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Abstract: Over the past few years, the computation capability of field-programmable gate arrays
(FPGAs) has increased tremendously. This has led to the increase in the complexity of the designs
implemented on FPGAs and to the time taken by the FPGA back-end flow. The FPGA back-end flow
comprises of many steps, and routing is one of the most critical steps among them. Routing normally
constitutes more than 50% of the total time taken by the back-end flow and an optimization at this
step can lead to overall optimization of the back-end flow. In this work, we propose enhancements to
the routing step by incorporating a reinforcement learning (RL)-based framework. In the proposed
RL-based framework, we use the ε-greedy approach and customized reward functions to speed
up the routing step while maintaining similar or better quality of results (QoR) as compared to the
conventional negotiation-based congestion-driven routing solution. For experimentation, we use two
sets of widely deployed, large heterogeneous benchmarks. Our results show that, for the RL-based
framework, the ε-greedy greedy approach combined with a modified reward function gives better
results as compared to purely greedy or exploratory approaches. Moreover, the incorporation of the
proposed reward function in the RL-based framework and its comparison with a conventional routing
algorithm shows that the proposed enhancement requires less routing time while giving similar
or better QoR. On average, a speedup of 35% is recorded for the proposed routing enhancement
as compared to negotiation-based congestion-driven routing solutions. Finally, the speedup of the
routing step leads to an overall reduction in the execution time of the back-end flow of 25%.

Keywords: FPGA back-end flow; reinforcement learning; routing

1. Introduction

With the advancement of processing technology and ever-improving design tech-
niques, field-programmable gate arrays (FPGAs) have grown immensely over the past few
years, both in terms of their logical complexity and computational capability. Xilinx, in its
latest release, has announced an FPGA with close to 10 million logic cells, counting over
35 billion transistors [1]. Similarly, Intel has released its latest Stratix 10 FPGA, with logic
cells exceeding the 10 million mark and transistors beyond 40 billion count [2]. Previously,
FPGAs were used as glue logic only, but now they are used to implement some of the most
complex circuits [3]. Today, FPGAs have their applications in many important fields, such
as system on chip (SoC) prototyping, call centers, and multi-media and high-performance
computing applications. Over the last few years, the market of FPGA applications has
grown immensely, and it is poised to become only bigger in future [4]. The generalized and
reconfigurable nature of FPGAs makes them an ideal candidate for the implementation
of almost any circuit. This is further aided by the ability to perform in-circuit debugging
and verification [5]. However, the increasing complexity of target applications and the
huge computation resources of FPGAs have greatly increased the back-end flow time of
FPGAs [6]. For good-quality results, the back-end flow of FPGAs can require a high amount
of human resources and effort, even leading to less-than-satisfactory or inconclusive re-
sults [7]. On the other hand, if the run time is shortened, it compromises the quality of
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results (QoR) of the final design. Therefore, designing a back-end flow for FPGAs that can
give good QoR in a short time is a key research area, and a lot of work is being conducted
in this domain.

The back-end flow in modern day FPGAs involves many complex steps. Among them,
the most important include the logic optimization of design through synthesis, the place-
ment of logic resources on the target architecture, and the routing of the mapped resources
to ensure connectivity. The steps of the back-end flow are usually performed manually.
Most of these steps are based on heuristic algorithms, and they require manual tuning of
different parameters with a lot of iterations. To achieve the desired results, the designers
rely on their know-how and expertise of the target architecture. A big part is also played
by their intuition and experience with tuning different parameters, accumulated over the
years. For example, for placement in FPGAs, traditionally, three techniques have been used,
namely, partitioning, analytic placement, and simulated annealing-based placement. The
partitioning-based placement technique [8] recursively divides the design and produces
the results in minimal time. On the other hand, analytic placement techniques [9–12]
achieve the placement goals through continuous and differential expressions. Analytic
placers usually give good results in a short time, but they are often coupled with simulated
annealing-based detailed placers for further refinement and improvement of the results [13].
Apart from being used for additional refinement, simulated annealing-based placers are
also used stand-alone for placement in FPGA back-end flows [14]. Now, the results pro-
duced by a placement technique are largely dependent upon the type of the circuit under
consideration. For example, the partitioning-based placement technique gives better results
for hierarchical designs. However, this technique is less suitable for the designs having
non-hierarchical interconnects, where the simulated annealing-based placement technique
is reported to give better results [6]. Moreover, for a particular technique, parameters such
as the number of iterations, the cost function, and the value of the annealing temperature
play a huge role in the quality of the final design. The values of the parameters of the
placement step are really important, as they can have a huge impact on the quality of the
final design. As per [15], the values of the back-end flow parameters can change the final
area and timing results significantly, even without changing the circuit description and the
target architecture.

Routing is another critical and time-consuming step in FPGA back-end flow [16].
Routing can take up to 50% of the time of the entire back-end flow, and as the designs
are becoming larger and more complex, this share is projected to rise even further [17].
For FPGAs, routing is severely constrained in the sense that the block numbers, types,
locations, and the surrounding routing resources are pre-fabricated. Furthermore, the
design is already mapped and placed on the target FPGA architecture. So, the designers can
not modify the target architecture by inserting buffers and resizing the gates to make the
circuit more efficient. In this step, using the available routing resources, a detailed routing
is performed for the nets connecting different blocks. The simplest routing problem that
involves one net and only two pins is considered to be an NP-complete problem. Usually,
the routing of even a moderate design involves thousands of nets, where each net may
consist of many interconnecting pins, and the net count can increase up to millions for
more complex designs. So, this makes the routing problem extremely critical. For FPGA
back-end flow, different routing approaches have been used in the past, namely, obstacle
avoidance, congestion avoidance, and the negotiation-based routing approach. In the
obstacle avoidance routing approach [18], integer linear programming (ILP) is used, which
gives good and quick results for simple routing problems. Compared to the conventional
approach, this routing approach gives 26.4% better performance results. However, for
moderate to complex routing problems, this approach gives very poor or no results at all.
In the congestion avoidance routing approach [19], for a conflict-free solution, already-
used resources are made unavailable; hence, this approach gives a quick solution in a
short time. This approach renders quick results for small benchmarks. However, this
approach, does not involve any negotiation-based approach, and it does not have the
ability to address/solve the congestion problems of a routing network. This approach
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has the tendency to fall in the local minima and report an infeasible solution even if a
solution to a problem exists. The negotiation-based, congestion-driven routing approach
is another technique that is widely employed in the academy and in industry. This is a
time-consuming approach, although it gives good solutions to routing problems. This
approach uses the Pathfinder [20] algorithm. It strives to find the solution to a routing
problem in an iterative manner. The design is routed successfully over multiple iterations
and the congestion in the resources is resolved through a negotiation-based approach. A
detailed discussion of this approach is presented in Section 3.3 of this paper.

With the increasing complexity of designs, the challenges faced by the back-end flow of
FPGAs are only going to become worse. The challenge for the placement and routing steps
is even higher, as both rely on heuristic techniques, and optimal solutions to these problems
do not exist. The time required by heuristic algorithms to find a feasible solution increases
exponentially with the complexity of the design under consideration, sometimes even
rendering infeasible solutions as the complexity of the design grows beyond the capability
of the algorithm. The time taken and the quality of the solution produced by placement
and routing techniques is also affected by various input parameters such as the cost
function, the number of iterations, the annealing temperature calculation, etc. The quality
of solution and speedup in these algorithms can be achieved through either auto parameter
tuning of the flow or efficient implementation of relevant cost functions. In this regard,
machine learning (ML)-based frameworks can be used that can automatically tune the flow
parameters and speed up the whole process. Recently, researchers have used ML-based
techniques to automate the whole design process, which gives good results in a short time.
Some of the existing work focuses on the entire back-end flow and tunes the parameters
through extensive training. There exist other examples also, where researchers focus on
the optimization and speedup of individual back-end flow steps, such as placement [4,21].
However, to the best of our knowledge, there is little or no work that targets the speedup and
optimization of the routing step of the FPGA back-end flow through ML-based techniques.

This work employs reinforcement learning (RL) to speed up the routing step of the
FPGA back-end flow. We modify the routing algorithm and adapt it to implement the
RL-based framework efficiently. For experimentation, we use two sets of large benchmarks.
The results obtained through the proposed approach are compared with the results of the
conventional, negotiation-based, congestion-driven routing approach. The comparison
results show that the proposed technique gives, on average, 35% better speedup routing
while giving similar or better QoR. The results further suggest that the gain of the proposed
technique increases with the increase in the complexity and the size of the target design.
The contributions of this paper are summarized as follows:

• Enhancement proposed to speed up the detailed routing of FPGA back-end flow
through an RL-based framework;

• Extensive experimentation, exploration, and analysis of the proposed enhancement
by using two sets of open-source large heterogeneous benchmarks;

• Evaluation of the proposed enhancement through comparison with the conventional
negotiation-based congestion-driven routing approach.

In the remainder of the paper, Section 2 gives a comprehensive overview of the state
of the art related to this work. Section 3 then highlights the important steps of the FPGA
back-end flow. Section 4 presents the details of the enhancements proposed in the routing
step. Section 5 provides detailed discussion on the experimentation and also presents a
comparison of the existing and proposed techniques. Section 6 presents comprehensive
concluding remarks and also sheds light on the proposed future work.

2. Related Work

As discussed in Section 1, for optimal results, the parameter tuning of FPGA back-end
flow requires a lot of time, effort, and experience. For this purpose, machine learning
algorithms can help the designers in making decisions about the back-end flow parameters
and can save a lot of human time and effort without compromising the final results. In
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this regard, a lot of work has been conducted recently. For example, the authors in [22]
describe various data mining techniques that can be used in electronic design automation
(EDA). Moreover, this paper also discusses different statistical learning techniques and
their usage in various learning algorithms. Next, the authors in [23] present an ML-based
framework to tune the FPGA design parameters. This paper uses a sample space reduction
approach to find the optimal set of parameters that can render the best possible FPGA
design. Then, the authors in [24] present ML- and cloud-based techniques to help accelerate
the timing closure for FPGA designs, and the authors in [25] present a different ML-based
framework that generates routing-driven power distribution networks (PDNs) for FPGAs.
It is important to mention here that the aforementioned state-of-the-art work mostly uses
ML or artificial intelligence to optimize the auto tuning of the parameters for FPGA back-
end flow. These frameworks obtain the desired results through extensive training of
underlying ML algorithms, such as Support Vector Machine (SVM) [26], Bayesian Learning
(BL) and Knowledge-Based Neural Networks (KBNN) [27].

Apart from the auto tuning of the parameters that are aimed at the entire FPGA
back-end flow, there is research work that uses ML algorithms for the optimization of
individual steps of FPGA back-end flow. For example, in the FPGA back-end flow, logic
synthesis is the first critical step (further details are given in Section 3). This is a quite
complex step, and optimizations performed at this step can have a lasting impact on the
quality of the final design. The authors in [28] make use of a deep neural network (DNN) to
automatically choose between an and-inverter graph (AIG) and a majority-inverter graph
(MIG) to logically optimize the circuit under consideration. ABC [29] is an open-source logic
synthesis tool that comes with many logic optimization techniques, and it is largely used by
the research community. The authors in [30] use convolutional neural networks (CNN) to
autonomously use this tool and produce high-quality logically synthesized designs without
any prior knowledge of the design and without human intervention.

As discussed before, placement is another critical step of the FPGA back-end flow.
Regarding the parameter tuning and automatic optimization, a significant amount of work
has been performed on placement. Historically, the placement step of FPGA CAD flow has
been critical, as it is very time-consuming. The speedup of placement in FPGA flow has
traditionally been achieved either through parallel move generation [31,32] or a directed
search of the solution space [33]. As far as the solutions based on ML are concerned, the
authors in [4,21] present a framework that considers four different placement objectives.
This framework relies on extensive training and chooses the best placement solution
among seven state-of-the-art placement tools. The authors then extend their work and
use a convolutional neural network (CNN) to improve upon the routing predictability
of the design under consideration [34]. However, they do not use machine learning or
artificial intelligence techniques to perform detailed routing. Recently, RL techniques
have seen a lot of popularity because of their superior performance in electronic design
automation [35–37]. In this regard, the authors in [38] present an RL-based framework
to optimize the efficiency of the placement step. In this study, the authors report that an
RL-based framework produces similar-quality results while being two times faster than
conventional placement algorithms.

For routing in FPGAs, the authors in [39] present an ML-based high-level synthesis
framework that predicts the routing congestion in FPGAs. However, this work does not
address the detailed routing of the design under consideration. Then, the authors in [40]
present another ML-based framework to manage congestion and predict the routability
of a design under consideration in the FPGA back-end flow. The work in [41] presents
regression-based learning methods that accurately present the congestion in routing after
the placement of the design on FPGAs.

It is clear from the work cited in this section that almost all the above-cited work
addresses either the parameter tuning for the entire FPGA back-end flow by using ML-
based techniques, or optimizes the individual back-end flow steps, such as logic synthesis
and placement. Although there is some work on the optimization of the routing step, such
work mainly uses machine learning for prediction and congestion estimation. To the best of
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our knowledge, the speedup of detailed routing using reinforcement learning has not been
investigated in detail so far, and this is the main contribution of our work. A preliminary
version of our work [42] uses an RL-based framework to speed up the routing process. In
the current work, we refine and extend our previous work. The main enhancements of the
current work are summarized as follows:

• To make the FPGA CAD flow more efficient, we apply an RL technique to a negotiation-
based routing approach;

• We further refine the reward function and explore its effect on the routing result
through an enhanced exploration technique;

• We use two sets of comprehensive benchmarks for experimentation, perform extensive
analysis of the results, comparing them with existing routing techniques.

To the best of our knowledge, there is no prior work that uses an RL-based framework
on the detailed routing and that considers its effect on the speedup of an entire FPGA
back-end flow.

In the next section, a comprehensive overview of the FPGA back-end flow is presented;
then, in the subsequent section, we discuss our proposed enhancements regarding the
routing step of the FPGA back-end flow.

3. FPGA Back-End Flow
3.1. Synthesis, Mapping, and Packing

A typical FPGA back-end flow is shown in Figure 1. It can be seen from the figure that
FPGA CAD flow comprises many steps. The flow starts with the hardware description
of the circuit under consideration, and first of all, its logic synthesis is performed. Logic
synthesis tools logically optimize the design and make predictions about the final resource
requirements and timing information of the design. For this step, the time consumed
is not an issue, but the predictions made about the design at this level are inaccurate
in nature. This is a complex process that cannot be solved optimally. Moreover, with
ever-decreasing transistor sizes and increasing design complexity, the accuracy of existing
synthesis algorithms is decreasing [37]. However, various ML-based techniques exist
that rectify the errors and make faster predictions that are closer to the actual hardware
implementation [43,44]. After the synthesis of the design, it is mapped and packed as
per the resources of the target FPGA architecture, and finally, its placement and routing
is performed.

High Level 
Synthesis

Mapping and 
Packing

Placement
Start No

YesOptimal 
Routing?

Adjust Routing 
Resources

Bitstream 
Generation

Routing

Figure 1. An overview of the FPGA back-end Flow.

3.2. Placement

FPGAs are pre-fabricated reconfigurable devices that have a fixed number of resources.
These resources can be reconfigurable logic that provides the computation power to the
FPGA, or they can be reconfigurable routing resources that provide the interconnects
among the logic resources of the FPGA architecture. Logic resources in FPGAs comprise
of a combination of generic configurable logic blocks and some fixed purpose blocks.
The fixed purpose blocks can be adders, multipliers, memory blocks, graphic processing
units and, in some cases, even general-purpose processors. The grid of a typical modern
heterogeneous FPGA is shown in Figure 2. The simulated annealing [45]-based approach
has long been used to solve the placement problem for FPGAs. The simulated annealing
approach uses a heuristic that mimics the gradual cooling of alloys. It starts with a random
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initial state, and then multiple iterations are made with an objective to minimize the overall
wire length of the design under consideration. At the beginning, to avoid the local minima,
the mode of the placement algorithm is exploratory in nature, becoming greedy over time
and finishing when further improvement to the wire length is not possible. The simulated
annealing approach gives good placement results but requires a lot of moves and time
before it reaches a feasible solution. The number of moves and amount of time required
by this approach are directly linked with the size and the complexity of the design under
consideration. For modern designs, the algorithm needs a lot of time and iterations and
becomes prohibitively expensive in scenarios where good QoR is required in a short time.
Once the placement of the design under consideration is finished, the routing of the design
is performed, which is explained next.

I/O 
Blocks

Logic 
Blocks

RAM
DSP 

Blocks

Figure 2. Sample diagram of logic and routing architectures of a modern heterogeneous FPGA.

3.3. Routing

After placement, the routing is performed between different source and destination
blocks using the existing routing resources of the FPGAs. The objective of the routing
algorithm is to find conflict-free paths from the source to destination for all the blocks while
using the least-possible routing resources. Pathfinder [20] is an extensively used routing
algorithm that uses a negotiation-based, congestion-driven routing approach to achieve
the routing objectives. In order to use Pathfinder, the routing resources of the FPGA are
first represented as a directed graph. The graph has a set of vertices V and edges E. The
vertices in the directed graph represent I/Os of various blocks in the FPGA, while vertices
represent the potential connections between those I/Os. A sample representation of the
FPGA resources as the directed graph is shown in Figure 3.

Pathfinder uses the directed graph to find a conflict-free solution. As with simulated
annealing, this is also an iterative procedure. Initially, more than one net might be using
the same path, resulting in a conflict. These conflicts are later resolved through successively
increasing the cost of the congested nodes. This is a very time-consuming process, as the
modern designs have hundreds of thousands of nodes in their graphs and calculating and
updating the congestion of each node in every iteration takes a lot of time. The routing
process continues over multiple iterations until a conflict-free solution is found for the
design. After finding the conflict-free solution, the binary search algorithm checks for the
optimal usage of the routing resources. If further optimization is possible, the routing
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process starts again. This iterative procedure continues until all the routing resources are
completely optimized, and finally, the bitstream of the design is generated. The bitstream
is ultimately loaded onto the target FPGA for in-circuit debugging and cycle-accurate
execution of the circuit, culminating the FPGA back-end flow process.

Figure 3. FPGA logic and routing resources modeled as a directed graph.

4. Proposed Enhancements

Routing constitutes a major part of FPGA back-end flow and it consumes a lot of time.
In this section, a detailed discussion of reinforcement learning and how it is used to speed
up the routing step of FPGA flow is presented.

4.1. Reinforcement Learning

Reinforcement learning is a machine learning-based technique that has seen huge
popularity in different electronic design automation problems recently [37]. Normally, an
RL-based framework finds the solution to a problem at hand by frequently taking actions
and then learning from the consequences of its previously taken actions. A typical scenario
based on reinforcement learning is shown in Figure 4. As can be seen from the figure, a
typical RL-based framework comprises an agent that takes an action At at a given time t.
As a result of the action, the environment generates a reward Rt+1 ∈ R and moves from
a given state St to the next state St+1. This way, multiple actions are taken over time and
a log of those actions and resulting rewards is built. Each time a new action is taken, the
rewards generated after previously taken actions are also considered. The action values of
the actions taken are calculated using the following function: Q(S, A) : S× A→ R. In this
function, S corresponds to previous states and A is the action values of those states.

Agent

Environment

Action
At

Reward
Rt+1

State
St+1

Figure 4. A sample reinforcement learning problem.

For any RL technique, the two main considerations are action value estimation and
action calculation. The action values are typically calculated using Equation (1). In this
Equation, (rt+1 −Q(at)) is the error between the actual and estimated award, whereas α
corresponds to the size of the step taken to correct that error. The value of α is calculated
using Equation (2), where γ corresponds to the memory length and M corresponds to the
number of moves in each iteration. Through empirical experimentation, it is found that
the small value of γ gives good results in a short time. In this work, we keep the value of
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γ equal to 0.1, meaning the highest weightage is given to the most recent 10% of moves
during the routing process.

Q(at) = Q(at) + α× (rt+1 −Q(at)) (1)

α = 1− elog(γ)/M (2)

In RL, after a number of actions at each action point, the agent has a database of
action values. To make the next move, the agent has to choose one action value among the
available values. In order to save time and effort, the agent has to usually find a trade-off
between exploration and optimization. In RL, this is referred as a scenario of exploration
vs. exploitation [46]. A purely exploratory approach may lead to good results, but it may
add a lot of delay to the final result. There is also a possibility of adding too much delay
without even significantly improving the results. On the other hand, a purely exploitative
approach may give results in a quick time, but this approach has the tendency of falling
in local minima and producing poor results or, in some cases, even rendering infeasible
results because of an insufficient exploration of the solution space. In this work, we use
the ε-greedy approach to find the best trade-off between exploration and exploitation. In
the ε-greedy approach, the values of ε = 0 and 1 correspond to purely greedy and purely
exploratory approaches, respectively. To find the value of ε that gives the best results, we
perform extensive experimentation. Further discussion on the ε values used in this work
for the RL-based framework is given in Section 5.

4.2. Routing Enhancement

As mentioned before, the negotiation-based, congestion-driven routing algorithm is
usually used in FPGAs to resolve the routing problem. The pseudo-code of the routing
algorithm is shown in Algorithm 1. It can be seen that it is an iterative procedure where the
routing algorithm performs routing over multiple iterations. In each iteration, all the nets
of the design are routed one by one. For each net, the shortest path from the source to all its
destinations is found. While routing each net, the routing algorithm updates the congestion
costs of the used nodes regularly by employing the congestion cost function of Equation (3).
In this equation, bn, hn, and pn represent the base cost, historical congestion cost, and the
current congestion cost of the node, respectively. Through this function, the history of the
congested nodes is maintained and kept high. This way, the routing algorithm is made to
avoid the congested nodes in future iterations to find alternative, low-cost, and conflict-free
solutions. The iterative process continues until all the conflicts for every net of the design
are resolved.

cn = (bn + hn)× pn (3)

As discussed before, three different costs are maintained for each node. These costs are
updated during the routing of individual nets, as well as at the end of each iteration. This
is a process that is performed multiple times in every iteration and over multiple iterations;
hence, it consumes a lot of time. In this work, we use an RL-based framework to find a
conflict-free solution to the routing problem.

As discussed in Section 4.1, the state action value Q(S, A) is determined in this work
using the tabular method. We treat the routing problem as single-state K-arm bandit
problem. In this problem, an agent chooses an action at ∈ A. The action is then evaluated
as a result of which move is made and the change in the cost ∆cost is calculated. The
algorithm then decides whether to accept or reject the move. Finally, the reward value is
calculated to update the Q value based on the change in the cost value, thereby influencing
the future actions. In order to learn from the actions taken previously, we need to define a
reward function that must satisfy our desired objectives. Our objective is to have a high-
quality routing solution in the shortest possible time. To meet this objective, we initially
define a reward function, which is given in Equation (4):

rt = −∆con f lict (4)



Electronics 2022, 11, 2240 9 of 16

Algorithm 1: Pseudo-code of the FPGA routing algorithm [20].
Let: RTi be the set of nodes in the current routing of net i
while shared resources exist do

/*Illegal routing*/
foreach net, i do

rip-up routing tree RTi;
RT(i) = si;
foreach sink tij do

Initialize priority queue PQ to RTi at cost 0;
while sink tij not found do

Remove lowest-cost node m from PQ;
foreach fanout node n of node m do

Add n to PQ at PathCost(n) = cn + PathCost(m);

foreach node n in path tij to si do
/*backtrace*/
Update cn;
Add n to RTi;

update hn for all n;

The function in Equation (4) is basic reward function that calculates the change in cost
resulting from a move using the change in the conflicts. Although this function satisfies our
objective, it has the tendency to fall in local minima as it penalizes the moves that result in
an increase in conflicts. Hence, we modify the reward function to Equation (5). This reward
function favors the moves that reduce the conflict count; however, it does not penalize the
moves that cause an increase in the conflicts. Hence, it favors a more exploratory approach
and avoids the local minima. By using this approach, instead of maintaining three different
costs for each node, a single record of node congestion is maintained. By building the
table of node actions, the frequent and time-consuming step of the cost update is no longer
needed. This approach gives a conflict-free solution for the routing problem in a much
shorter time and with a smaller number of iterations as well. In this work, we explore the
effect of both reward functions on the routing of the design under consideration. Further
discussion of this exploration is presented in Section 5 of the paper.

rt =

{
−∆con f lict, if ∆con f lict < 0
0, otherwise.

(5)

5. Experimentation, Results, and Analysis
5.1. Benchmarks

For experimental purposes, in this work, we have used two sets of heterogeneous
benchmarks. The details of the benchmarks are shown in Tables 1 and 2, respectively. These
tables specify the names of the benchmarks, the number of I/Os, the number of generic
configurable logic blocks, i.e., lookup tables (LUTs), and the types and numbers of fixed
purpose hard blocks. It can be seen from these tables that the first set of benchmarks uses
multipliers and adders as hard blocks, whereas the second set of benchmarks uses only
multipliers. The last columns of both tables briefly describe the functions of the benchmarks
as well. The benchmarks used in this work are open-source and are widely available for
the usage of academia and researchers. These benchmarks are passed through the FPGA
back-end flow described in Section 3. The routing step of the back-end flow is modified
in such a way that it can be either used to perform routing in a conventional way or to
perform routing using the enhancements discussed in Section 4.
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Table 1. Heterogeneous benchmarks—set I.

Circuit Name No. of
Inputs

No. of
Outputs

No. of
LUTs

(LUT-4)

No. of
Multipliers

(16 × 16)

No. of
Adders
(20 + 20)

Function

cf_fir_3_8_8_open 42 18 159 4 3 Finite Impulse Response (8 bit)
cf_fir_7_16_16 146 35 638 8 14 Finite Impulse Response (16 bit)

cfft16x8 20 40 1511 - 26 Finite Fourier Transform
cordic_p2r 18 32 803 - 43 Polar to Rectangular
cordic_r2p 34 40 1328 - 52 Rectangular to Polar

fm 9 12 1308 1 19 Frequency Modulation
fm_receiver 10 12 910 1 20 Frequency Modulation Receiver

lms 18 16 940 10 11 Mean Square
reed_solomon 138 128 537 16 16 Reed Solomon Code

Table 2. Heterogeneous benchmarks—set II.

Circuit Name No. of
Inputs

No. of
Outputs No. of LUTs (LUT-4) No. of Multipliers

(18 × 18) Function

cf_fir_3_8_8_ut 42 22 214 4 Finite Impulse Response (8 bit)
diffeq_f_systemC 66 99 1532 4 Differential Equation

fir_scu 10 27 1366 17 Finite Impulse Response (16 bit)
iir1 33 30 632 5 Infinite Impulse Response (16 bit)
iir 28 15 392 5 Infinite Impulse Response (8 bit)

rs_decoder_1 13 20 1553 13 Decoder
rs_decoder_2 21 20 2960 9 Decoder

5.2. Proposed Enhancements—Exploration and Discussion

In this work, we perform the QoR comparison between the proposed RL-based en-
hancement in routing against the conventional congestion-driven routing approach. How-
ever, before performing the comparison, first of all, we determine the appropriate paramater
values that give us the best results for the proposed enhancements. Among the parameters,
we first determine the value of ε that gives the best routing results in the shortest possible
time for our ε-greedy approach. We determine this value through exploration, where
RL-based routing is performed for all the benchmarks under consideration. While varying
the value of ε, our experimentation shows that both the purely greedy approach (i.e., ε = 0)
and the purely exploratory approach (i.e., ε = 1) give poor results in terms of conflict count,
which is a measure of the quality of the routing solution. On one hand, the purely greedy
approach gives quick results, but they are poor in quality. On the other hand, the purely
exploratory approach is unable to find a feasible solution in a suitable time. The average
normalized routing results for two sets of benchmarks for varying values of ε are shown
in Figure 5. It can be seen from this figure that the purely greedy approach gives poor
results. However, as the value of ε is increased, relatively more importance is given to
exploration. This results in a better hill climbing approach, which eventually results in
better routing results. However, increasing ε does not necessarily increase the QoR beyond
a certain limit. Rather, for short run times, it causes a degradation in the results. This trend
is shown in Figure 5. Our experimentation shows that the best routing results are obtained
with ε = 0.001, and we use this value for further exploration and comparison as well.

Once the best value of ε is determined, the second parameter that we determine is
the reward function. As discussed in Section 4.2, in this work, we explore two reward
functions for RL-based routing. In order to determine the best reward function for the
proposed routing, we perform a comparison between the two. For both reward functions,
the value of ε = 0.001, as determined by Figure 5. The results of the comparison of the
reward functions are shown in Figure 6. It can be seen from this figure that the basic reward
function of Equation (4) performs poorly, as compared to the enhanced reward function of
Equation (5). This is because of the ability and better adaptability of the enhanced reward



Electronics 2022, 11, 2240 11 of 16

function to avoid the local minima. We use the the epsilon value of Figure 5 and the reward
function of Equation (5) for teh proposed RL-based routing and for its further comparison
with the congestion-driven approach.
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Figure 5. Comparison of conflict count and routing time for different values of epsilon.

5.3. Comparison Results and Analysis

To perform the comparison between the RL-based routing approach and the con-
ventional negotiation-based congestion-driven (NC) routing approach, we use the FPGA
back-end flow described in Section 3. For comparison, each benchmark is passed through
the FPGA back-end flow once using the NC routing approach and then using the RL-based
approach. Furthermore, for the RL-based approach, we use the ε-greedy approach with
two values of γ: one is where ε-greedy has no memory and a value of γ = 0, and the other
is where ε-greedy has memory and a value of γ = 0.1. The comparison results of these
approaches for critical path switches are shown in Figure 7. In this figure, the results of
the RL-based approach with and without memory are indicated as “RL” and “Random”,
respectively, whereas the results of the conventional routing approach are indicated as
“NC”. The results shown in Figure 7 are normalized against the RL-based approach that has
memory, as it gives the best results in the shortest time. The comparison results show that
the RL-based approach using memory crosses the smallest number of critical path switches
in the least iteration count. It can be seen from this figure that, for same number of critical
path switches, the “RL” approach requires 33% less iteration counts as compared to the NC
approach. Further comparison with the random approach shows that the random approach
gives the worst results among the three approaches. This is because of the fact that this
approach has no memory and does not learn from previously taken actions. This highlights
the importance of not only taking actions, but also learning from previously taken actions.

To further consolidate our results, we perform a comparison between the iteration
count and iteration time taken per iteration. These results are shown in Figure 8. It can
be seen from this figure that the iteration time increases linearly for all three approaches
under consideration. However, almost after a dozen iterations, the iteration time for the
random and RL-based routing approaches stabilizes, while the iteration time for NC keeps
increasing and rises exponentially beyond 25 iterations. The comparison shows that the
beyond 20 iterations, the NC routing approach takes, on average, 50% and 30% more time
per iteration than the random and RL approaches, respectively. This is because of the fact
that for the NC routing approach, it becomes harder to find a conflict-free solution with
the increase in the number of iterations. The NC routing approach then has to conduct
more explorations and look for less-congested nodes. The RL routing approach, on the
other hand, is able to contain the routing time because of its enhanced reward function and
ε-greedy approach. It can be seen from Figure 8 that, from the perspective of iteration time,
the “Random” approach gives the best results, the reason being that this approach does not
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possess any memory. However, this does not necessarily mean that the smaller iteration
time advantage is reflected in the critical path switches and conflict count results as well,
which are the ultimate measure of the quality of a routing algorithm.
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Figure 6. Reward function comparison.
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More time taken by increasing number of iterations reflects in the total time required
by the routing algorithm to find a conflict-free solution. This trend is reflected in Figure 9.
This figure shows that RL-based routing, on average, requires 35% less time to resolve
the conflicts as compared to the NC-based routing approach. It is further evident from
this figure that, although the random routing approach requires less time per iteration,
it is unable to find a conflict-free solution in a reasonable time, as it does not learn from
previous actions. The results shown in Figures 7–9 clearly indicate that the proposed
RL-based routing approach gives the same or better QoR as compared to the conventional
NC routing approach, while requiring 35% less routing time. This is definitely significant,
as routing is among the most time-consuming steps of FPGA back-end flow, and this
improvement leads to overall shorter and more efficient design flow times. Finally, the
individual routing time taken by the benchmarks of two sets is also given in Tables 3 and 4.
It can be seen from these tables that, compared to the NC routing approach, the speedup
of the RL-based approach for individual benchmarks is not always the same; it ranges
from 27% to 43.6%, and results in an average speedup of 35% for all the benchmarks under
consideration. The results of the random routing approach are not included in these tables,
as this routing approach is not able to find a conflict-free routing solution for the number of
benchmarks shown in the two tables.
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Figure 9. Comparison of conflict count and normalized routing time for the different approaches
under consideration.

Table 3. Individual routing time comparison between the NC and RL-based routing approaches for
the set I benchmarks.

Circuit Name Routing Time (Sec) Gain

NC RL

cf_fir_3_8_8_open 750 478 36.3
cf_fir_7_16_16 2250 1512 32.8

cfft16x8 5945 3812 35.8
cordic_p2r 2890 2102 27.3
cordic_r2p 4745 3012 36.5

fm 4567 3012 34
fm_receiver 2765 1890 31.6

lms 4456 2798 37.2
reed_solomon 1923 1190 38.1

Average 3365 2201 34.6
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Table 4. Individual routing time comparison between the NC and RL-based routing approaches for
the set II benchmarks.

Circuit Name Routing Time (Sec) Gain

NC RL

cf_fir_3_8_8_ut 798 450 43.6
diffeq_f_systemC 6902 4412 36.1

fir_scu 4698 3102 33.9
iir1 3892 2489 36
iir 1802 1198 33.5

rs_decoder_1 4889 3106 36.5
rs_decoder_2 10,034 6789 32.3

Average 4716 3078 34.7

6. Conclusions and Future Work

Routing is one of the most critical and time-consuming steps of FPGA back-end
flow. We have used an RL-based framework in this paper to speed up the routing step of
FPGA CAD flow. For this purpose, we have used the ε-greedy approach and modified
the reward function. Compared to the conventional cost function of the negotiation-
based congestion-driven routing approach, the proposed reward function navigates the
solution space in more efficient way. Through an RL-based framework, we expedite the
FPGA back-end flow and achieve similar or better quality of results more quickly, as
compared to the conventional, negotiation-based, congestion-driven routing algorithm.
For experimentation, we use two sets of open-source heterogeneous benchmarks, and our
experimental results show that the RL-based framework requires 35% less execution time
as compared to the conventional routing solution. Finally, the speedup gain of the routing
step leads to an overall back-end flow speedup of 25%, as compared to the flow using the
conventional routing approach only.

In this work, we have focused on investigating the impact of reinforcement learning
on the detailed FPGA routing. In the future, we further aim to integrate machine learning
techniques in other important steps of FPGA back-end flow and to investigate their impact
on the overall speed of FPGA back-end flow and the quality of the final prototyped design.
We also aim to extend our benchmark suite and mimic the real-life applications as closely
as possible.
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