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Abstract—It is well known that suboptimal detection schemes
for multiple-input multiple-output (MIMO) spatial multiplexing
systems (equalization-based schemes as well as nulling-and-can-
celling schemes) are unable to exploit all of the available diver-
sity, and thus, their performance is inferior to ML detection. Mo-
tivated by experimental evidence that this inferior performance is
primarily caused by the inability of suboptimal schemes to deal
with “bad” (i.e., poorly conditioned) channel realizations, we study
the decision regions of suboptimal schemes for bad channels. Based
on a simplified model for bad channels, we then develop two com-
putationally efficient detection algorithms that are robust to bad
channels. In particular, the novel sphere-projection algorithm (SPA)
is a simple add-on to standard suboptimal detectors that is able to
achieve near-ML performance and significantly increased diver-
sity gains. The SPA’s computational complexity is comparable with
that of nulling-and-cancelling detectors and only a fraction of that
of the Fincke–Phost sphere-decoding algorithm for ML detection.

Index Terms—Equalization, maximum likelihood detection,
MIMO channels, nulling and cancelling, spatial multiplexing,
sphere decoding, V-BLAST.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) fading
channels offer not only the potential of high data rates

but also the promise of high reliability due to their inherently
available diversity (e.g., [1]). It is well known that this available
diversity cannot be fully exploited by suboptimal equalization-
based detection schemes (e.g., [2]), including nulling-and-
cancelling schemes [3]. Maximum-likelihood (ML) detection
can exploit all of the available diversity but tends to be com-
putationally intensive. This is also true for the Finke–Phost
sphere-decoding ML algorithm [4], as will be illustrated in
Section VII. Thus, there is a strong demand for computationally
efficient suboptimal detection algorithms that can exploit a
large part of the available diversity.

In this paper, we develop such improved detection algorithms
for spatial multiplexing systems such as V-BLAST [2]. Our
starting point is to examine why the suboptimal detection

Manuscript received December 20 2002; revised April 22, 2003. This work
was supported by the FWF under Grant P15156. The associate editor coordi-
nating the review of this paper and approving it for publication was Dr. Rick S.
Blum.

The authors are with the Institute of Communications and Radio-Frequency
Engineering, Vienna University of Technology, A-1040 Wien, Austria (e-mail:
hartes@aurora.nt.tuwien.ac.at).

Digital Object Identifier 10.1109/TSP.2003.818210

schemes fail to exploit all of the available diversity. One ex-
planation is that suboptimal detection “uses up” the degrees of
freedom that would otherwise offer diversity (e.g., [5]). Here,
we explain the inferior performance of suboptimal detection
schemes by comparing the decision regions of these schemes
to the decision regions of the ML detector. The “improper”
decision regions of suboptimal schemes are no problem for
channel realizations with a condition number near to 1. (Note
that for condition number 1, zero-forcing equalization followed
by componentwise quantization is equivalent to ML detection.)
However, for channel realizations with a large condition
number, they cause a significant performance degradation. In
fact, it turns out that these “bad”1 channel realizations with
large condition number are to a great extent responsible for the
inferior average performance of suboptimal detection.

Motivated by this insight, we introduce an idealized model
for bad channels that allows a substantially simplified imple-
mentation of ML detection. This efficient detection algorithm
is then extended to nonidealized channels. A final modification
and simplification yields the novel sphere-projection algorithm

(SPA). The SPA is an efficient nonlinear add-on to standard sub-
optimal detection schemes that makes these schemes robust to
bad channels. For spatial multiplexing systems of pratical in-
terest (e.g., six transmit antennas and six receive antennas), the
detection schemes obtained by this approach are demonstrated
to yield excellent performance at low computational complexity.

Our paper is organized as follows. In the remainder of this
section, we describe the system model and give an overview
of existing detection schemes for spatial multiplexing systems.
In Section II, the effects of bad channels on equalization-based
detection schemes are discussed. An idealized model for bad
channels is introduced in Section III, and an efficient ML detec-
tion algorithm for this model is developed in Section IV. In Sec-
tion V, this detection algorithm is extended to arbitrary MIMO
channels (for which it will no longer be ML). In Section VI, a
simplification of this latter detection algorithm yields the SPA.
Finally, simulation results presented in Section VII show that
the proposed algorithms can yield near-ML performance at just
a fraction of the computational cost of the Fincke–Phost sphere-
decoding algorithm.

1The term “bad” refers to the poor performance of suboptimal detection
schemes for spatial multiplexing systems. Note, however, that these channels
are not necessarily “bad” in the sense of, e.g., low channel capacity.
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Fig. 1. Detector performance and channel condition number for a (4,4), iid
Gaussian channel. (a) SER performance of various detection schemes versus
condition number of the respective channel realization for QPSK modulation
and an SNR of 15 dB. (ZF is ZF equalization based detection, MMSE is MMSE
equalization based detection, NC-MMSE is nulling and cancelling using MMSE
equalization, and ML is ML detection.) (b) Cumulative distribution function of
the condition number.

A. System Model

We consider a MIMO channel with transmit antennas
and receive antennas [this will be briefly termed
an ( , ) channel]. This channel is part of a spatial
multiplexing system such as V-BLAST [2], where the th
data stream (or layer) is directly transmitted on the th
transmit antenna. This leads to the well-known baseband model

(1)

with the transmit vector
, the channel matrix , the re-

ceived vector , and the

noise vector . The data
streams are assumed zero-mean, uncorrelated, stationary,
white random processes with variance . The channel is
considered constant over a block of consecutive time instants
and perfectly known at the receiver. The noise processes
are statistically independent, zero-mean, circularly symmetric
complex-valued, Gaussian, stationary, white random processes
with variance . For simplicity, we will hereafter omit the time
index and, thus, write (1) as .

B. Review of Detection Schemes for Spatial Multiplexing

Systems

The major detection approaches for spatial multiplexing sys-
tems are linear equalization followed by quantization (e.g., [2]),
nulling and cancelling (or decision-feedback) [2], and ML de-
tection [4], [6]. The first two approaches are suboptimal but have
significantly lower computational complexity than ML detec-
tion. We will briefly review these three detection schemes.

Linear Equalization Based Detection: In linear equaliza-
tion-based detection, an estimate of the transmitted data vector

is calculated as , where is an equalization matrix.
The detected data vector is then obtained as ,
where denotes componentwise quantization according
to the symbol alphabet used. (Componentwise quantization is
suboptimal in general because the multiplication by intro-
duces correlations of the noise components.) The zero-forcing

(ZF) equalizer is given by the pseudo-inverse [7] of , i.e.,
. (For the last expression, we

assumed that and that has full rank.) Thus, the
result of ZF equalization (before quantization) is

which is the transmitted data vector corrupted by the
transformed noise . The minimum mean-

square error (MMSE) equalizer is given by [8]
, which minimizes the mean-square

error . Thus, the result of MMSE equalization is

Nulling and Cancelling: In contrast to linear data detection,
where all layers are detected jointly, nulling and cancelling (NC)
uses a serial decision-feedback approach to detect each layer
separately (e.g., [2]). When a layer has been detected, an esti-
mate of the corresponding contribution to the received vector
is subtracted from ; the result is then used to detect the next
layer, etc. In the absence of detection errors, NC progressively
cleans from the interference corresponding to the layers al-
ready detected. To detect a specific layer, the layers that have
not been detected yet are “nulled out” (equalized) according to
the ZF or MMSE approach described above. Error propagation
can be a problem because incorrect data decisions actually in-
crease the interference when detecting subsequent layers. Thus,
the order in which the layers are detected strongly influences
the performance of NC.

ML Detection: ML detection is optimal in the sense of min-
imum error probability when all data vectors are equally likely.
For our system model (1) and our assumptions, the ML detector
is given by

(2)

Here, denotes the set of all possible transmitted data vectors
, . We note that , where is the el-

ementary symbol alphabet, and thus, . In general,
the computational complexity of ML detection grows expo-
nentially with . Using the Finke–Phost sphere-decoding
algorithm [4], ML detection can be achieved at an average

complexity that increases with roughly as , as
was shown in [9]. However, for bad channel realizations,
the complexity of sphere-decoding can be very high (see
Section VII-C).

It can be shown [4] that the ML decision rule (2) can be
rewritten as

(3)

This can be interpreted as the ML detector for an identity

channel corrupted by zero-mean Gaussian noise
(the noise contained in ) with covariance matrix

(4)

That is, after ZF equalization the noise is generally correlated.
We may view (3) as “ML detection after ZF equalization” or
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“ML detection in the ZF-equalized domain,” as opposed to “di-
rect ML detection” according to (2). Note, however, that (2) and
(3) are strictly equivalent.

II. “BAD CHANNEL” EFFECT

In this section, we will demonstrate that the inferior perfor-
mance of suboptimal detection compared with ML detection is
mainly caused by the occurrence of bad channel realizations.

A. Detector Performance and Bad Channels

In what follows, we will use the singular value decomposition
(SVD) , where the diagonal matrix contains the
singular values of and the matrices and contain,
respectively, the left and right singular vectors of as columns
[7]. We assume that the are indexed in nonincreasing order.
The condition number is the ratio of the
largest to smallest singular value. For a bad (poorly conditioned)
channel, is large.

Experiments suggest that the performance of suboptimal
detection schemes strongly depends on the channel’s condition
number. In Fig. 1(a), we show the symbol error rate (SER) of
various detection schemes versus the condition number of the
channel realization. In this simulation, we used a (4,4) channel
with independent and identically distributed (iid) Gaussian
channel matrix entries, QPSK modulation, and an SNR of 15
dB. It can be seen that there is a significant performance gap
between linear (i.e., ZF or MMSE) detection and ML detection
for about 4 or larger and between NC and ML detection for

about 20 or larger.
The impact of this behavior on the average SER performance

of suboptimal detection of course depends on the probability
with which bad channels occur. In Fig. 1(b), we show the cumu-
lative distribution function (cdf) of estimated in the course
of the simulation described above. It is seen that the probability
that exceeds a value of 10, 15, and 20 is 32%, 15%, and 9%,
respectively. This suggests that bad channels occur frequently
enough to cause a significant degradation of the average per-
formance of suboptimal detection schemes. Theoretical inves-
tigations show that for an increasing number of transmit and
receive antennas, the cdf is essentially scaled (expanded) in the

direction [10]. We can thus expect the bad channel effect to
become even worse for an increasing number of antennas.

While the performance of ML detection is fairly robust to
bad channel realizations, it is noteworthy that the computational
complexity of the Finke–Phost sphere-decoding algorithm for
ML detection significantly increases for bad channels [4], [11].
Thus, there is a strong demand for computationally efficient
suboptimal detectors that are able to achieve near-ML perfor-
mance. The detection methods presented in this paper are de-
signed to satisfy this demand.

B. Geometrical Analysis

The starting point for developing these improved detection
methods is a geometrical analysis of the decision regions of sub-
optimal detection methods in the case of bad channels.

ZF Detection: We first consider linear detection based on ZF
equalization. For a perfectly conditioned channel, i.e., ,

Fig. 2. Probability density function ofy and ZF and ML decision regions in
the ZF-equalized domain for a real-valued (2,2) channel and BPSK modulation.
(a) “Good” channel realization with condition number 1.3. (b) “Bad” channel
realization with condition number 7.1. The ZF decision regions are the four
quadrants; the ML decision regions are indicated by dash-dotted lines.

we have . Here, (4) shows that the components of the
noise vector are uncorrelated; furthermore, the ML
detector in (3) simplifies to
and thus becomes equal to the ZF detector solution

. On the other hand, for a poorly conditioned channel,
is quite different from being proportional to . Thus, the

components of are generally correlated, and the ZF solution
must be expected to be far away from the op-

timal ML solution2 .
For a geometrical analysis, we consider the probability den-

sity function (pdf) of the ZF-filtered Gaussian noise vector .
The contour surfaces of this pdf are hyperellipsoids [12]. Using

, the covariance matrix can
be written as

The th principal axis of the hyperellipsoids is such that its
direction is given by the th eigenvector of , which is
equal to the th column of , and its length is proportional
to the square root of the th eigenvalue of [12], which is
equal to

(5)

Thus, ZF equalization results in a distortion of the noise pdf
with respect to the spherical geometry of the pdf of the original
noise vector .

For illustration, Fig. 2 shows the pdf of the received vector
after ZF equalization for two different realizations of a
real-valued (2,2) channel with condition numbers 1.3 and 7.1.
The modulation format is BPSK. This figure also shows the ZF
decision regions (the four quadrants) and the ML decision re-
gions (indicated by dash-dotted lines). Whereas the ZF and ML
decision regions are similar for the “good” channel with con-
dition number 1.3, they are dramatically different for the “bad”
channel with condition number 7.1. Indeed, in the latter case,

2Note that even when c > 1, it is possible thatH has orthogonal columns
but with different norms. In this case,H H is diagonal, which means that the
components of ~w are still uncorrelated, and ZF detection will still be optimal.
However, simulations show that for poorly conditioned channel realizations, a
situation close to this case is very unlikely.
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Fig. 3. Same as Fig. 2(b) but with (a) MMSE decision regions and (b) ZF-
based NC decision regions instead of ML decision regions. The boundaries of
the MMSE and NC decision regions are indicated by dash-dotted lines.

the ML decision regions are nicely matched to the distorted
noise pdf, but the ZF decision regions are not because they cor-
respond to simple componentwise quantization. In particular,
the boundary lines of the ML decision regions differ mainly by
offsets that are orthogonal to the dominant principal axis
(corresponding to the dominant eigenvalue of and,
thus, to the dominant noise component). This is intuitive, since
any shift in the received vector in the direction of the dominant
noise component is very likely caused by noise. For bad chan-
nels, it is thus desirable that the decision regions be approxi-
mately invariant to shifts in the direction of the dominant prin-
cipal axis . In general, the decision regions of linear detec-
tion schemes cannot have this property because their boundary
lines always go through the origin.

MMSE Detection: Fig. 3(a) shows the decision regions of
MMSE equalization-based detection in the ZF equalized do-
main3 for the bad channel realization (condition number 7.1).
The angles of the boundary lines of the MMSE decision regions
are better matched to the distorted noise pdf than those of the ZF
decision regions; however, the boundary lines still go through
the origin and, thus, cannot implement the offsets that would
allow them to become similar to the ML decision regions.

NC Detection: Finally, Fig. 3(b) shows the decision regions
(again represented in the ZF equalized domain) for ZF-based
NC detection. Because the first symbol is simply ZF detected,
one boundary of the corresponding decision region is fixed to
the ordinate, which is again quite different from the ML decision
regions. For successive symbols, offsets can be realized only to
a certain extent. As a consequence, ZF-based NC detection per-
forms better than ZF or MMSE detection but is still significantly
poorer than ML detection. For MMSE-based NC detection, a
similar argument applies. Fig. 1(a) shows that for growing ,
the performance gap betwen MMSE-based NC detection and
ML detection increases more slowly than that of ZF or MMSE
detection but eventually becomes just as wide as that of MMSE
detection.

Furthermore, it can be shown that the diversity gain achieved
by NC (both ZF- and MMSE-based) is given by
[3]. Thus, for , the diversity gain is small.

3We represent and compare the decision regions of all detectors in a common
domain, namely, the domain obtained after ZF equalization. Note that ZF equal-
ization by itself does not imply any loss of optimality, and it has the advantage
that the symbols are at the correct positions.

Fig. 4. Ratio of noise variances � =� in the direction of consecutive
principal axes in the ZF-equalized domain and channel condition number c .
(a) Average ratios Ef� =� g versus the condition number c of the
respective channel realization for a (4,4) iid Gaussian channel. (b) cdf of the
ratios � =� for c = 70.

III. IDEALIZED BAD CHANNEL MODEL

The previous results suggest that the average performance
of suboptimal detection schemes can be improved by making
these schemes robust to bad channels. Specifically, the decision
regions should be made approximately invariant to a shift in
the direction of the dominant noise axis. As a basis for such a
modification, we will first formulate an idealized model for bad
channels. In Section IV, this will allow us to derive an efficient
near-ML detection algorithm for bad channels.

A. Formulation of the Idealized Bad Channel Model

Our idealized bad channel model can be motivated as fol-
lows. According to (5), i.e., , the ratios of the
noise variances in the directions of consecutive principal axes
are given by . Fig. 4(a) shows es-
timates of the average ratios for a (4,4) channel
with iid, circularly symmetric complex-valued, Gaussian entries
versus (i.e., the were estimated by
averaging over an ensemble of channels with a given

). It can be seen that for a bad channel (i.e., large ), on av-
erage, is much larger than the other ratios and

. Thus, on average, is much smaller than the other
singular values , , , or equivalently, the largest prin-
cipal-axis noise variance is much larger than the
other principal-axis noise variances , , and . Sim-
ulations show that a similar behavior is also exhibited by higher
dimensional channels. To demonstrate that the ratios
are well concentrated about their mean , Fig. 4(b)
shows the cdf of for .

This suggests that for a bad channel, the largest noise vari-
ance (corresponding to the smallest singular value of
and the associated principal axis ) dominates all the other
noise variances and, hence, causes the main part of the bad
channel effects that plague suboptimal detection. Therefore,
we approximate a bad channel by an idealized bad channel

model (IBCM) that is constructed by setting the smallest
singular value equal to zero and the remaining singular values
equal to the largest singular value:

with

and (6)
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Note that whereas the singular vectors of the respective
channel realization —and thus the principal axis directions
of the ZF-domain noise as well—are maintained, the prin-
cipal-axis noise variances are modified because we use an in-

finite dominant noise variance and
equal remaining noise variances

for . (Actually, we will see presently
that the values of these remaining noise variances do not matter
as long as they are finite and equal.) Indeed, approximating a
channel with the IBCM is equivalent to approximating the
hyperellipsoids constituting the contour surfaces of the pdf of
by hypercylinders of infinite length whose axis is the dominant
noise axis . This approximation is motivated by our desire
to make the decision regions invariant to a shift in the direction
of , as described in Section II-B.

B. ML Detection for the Idealized Bad Channel Model

Although the IBCM is only a crude approximation to a bad
channel , it does capture an essential part of the “bad channel”
effects that plague suboptimal detection. We now consider ML
detection for the IBCM (termed IML detection); this will later
serve as a basis for developing an efficient near-ML detector for
bad channels. According to (3), the IML decision rule is

(7)

Using (6), we have

, with denoting the orthogonal
projector onto the space orthogonal to . Thus, (7) becomes

(8)

where we have used . Because of the pro-
jector occurring in (8), the norm of the component of

perpendicular to is minimized, whereas the com-
ponent of in the direction of (the dominant noise
direction) is suppressed in this minimization. Thus, as desired,
the IML decision regions are invariant to this latter component.

For an alternative formulation and geometrical interpretation
of the IML decision rule (8), let us define the reference line as
the straight line that is parallel to the dominant noise axis
and whose offset from the origin is :

(9)

We maintain that the norm minimized in
(8) is equal to the distance of from . Indeed, let
denote the point of closest to a given data vector , i.e.,

for
. Then,

Fig. 5. Illustration of IML detection for a real-valued (2,2) channel and BPSK
modulation. (a) pdf of y for the IBCM corresponding to the bad channel
of Figs. 2 and 3 and IML decision regions indicated by dash-dotted lines. (b)
Reference-line geometry of IML detection according to (10).

the distance of from is given by , and this dis-
tance can easily be shown to be equal to :

Thus, as claimed, ML detection for the IBCM is equivalent to

finding the data vector that minimizes the distance

from the reference line :

(10)

This formulation will be essential for developing an efficient
ML detection algorithm in Section IV.

To continue the example of Figs. 2 and 3, Fig. 5(a) depicts
the pdf of for the IBCM associated with the bad channel
realization with . The IML decision regions are also
shown. The geometry of the reference-line formulation of IML
detection (10) is illustrated in Fig. 5(b).

IV. EFFICIENT ML DETECTOR FOR THE

IDEALIZED BAD CHANNEL MODEL

In this section, we develop an efficient ML detection algo-
rithm with complexity for the IBCM. We first show that
the reference-line formulation of the IML detector derived in the
previous subsection allows a significant reduction of the search
set .

A. Reduced Search Set

Let be the ZF decision region (in the ZF-equalized do-
main) corresponding to a data vector . That is, for
any , the ZF decision is . Because, in the
ZF-equalized domain, the ZF decision is a simple component-
wise quantization, every is closer to than to any
other data vector . We will also say that is “the
data vector corresponding to .”

Theorem 1: The ML detector for the IBCM in (8) is equiva-
lent to

(11)
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where the reduced search set is given by all data vectors
that correspond to ZF decision regions pierced by the

reference line in (9).
Proof: As before, let denote the point of closest

to so that expresses the distance of from .
Assume (proof by contradiction) that does not correspond
to a ZF decision region pierced by , i.e., no point of lies in
the ZF decision region of . Hence, in particular,
does not lie in the ZF decision region of , and thus, it must
lie in the ZF decision region of some other data vector .
That is, is closer to than to , i.e.,

. For this other data vector
, we also have

because is the point of closest to , and thus,
cannot be closer to . Combining the above two

inequalities yields ,
which means that is closer to than , but we know
from (10) that is the data vector closest to . Thus, we
have a contradiction, and the proof is complete.

It will be advantageous to represent the complex reference
line , as an equivalent

real reference plane —the 2-D plane with

Re and Im . Replacing complex scalars by 2-D
vectors composed of the real and imaginary parts, the th scalar
component of the reference line equation, given by

, can be written as

(12)

with

The reduced search set then consists of all data vectors
whose ZF decision regions are sliced by the real reference

plane (since slicing by is equivalent to piercing by ).
To characterize , it is sufficient to specify for each
an arbitrary point of the decision region corresponding to ,
since can easily be recovered from as . The idea
behind the algorithm proposed next is that these points can be
found in the reference plane , and thus, the search for can
be restricted to .

B. Partitioning of the Reference Plane

The intersection of the ZF decision regions with the reference
plane induces a partitioning of . We will now show that
for a wide class of symbol alphabets, this partitioning can be
calculated very easily. Subsequently, this will serve as a basis
for an efficient determination of the reduced search set .

We assume a “line-structured” symbol alphabet , which, by
definition, is such that the boundaries of the quantization re-
gions in the 2-D real symbol domain (i.e., the ML decision re-
gions for transmission of a single symbol over an additive white
Gaussian noise SISO channel) are given by straight lines. Exam-
ples of line-structured alphabets are ASK, QAM, and PSK but
not, e.g., a hexagonal constellation. Let denote the number of

Fig. 6. Boundary lines B in the real reference plane P for an (8,8)
channel and 4-QAM modulation. (The boldface line segment will be addressed
at a later point.)

boundary lines in the 2-D real symbol domain, and let the th
real boundary line be given by

(13)

with , where the 2 1 vectors and define
slope and offset, respectively. For example, the 4-QAM alphabet

has orthogonal
boundary lines defined by , , and

.
We now consider the partitioning of the reference plane

induced by the ZF decision regions. The ZF decision regions
are bounded by th hyperplanes. The ( , ) hyperplane is
obtained by setting the th component of a vector equal to
the th boundary line (13). To calculate the partitioning of ,
we must thus calculate the intersection of with all boundary
hyperplanes. The intersection of with the ( , )th boundary
hyperplane yields a straight boundary line that can
be calculated by equating (13) and (12), i.e., .
This gives or, equivalently

(14)

with

where (note that
. Because is an orthogonal matrix up to a factor,

the angles between the boundary lines corresponding to the
th component are equal to the angles between the boundary

lines in the symbol alphabet domain.
The boundary lines , ,

partition the reference plane into elementary cells
. In Fig. 6, this cell partitioning of is illustrated for

an (8,8) channel and 4-QAM modulation; here, and
so that we obtain boundary lines. Each cell

is the intersection of a ZF decision region with . Thus, all
points of a given will lead to the same quantized data vector.
More specifically, recall that each point of is parameterized
by or, equivalently, by , and
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the corresponding vector in is
in (9). Any point of a given cell corresponds to a vector

for which ZF decision (quantization) leads to the same
, i.e., for all . This belongs to

the reduced search set because it corresponds to a ZF deci-
sion region sliced by . Therefore, any collection of arbitrary

cell points—one point for each cell—defines the reduced search

set . Note that the ZF estimate is obtained for
; see (9). Thus, belongs to the

reduced search set .
From the above, it follows that the size of the reduced

search set equals the number of cells . To find an upper bound
on , recall that the cell partitioning is defined by
boundary lines. Assuming that boundary lines are given,
it is easy to verify that each additional boundary line yields
at most new cells (it will yield new cells if and only if it
intersects at different points with all previous lines). Thus

For example, for 4-QAM since there are no par-
allel boundary lines, and only two boundary lines intersect in
a given intersection point. If there are parallel boundary lines
(e.g., 16-QAM) and/or if more than two boundary lines inter-
sect in the same point (e.g., 8-PSK), then .

Comparing with , we see that for rea-
sonably high data rates, . For example, for an (8,8)
channel and 4-QAM modulation, we obtain

pierced decision regions out of a total of
decision regions. This illustrates the significant reduction of
complexity achieved by the reduced search set .

We will next present an efficient algorithm for ML detection
that is based on the reduced search set and the insights gained
so far. This algorithm consists of two parts: i) efficient determi-
nation of and ii) efficient calculation of the distance of every

to the reference plane .

C. Efficient Determination of

According to the previous subsection, the reduced search set
can be determined by finding an arbitrary point of each cell

since the corresponding defines the data vector
associated with by . To find a point

of each cell in an efficient manner, we suggest a systematic
search of the reference plane along each boundary line.

To search along the th boundary line , we
calculate the intersection points of with
all , that are not parallel to .
Equating with

and solving for yields

(15)

with

Fig. 7. Algorithm for determining the data vectors d 2 ~D corresponding
to all cells bounded by the (m,p)th boundary line B (cf. the boldface line
in Fig. 6). Based on the first intersection point k , the first cell point
k and the associated first data vector d are calculated. All remaining
data vectors d 2 ~D associated with B are uniquely determined by the
remaining intersection points, using the hops indicated by the dotted and dashed
arrows.

where represents the first row of the inverse of the 2 2
matrix .

As we move along , the intersection points with the
other boundary lines (calculated previously) tell us when we
cross the border from one cell to the next.4 We can sort these
intersection points according to, e.g., monotonically increasing
real part coordinates. Let be the intersection point
with the smallest real part coordinate. Fig. 7 shows (this
could be the boldface line depicted in Fig. 6) and the intersection
point . To move from into the first cell,
we add a small offset and obtain the new point

, as illustrated in Fig. 7. The vector in
corresponding to is given by .
We then obtain our first data vector associated with

as .
The remaining data vectors along are now

determined by alternately “hopping” over and an inter-
secting boundary line, as illustrated in Fig. 7. At each intersec-
tion, we perform one step consisting of two hops. The first hop
(indicated by the dotted arrow) is over , i.e., the current
search line; this corresponds to an update of the th data vector
component across the th boundary. The second hop (indicated
by the dashed arrow) is over , i.e., our first intersecting
boundary line; this corresponds to an update of the th data
vector component across the th boundary.

These data vector component updates can be performed
without calculating new or vectors (i.e., no hops are actually
implemented). Suppose we just obtained a specific
and wish to determine the next corresponding to the
cell we would reach by hopping over the intersecting boundary
line . Now, by definition, corresponds to the

th component of and the th boundary line in the
symbol alphabet domain. By hopping over , we thus
move from to

4For simplicity of exposition, we assume that the intersection points of any
two boundary lines are different. This holds for arbitrary QAM constellations;
however, it does not hold for PSK constellations with jAj > 4 because there,
all the P boundary lines in the symbol plane intersect at the origin, and this ge-
ometry is maintained inP . For example, for 8-PSK, we obtainM intersection
points, each of which is the intersection of P = 4 boundary lines. However,
these points are known a priori, and the following algorithm can easily be ex-
tended to this situation.
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where the vector is zero except for the th com-

ponent. That component is given by an update value
that depends on the th component of and on the th
boundary. For example, for 4-QAM, we have

Im if

Re if

Thus, here, the update simply amounts to flipping the imaginary
part (for ) or the real part (for ) of the th data
vector component.

D. Efficient Calculation of Distances

According to Theorem 1, we have to minimize the distance
over all . In the previous

subsection, we have shown how to determine efficiently. We
now present an efficient recursive algorithm for calculating the
squared distances .

Again, we move along . Suppose that has already
been determined and that the next data vector corre-
sponds to a hop over the intersecting boundary line . As
was shown in the previous subsection, is a neighbor of

that differs from only in the th component, namely,
by . Thus, the distance for is

Re

(16)

with

Re (17)

where is the th component of and is the

th component of . This recursion is initial-
ized by calculating in a straight-
forward manner.

E. Summary of the ML Detection Algorithm

We have now developed the main elements of our efficient
ML detection algorithm for the IBCM. In an actual imple-
mentation of this algorithm, the recursive procedure described
in Sections IV-C and D has to be performed for all
boundary lines except for the last one (whose data vectors have
all been processed before) so that all data vectors are
taken into account and the ML solution according to (11) is
obtained. For each boundary line, at most different data
vectors are considered, which results in a total maximum of

checked data vectors. Compared
with , we see that most of
the data vectors are checked several times. (Of course,
the distances for data vectors that have been checked before

Fig. 8. Processing associated with the (m;p)th boundary line B .

need not be calculated anew.) For example, for an (8,8) channel
and a 4-QAM alphabet, we have a maximum of 448 checked
data vectors, of which maximally 137 are different. Note,
however, that most of the multiply checked data vectors are
obtained through efficient single symbol updates as described
above.

The principal steps of our algorithm can finally be summa-
rized as follows.

• Determine all boundary lines in [see (14)].
• Calculate all intersection points (15) and order them for

each , e.g., according to increasing real part coor-
dinates.

• For each , determine the associated data vectors
and their distances , as discussed in Sec-

tions IV-C and D. The processing associated with
is summarized in Fig. 8.

V. EXTENSION TO ARBITRARY CHANNELS

The algorithm presented in the last section performs ML de-
tection for the IBCM. Because actual channel realizations will
not conform to the IBCM, we will now extend our algorithm to
an arbitrary MIMO channel . Specifically, we propose to use
an IBCM approximation of to find the reduced search set
and then to minimize over , i.e.,

Note that is not guaranteed to be equal to the ML decision

since we minimize not over the whole data set
of size (which would have a computational complexity

that is exponential in ) but over the reduced set . On the
other hand, the complexity of our algorithm is only , as
will be shown presently. The algorithm consists of the following
steps.

• Calculate and .
• Determine the dominant eigenvector of .
• Using an IBCM approximation of , find the reduced

search set as explained in Section IV-C.
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• Search for the data vector minimizing . The
squared distances can again be cal-
culated recursively; the update term in (17) is replaced
by

Re (18)

where denotes the th column of . Here, the term
can be calculated recursively as well, and

the can be precalculated.
Two cases where does coincide with are i) an or-

thogonal channel (here, and because

) and ii) an IBCM (here, ). We
can thus expect near-ML performance for very good channels
and for bad channels with a single dominant noise axis.

For , we now study how the algorithm’s com-
plexity depends on the parameters and that determine
the transmission rate. We first list the preparatory steps that have
to be performed once for each data block over which the channel
is assumed constant, together with their complexity:

• calculation of and : com-
plexity ;

• calculation of : complexity if the power
method [7] is used;

• calculation of for : complexity
.

Thus, the dominant complexity of the preparatory steps is
per data block. Additionally, the following steps have

to be performed at each time instant (i.e., for each transmitted
data vector):

• determination of all boundary lines in and their
intersection points: complexity ;

• calculation of initial data vectors and their associ-
ated distances: complexity ;

• calculation of roughly distance updates
according to (18): complexity .

Hence, the overall complexity of our algorithm is per
transmitted data vector. This is cubic in the number of transmit
antennas and, since usually , quadratic in the
symbol alphabet size .

VI. SPHERE-PROJECTION ALGORITHM

In this section, we will achieve another substantial reduction
of computational complexity through a further reduction of the
data search set. The resulting sphere projection algorithm (SPA)
can be viewed as a simple nonlinear add-on to an existing subop-
timal scheme such as ZF, MMSE, or NC detection. This add-on
improves the error-rate and diversity-gain performance of the
suboptimal detector by making it robust to the bad channel ef-
fects discussed in Section II.

The add-on construction of the SPA is as follows. Let
denote the result of the suboptimal detector. This result can be
expected to be reasonably good for a good channel. In order
to improve the performance for bad channels, we additionally
consider a suitably chosen set of valid data vectors

that are potentially better than in the sense of smaller
. We then minimize over the search set

that consists of and all data vectors in :

with

(19)
The SPA is an add-on to the given suboptimal detector because

is calculated and included in the total search set .
To keep our discussion simple, we consider only alphabets

with constant modulus (i.e., arbitrary PSK constellations,
which includes 4-QAM and binary antipodal signaling). Here,
all data vectors are located on an -dimensional “data hy-
persphere” about the origin, with radius . This
geometry will allow a simple construction of that uses a
projection onto the data hypersphere (this explains the name
SPA). The SPA can be extended to symbol alphabets that do not
satisfy the constant-modulus property by using several hyper-
spheres; however, this results in increased complexity.

A. Construction of the Additional Search Set

The additional search set has to be constructed such that
it improves the detector performance in the bad channel case.
Therefore, let us consider a bad channel whose dominant noise
component in the direction of (i.e., of the reference line )
is much larger than all other noise components. This channel can
again be approximated by an IBCM. Because the ML detector
for the IBCM chooses the data vector with minimum distance
from (see Section III-B), it makes sense to construct as
a set of data vectors that are close to . On the other hand, we
know that all data vectors are located on the data hypersphere

. With the SPA, for reasons of algorithmic simplicity, we at-
tempt to combine these two properties by choosing for data
vectors that are close to the intersection . However, this
intersection does not always exist. Therefore, two cases will be
distinguished.

• Case 1: If intersects , we choose to consist of
data vectors located at or at least close to the
intersection.

• Case 2: If does not intersect , we choose to consist
of data vectors that are close to .

In the following, we will elaborate on both cases.
Case 1: Suppose intersects . Using the decomposition

, where is col-
inear with and is orthogonal to ,

can be rewritten as

with (20)

The intersection corresponds to the equation
or, equivalently

(21)

In the real reference plane , is represented by the 2-D real
vector , and . We can then write (21) as

(22)

with radius (note that

because we assumed that an intersection exists). Equa-
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Fig. 9. Geometry underlying the SPA. (a) Some boundary lines intersect the intersection circle I (only possible for Case 1). (b) No boundary line intersects I
(possible for Case 1 and Case 2). The shaded regions indicate (some of) the cells corresponding to data vectors in D .

tion (22) defines an intersection circle that represents
in the reference plane . Because , the center
of is at .

Next, we find all cells that are pierced by the
intersection circle . We first calculate all boundary
lines . We then calculate the intersection points—if
they exist—of each [see (14)] with [see (22)], i.e.,

, where is given
by (14). These intersection points are illustrated in Fig. 9(a).
(Here, we assume that at least one boundary line intersects

. If no such intersection exists although intersects —cf.
Fig. 9(b)—the processing for Case 2 described further below
has to be performed.) The intersection points are sorted ac-
cording to their angle. Starting with angle , the first data
vector in is obtained as . Now, we move
along from one intersection point to the next one. In this
process, we apply the data component update procedure from
Section IV-C to obtain the remaining data vectors ,
and we use the recursion (18) to efficiently calculate the
distances in (19).

The size of the resulting is bounded as
because each one of the boundary lines has zero or
two intersection points with . The worst case
occurs if and only if all boundary lines intersect .

Case 2: If , then and do not intersect
[see Fig. 9(b)]. It can here be shown that [which, ac-

cording to (20), corresponds to ] is the point of with
minimum distance from . We thus take as
the first data vector in . Simulation results indicate that it is
advantageous to include also the nearest neighbors of in

. These additional data vectors can easily be found by sub-
stituting the nearest-neighbor symbols for the individual com-
ponents of . For PSK constellations, we obtain two nearest
neighbors for each data vector component, yielding

. The distances in (19) can again
be calculated recursively according to (18).

The same procedure is used if and intersect but no
boundary line intersects the intersection circle (cf. the
discussion of Case 1 above).

B. Discussion of the Sphere-Projection Algorithm

Having explained the efficient construction of the additional
search set , we now discuss the use of the SPA5 as an add-on
to a suboptimal detector.

Algorithm Summary and Complexity: The principal steps of
the SPA can be summarized as follows.

• Calculate (the result of the given suboptimal de-
tector) and the associated distance .

• Calculate and .
• Calculate the dominant eigenvector of .
• Calculate all boundary lines in .
• Determine the additional search set and calculate the

corresponding distances
— by considering all data vectors whose cells are
pierced by the intersection circle ;
— or, if does not exist or if no boundary line inter-
sects , by considering and its next
neighbors.

• Find the minimal distance (including the distance obtained
for ).

Here, may be the result of ZF detection, MMSE detec-
tion, ZF-based NC detection, or MMSE-based NC detection; the
resulting SPA variants will be referred to as ZF/SP, MMSE/SP,
NC-ZF/SP, and NC-MMSE/SP detection, respectively.

The computational complexity of the SPA add-on (not
counting calculation of ) can be estimated as follows.
Among the preparatory steps that have to be performed once
for each transmitted data block during which the channel
is constant, calculation of has the dominant
complexity of . Additionally, at each time instant, we
have to compute two distances with complexity and,
in the worst case, efficient distance updates with
total complexity . An experimental assessment of
complexity will be provided in Section VII-C.

5In both Case 1 and Case 2, an important aspect of the SPA is that we look
for the point(s) on the data hypersphere H that is/are closest to the reference
line L. In a certain sense, this corresponds to a projection onto the hypersphere
H, which explains the name “sphere-projection algorithm.” In Case 1, where L
andH intersect, the projection points are given by the intersection circle I .
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SPA Variants: To use the SPA as an add-on to ZF detection,
we choose . The resulting ZF/SP algorithm is
the most efficient SPA variant because calculation of is a
part of the SPA.

To use the SPA as an add-on to MMSE detection, we
choose , where

is the result of MMSE equalization. Fur-
thermore, we propose to replace the reference line in (20)
by the “MMSE-based reference line” :

. is again parallel to the dominant principal
axis , but its offset is the component of (rather
than of ) perpendicular to . The resulting MMSE/SP

algorithm can be obtained simply by replacing in the ZF/SP
algorithm with . The ratio-
nale for the MMSE/SP algorithm is that on average,
will be closer to the transmitted data vector than . Note
that applying the power method to
instead of requires a few more iterations to obtain
accurate results for . This is because the “regularization
term” decreases the ratio of the largest to second
largest singular value of , as compared
with , which slows down the convergence of the
power method [7].

Finally, to combine the SPA with NC detection (either
ZF-based or MMSE-based), we propose to execute the ZF/SP
or MMSE/SP algorithm, respectively, except for the use of
the NC detection result for . As we will demonstrate
in Section VII, the NC-MMSE/SP algorithm is able to yield
very-near-to-ML performance at a fraction of the computational
cost of Fincke and Phost’s sphere-decoding algorithm.

VII. SIMULATION RESULTS

Finally, we present simulation results in order to assess
the error-rate performance and computational complexity of
the proposed detection algorithms in comparison to the ZF,
MMSE, NC, and ML schemes. In our simulations, we used
4-QAM modulation and MIMO channels with iid Gaussian
entries. The dominant noise axis was computed by means
of the power method [7].

A. SER versus Number of Power Method Iterations

First, we study the dependence of the symbol error rate (SER)
on the number of power method iterations, which is denoted by

. Fig. 10 shows the SER versus for ZF/SP and MMSE/SP
detection for a (6,6) channel at an SNR6 of 20 dB. For com-
parison, the SER achieved with ZF and MMSE detection is in-
dicated by horizontal lines. It is seen that for , the SPA
add-on yields significant performance improvements. For

, we used a randomly chosen ; as can be expected, in this
case, the performance improvements yielded by the SPA add-on
are negligible. For both ZF/SP and MMSE/SP, increasing be-
yond 4 does not yield any additional performance improvement.
Thus, we chose in all simulations presented below.

6The SNR is defined as EfjjHdjj g=Efjjwjj g =M � =� .

Fig. 10. SER versus the number of power method iterations K for a (6,6)
channel and 4-QAM modulation at an SNR of 20 dB. K = 0 corresponds to a
randomly chosen axis v .

(a)

(b)

Fig. 11. SER versus SNR performance of the various proposed and standard
detectors using 4-QAM modulation. (a) (4,4) channel. (b) (6,6) channel.

B. SER versus SNR

Figs. 11(a) and (b) show the SER versus SNR performance of
the various proposed and standard detectors for a (4,4) channel
and a (6,6) channel, respectively. As in Section V, ML denotes
the extension of the IML algorithm to arbitrary channels. For the
NC algorithms, we used the layer ordering maximizing the post-
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TABLE I
MEASURED COMPLEXITY IN KFLOPS FOR (a) PREPARATORY (OVERHEAD) OPERATIONS PERFORMED ONCE PER DATA BLOCK AND

(b) DATA DETECTION OPERATIONS PERFORMED ONCE PER DATA VECTOR

detection signal-to-noise ratio at each detection step as proposed
in [2]. The following conclusions can be drawn from the results
shown in Fig. 11.

• All proposed detectors perform substantially better than
the standard suboptimal detectors. In particular, even the
simplest of the proposed detectors (ZF/SP) outperforms
the best standard suboptimal detector (NC-MMSE with
optimal layer ordering).

• All proposed detectors achieve higher diversity orders
than the standard suboptimal detectors.

• For the (4,4) channel, the MMSE/SP and NC-MMSE/SP
detectors perform practically as well as the ML detector
[the corresponding SER curves in Fig. 11(a) are indistin-
guishable], and the ZF/SP detector achieves near-ML per-
formance.

• For the (6,6) channel, the NC-MMSE/SP detector achieves
near-ML performance, and the performance of the other
proposed detectors is intermediate between that of the ML
detector and that of the best standard suboptimal detector
(NC-MMSE with optimal layer ordering).

• For the (6,6) channel, the performance of the ZF/SP and
MMSE/SP detectors is close to that of the detector.
This shows that our strategy for constructing works
well.

• A comparison of the results obtained for the (4,4) and (6,6)
channels suggests that for increasing channel size, the per-
formance of the proposed algorithms degrades (compared
with ML performance). This is due to the IBCM approx-
imation underlying our algorithms. Specifically, for in-
creasing channel size, the probability that two or more
principal axes are dominant (rather than just one as as-
sumed in the IBCM) increases so that the IBCM approxi-
mation becomes less accurate.

C. Computational Complexity

A rough picture of the computational complexity of the var-
ious detectors is provided in Table I for three different chan-
nels [(4,4), (6,6), and (8,8)] and 4-QAM modulation. The kflop
estimates displayed in Table I were measured using MATLAB
V5.3. Even though these complexity measurements depend on
the specific algorithm implementations used, they provide more
insight than the asymtotic results presented in earlier sec-
tions. The ML detector was implemented by means of Fincke

and Phost’s sphere-decoding (FPSD) algorithm [4]. The com-
plexity of FPSD was measured at an SNR of 10 dB. The com-
plexity of the other schemes is independent of the SNR.

Table I(a) shows the complexity of the operations that have
to be performed once for an entire data block during which the
channel is constant (i.e., “overhead” operations like calculation
of and ). Table I(b) shows the com-
plexity of the operations that have to be performed once for
each time instant or data vector (i.e., data detection operations
like determination of and , not including the overhead
computations considered in Table I(a)). Each table presents only
one value for both linear detectors (ZF and MMSE; denoted as
“lin.”) and only one value for both linear detectors combined
with the SPA (ZF/SP and MMSE/SP; denoted as “lin./SP”) be-
cause there is virtually no difference in complexity. Note that
in Table I(a), the values for FPSD and lin. are equal since both
algorithms have the same overhead complexity (computation of

). Similarly, in addition, the values for ML and lin./SP are
equal (same overhead of calculating and ).

The complexity of FPSD strongly depends on the channel
realization and the SNR; for a bad channel realization, it exceeds
the average complexity by a large amount. Thus, in addition to
the average FPSD complexity, Table I(b) shows the maximum
FPSD complexity obtained during 10 000 simulation runs at an
SNR of 10 dB. A maximum complexity is also provided for
lin./SP and NC/SP; it refers to the case where all boundary lines
intersect the intersection circle (cf. Case 1 in Section VI-A).

From Table I, the following conclusions can be drawn.

• The maximum complexity of FPSD is much larger than
its average complexity. For practical system design, a lim-
itation of the maximum complexity is desirable. However,
FPSD with limited maximum complexity is no longer an
exact implementation of ML decoding.

• In contrast to FPSD, the complexity of ML detection is
independent of the channel realization and the SNR. Ac-
cording to Table I(b), the complexity of ML detection is
smaller than the average complexity of FPSD and only a
fraction of the maximum complexity of FPSD.

• For both FPSD and ML, the complexity of the operations
to be performed in each time instant is much larger than
for the other algorithms.

• For the lin./SP detectors, the complexity of the computa-
tions performed once per data block is lower than for the



2820 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 11, NOVEMBER 2003

NC detectors but slightly higher than for the linear detec-
tors and FPSD (due to the additional calculation of ).

• For the lin./SP detectors, the average complexity of the
computations performed once per data vector is about
twice that of the NC detectors but significantly lower (by
a factor of about 25 33) than that of FPSD.

• The overall complexity of the SPA detectors is higher than
that of the standard suboptimal detectors but much lower
than that of FPSD and . In particular, the complexity
of NC-MMSE/SP is just a fraction of the complexity of
both FPSD and , even though NC-MMSE/SP achieves
near-ML performance, as shown in Section VII-B.

VIII. SUMMARY AND CONCLUSIONS

The starting point of this paper was an analysis of the effects
of bad (poorly conditioned) channels on suboptimal detectors
for a MIMO spatial multiplexing system. The performance of all
standard suboptimal detection schemes severely degrades com-
pared to the performance of the maximum-likelihood (ML) de-
tector when bad channel realizations occur. We found that this
inferior performance is due to the inability of linear detectors
to properly adapt their decision regions to the noise statistics.
In addition, bad channels lead to a high computational com-
plexity of Fincke and Phost’s sphere-decoding algorithm for ML
detection.

Based on an idealized approximate model for bad channels
that captures the bad channel effects in a simplified form, we
then presented new detection methods that are robust to bad
channels. The initial form of the new detection approach was
an efficient ML detector for the idealized bad channel model.
Subsequently, we extended this detector to be suitable for
arbitrary (nonidealized) channels. Finally, we developed the
sphere-projection algorithm (SPA) that is a computationally ef-
ficient, nonlinear add-on to standard suboptimal detectors. This
add-on improves the error-rate and diversity-gain performance
of suboptimal detectors by making them robust to bad channel
realizations.

Simulations showed that the SPA outperforms ZF-based
and MMSE-based nulling and cancelling with optimal layer
ordering by achieving higher diversity gains at a comparable
computational complexity. The performance of the SPA is best
for systems of moderate size (which are of greatest practical
interest), whereas for increasing system size, it degrades com-
pared with the performance of ML detection. For example, for
a spatial multiplexing system with six transmit antennas and six
receive antennas, the SPA is able to yield near-ML performance
at just a fraction of the computational complexity of Fincke and
Phost’s sphere-decoding algorithm for ML detection.
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