp yt+1 − s)+, the call or put written on pt+1 can also be
written on exp yt+1.
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with a continuous stationary distribution). If the asset is not very liquid the
price is observed for a limited number of dates, for instance for environment
yt0 existing at date t0

8. This is the case for derivatives.
Different pricing formulas are derived below depending whether the sec-

ond subset of moment restrictions is totally taken into account.

4.2 Derivative pricing with limited information

Let us assume that the interest is in the price at t0 of a European call with
maturity 1 and strike s. Its price is equal to the conditional moment:

E (a|yt0) = E[m(Yt+1; θ)(expYt+1 − s)+|Yt = yt0 ].

Under limited information, the only restrictions E (g̃|yt0), which are taken
into account, correspond to the same conditioning value. There is a set of
K + 2 restrictions:

E[m(Yt+1; θ)(expYt+1 − sk)
+ − ct0(sk)|Yt = yt0 ] = 0, k = 1, . . . , K,

E [m(Yt+1; θ)− 1|Yt = yt0 ] = 0,

E[m(Yt+1; θ) expYt+1 − 1|Yt = yt0 ] = 0.

(19)

Then we can apply the estimation approach described in Section 3.3.1. This
approach ensures that the estimated risk neutral pdf is nonnegative, which
is compatible with the no arbitrage restrictions9.

Whereas the conditional moment restrictions concern date t0 and envi-
ronment yt0 only, the approach is not a pure cross-sectional approach. Indeed
the observations yt0−T+1, ..., yt0 corresponding to the other dates are used in
the estimation approach of the conditional (historical) pdf. In particular the
derivative prices will be consistently estimated, if the number of observations
T is large, even if the number of derivativesK is rather small (but larger than

8See the discussion in Aı̈t-Sahalia, Lo (1998) for the evolution of the set of liquid options
on S&P.

9The conditional moments could also be estimated by XMM, but as noted in Section
3.1 this does not ensure a corresponding risk neutral density, and, if the latter exists, its
positivity. Thus XMM could create misleading arbitrage opportunities in estimated option
prices.
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the parameter size). In particular the asymptotic theory is very different and
more realistic than the theory usually developped in the literature, which as-
sumes an infinite number of liquid derivatives at the date of interest[see e.g.
Ait-Sahalia, Lo (1998)].

Finally note that the limited information method differs from the en-
tropy based approaches introduced in the literature by the choice of the
benchmark risk neutral distribution. In our framework this distribution is
m(y; θ0)f0(y|x0), where f0(.|x0) is the historical conditional pdf. In Stutzer
(1996) p1639 the benchmark distribution is the historical distribution itself
(implicitly assuming zero risk premia); a parametric benchmark such as a
Black-Scholes lognormal distribution is suggested by Rubinstein (1994) and
Jackwerth, Rubinstein (1996), whereas a uniform distribution has been im-
plicitly selected in Buchen, Kelly (1996) and Jondeau, Rockinger (2000).
Moreover, maximum entropy methods focus on the state price density for a
given date and a given maturity, whereas our approach allows to estimate
coherently state price densities at a given date for all maturities.

4.3 Derivative pricing with mixed limited- and full in-
formation

Let us now assume that both types of moment restrictions (17) and (18)
are taken into account. Derivative pricing can be improved by considering
jointly the dynamics of the underlying asset prices between t = t0 − T + 1
and t = t0 and the way some prices of European calls depend on the strike
for date t0.

Two cases have to be distinguished according to the full information iden-
tifiability of parameter θ from underlying asset price dynamics.

i) Full information identifiability

If parameter θ is identifiable from uniform moment restrictions (18), re-
strictions (17) can asymptotically be neglected for the estimation of θ. A

GMM estimator θ̂ of θ can be computed by using restrictions (18) only and
is consistent at a parametric rate. Then we can apply the estimation method
described in Section 3.3.2 with f̂ (.|x0) a kernel estimator of the conditional
pdf given Yt = yt0 and the set of restrictions (19).

ii) Full information underidentifiability
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As seen in Section 2.1, a part of the parameters can be identified from the
asset price dynamics (uniform restrictions) and will converge at a parametric
rate, whereas the remaining parameters are identified by means of the cross-
sectional restriction (17) and converge at a nonparametric rate. The latter
are linear combinations of parameters R

′
θ, where the columns of matrix R

span the null space N0 defined in (12), with moment function g corresponding
to restrictions (18). In this case the estimation has to be performed with the
general criterion introduced in Section 3.2.

When θ is full information underidentified there exist a multiplicity of
values of parameter θ, that is a multiplicity of sdf, such that the no-arbitrage
conditions are satisfied for both the riskfree asset and the underlying risky
asset [see equation (18)]. In the incomplete market framework, the choice of
a parametric specification for the sdf may be not sufficient to get a unique
pricing kernel from the observation of liquid asset prices. In other words, the
specification allows for some residual incompleteness and, from a financial
point of view, the degree of full information underidentification is equal to
the dimension of this residual incompleteness.

4.4 Comparison of the limited and mixed information
approaches

Let us first note that both approaches use jointly historical information (by
means of the kernel estimate of the conditional pdf and possibly by uniform
moment restrictions (18)) and cross sectional information by moment restric-
tions (17). Moreover they are consistent when T tends to infinity with K
fixed, whenever θ is identifiable from the whole set of uniform and conditional
moment restrictions.

When θ is identifiable from the conditional restrictions at date t0, it is
possible to use either the general approach, or the limited information ap-
proach. The limited information method is likely to be preferred in practice
in a first step. Firstly the asymptotic variance is larger than the variance
derived by the general approach, leading to larger prediction intervals for
derivative prices (which is a drawback from a statistical point of view), but
more secure risk management (which is an advantage from the financial point
of view). Secondly it corresponds to the usual practice of reporting daily the
implied volatilities in the Black-Scholes framework. More precisely let us as-
sume that the pricing model is misspecified and that the stochastic discount
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factor is m(yt+1, θ(yt)), in which θ depends on the lagged value. The lim-
ited information method provides the estimate of θ(yt0), whereas the general
method provides a kind of average of θ(yt) on all values observed in the past,
without the interpretation of an integrated risk premium. By applying the
limiting information approach at several consecutive dates t0, t0 + 1, t0 + 2,
...., we can expect to detect an instability of the risk premium.

5 Stochastic volatility model

In this section we illustrate the extended method of moments (XMM), or its
information based equivalent, for efficient derivative pricing. In Section 5.1
we describe the data generating process to get the prices of the underlying
asset and derivatives. The DGP is a discrete time version of the stochastic
volatility model of Heston (1993) and Ball-Roma (1994), with a risk pre-
mium introduced in the return equation10. In Section 5.2 we describe the
semi-parametric model which is used for derivative pricing and discuss the
identification of the risk premia parameter. The nonparametric efficiency
bounds for limited- and mixed information restrictions are computed in Sec-
tion 5.3 for the prices of European calls. We discuss how they depend on the
strike and on the set of observed derivative prices. Finally, the finite sam-
ple properties of the estimated option prices and of the estimated structural
parameters are analyzed by Monte-Carlo in Section 5.4.

5.1 The design

Let us consider a market with a risk-free asset, with a zero risk-free rate, and
a risky asset with geometric return rt = log (pt/pt−1) such that:

rt = γσ2
t + σtεt, (20)

where (εt) is a standard Gaussian white noise, σ2
t denotes the volatility and

γ measures the magnitude of the risk premium in the expected return. The
intercept is set to zero because of no-arbitrage restrictions. Indeed for zero
volatility σt = 0 the return becomes deterministic and has to coincide with
the zero risk-free rate.

The volatility (σ2
t ) is stochastic, with a dynamics independent of the

shocks (εt) on returns. It follows an autoregressive gamma process (ARG),

10See also Gourieroux, Sufana (2004).
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which is the time discretized Cox-Ingersoll-Ross process [see Gouriéroux,
Jasiak (2000)]. The transition distribution of the stochastic volatility is
characterized by the conditional Laplace transform (moment generating func-
tion):

Ψt(u) = E
[
exp
(−uσ2

t+1

) | σ2
t

]
= exp

[−a(u)σ2
t − b(u)

]
, (21)

where: a(u) = ρ u
1+cu

, b(u) = δ log(1 + cu). The positive parameter ρ is
the first order autocorrelation of the variance process (σ2

t ) , parameter δ ≥ 0
describes its (conditional) over-/under-dispersion, and c > 0 is a scale para-
meter. In this model the factors are the return and the volatility:

Yt =
(
rt, σ

2
t

)′
. (22)

Model (20)-(22) is completed by the parametric specification of the stochastic
discount factor for period (t, t+ 1) . The sdf is specified as:

Mt,t+1 = exp
(−ν0 − ν1σ

2
t+1 − ν2σ

2
t − ν3rt+1

)
, (23)

where ν0, ν1, ν2, ν3 are parameters. The exponential affine specification (23)
is compatible with the no-arbitrage restrictions and provides simple pricing
formulas.

Let us first consider the restrictions implied by no-arbitrage opportunity.
They are obtained by writing the pricing formula for both the risk-free asset
and the underlying asset. We get:{

Et (Mt,t+1) = 1,
Et (Mt,t+1 exp rt+1) = 1,

⇐⇒
{

Et exp
[−ν0 − ν1σ

2
t+1 − ν2σ

2
t − ν3rt+1

]
= 1,

Et exp
[−ν0 − ν1σ

2
t+1 − ν2σ

2
t − (ν3 − 1) rt+1

]
= 1,

⇐⇒
 Et exp

[
−ν0 −

(
ν1 + ν3γ − ν2

3

2

)
σ2
t+1 − ν2σ

2
t

]
= 1,

Et exp
[
−ν0 −

(
ν1 + (ν3 − 1) γ − (ν3−1)2

2

)
σ2
t+1 − ν2σ

2
t

]
= 1,

(by integrating rt+1 conditional on σ2
t+1)

⇐⇒
 ν0 + a

(
ν1 + ν3γ − ν2

3

2

)
σ2
t + ν2σ

2
t + b

(
ν1 + ν3γ − ν2

3

2

)
= 0,

ν0 + a
[
ν1 + (ν3 − 1) γ − (ν3−1)2

2

]
σ2
t + ν2σ

2
t + b

[
ν1 + (ν3 − 1) γ − (ν3−1)2

2

]
= 0.

(24)

27



Since the above conditions have to be satisfied for any admissible value of
σ2
t , we get the following restrictions on the parameters:

ν0 + b
(
ν1 + ν3γ − ν2

3

2

)
= 0,

ν0 + b
[
ν1 + (ν3 − 1) γ − (ν3−1)2

2

]
= 0,

ν2 + a
(
ν1 + ν3γ − ν2

3

2

)
= 0,

ν2 + a
[
ν1 + (ν3 − 1) γ − (ν3−1)2

2

]
= 0.

Since functions a and b are one-to-one, the difference between the first two
equations (resp. the last two equations) imply:

ν1 + (ν3 − 1) γ − (ν3 − 1)2

2
= ν1 + ν3γ − ν2

3

2
,

that is:

ν3 = γ +
1

2
.

From the same pairs of equations we deduce:

ν0 = −b

(
ν1 + ν3γ − ν2

3

2

)
= −δ log

[
1 + c

(
ν1 + γ2/2− 1/8

)]
,

ν2 = −a

(
ν1 + ν3γ − ν2

3

2

)
= −ρ

ν1 + γ2/2− 1/8

1 + c (ν1 + γ2/2− 1/8)
. (25)

Therefore we get the following proposition.

Proposition 4 : The sdf is compatible with the no-arbitrage conditions if
and only if:

ν0 = −δ log
[
1 + c

(
ν1 + γ2/2− 1/8

)]
,

ν2 = −ρ
ν1 + γ2/2− 1/8

1 + c (ν1 + γ2/2− 1/8)
,

ν3 = γ + 1/2.

In particular parameter ν1 is unrestricted. Thus in this incomplete market
framework (in which the liquid assets are the riskfree asset and the underlying
risky asset) the risk premium for current stochastic volatility can be fixed
arbitrarily, that is the dimension of residual incompleteness is equal to 1. This
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residual incompleteness is not a consequence of the specific ARG dynamics
assumed for stochastic volatility, but will be the general case for instance
when state variables Yt follow an affine process. Indeed in this case the
specification of a parametric exponential affine sdf generally does not select
a unique pricing kernel.

The (standardized) price at t of a European call with moneyness strike k
and residual maturity h is given by:

ct(h, k) =
1

pt
Et

[
Mt,t+1...Mt+h−1,t+h (pt+h − kpt)

+]
= Et

(
Mt,t+1...Mt+h−1,t+h [exp (rt+1 + ...+ rt+h)− k]+

)
.

As usual in the stochastic volatility framework, the option price can be writ-
ten in terms of Black-Scholes price and integrated volatility
σ2
t+1(h) =

(
σ2
t+1 + ...+ σ2

t+h

)
/h. We get:

ct(h, k) =
Q

EtBS(h, k, σ2
t+1(h)),

where Q is the risk neutral probability and BS(h, k, σ2) denotes the Black-
Scholes price of a European call with moneyness strike k, residual maturity
h and constant volatility σ2. The derivative price is easily computed by
Monte-Carlo since under the risk neutral probability the returns still follow
stochastic volatility model (20)-(21) with risk premium parameter γ∗ = −1/2
and ARG volatility parameters11:

ρ∗ =
ρ

[1 + c (ν1 + γ2/2− 1/8)]2
, δ∗ = δ, c∗ =

c

1 + c (ν1 + γ2/2− 1/8)
.

(26)

To illustrate the properties of the stochastic ARG volatility model dis-
cussed above, we display in Figures 1 and 2 below a joint simulated path for
the return and the volatility, and the pattern of the implied Black-Scholes
volatility as function of the moneyness strike, respectively. The simulations
are performed for the following set of values for the parameters12:

γ = 0.5 ρ = 0.85 δ = 1.266 c = 2.7E − 5
ν0 = −3.37E − 4 ν1 = 10 ν2 = −8.498 ν3 = 1

11The proof is available from the authors.
12Note that the risk premium interpretation does not necessarily imply that all ν para-

meters are positive. They have been fixed to ensure that ν3 > 0, ν1 + ν2 > 0 and often
ν0 + ν1σ

2
t+1 + ν2σ

2
t + ν3rt+1 > 0.
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[Insert Figure 1: Simulated returns and volatility]

[Insert Figure 2: Implied Black-Scholes volatility]

As expected, the return series features volatility clustering, with periods of
high return volatility corresponding to large values of the stochastic volatility.
The Black-Scholes implied volatility13 admits an asymmetric smile, more
pronounced for in-the-money values of the moneyness strike k.

5.2 The observations and the model

In the next sections we assume that the observations are rt0−T+1, ..., rt0 ,
σ2
t0−T+1, ..., σ

2
t0
and some derivative prices at date t0, corresponding to mon-

eyness strikes s1 = 1, s2 = 0.98, s3 = 1.02. The observed prices have been
generated by the design of Section 5.1 with the same set of parameter values.
We are now interested in an efficient estimation of some option prices.

i) The model

For simplicity we assume that the specified sdf is compatible with the design
above:

Mt,t+1 (θ) = exp
(−ν0 − ν1σ

2
t+1 − ν2σ

2
t − ν3rt+1

)
,

where θ = (ν0, ν1, ν2, ν3)
′
is now an unknown parameter. Moreover the con-

ditional distribution of Yt = (rt, σ
2
t ) given Yt−1 is let unspecified.

ii) Full information identifiability

Let us now discuss the identifiability of parameter θ from the uniform con-
ditional restrictions: {

Et (Mt,t+1 (θ)) = 1,
Et (Mt,t+1 (θ) exp rt+1) = 1,

assumed valid for any conditioning value yt. From Proposition 4, only three
independent functions of parameter θ can be identified, including parameter
ν3. Therefore in this model the parameter θ is full information underidenti-
fied.

At this step two approaches can be followed:

13We select a residual maturity h = 1 for the European call and the relevant information
at date t is the volatility σ2

t , whose value is set equal to the stationary mean Eσ2
t .
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i. We can consider the stochastic discount factor above without introduc-
ing additional restrictions on parameters ν0, ν1, ν2. Then the degree of
underidentification from asset dynamics is equal to 1. The null space
N0 defined in equation (12) has dimension 1, and is spanned by [see
Appendix 3]:

R =


−δ c

1+cν1

1
−ρ 1

(1+cν1)
2

0

 =


−3.37E − 5

1
−0.850

0

 . (27)

Component R
′
θ involving parameters ν0, ν1, ν2 is full information non-

identified. Typically parameters ν0, ν1, ν2 can only be identified from
the cross-sectional restrictions.

ii. Alternatively, we can introduce an identification restriction on the risk
premium, for instance ν1 = 0. Under this restriction ν0, ν1, ν2 become
full information identifiable from asset price dynamics, and the estima-
tion problem will be greatly simplified. It is interesting to note that
this second approach is often followed in the financial literature, at the
risk of a mispecification in the identification restriction. Moreover such
an approach can have some misleading consequences when considering
the confidence interval for derivative prices, which will likely be too
narrow.

The first approach will be considered in this paper.

iii) Limited information identifiability and residual maturity

An additional identification problem may arise in the limited information
framework since the information depends on the maturity of the observed
derivative prices. For instance, if all observed derivative prices correspond
to a short maturity h = 1, only parameters ν0,t0 = ν0 + ν2σ

2
t0
and ν1 can be

identified from asset dynamics and observed derivative prices. This allows to
identify the prices of derivatives with the same maturity 1, but not the prices
of derivatives with larger maturity. However parameters ν0 and ν2 can be
identified separately by means of observed prices of derivatives with residual
maturity larger than 1. To summarize, when the structural parameter is full
information underidentified it can be necessary to use derivative prices with
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different maturities to be able to estimate the derivative prices for all matu-
rities. Note however that the derivative prices with large residual maturity
are not very informative. Indeed, let us consider the geometric stochastic
yield associated with the sdf, that is:

−1

h
log (Mt,t+1...Mt+h+1,t+h) = ν0+ν1

1

h

h∑
k=1

σ2
t+k+ν2

1

h

h−1∑
k=0

σ2
t+k+ν3

1

h

h∑
k=1

rt+k.

If the joint process (σ2
t , rt) is stationary, the geometric stochastic yield tends

to the deterministic long run level ν0 + (ν1 + ν2)Eσ2
t + ν3Ert for h tending

to infinity. Thus this combination of the structural parameters is limited
information identifiable from long run derivative prices, but the structural
parameters themselves are not.

iv) Link with the literature

Stock, Wright (2000) considered also an application to asset pricing formula,
in which the sdf is deduced from the optimisation of an expected CRRA
utility function. Thus the sdf is:

Mt,t+1 (θ) = δ (Ct+1/Ct)
γ ,

where Ct denotes the consumption. In our framework both δ and γ para-
meters would be full information identifiable from the observed asset prices
of the basic assets. Thus the discussion differs from the discussion in Stock,
Wright (2000) in which the risk aversion parameter is assumed a priori weakly
identified. In our framework the weak identification can only be the conse-
quence of some lack of observations on derivative prices and concern some
special risk premium parameters.

5.3 Nonparametric efficiency bounds

Two cases will be distinguished according to the type of information.

i) Limited information

The cross-sectional restrictions are:

E [Mt0,t0+1 (θ)− 1|yt0 ] = 0,

E [Mt0,t0+1 (θ) exp rt0+1 − 1|yt0 ] = 0,

E
[
Mt0,t0+1 (θ) (exp rt0+1 − s)+ − ct0(s)|yt0

]
= 0, s = 0.98, 1, 1.02.
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The conditional moments of interest are the prices of European calls at hori-
zon 1:

E (a(s)|yt0) = E
[
Mt0,t0+1 (θ) (exp rt0+1 − s)+ |yt0

]
, ∀s.

The identifiable parameters are ν0,t0 = ν0 + ν2σ
2
t0
, ν1, ν3, but are sufficient

to identify the conditional moments of interest, which have the same matu-
rity. We provide in Figure 3 the nonparametric efficiency bound B(yt0 , s) for
E (a(s)|yt0) as a function of s.

[Insert Figure 3: Nonparametric efficiency bound, limited information]

The solid line corresponds to the call price E (a(s)|yt0), the dashed lines to
confidence intervals E (a(s)|yt0)± 1.96 w√

Th2
T

B(yt0 , s)1/2, computed for

w2/Th2
TfX(x0) = 1 14. The current factor yt0 corresponds to a variance σ2

t0

equal to the stationary expectation Eσ2
t . The width of the confidence interval

for derivative price E (a(s)|yt0) depends on moneyness strike s. The interval
is generally narrower for almost at-the-money options, whereas it is wider
when the derivative is deep out- or deep in-the-money. Moreover the width
of the interval is zero when s corresponds to the moneyness strikes of the
observed calls.

To compare the results for derivatives with longer maturity, let us con-
sider the nonparametric efficiency bound for a European call with residual
maturity h = 60 days. At t0 the prices of three derivatives with same resid-
ual maturity h = 60 and strikes s = 0.9, 1, 1.1, respectively, are assumed
to be observed. In this case the whole parameter θ is limited information
identifiable. The efficiency bound is displayed in Figure 4 below.

[Insert Figure 4: Nonparam. eff. bound, limited information, maturity 60]

The confidence interval is larger for in-the-money strikes, and generally larger
compared to maturity h = 1.

Note that the confidence intervals are pointwise confidence intervals. The
choice of derivative prices corresponding to different strikes have in practice
to be compatible with both a confidence band and also with the no arbitrage

14We adopt this normalization to illustrate the pattern of the nonparametric efficiency
bound as a function of the moneyness strike. The selection of empirically relevant sample
size T and bandwidth hT will be discussed in the next section, where we report the
corresponding actual size of the efficiency bound.
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restrictions. This implies the selection of a decreasing convex function com-
patible with the band.

ii) Mixed limited- and full-information

Let us now consider the general approach with both uniform and conditional
restrictions. The conditional moments of interest are still:

E (a(s)|yt0) = E
[
Mt0,t0+1 (θ) (exp rt0+1 − s)+ |yt0

]
, ∀s.

We check in Appendix 3 that Assumption A.2∗ is satisfied in our stochastic
volatility framework. Matrix R involved in Proposition 2 is given in equation
(27). The nonparametric efficiency bound for a European call with residual
maturity h = 1 is displayed in Figure 5.

[Insert Figure 5: Nonparametric efficiency bound, mixed information]

The confidence interval is similar to that obtained in the limited information
framework (see Figure 3). To understand this fact, let us recall that, in the
mixed case and at maturity 1, we have to estimate one parameter more than
in the limited information case. This effect is approximately compensated
by the contribution of the uniform restrictions.

In Figure 6 we display the mixed information nonparametric efficiency
bound for a call option with residual maturity h = 60, when the price of
three derivatives with same maturity and strikes s = 0.9, 1, 1.1, respectively,
are observed.

[Insert Figure 6: Nonparam. eff. bound, mixed information, maturity 60]

The confidence band is more narrow than in the limited information case
(see Figure 4). This is especially clear for in-the-money values of s far from
the observed strikes. The effect on the confidence interval is less clear close
to observed strikes, or for rather deep out-of-the-money strikes. Indeed in
these regions the option price is tight down from the observed prices, or has
to be close to zero by definition, respectively.

Finally, in Figure 7 we display the mixed information nonparametric ef-
ficiency bound for a European call with maturity h = 60, when the prices
of three derivatives with maturity 20 and strikes s = 0.9, 1, 1.1, respectively,
are observed.

[Insert Figure 7: Nonparam. eff. bound, mixed information, maturity 60 and 20]
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In this case the maturity of the observed derivatives does not correspond
with the maturity of interest. This explains why the nonparametric efficiency
bound is much larger compared with Figure 6, and in particular it is different
from zero for all moneyness strikes. Thus observed derivative prices at the
maturity of interest have a large informational content for the estimation of
other derivative prices.

5.4 Monte-Carlo

In this section we report the results of Monte-Carlo simulations to investi-
gate the finite sample properties of the information based estimator. Data
are generated according to the ARG stochastic volatility model described in
Section 5.1. We consider the general framework with both conditional and
uniform restrictions.

At date t0 the prices of three derivatives ct0(h, sk) with maturity h = 2
and moneyness strikes sk = 0.98, 1, 1.02 are fixed. They are computed by sim-
ulation as explained in Section 5.1 with available information σ2

t0
= E (σ2

t ).
Then we simulate S = 500 paths of return-volatility process (rt, σ

2
t ), t =

t0 − T + 1, ..., t0, for sample size T = 250, such that the observed values
at date t0 are rt0 = 0, σ2

t0
= E (σ2

t ). Such paths are obtained by simulat-
ing the process backward. More precisely the time-discretized version of the
Cox-Ingersoll-Ross process is time reversible. Therefore (rt, σ

2
t ) follows the

same stochastic volatility process both in direct and in reversed time. The
information based estimator of structural parameter θ0 and of European call
prices E [a(h, s)|yt0 ] at date t0 for maturity h = 2 and different strikes s are
computed for each simulated sample according to Section 3.2. The moment
restrictions involve both the uniform no-arbitrage conditions from underly-
ing asset returns and the conditional restrictions from observed derivative
prices at date t0. The kernel estimator of the conditional pdf is based on a
Gaussian product kernel with different bandwidths for return and volatility,
which are equal to hr,T = 0.0039 and hσ,T = 0.0025, respectively15. Finally
the selected sample size T = 250 corresponds to approximately 1 year of
trading days, which is the sample length typically suggested by the regulator
for risk management purposes.

i) Derivative prices

15These bandwidths are selected in order to get an appropriate smoothing of the joint
conditional pdf of (rt, σt) at sample size T = 250.
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We display in Table 1 below the mean, the median, the 5% confidence in-
terval, as well as the 5% and 95% quantiles of the estimated European call
prices for maturity h = 2 and different values of the strike between s = 0.95
and s = 1.05.

[Table 1: Derivative prices, maturity 2, sample size 250]

For comparison we also report for each moneyness strike the corresponding
true derivative price and the 5% asymptotic confidence interval based on the
nonparametric efficiency bound, computed according to Section 5.3. As seen
previously in Figures 5 and 6, the width of the nonparametric bound varies
with strike s. In particular, the information content of the moment restric-
tions for estimating derivative prices can be very different across strikes. For
instance the width of the confidence interval is less than 1% of the true price
for strike s = 0.96, whereas it amounts to about 35% for strike s = 1.04.

Let us first consider the finite sample bias of estimated derivative prices.
This bias is typically positive for ITM call options, whereas prices of OTM
calls are generally underestimated. The corresponding relative pricing errors
are less than 0.5% for strikes below s = 1.03, whereas it is about 5% for the
deep OTM strikes.

Let us now consider the finite sample accuracy of the estimated deriva-
tive prices. The 95% confidence intervals and the 5% interquantile ranges of
estimated call prices feature patterns across strikes similar to the patterns
of the nonparametric efficiency bound, but they are wider. For instance, the
95% interquantile range is about 4% of the median (or mean) call price for
strike s = 0.96, and about 135% for the deep OTM strike s = 1.04 16. In
particular, these bounds are much larger than those typically reported in
the literature based on fully parametric specifications. A narrow parametric
bound however can be highly misleading in the presence of model misspeci-
fications, that is when the true data generating process of underlying asset
returns does not belong to the selected parametric family. In practice, the
nonparametric bounds derived from the finite sample distribution of the in-
formation based estimator are likely to be preferred, since they provide more
secure bounds for risk management purposes.

Finally, we display in Figure 8 the histograms of estimated derivative

16For strike s = 1.04 the interquantile range is highly skewed, with the median very
close to the lower bound.
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prices for different strikes.

[Figure 8: Histograms of estimated derivative prices]

These finite sample distributions feature non-Gaussian patterns, especially
for deep ITM or deep OTM strikes, for which left, respectively right, skewed
and fat tailed distributions are observed.

ii) Structural parameter

Although the focus of this paper is on estimation of the conditional moments
corresponding to derivative prices, it is interesting to consider also the re-
sults for the estimator of structural parameter θ. In Table 2 we display the
mean, the median, the standard deviation and the 5% interquantile range of
estimator θ̂.

[Table 2: Structural parameter, maturity 2, sample size 250]

The estimator of each component is downward biased for sample size T =
250, especially for parameters ν0, ν1, ν2. The medians are also below, but
closer to, the true values θ0. The estimators feature large standard deviation
and wide interquantile ranges. These results are confirmed by the histograms
of the estimates, which are displayed in Figure 9.

[Figure 9: Histograms of estimated structural parameters]

The finite sample distributions of parameters ν0, ν1, ν2 are highly non-normal,
in particular skewed to the left, with fat tails. The distribution of parameter
ν3, instead, is closer to a Gaussian distribution (even if it is not very accu-
rate). This difference in patterns of the finite sample distributions reflects the
different rates of convergence of the estimators, which are the parametric rate
T 1/2 for ν3 and the nonparametric rate (Thr,Thσ,T )

1/2 for ν0, ν1, ν2. These
different rates of convergence are a consequence of market incompleteness,
which cause parameters ν0, ν1, ν2 related to the risk premium for stochastic
volatility to be full information non-identifiable.

6 Concluding remarks

The aim of this paper was to explain why the standard GMM approach is not
appropriate for derivative pricing in an incomplete market framework, even if
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the stochastic discount factor is specified parametrically. In this framework
it is necessary to distinguish the moment conditions which are uniform with
respect to the conditioning variable and the restrictions which are valid for a
given value of this variable. The extended method of moments explains how
to mix appropriately these types of moment conditions. This implies different
rates of convergence for the different parameters. In the derivative pricing
application, the risk premium parameters are not necessarily identified from
historical data on the prices of liquid assets, and some of them can only be
deduced from less frequent cross-sectional observations on derivative prices.
This implies different rates of convergence for the risk premia parameter, and
approximations of derivative prices much less accurate than usually reported
in both the theoretical or applied literature.

The analysis emphasizes on the notions of limited and full information
identifiability, and the relationship between the degree of full information
underidentifiability and the dimension of residual incompleteness in the ap-
plication to derivative pricing. It differs from the standard GMM literature,
which always assume full information identifiability.
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APPENDIX 1

Semi-parametric efficiency bound

We derive below the expression of the semi-parametric efficiency bound
by considering the linearization of the nonlinear constraints around the true
value. The moment conditions defining the (kernel) moment estimator can
be linearized around θ = θ0:

√
TÊ [g1(Y,X; θ)] �

√
TÊ [g1(Y,X; θ0)] + E0

[
∂g1

∂θ′ (Y,X; θ0)

]√
T (θ − θ0) ,√

Thd
T Ẽ [g2(Y ; θ)|x0] �

√
Thd

T Ẽ [g2(Y ; θ0)|x0] +
√
Thd

TE0

[
∂g2

∂θ′ (Y ; θ0) |x0

]
(θ − θ0) ,√

Thd
T Ẽ [a (Y ; θ)− β|x0] �

√
Thd

T Ẽ [a (Y ; θ0)− β0|x0] +
√
Thd

TE0

[
∂a

∂θ′ (Y ; θ0) |x0

]
(θ − θ0)

−
√
Thd

T (β − β0) .

Let us introduce the change of parameters:

θ =
(
R̃ RZ

)( η1

η2

)
.

Then we get:

√
TÊ [g1(θ)] �

√
TÊ (g1) + E0

(
∂g1

∂θ′

)
R̃
√
T
(
η1 − η0

1

)
,√

Thd
T Ẽ [g2(θ)|x0] �

√
Thd

T Ẽ (g2|x0) +
√
hd
TE0

(
∂g2

∂θ′ |x0

)
R̃
√
T
(
η1 − η0

1

)
+E0

(
∂g2

∂θ′ |x0

)
RZ

√
Thd

T

(
η2 − η0

2

)
,√

Thd
T Ẽ [a (θ)− β|x0] �

√
Thd

T Ẽ (a− β0|x0) +
√
hd
TE0

(
∂a

∂θ′ |x0

)
R̃
√
T
(
η1 − η0

1

)
+E0

(
∂a

∂θ′ |x0

)
RZ

√
Thd

T

(
η2 − η0

2

)−√Thd
T (β − β0) .

It is known that the moment estimator corresponding to the optimal weight-
ing matrix is asymptotically equivalent to the GLS estimator of the linear
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system:


√
TÊ (g1)√

Thd
T Ẽ (g2|x0)√

Thd
T Ẽ (a− β0|x0)

 � −


E0

(
∂g1
∂θ

′

)
R̃ 0 0

0 E0

(
∂g2
∂θ′ |x0

)
RZ 0

0 E0

(
∂a
∂θ′ |x0

)
RZ −IdL




√
T (η1 − η0

1)√
Thd

T (η2 − η0
2)√

Thd
T (β − β0)

+U,

where the error term U is zero-mean, with variance:

V (U) =

(
V 1 0
0 Σ

)
,

where:

V 1 = lim
T→∞

V0

[
1√
T

T∑
t=1

g1 (Yt, Xt; θ0)

]
, Σ =

1

fX(x0)

(
V0 (g2|x0) Cov0 (g2, a|x0)

Cov0 (a, g2|x0) V0 (a|x0)

)
,

and the asymptotic correlation between the sample moment and the kernel

estimator is zero. Thus estimators
√
T (η̂1 − η0

1) and
√
Thd

T

(
η̂2 − η0

2, β̂ − β0

)
are asymptotically normal, independent with asymptotic variances:

Vas

[√
T
(
η̂1 − η0

1

)]
=

[
R̃

′
E0

(
∂g

′
1

∂θ

)
V

−1

1 E0

(
∂g1

∂θ′

)
R̃

]−1

,

and:

Vas

[√
Thd

T

(
η̂2 − η0

2

β̂ − β0

)]
=


 E0

(
∂g2
∂θ′ |x0

)
RZ 0

E0

(
∂a
∂θ′ |x0

)
RZ −Id

′

Σ−1

 E0

(
∂g2
∂θ′ |x0

)
RZ 0

E0

(
∂a
∂θ′ |x0

)
RZ −Id



−1

,

respectively. In particular the semi-parametric efficiency bound is the lower

(L,L) block of matrix Vas

[√
Thd

T

(
η̂2 − η0

2, β̂ − β0

)]
.
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APPENDIX 2

Information based estimator

The aim of this Appendix is to derive the asymptotic expansion of the
objective function and of the estimators, in order to prove the asymptotic
nonparametric efficiency of the information based estimator (Proposition 3).

i) Concentration with respect to functional parameter

Let us introduce Lagrange multipliers λ0, µ0, λt, µt, t = 1, .., T . The La-
grangian function is given by:

L =
1

T

T∑
t=1

∫ [f̂(y|xt)− f t (y)
]2

f̂(y|xt)
dy + hd

T

∫
log
[
f 0(y)/f̂(y|x0)

]
f 0(y)dy

−2
T∑
t=1

µt

(∫
f t (y) dy − 1

)
− hd

Tµ0

(∫
f 0(y)dy − 1

)

−2
T∑
t=1

λ
′
t

∫
g(y; θ)f t (y) dy − hd

Tλ
′
0

∫
g2(y; θ)f

0(y)dy.

The first order conditions w.r.t. functional parameters ft, t = 1, ..., T , f0 are:[
f t (y)− f̂(y|xt)

] 1

f̂(y|xt)
− µt − λ

′
tg(y; θ) = 0, t = 1, ..., T,

1 + log
(
f 0(y)/f̂(y|x0)

)
− µ0 − λ

′
0g2(y; θ) = 0,

that are:

f t (y) = f̂(y|xt) + µtf̂(y|xt) + λ
′
tg(y; θ)f̂(y|xt), t = 1, ..., T, A.1 (28)

f 0(y) = f̂(y|x0) exp
(
λ

′
0g2(y; θ) + µ0 − 1

)
.A.2 (29)

The Lagrange multipliers are deduced by the constraints. From (A.1) we get:∫
f t (y) dy = 1 ⇐⇒ µt = −λ

′
t

∫
g(y; θ)f̂(y|xt)dy,
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and: ∫
g(y; θ)f t (y) dy = 0

⇐⇒
∫

g(y; θ)f̂(y|xt)dy +

∫
g(y; θ)g(y; θ)

′
f̂(y|xt)dy · λt + µt

∫
g(y; θ)f̂(y|xt)dy = 0

⇐⇒ λt = −
[∫

g(y; θ)g(y; θ)
′
f̂(y|xt)dy −

∫
g(y; θ)f̂(y|xt)dy

∫
g(y; θ)

′
f̂(y|xt)dy

]−1

·
∫

g(y; θ)f̂(y|xt)dy, t = 1, ..., T.

Similarly from (A.2) we deduce the value of Lagrange multiplier µ0:∫
f 0 (y) dy = 1 ⇐⇒ exp (1− µ0) =

∫
eλ

′
0g2(y;θ)f̂(y|x0)dy.

Thus from (A.1), (A.2) µ0, λt, µt, t = 1, ..., T , can be eliminated to get the
concentrated functional parameters:

f t (y; θ) = f̂(y|xt)− Ẽ (g(θ)|xt)
′
Ṽ (g(θ)|xt)

−1
[
g(y; θ)− Ẽ (g(θ)|xt)

]
f̂(y|xt),

t = 1, ..., T,

f 0 (y; θ, λ0) =
expλ

′
0g2(y; θ)

Ẽ
(
expλ

′
0g2(θ)|x0

) f̂(y|x0), A.3 (30)

where Ẽ(.|x) and Ṽ (.|x) denote the conditional expectation and the con-
ditional variance w.r.t. the kernel density, respectively. The concentrated
objective function becomes:

Lc(θ, λ0) =
1

T

T∑
t=1

Ẽ (g(θ)|xt)
′
Ṽ (g(θ)|xt)

−1 Ẽ (g(θ)|xt)

−hd
T log Ẽ

(
expλ

′
0g2(θ)|x0

)
.

Then the information based estimator is such that θ̂ is solution of the saddle
point problem [see Kitamura-Stutzer (1997) in a marginal framework]:

θ̂ = argmin
θ

Lc(θ, λ0 (θ)),
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where:

λ0 (θ) = argmax
λ0

Lc(θ, λ0) ⇐⇒ Ẽ
(
g2(θ) expλ0 (θ)

′
g2(θ)|x0

)
= 0,

and the conditional density estimators are:

f̂0(.|xt) = f t(.; θ̂), t = 1, ..., T,

f̂0(.|x0) = f 0(.; θ̂, λ̂0), λ̂0 = λ0

(
θ̂
)
.

ii) Asymptotic expansion of the concentrated objective function

Since the conditional moment restrictions are satisfied asymptotically, we
have λ̂0 → 0 when T → ∞. Therefore we can consider the second order
asymptotic expansion of function Lc(θ, λ0) in a neighbourhood of θ = θ0,
λ0 = 0. Let us first consider the expansion w.r.t. λ0. We have:

log Ẽ
(
expλ

′
0g2(θ)|x0

)
� log

[
1 + λ

′
0Ẽ (g2(θ)|x0) +

1

2
λ

′
0Ẽ
(
g2(θ)g2(θ)

′ |x0

)
λ0

]
� λ

′
0Ẽ (g2(θ)|x0) +

1

2
λ

′
0Ṽ (g2(θ)|x0)λ0.

Therefore we can asymptotically concentrate w.r.t. λ0:

λ0 � −Ṽ (g2(θ)|x0)
−1 Ẽ (g2(θ)|x0) , (A.4)

and the asymptotic expansion of the concentrated objective function be-
comes:

Lc(θ) � 1

T

T∑
t=1

Ẽ (g(θ)|xt)
′
Ṽ (g(θ)|xt)

−1 Ẽ (g(θ)|xt)

+
1

2
hd
T Ẽ (g2(θ)|x0)

′
Ṽ (g2(θ)|x0)

−1 Ẽ (g2(θ)|x0) .

Let us now consider the expansion around θ = θ0. We have:

Ẽ (g(θ)|xt) � Ẽ (g(θ0)|xt) + E0

(
∂g

∂θ′ (θ0) | xt

)
(θ − θ0) ,

43



Ṽ (g(θ)|xt) � V0 (g(θ0) | xt) ,

and similarly for the expectations of function g2. Thus we get:

Lc(θ) � 1

T

T∑
t=1

{
Ẽ (g|xt) + E0

(
∂g

∂θ′ | xt

)
(θ − θ0)

}′

V0 (g | xt)
−1

·
{
Ẽ (g|xt) + E0

(
∂g

∂θ′ | xt

)
(θ − θ0)

}
+
1

2
hd
T

{
Ẽ (g2|x0) + E0

(
∂g2

∂θ′ | x0

)
(θ − θ0)

}′

V0 (g2 | x0)
−1

·
{
Ẽ (g2|x0) + E0

(
∂g2

∂θ′ | x0

)
(θ − θ0)

}
,

where functions g, g2 are evaluated at θ0.

iii) Asymptotic expansion of θ̂

In order to derive the asymptotic expansion of θ̂, we have to carefully dis-
tinguish the directions of θ converging at a parametric rate [respectively at
a nonparametric rate]. Let us introduce the change of parameter:

η = R−1
1 θ =

(
η

′
1, η

′
2

)′

,

where R1 =
(
R̃ R

)
and R is a matrix whose columns span the null space

N0 [see Section 2.1.2]. Then we have:

E0

(
∂g

∂θ′ | xt

)
(θ − θ0) = E0

(
∂g

∂θ′ | xt

)
R̃
(
η1 − η0

1

)
.

We get:

Lc(η)

� 1

T

T∑
t=1

{
Ẽ (g|xt) + E0

(
∂g

∂θ′ |xt

)
R̃
(
η1 − η0

1

)}′

V0 (g|xt)
−1

·
{
Ẽ (g|xt) + E0

(
∂g

∂θ′ |xt

)
R̃
(
η1 − η0

1

)}
+
1

2
hd
T

{
Ẽ (g2|x0) + E0

(
∂g2

∂θ′ |x0

)
R̃
(
η1 − η0

1

)
+ E0

(
∂g2

∂θ′ |x0

)
R
(
η2 − η0

2

)}′

V0 (g2|x0)
−1

·
{
Ẽ (g2|x0) + E0

(
∂g2

∂θ′ |x0

)
R̃
(
η1 − η0

1

)
+ E0

(
∂g2

∂θ′ |x0

)
R
(
η2 − η0

2

)}
.
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The asymptotic expansion of η̂1 can be obtained from the maximization of the
first term in Lc(η) since the contribution of the second term is asymptotically
negligible. We get:

√
T
(
η̂1 − η0

1

) � −
[
1

T

T∑
t=1

R̃
′
E0

(
∂g

′

∂θ
|xt

)
V0 (g|xt)

−1 E0

(
∂g

∂θ′ |xt

)
R̃

]−1

· 1√
T

T∑
t=1

R̃
′
E0

(
∂g

′

∂θ
|xt

)
V0 (g|xt)

−1

∫
g(y; θ0)f̂(y|xt)dy.

Thus η̂1 converges at a parametric rate.
The asymptotic expansion of η̂2 can be deduced by the maximization of

the second component of Lc(η). Estimator η̂2 converges at a nonparametric
rate and thus terms involving (η̂1 − η0

1) can be neglected. We get:

(
η̂2 − η0

2

) � −
[
R

′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]−1

·R′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1

∫
g2(y; θ0)f̂(y|x0)dy.

A.5 (31)

iv) Asymptotic expansion of f̂0(.|x0)

Let us consider the expansion of f 0 (y; θ, λ0) in (A.3) around λ0 = 0. We
have:

f 0 (y; θ, λ0) � 1 + λ
′
0g2 (y; θ)

1 + λ
′
0Ẽ (g2(θ)|x0)

f̂(y|x0)

�
[
1 + λ

′
0

(
g2 (y; θ)− Ẽ (g2(θ)|x0)

)]
f̂(y|x0)

� f̂(y|x0)

−Ẽ (g2(θ)|x0)
′
Ṽ (g2(θ)|x0)

−1
(
g2(y; θ)− Ẽ (g2(θ)|x0)

)
f̂(y|x0),
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from (A.4). Thus we get:

f̂0(y|x0)

= f0(y; θ̂, λ̂0)

� f̂(y|x0)− Ẽ
(
g2(θ̂)|x0

)′

Ṽ
(
g2(θ̂)|x0

)−1 (
g2(y; θ̂)− Ẽ

(
g2(θ̂)|x0

))
f̂(y|x0)

� f̂(y|x0)− Ẽ
(
g2(θ̂)|x0

)′

V0 (g2|x0)
−1 g2(y; θ0)f(y|x0).A.6 (32)

Moreover:

Ẽ
(
g2(θ̂)|x0

)
�
∫

g2(y; θ0)f̂(y|x0)dy + E0

(
∂g2

∂θ′ |x0

)(
θ̂ − θ0

)
�
∫

g2(y; θ0)f̂(y|x0)dy + E0

(
∂g2

∂θ′ |x0

)
R
(
η̂2 − η0

2

)
(since the contribution of η̂1 − η0

1 is asymptotically negligible)

= (Id−M)

∫
g2(y; θ0)f̂(y|x0)dy,

from (A.5), where:

M = E0

(
∂g2

∂θ′ |x0

)
R

[
R

′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]−1

·R′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1 ,

is an orthogonal projector for the inner product V0 (g2|x0)
−1. After replacing

in (A.6) we get:

f̂0(y|x0) � f̂(y|x0)− f(y|x0)g2(y; θ0)
′
V0 (g2|x0)

−1 (Id−M)

∫
g2(y; θ0)f̂(y|x0)dy.

A.7 (33)

v) Asymptotic expansion of the moment of interest
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We have:

Ê(a|x0)

=

∫
a(y; θ̂)f̂0(y|x0)dy

�
∫

a(y; θ0)f(y|x0)dy +

∫
∂a

∂θ′ (y; θ0)f(y|x0)dy
(
θ̂ − θ0

)
+

∫
a(y; θ0)

[
f̂0(y|x0)− f(y|x0)

]
dy

� E(a|x0) + E0

(
∂a

∂θ′ |x0

)
R
(
η̂2 − η0

2

)
+

∫
a(y; θ0)

{
f̂(y|x0)− f(y|x0)− f(y|x0)g2(y; θ0)

′
V0 (g2|x0)

−1

(Id−M)

∫
g2(y; θ0)f̂(y|x0)dy

}
dy [from (A.7)]

= E(a|x0)− E0

(
∂a

∂θ′ |x0

)
R

[
R

′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]−1

·R′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1

∫
g2(y; θ0)f̂(y|x0)dy [from (A.5)]

+

∫
a(y; θ0)

[
f̂(y|x0)− f(y|x0)

]
dy

−Cov0 (a, g2|x0)V0 (g2|x0)
−1 (Id−M)

∫
g2(y; θ0)f̂(y|x0)dy.

Thus we get:

Ê(a|x0)− E(a|x0)

�
∫

a(y; θ0)δf̂(y|x0)dy − Cov0 (a, g2|x0)V0 (g2|x0)
−1

∫
g2(y; θ0)δf̂(y|x0)dy

−
[
E0

(
∂a

∂θ′ |x0

)
R− Cov0 (a, g2|x0)V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]
·
[
R

′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]−1

·R′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1

∫
g2(y; θ0)δf̂(y|x0)dy,A.8 (34)

where δf̂(y|x0) = f̂(y|x0)− f(y|x0).
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vi) Asymptotic distribution of the estimator

Let us finally derive the asymptotic distribution of the conditional moment
estimator Ê(a|x0). In the asymptotic expansion (A.8), the first two terms in-

volve the residual of the regression of
∫
a(y; θ0)δf̂(y|x0)dy on

∫
g2(y; θ0)δf̂(y|x0)dy.

This residual is asymptotically independent of the third term. Thus we get:

√
ThT

w

[
Ê(a|x0)− E(a|x0)

]
d−→ N(0,W (x0)/fX(x0)),

where the asymptotic variance is such that:

W (x0) = V0(a|x0)− Cov0 (a, g2|x0)V0 (g2|x0)
−1 Cov0 (g2, a|x0)

+

[
E0

(
∂a

∂θ′ |x0

)
R− Cov0 (a, g2|x0)V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]
·
[
R

′
E0

(
∂g

′
2

∂θ
|x0

)
V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]−1

·
[
E0

(
∂a

∂θ′ |x0

)
R− Cov0 (a, g2|x0)V0 (g2|x0)

−1 E0

(
∂g2

∂θ′ |x0

)
R

]′
.

Since W (x0)/fX(x0) corresponds to the (kernel) nonparametric efficiency
bound B (x0, a) [see Proposition 2], the (kernel) nonparametric efficiency of
the information based estimator is proved.
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APPENDIX 3

Identifiability in stochastic volatility model

In this Appendix we consider the identifiability of structural parameter θ
in the stochastic volatility model. Specifically we check Assumption A.2∗ and
provide the expression of matrix R defining the directions of full information
underidentification.

i) Computation of matrix R

The null space N0 associated with the uniform restrictions is the linear space
of vectors v ∈ R

4 such that:

E0

((
1

exp rt+1

)
∂Mt,t+1

∂θ′ (θ0) | yt
)
v = 0, ∀yt. (A.9)

We know that θ0 satisfies the no-arbitrage restrictions:

E0

(
Mt,t+1 (θ0)

(
1

exp rt+1

)
| yt
)
=

(
1
1

)
, ∀yt.

We deduce that any θ = θ0 + vε, where ε is small and v satisfies (A.9), is
also such that:

E0

(
Mt,t+1 (θ)

(
1

exp rt+1

)
| yt
)
=

(
1
1

)
, ∀yt,

at first order in ε. Therefore the vectors of N0 are the directions dθ =
θ − θ0 of parameter changes, which are compatible with no-arbitrage. From
Proposition 4 and equations (25) the parameters θ which are compatible with
no-arbitrage are characterized by the nonlinear restrictions:

ν0 = −b
(
ν1 + ν3γ − ν2

3/2
)
,

ν2 = −a
(
ν1 + ν3γ − ν2

3/2
)
,

ν3 = γ + 1/2,

where γ is a parameter of the DGP considered as fixed. In particular, γ = 1/2
for the DGP considered in Section 5. Therefore:

ν0 = −b (ν1) ,

ν2 = −a (ν1) ,

ν3 = 1.
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Thus the tangent set is spanned by the vector:

v =


dν0/dν1

dν1/dν1

dν2/dν1

dν3/dν1

 =


−db (ν1) /dν1

1
−da (ν1) /dν1

0

 =


−δ c

1+cν1

1
−ρ 1

(1+cν1)
2

0

 .

Therefore matrix R is given by:

R =


−δ c

1+cν1

1
−ρ 1

(1+cν1)
2

0

 . (A.10)

ii) Check of Assumption A.2∗

Let us now verify that Assumption A.2∗ is satisfied when the conditional
restrictions include the observed price of a European call. We have to prove
that:

E0

(
∂Mt,t+1

∂θ′ (θ0) (exp rt+1 − s)+ | yt0
)
R �= 0, ∀s > 0.

In fact we have:

E0

(
∂Mt,t+1

∂θ′ (θ0) (exp rt+1 − s)+ | yt0
)
R

= −E0

(
Mt,t+1 (θ0) (exp rt+1 − s)+

(
1, σ2

t+1, σ
2
t , rt+1

)
R | yt0

)
=

[
δ

c

1 + cν1

+ ρ
1

(1 + cν1)
2σ

2
t

]
E0

(
Mt,t+1 (θ0) (exp rt+1 − s)+ | yt0

)
−E0

(
Mt,t+1 (θ0) (exp rt+1 − s)+ σ2

t+1 | yt0
)
.

From (26) we have:

δ
c

1 + cν1

+ ρ
1

(1 + cν1)
2σ

2
t = ρ∗σ2

t + δ∗c∗ =
Q

Et

[
σ2
t+1

]
,

where Q denotes the risk neutral distribution, whereas from the Hull-White
formula:

E0

(
Mt,t+1 (θ0) (exp rt+1 − s)+ | yt0

)
=

Q

Et0

[
BS
(
1, s, σ2

t+1

)]
,

E0

(
Mt,t+1 (θ0) (exp rt+1 − s)+ σ2

t+1 | yt0
)

=
Q

Et0

[
σ2
t+1BS

(
1, s, σ2

t+1

)]
.
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Thus we get:

E0

(
∂Mt,t+1

∂θ′ (θ0) (exp rt+1 − s)+ | yt0
)
R = −

Q

Covt
[
σ2
t+1, BS

(
1, s, σ2

t+1

)]
,

which is negative since the Black-Scholes price is an increasing function of
volatility.
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Table 1

Maturity: H=2, Sample size: T=250
Derivative price β = E (a(s)|yt0) (×100)

Strike s = 0.95 Strike s = 0.96
True price Nonparametric Bound True price Nonparametric Bound
5.007 4.990− 5.026 4.029 4.014− 4.043
Mean 95% confidence interval Mean 95% confidence interval
5.029 4.904− 5.154 4.046 3.944− 4.148
Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
5.035 4.921 5.121 4.047 3.958 4.125

Strike s = 0.97 Strike s = 0.99
True price Nonparametric Bound True price Nonparametric Bound
3.079 3.070− 3.088 1.419 1.413− 1.424
Mean 95% confidence interval Mean 95% confidence interval
3.089 3.029− 3.150 1.413 1.376− 1.451
Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
3.089 3.037 3.138 1.413 1.382 1.443

Strike s = 1.01 Strike s = 1.03
True price Nonparametric Bound True price Nonparametric Bound
0.424 0.419− 0.429 0.089 0.084− 0.095
Mean 95% confidence interval Mean 95% confidence interval
0.426 0.392− 0.459 0.087 0.048− 0.125
Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
0.426 0.395 0.452 0.087 0.053 0.119

Strike s = 1.04 Strike s = 1.05
True price Nonparametric Bound True price Nonparametric Bound
0.037 0.031− 0.044 0.015 0.010− 0.022
Mean 95% confidence interval Mean 95% confidence interval
0.035 0− 0.077 0.014 0− 0.045
Median 0.05-quant. 0.95-quant. Median 0.05-quant. 0.95-quant.
0.031 0.031 0.074 0.009 0.000 0.044
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Table 2

Maturity: H=2, Sample size: T=250
Parameter θ

True Mean Median Stand. dev. 5% / 95% quant.
ν0 (×104) −3.37 −10.0 −5.08 19.5 −38.8 / 0.36

ν1 10 4.78 6.57 16.4 −17.6 / 16.0
ν2 −8.498 −12.4 −8.63 16.9 −45.6 / 1.38
ν3 1 −0.30 0.10 5.58 −10.5 / 9.05
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Figure 1: Simulated series of return rt (upper Panel) and volatility series σt
(lower Panel) for the ARG stochastic volatility process.
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Figure 2: Implied Black-Scholes volatility as a function of the moneyness
strike k for a European call with residual maturity h = 1.
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Figure 3: Nonparametric efficiency bound (limited information) for a Eu-
ropean call with maturity 1. The solid line corresponds to the price
E (a(s)|yt0), the dashed lines to pointwise conÞdence intervals E (a(s)|yt0)±
1.96 w√

Th2
T

B(yt0 , s)1/2.
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Figure 4: Nonparametric efficiency bound (limited information) for a Eu-
ropean call with maturity 60. The solid line corresponds to the price
E (a(s)|yt0), the dashed lines to pointwise conÞdence intervals E (a(s)|yt0)±
1.96 w√

Th2
T

B(yt0 , s)1/2.
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Figure 5: Nonparametric efficiency bound (mixed information) for a Eu-
ropean call with maturity 1. The solid line corresponds to the price
E (a(s)|yt0), the dashed lines to pointwise conÞdence intervals E (a(s)|yt0)±
1.96 w√

Th2
T

B(yt0 , s)1/2.
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Figure 6: Nonparametric efficiency bound (mixed information) for a Eu-
ropean call with maturity 60. The solid line corresponds to the price
E (a(s)|yt0), the dashed lines to pointwise conÞdence intervals E (a(s)|yt0)±
1.96 w√

Th2
T

B(yt0 , s)1/2.
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Figure 7: Nonparametric efficiency bound (mixed information) for a Euro-
pean call with maturity 60 when prices of calls with maturity 20 are observed.
The solid line corresponds to the price E (a(s)|yt0), the dashed lines to point-
wise conÞdence intervals E (a(s)|yt0)± 1.96 w√

Th2
T

B(yt0 , s)1/2.
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Figure 8: Information based XMM estimator: histograms of estimated
derivative prices.
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Figure 9: Information based XMM estimator: histograms of estimated struc-
tural parameters.
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