
Efficient Detection of All Pointer and Array Access Errors

Todd M. Austin Scott E. Breach Gurindar S. Sohi

Computer Sciences Department

University of Wisconsin-Madison

1210 W. Dayton Street

Madison, WI 53706

{austin, breach,

Abstract

We present a pointer and array access checking technique

that provides complete error coverage through a simple set

of program transformations. Our technique, based on an ex-

tended safe pointer representation, has a number of novel

aspects, Foremost, it is the first technique that detects all

spatial and temporal access errors. Its use is not limited

by the expressiveness of the language; that is, it can be ap-

plied successfully to compiled or interpreted languages with

subscripted and mutable pointers, local references, and ex-

plicit and typeless dynamic storage management, e.g., C.

Because it is a source level transformation, it is amenable to

both compile- and run-time optimization. Finally, its per-

formance, even without compile-time optimization, is quite

good. We implemented a prototype translator for the C lan-

guage and analyzed the checking overheads of six non-trivial,

pointer intensive programs. Execution overheads range from

130% to 540%; with text and data size overheads typically

below 100~0.

1 Introduction

It is not difficult to convince programmers (or employers of

programmers) that programming errors are costly, both in

terms of time and money. Memory access errors are particu-

larly troublesome. A memory access error is any dereference

of a pointer or subscripted array reference which reads or

writes storage out side of the referent. This access can either

be outside of the address bounds of the referent, causing a

spatial access error, or outside of the lifetime of the referent,

causing a temporal access error. Indexing past the end of an

array is a typical example of a spatial access error. A typical

temporal access error is assigning to a heap allocation after

it has been freed.

Our own experiences as programmers as well as published

evidence lead us to believe that memory access errors are an

important class of errors to reliably detect. For example, in

This work was supported by grants from the National Science

Foundation (grant CCR-9303030) and Office of Naval Research

(grant NOO014-93-1-0465).

Permission to co y wfthout fee all or part of this material is
algranted provid that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copytng is by permission of the Association of Computing
Machinery. To copy otheiwise, or to republish, requires a fee
and/or specific permission.

sohi}@cs.wise.edu

[MFS90], Miller et. al. injected random inputs (a.k.a “fuzz”)

into a number of Unix utilities. On systems from six different

vendors, nearly all of the seemingly mature programs could

be coaxed into dumping core. The most prevalent errors de-

tected were memory access errors. In [SC91], Sullivan and

Chillarege examined IBM MVS software error reports over a

four year period. Nearly 50~o of all reported software errors

examined were due to pointer and array access errors. Fur-

thermore, of these errors, 25% were temporal access errors –

an error our checking methodology is particularly adept at

cat thing.

Memory access errors are possible in languages with ar-

rays, pointers, local references, or explicit dynamic storage

management. Such errors are particularly difficult to detect

and fix because:

● The effects of a memory access error may not manifest

themselves except under exceptional conditions.

. The exceptional conditions which lead to the program

error may be very difficult to reproduce.

. Once the error is reproduced, it may be very difficult to

correlate the program error to the memory access error.

Consider the erroneous C function in Figure 1. This func-

tion can create a memory access error in the return state-

ment expression. The function will reference the word im-

mediately following the array referenced by the pointer data

if the array does not contain the token.

The function illustrates the three difficulties in finding and

fixing memory access errors. First, FindToken () will only

produce an incorrect result if the word following the array

referenced by data cent sins the same value as token (or is

inaccessible storage). This event is unlikely if the word con-

tains an arbitrary value. Second, when (or if) FindToken ()

creates an incorrect result, it will be difficult to recreate dur-

ing debugging. The programmer will have to condition the

inputs of the program such that the word following the ar-

ray referenced by data once again contains the same value

as token. If the value of the illegally accessed word is inde-

pendent of the value of token, the probability of success will

be very low. Third, correlating the visible errors of the pro-

gram to the incorrect actions of FindToken () may be very

difficult, This connection may be very subtle and may not

be visible for a long period of time.

Many execution environments do provide some level of pro-

tection against memory access errors. For example, in most

Unix based systems, a store to the program text will cause

the operating system to terminate execution of the program

(usually with a core dump). Unix typically provides storage

SIGPLAN 94-6/84 Orlando, florida USA
@ 1994 ACM 0-89791 -662-xIWO006..$ 3.5O

290

int FindToken(int *data, int count, int token) {

int i = O, *p = data;

while ((i < count) W (*p != token)) {

p++; i++;

}
return (*p == token) ;

}

Figure 1: A C function with a (spatial) memory access error.

protection on a segment granularity – the segments are the

program text, data, and stack. Other, more hostile environ-

ments such as MS-DOS, do not offer such luxuries, and stores

to the program text may or may not manifest themselves as

a program error. If a program error does occur, correlating

it to a fault may be difficult, if not impossible.

IdeallY, we would like the language execution environment

to support memory access protection at the variable level,

that is, an access to a variable should only be valid if the

access is within the range (for both time and space) of the

intended variable – all other accesses should immediately flag

an error. We call any program that supports these execution

semantics a safe program.

Our solution to the memory access error problem is simple

and provides efficient and immediate detection of all memory

access errors. We transform programs, at compile-time, to

use an extended pointer representation which we call a safe

pointer. A safe pointer contains the value of the pointer as

well as object attributes. The object attributes describe the

location, size and lifetime of the pointer referent. When a

safe pointer value is created, either through the use of the

reference operator (e. g., ‘&’ in C) or through explicit storage

allocation, we attach to it the appropriate object attributes.

As the value is manipulated, through the use of pointer op-

erators, the object attributes are transferred to any new safe

pointer values. Detecting a memory access error involves

simply validating dereferences against the object attributes
— if the access is within the space and time bounds of the

object, it is permitted, otherwise an error is flagged and the

access error is detected immediately.

We implemented a prototype source-to-source translator

for the C language and examined the performance of six non-

trivial, pointer intensive programs. The performance is quite

good. Instruction execution overheads range from 130% to

540%, and text and data size overheads are typically below

100%. We also benchmarked our prototype system against

two commercially available tools that support memory access

checking (Purify [HJ92] and CodeCenter [KLP88]) and found

that our checking technique consistently uses less resources,

even while providing better error coverage for memory access

errors.

This paper is organized as follows. Section 2 introduces our

extended safe pointer representation. Section 3 details the

program transformations required to create safe programs,

and in Section 4 we discuss the translation and performance

implications of providing complete error coverage. In Sec-

tion 5, we present compile- and run-time optimization frame-

works. Section 6 describes our prototype implementation

and presents results of our analyses of six programs. Sec-

tion 7 compares our checking technique to other published

techniques. Section 8 concludes the paper.

typedef {

<type> *value;

<type> *base;

unsigned size;

enum {Heap=O, Local, Global} storageClass;

int capability; /* plus FOREVERand NEVER */

} SafePtr<type>;

Figure 2: Safe pointer definition. This C-1ike type definition is

parameterized by <type>, the type of the pointer referent.

2 Safe Pointers

To enforce access protection, we must extend the notion of

a pointer value to include information about the referent.

The idea is similar to tagged pointers used in many Lisp

implementations [Lee91]. Figure 2 shows our safe pointer

representation. The definitions of the contained fields follow:

value: The value of the safe pointer; it may contain any

expressible address.

base and size: The base address of the referent and its size

in bytes. In languages where pointers are immutable,

base is redundant and may be omitted. With this in-

formation, we can detect all spatial access errors with a

range check.

storageClass: The storage class of the allocation, either

Heap, Local, or Global. Using this value, it is possible

to detect errant storage deallocation, e.g., it is illegal

to free a global or local variable.

capability: A capability to the referent. When dynamic
variables are created, either through explicit storage al-

location (e.g., calls to malloc ()) or through procedure

invocations (i. e., a procedure call crest es the local vari-

ables in the stack frame of the procedure), a unique ca-

pability is issued to that storage allocation. The unique

capability is also inserted into an associative store called

the capabdity store and deleted from that store when

the dynamic storage allocation is freed or when the pro-

cedure invocation returns (the exact mechanics of this

process are discussed in a following section). Thus, the

collection of capabilities in the capability store represent

all active dynamic storage. Temporal access errors oc-

cur whenever a reference is made through a stale pointer,

i.e., a pointer which references storage whose capability

is no longer in the capability store. Two capabilities

are predefine. FOREVER is unique and always ex-

ists in the capability store; this capability is assigned to

all global objects. NEVER is unique and never exists

in the capability store; this capability can be assigned

to invalid pointers to ensure any dereference causes an

error.

The value attribute is the only safe pointer member that

can be manipulated by the program source; all other mem-

bers are inaccessible. base and size are the spatial at-

tributes. storageClass and capability are the temporal
attributes.

Safe pointers can exist in three states: unsafe, invalid, and

vakd. If the object attributes are incorrect, we say that the

pointer has become unsa}e; dereferencing this pointer may

cause an undetected memory access error. It is the goal

of this work to ensure that a safe pointer never becomes

291

unsafe. If the safe pointer is not unsafe, it is either invalid

or valid, depending on whether a dereference would flag an

error. Languages with mutable pointers allow the program

to legally create invalid pointers; for example, iterating a

pointer across all the elements of an array exits the loop

with the pointer pointing to the memory location following

the last object. If the invalid pointer is never dereferenced,

the program would not be in error. This behavior illustrates

precisely why we only place error checks at dereferences; it

is not illegal to have an invalid pointer – only to use it.

The initial value of a safe pointer, if not specified by an

initialization expression, must be invalid. This condition en-

sures that a dereference before the initial assignment is de-

tected. A simple way to invalidate a pointer value is to assign

it the unique capability NEVER.

3 Program Transformations

Creating a safe program from its unsafe counterpart involves

three transformations: pointer conversion, check insertion,

and operator conversion. The first, pointer conversion, ex-

tends all pointer definitions and declarations to include space

for object attributes. Check insertion instruments the pro-

gram to detect all memory access errors. operator conver-

sion generates and maintains object attributes. In this sec-

tion, we also describe the run-time support.

3.1 Pointer Conversion

All pointer definitions and declarations must be extended

to include object attributes. To make this transformation

transparent, the composite safe pointer must mimic the first

class value semantics of scalar pointers. That is, when passed

to a function, the safe pointer must be passed by value, and

when operators are applied to a safe pointer, the result, if a

pointer, must be a new safe pointer.

There is no need to add object attributes to array vari-

ables. Array variables (in the C sense) are merely address

constants, and thus only exist as statically allocated objects

or within structure definitions; as a result, the spatial at-

tributes can be generated from the address constant and its

type size, and the temporal attributes can be taken from

the safe pointer to the containing object or derived from the

array name.

3.2 Check Insertion

Assuming the safe pointer object attributes are correct (how

to ensure this property is detailed in the following sections),

complete safety for all pointer and array accesses is provided

by inserting an access check before each pointer or array

dereference.1

The dereference check first verifies that the referent is alive

by performing an associative search for the referent’s capa-

bility. If the referent has been freed, the capability would no

longer exist in the capability store and the check would fail.

Because capabilities are never re-used, the temporal check

fails even if the storage has been reallocated. Once the stor-

age is known to be alive, a bounds check is applied to verify

that the entire extent of the access fits into the referent.

Our access check, shown in Figure 3, takes advantage of

the wrap-around property of unsigned arithmetic to simplify

1We use the term dere.ference as a blanket term for any indirect

access – either through application of the dereference operator

(e.g., ‘*’ or ‘->’ in C) or through indexing an array or pointer

variable (e. g., ‘[]’ in C).

void ValidateAccess (<type> *addr) {

if (storageClass ! = Global W

!ValidCapability (capability))

FlagTemporalErroro ;

if ((unsigned) (addr-base) > size-s izeof (<type>))

FlagSpatialError () ;

/* valid access! */

}

Figure 3: Memory access check. ValidCapability() indicates

whether or not the passed capability is currently active, i.e., in

the capability store. The Flag functions performs system specific

handling of an access error.

the bounds check. If the accessed address is prior to the

start of the array, the unsigned subtraction under flows and

creates a very large number, causing the test to fail. The

advantage of this expression over traditional bounds checks2

is that it only requires one conditional branch to implement.

This simplification reduces the additional control complexity

introduced by dereference checks, which can result in better

optimization results and better dynamic executions.

3.3 Operator Conversion

Pointer operators must interact properly with the compos-

ite safe pointer structure. When applied, they must reach

into the safe pointer to access the pointer value. If the op-

erator creates a new pointer value, it must include an un-

modified copy of the pointer operand’s object attributes. For

example, in the C statement q = p + 6, the application of

the ‘+’ operator on the pointer p creates a new safe pointer

which is assigned to q. The new pointer value in q shares the

same object attributes as p. Operators which manipulate

pointer values never modify the copied object attributes be-

cause changing the value of the pointer does not change the

attributes of the storage it references. This property holds

even for pointers to aggregate structures. In this case, the

object attributes refer to the entire aggregate.

The assignment operator requires special handling if the

right hand side is a constant. Two common pointer constants

are the NULL value and pointers to string constants (for C).

If the assignment value is NULL, the NULL value can be

replaced by an invalid safe pointer value, e.g., one with the

capability NEVER. For string constants, we can generate the

needed object attributes at compile-time. If the right hand

side of the assignment is a pointer expression, the result-

ing pointer value (and its object attributes) is copied to the

pointer named on the left hand side of the assignment.

Casting between pointer types does not require any spe-

cial program transformations. This operation only alerts the

compiler that future pointer arithmetic or dereferences of a

particular pointer value should be made with respect to the

new type size. Casting to a non-pointer type requires that

the object attributes be dropped (if only pointers carry ob-

ject attributes) and the cast be carried out as defined by

the language. Casting from a non-pointer type to a pointer

type is problematic if non-pointer types do not carry object

at tribut es. We address this problem in Section 4.

2Our check is functionally equivalent to:

(addr < base I / addr > base+ size-s izeof(<type>))

which requires two conditional branches (or extra instructions to

combine the boolean terms).

292

Handling of the reference operator, e.g., the ‘k’ operator

in the C statement q = %p->b [10], is slightly more complex

as it must generate object attributes. The reference opera-

tor is applied to an expression (p->b [10], in our example)

which names some storage. We call this expression the ac-

cess path. The result of the operation is a new safe pointer

to the referent named by the expression.

To generate object attributes for a reference operation

(e.g., ‘&’), we decompose access paths into two parts, a prefix

and a suffix. The access path prefix is a non-empty sequence

of variable names, dereferences, subscripts, field selectors,

and pointer expressions leading to the memory object being

referenced, The remaining part of the access path, the access

path sufiz, is a possibly-empty sequence of field selectors and

subscripts (on array variables only) indicating the extent of

the memory object being referenced.

We further classify access paths as direct or redirect. A

direct access path refers to an object in the global or local

space by name. An indirect access path contains at least one

pointer traversal.

Given a reference operator expression, we can parse the

access path prefix by traversing the expression tree starting

with the left-most, lowest precedence operator. The part

of the expression up to but not including the last pointer

traversal is the access path prefix; the remainder of the ex-

pression becomes the access path suffix. If the access path

does not contain any pointer traversals, the access path pre-

fix is merely the name of the referenced variable.

To illustrate this decomposition, consider the C expression

kf ->g [4] . i [6], where g is a pointer and i is an array within

a structure. The access path prefix is the sub-expression

f ->g [4]. The access path suffix is the remainder of the ex-

pression, i [61. The access path prefix is indirect.

The temporal attributes of the new safe pointer are de-

rived from the access path prefix. If the prefix is direct, the

referenced object is either a global or a local variable. If

global, the capability FOREVER is assigned to the new safe

pointer. If local, the capability allocated to the local vari-

able’s stack frame is assigned to the new safe pointer (frame

capability allocation is discussed in the following section). If

the access path prefix is indirect, the temporal attributes are

taken from the safe pointer named by the access path prefix.

The spatial attributes are derived from both the access

path prefix and suffix. The base of the safe pointer is taken

from the object referred to by the access path prefix, namely

the address of the named variable for a direct prefix or the

corresponding spatial attributes of the referenced safe pointer

for an indirect prefix. The value and size of the safe pointer

are computed from the access path suffix. Because all mem-

bers of the referenced object (i. e., the member of any con-

tained structure) are of a known size, the spatial attributes

of the reference can be computed at compile-time from type

information. In the event the final term of the suffiJc is a

subscript, the spatial attributes are set to the extent of the

entire array. This technique allows the safe pointer to be

subsequently manipulated to point to other members of the

array.

The use of the access path prefix and suffix to produce

a safe pointer via the reference operator cannot subvert the

checking framework. In order to maintain safe semantics,

any pointers traversed within the access path prefix must

be validated using the techniques described in the previous

subsection.

void *malloc(unsigned size) {

void *p;

p.base = p.value = unsafe-malloc (size) ;

p.size = size;

p. storageClass = Heap;

p. capability = NextCapabilityo ;

InsertCapability (p. capability) ;

bzero(p. value, size) ; /* capability NEVER is O */

return p;

}

void *calloc(unsigned nelem, unsigned elsize) {

return mallOc(nelsm*els ize) ;

}

void *realloc(void *p, unsigned size) {

void *new;

new = malloc(size) ;

bcopy(p. base, new. base, min(size, p.size)) ;

free(p) ;

return new;

}

void free(void *p) {

if (p. storageClass != Heap)

FlagNonHeapFree () ;

if (!ValidCapability (p. capability))

FlagDuplicateFree () ;

if (p. value != p. base)

FlagNonOriginalFree () ;

Destroy Capability (p. capability) ;

unsaf e_f ree (p. value) ;

}

Figure 4: Safe malloc implementation with additional

checking. InsertCapabilityo, ValidCapability(), and

Destroy Capabilityo insert, locate, and delete capabilities, re-

spectively. Next Capabilit y () returns the next unique capability.

unsaf emalloc () and unsaf e.f ree () are interfaces to the system-

defined storage allocator.

3.4 Run-Time Support

The explicit storage allocation mechanism must be extended

to create safe pointers. During allocation, a capability must

be allocated for the storage, and any contained pointers must

be invalidated. At deallocation, the capability given to the

storage must be destroyed.

Figure 4 shows how this support would be provided for

mallo c (), the storage allocator provided under Unix. Dur-

ing allocation, malloc () generates a safe pointer using the

size and location of the allocation request. The call to

NextCapabilit y () returns the next available and unused ca-

pability. Next Capabilit y () can be implemented with an in-

crementing counter or a pseudo-random number generator.

The capability is inserted into the capability store via the

call to InsertCapabili-ty (). The call to bzero () clears the

entire storage allocation. This action ensures that any point-

ers in the untyped allocation are initially invalid (assuming

the storage class of Heap and capability NEVER are both

assigned the value of O).

The implementation of reallot () is slightly more subtle.

This function takes an existing storage allocation and resizes

it to the requested size. The reallocated storage may move for

any request, either larger or smaller. If moved, the contents

of the new allocation will be unchanged up to the lesser of the

new and old sizes. In our safe programming environment, we

293

void Func(int a) {

/* procedure prologue */

unsigned frsmeCapabili’ty = NextCapabilityo ;

InsertCapability (frameCapability) ;

ZeroFramePointers () ; /* cap. NEVER == O */

/* procedure epilogue, common exit point */

DestroyCapability (frameCapability) ;

return;

}

Figure 5: Function frame allocation and deallocation.

ZeroFramePomters () is a system specific function which clears

all pointers in the newly allocated stack frame.

must move the storage in all cases, otherwise, there may exist

safe pointers (which we cannot locate and change) whose

object attributes have incorrect records of the referent size.

If dereferenced, these pointers may flag errors even though

the access was valid in the reallocated storage, or worse, the

reallocation may have shrunk the referent, creating unsafe

pointers whose referent sizes are too large. We can solve

both these problems by always moving the storage. This

action will force the program to update any old pointers to

the previous allocation. Because the reallocated storage is

allocated under a new capability, any stale pointers to the

previous allocation will flag errors if dereferenced. We need

not clear the remaining storage in the reallocation if it is

larger, as the call to malloc () returns cleared storage.

At calls to free (), the capability of the allocation (con-

tained in the safe pointer object attributes) is deleted from

the capability store by the call to Destroy capabilityo.

Our implementation also verifies that the freed storage is

indeed a heap allocation, has not been previously freed, and

points to the head of the allocation (as this condition is re-

quired by free()).

The same allocation mechanism is applied to the dynamic

storage allocated in procedure stack frames. When a funct ion

is invoked, a capability must be allocated for the entire frame

if it contains any referenced locals. Any pointers contained

in the frame must be set to an invalid state.

Figure 5 shows how this rewriting would be done for a

C function. The function ZeroFrsmePointers () serves the

same purpose as the call to bzero () in rnalloc (); it ensures

that any pointers in the procedure stack frame are initially

invalid by clearing the frame storage. Because stack frame

allocations are strongly typed, ZeroFramePointers () could

be replaced by NULL assignments to all the frame pointers.

If the language supports non-local jumps, e.g., longjmp ()

in C, the run-time support must delete the frame capabilities

of any elided function frames. This operation can be simply

and portably implemented if the local capability space and

heap capability space are kept disjoint, and function frame

capabilities are allocated using an incrementing counter. The

allocation of frame capabilities then becomes a depth-first

numbering [ASU86] of the dynamic call graph. When a non-

local jump occurs, all elided frame capabilities between the

source frame and destination frame are deleted by removing

all frame capabilities in the capability store that are larger

than the frame capability of the destination frame. This

mechanism only works if the source and destination frames

are on the same call stack – this stipulation may not be true

in all cases, e.g., coroutine jumps.

The capability store is an associative memory containing

the capabilities of all active memory. It can be implemented

as a hash table with the capability as the hash key. Accesses

to the capability store exhibit a great deal of temporal lo-

cality, so moving accessed elements to the head of the hash

table bucket chains is likely to decrease average access time.

We close this section with two examples. Figure 6(a)

shows a spatial access error, and Figure 6(b) demon-

strates a temporal access error. Safe pointer values

are specified as a 5-tuple with the following format:

[ualue,base,size, storageClass,capability]. x indicates a don’t

care value. In the first example, a spatial access error is

flagged when the program dereferences a safe pointer whose

value is less than the base of the referent. In the second

example, a stale pointer, q, is dereferenced. Even though

the same storage has been reallocated to p, the capability

originally assigned to q has been destroyed during the call to

free (); thus, the temporal access error is detected.

4 Implications of Complete Error

Coverage

Our safe programming technique can detect all memory ac-

cess errors provided that the following conditions hold:

%.

‘ii.

iaz.

Storage management must be apparent to the transla-

tor.

The referents of all pointer constants must have a known

location, size, and lifetime.

The program must not manipulate the object attributes

of any pointer value.

Our claim to complete error coverage must be limited

to storage management controlled by the safe programming

run-time system. If a program implements a domain specific

allocator at the user level, some memory access errors, as

viewed by the programmer, can be missed.

Consider, for example, a fixed size storage allocator. If a

program relies heavily on a fixed size structure, storage re-

quirements and allocation overheads can be greatly reduced

by applying a fixed size allocation strategy. At the program

level, the fixed size allocator calls the system allocator, e.g.,

malloc () or sbrk (), to allocate a large memory allocation.

The fixed size allocator then slices the system allocation into

fixed size pieces with a zero overhead for each allocation.

Under this scheme, our safe programming technique would

ensure that no accesses to a fixed size allocations are out-

side of the space and time bounds of the block from which

the fixed size allocation was derived. This imprecision oc-

curs because the translator can not distinguish the user level

storage allocation actions from other pointer related program

activities.

With some programmer intervention this problem can be

overcome. Any useful safe compiler implementation will have

to include an application programmers interface, or API,

through which systems programmers can construct and ma-

nipulate the object attributes of safe pointers. In the case of

the fixed size storage allocator, the programmer would spec-

ify the base and size of the fixed size allocation. The storage

class and capability would be generated from the safe pointer

to the block from which the fixed size allocation was derived.

Without the second qualification, the compiler may not

be able to generate correct object attributes for a pointer

constant. For example, device driver code typically crest es

pointers to device buffers and registers by recasting an inte-

ger to a pointer value. The translator has no way of knowing

294

struct (
char a; ~ ~ capability store
char b[100];

} x, *p;

char ●q; [X, X, X, X, NEVER] [X, X, X, X, NEVER] {)

p = &x; [1000,1000,101, Global, FOREVER] [X, X, X, X, NEVER]

p; I no error */ !!

q = &p->b[l O]; ,!

~__; ,,

‘q;
,!

p –= 2; [798, 1000,101, Global, FOREVER]

p; I error!! ! *I !,

a)

{}
!, ,,

[l 011,1001,1 00, Global, FOREVERl ,’
[1010,1001,1 00, Global, FOREVER] ,,

,,

,,

char *p, *q;

p = mall Oc(l O) ;

q = P+6;

q; / no error */

free(p) ;

p = mall Oc(l O) ;

‘q; /* error! I ! *I

[X, X, X, X, NEVER]

[2000,2000, 10, Heap,l]
,,

[2000,2000,10, Heap,2]

b)

capability store

[X, X, X, X, NEVER] {)

[x, x,x, x, NEVER] {1}

[2006,2000,10, Heap, l]
,,

!!

{{2})

Figure 6: Memory access checking examples. Figure a) is an example of a spatial access error, Figure b) is an example of a

temporal access error. Safe pointer values, shown after each line is executed, are specified as a 5-tuple with the following format:

[value, base, size, storageClass,capabilit~]. An occurrence of x indicates a don’t care value.

the size and lifetime of the referent; thus, program safety

cannot be maintained. In C, the only well defined pointer

constants are NULL, strings, and functions. For all other

cases, this problem can be avoided by supplying the pro-

grammer with an API suitable for specifying the size and

lifetime of problematic pointer constants.

The second qualification does not, however, preclude the

use of recasts from non-pointer variables to pointer variables.

To successfully support these operations, object attributes

must be attached to all variables. In general, to provide

complete safety, we need to attach object attributes to any

storage that could hold a pointer value. It is our contention

that most “well behaved” programs will only require pointer

variables to carry object attributes.

The final qualification protects object attributes. If a pro-

gram can arbitrarily manipulate the object attributes of a

pointer value, then safety can always be subverted. For ex-

ample, changing the storage class of a pointer from Global

to Heap and then freeing the pointer would likely cause dis-

astrous effects under our storage allocation scheme.

If object attributes are only attached to pointer values, the

danger exists of manipulation through the use of recasts or

unions. With a recast, it is possible to type storage in the

referent first as a non-pointer value, manipulate the storage

arbitrarily, and then recast the referent storage to a (possibly

unsafe) pointer. Using a union, it is possible to create a

pointer value under one field and then manipulate the object

attributes of the pointer value through another overlaid, non-

pointer field of the union.

The only solution that we can conceive to prevent this

kind of manipulation is to attach object attributes to each

byte of allocated storage. For types larger than one byte, the

object attributes would be copied to all other storage holding

the allocation. In this way, any arbitrary overlaying of types

would still not allow the object attributes to be manipulated

at the program level.

In reality, we can provide a high margin of safety for “well

behaved” programs by attaching object attributes only to

pointer values. We consider a well behaved program to be

one in which pointer values are never created from or manip-

ulated as non-pointer values. If a program violates this rule

intentionally (e. g., through a recast), a safe compiler which

makes a conservative approximation as to the intended ref-

erent of the new pointer value allows the pointer to access

any live storage. 3 If the rule is broken unintentionally (e.g.,

through incorrect use of a union), the error will likely be

caught because it is difficult to manufacture, accidentally,

an unsafe pointer.

5 Optimizing Dereference Checks

In the interest of performance, it may be possible to elide

dereference checks and still provide complete program safety.

If we can determine that the following invariant holds, the

check may be elided.

A check at a dereference of pointer value u may be

elided at program point p if the previous, equivalent

check executed on v has not been invalidated by some

program action.

We can implement this check optimization either at run-

time or at compile-time. Run-time check optimization has

the advantage of being more flexible. We only need to ex-

ecute the checks absolutely required to maintain program

safety. However, the cost for this precision is extra safe

pointer state which must copied, maintained, and checked at

each dereference. Compile-time check optimization, on the

other hand, is less flexible because we must constrain the

decision to elide a check to all previous possible executions

leading to a program point. The advantage of compile-time

3Note that in this case, safety can no longer be guaranteed

because the intended referent is not known. Hence, we cannot

bind the object attributes of a live variable to the new pointer

because the program may have manipulated the pointer value to

point outside of the intended referent prior to recasting it to a

non-pointer value.

29: i

void ValidateAccess (<type> *addr) {

if (f reeCount ! = currentFreeCount) {

if (storageClass != Global W

! ValidCapabilit y (capability))

FlagTemporalError () ;

freeCount = currentFreeCount;

if (lastDeref Addr ! = addr) {

if ((unsigned) (addr-base) > size-s izeof (<type>))

FlagSpat ialError () ;

lastDeref Addr = addr;

}
/* valid access! */

}

Figure 7: Memory access check with run-time check opti-

mization. The variable currentFreeCount is a global counter

incremented each time storage IS deallocated.

check optimization is that no additional overhead is required

at run-time to determine if a check may be elided.

5.1 Run-Time Check Optimization

We have designed and implemented a framework for dynami-

cally eliding spatial and temporal checks. Spatial checks have

no side effects, thus we can employ memorization [FH88] (or

function caching) to elide their evaluation. We store the

operands to the last check in the safe pointer object at-

tributes, which amounts to the effective address of the last

dereference. At any dereference, the spatial check may be

elided if the effective address since the last check has not

changed. This test is shown in Figure 7 in the if statement

surrounding the bounds check. It may be useful to memoize

more than one set of operands. In our implementation, we

memoize both the effective address of the last dereference,

i.e., use of the C operator ‘*’, and the effective address of

the last subscript operation, t. e., use of ‘ []‘. Changes in

the former can be tracked with only a single “dirty” bit, set

when the pointer value is changed. Changes in the latter are

tracked by retaining a copy of the last index applied to the

pointer value.

To elide temporal checks, we keep a copy of a global

counter, incremented when storage is deallocated, in the safe

pointer. If this counter, which we call the ~ree counter, has

not changed since the last temporal check, the referent has

not been freed and the temporal check can be safely elided.

In our implementation, we keep separate counters for heap

and stack deallocat ions,

5.2 Compile-Time Check Optimization

We have also designed (and are currently implementing) a

compile-time optimization framework like that proposed by

Gupta [Gup90]. Our algorithm implements a forward data-

flow framework similar to that used by common subexpres-

sion elimination [ASU86]. However, our algorithm extends

previous work to include eliding of temporal error checks,

and because of our simplified bounds check, there is no need

to split the optimization into upper and lower bounds check

elimination.

Our optimization algorithm is shown in Figure 8. The

algorithm is run twice, once for optimization of spatial checks

and again for temporal checks. The algorithm executes in

three phases.

Input: A flow graph G with blocks B with gen[B,] and

kzll[ll,] computed for each block B, c B. gen[ll,] is the

set of check expressions generated in B,. M1[B,] is the

set of check expressions killed in B,. The entry block is B1.

Output A flow graph G with redundant checks deleted.

Method The following procedure is executed twice, once

for spatial check optimization and again for temporal

check optimization.

/+ imtialize out sets */

WLIB1] = 0;

out[Bl] = gen[l?l];

U = ~t&Bgen[B,l;

for BzEB– B1do

out[B,] = U – ktU[B,];

/“ compute availability of checks, m sets */

change = true;

while change do begin

change = false;

for B, E B – BI do begin

IIwBil = p<p,e~[q out[P];

OkiOUt = out[B,] ;

out[B%] = gen[B,] U (zn[l?,] – kzU,[B,]),

if OUt[Bt] # oldout then

change = true;

end

end

/“ elide redundant checks “/

for B% E B – B1 do begin

for c E gen[B,] do begin

if c E in[Bt] then

elide check c;

end

end

Figure 8: Compile-time check optimization algorithm.

In the first phase, the algorithm seeds the data-flow anal-

ysis by approximating all out sets. For all blocks except the

entry block, the value of out [1?;] is set to all check expressions

less those killed by the block l?,, i.e., U – kill [B,]. For the

program entry block, Ell, we must assume that no checks are

available, hence, in[131] is set to empty and OUt[B1] is set to

the checks generated in the entry block B1.

In the second phase, the data-flow framework is solved to

determine where check expressions reach in the program. For

a check expression to reach a node B%, it must be available at

B, for all executions, that is, it must be available in the out

sets of all predecessors to block B,. This requirement is pre-

cisely why the confluence operator is intersection. After the

data-flow computation converges on a solution, i. e., change

== false, the set in[B,] contains all checks that reach block

15~.

In the third phase, the in sets are used to elide redundant

checks. Checks may be elided wherever a lexically identical

or equivalent (if more powerful tests are applied) check is

available in the block (i. e., the same check is in the in set of

the block).

The defining feature for each analysis (spatial and tem-

poral) is the specification of what constitutes a kill. A spa-

tial check is killed by any assignment to a check operand,

which includes assignment to the pointer variable or any of

the operands of the index expression (if the pointer was in-

dexed in the check expression). A temporal check is killed

by any deallocation of the referent storage. If the referent

of a free can be determined to be different than the check

296

referent (e. g., through alias analysis), the free need not kill

the check.

While performing these analyses, we must also be wary

of kills that may occur through function calls or aliases. In

either caae, we must make a conservative approximation if

insufficient information is available and assume that a kill

does occur.

6 Experimental Evaluation

We evaluated our safe programming methodology by imple-

menting a semi-automatic source-to-source translator and

examining the run-time, code and data size overheads for

six non-trivial programs. For each program, we analyzed

its performance without optimization and with run-time re-

solved optimizations; we did not consider compile-time opti-

mization (our current implementation does not support this

technique, though work in this direction is in progress).

6.1 Experiment al Framework

We translated C programs to their safe counterparts by first

rewriting all pointer and array declarations, calls to malloc ()

and free (), and references (use of the ‘&’ operator) to use

our Safe- C macros. These macros, when passed through the

C preprocessor (CPP), produce either the original C program

or a Safe-C program. A Safe-C program has all pointer and

array declarations changed to type parameterized C++ class

declarations. Using operator overloading in the C++ class

definition, we implement the extended safe pointer and array

semantics as described in Section 3.

All explicit storage allocation, i.e., calls to malloc () and

free (), call wrapper functions which create safe pointers

from the standard library routines. Our malloc () implemen-

tation clears all allocated storage, so any contained pointers

start in the invalid state. If a local in a function is used as

a pointer referent, we also rewrite the function to allocate a

capability for the frame. Any pointer in the stack frame of

a function is initialized to an invalid state in the constructor

of the C++ safe pointer class. Application of the reference

operator calls a function which creates a safe pointer from

the decomposed access path.

6.2 Analyzed Programs

We analyzed six programs, selected because each exhibits

a high frequency of indirect references. The programs in-

clude an anagram generator (Anagram), a neural net sim-

ulator (Backprop), an arbitrary precision calculator (GNU

BC), a minimum spanning tree generator (Min-Span), a

graph partitioning tool (Partition), and a VLSI channel

router (YACR-2). Table 1 details the programs that we ana-

lyzed. For each, we show the code size (Instructions/Static),

the number of instruction executed without checking (ln-

structions/Dynumic), the frequency of dereferences in the

program text (Insts per Dereference/Static), and the dy-

namic frequency of dereferences executed (lnsts per Deref-

erence/Dynamic).

All programs were compiled and executed on a DECsta-

tion 3100 using AT&T USL cfront version 3.0.1. The output

of cfront (C code) was compiled using MIPS cc version 2.1

at optimization level ‘-02’. All instruction counts were ob-

tained with QF’Z’ [Lar93].

For all analyses, object attributes were only attached to

pointer values. We used a 15 byte safe pointer (27’5~0 over-

head) in the unoptimized case: 4 byte pointer value, 4 byte

Program Instructions Insts per Dereference

Static Dynamic Static Dynamic

(XI03) (X106)

Anagram 10.0 19.4 106.3 7.6

Backprop 10.8 122.4 148.5 8.9

GNUBC 19.5 12.2 15.5 7.6

Min-Spm 11.9 13.3 4B.7 5.9

Part it ion 13.5 21.1 62.4 3.7

YACR-2 1s.5 546.2 37.1 14.0

Table 1: Analyzed programs.

base, 4 byte size, a 1 byte storage class specifier, and a 2 byte

capability. For run-time check optimization, we added a 1

byte dirty flag, a 4 byte last index, and a 2 byte free counter

for a total size of 22 bytes (450% overhead). Due to a bug

in the C++ compiler, we could not use sizeof () in the safe

pointer implementation if the referent referred to itselfi as

a result, B C, AIin-Span, and Partition all required the size

of the referent to be stored in the safe pointer, which added

a 4 byte overhead for these programs. There were no space

overheads for array variables, as all required object attributes

are known at compile-time. We only rewrote the actual pro-

gram code, all system library routines remained unchecked.

We did, however, perform interface checking. Whenever a

system library is called, any pointer arguments are validated

against the time and space bounds expected by the library

routine. For example, if a call were made to f read (), the

interface check would ensure that the destination of the read

was live storage and that the entire length of the read oper-

ation would fit into the referent.

6.3 Results

Figure 9 shows the execution overheads for the analyzed

programs. The Unopt columns show total dynamic instruc-

tion counts for executions with no optimization, and the Opt

columns show instruction counts with run-time resolved op-

timization.

For the run-time optimized executions, the normalized in-

struction counts range from 2.3 (YA CR-2) to 6.4 (B@. This

overhead reflects program performance without any compile-

time optimization. While this performance degradation will

likely be acceptable for the development cycle of short or

medium length program executions, it may still be pro-

hibitively expensive for very long running programs, and it

is certainly too costly a price to pay for in-field instrumen-

tation of a program. Examining more closely the breakdown

of the execution overheads yields much insight into how the

performance of our checking methodology could be improved.

For each program, we break down the overhead costs into

five categories. We measured this cost by compiling and run-

ning the program repeatedly with incrementally more func-

tionality in the safe pointer implementation. Original Pro-

gram is the instruction count for the unchecked program,

always normalized to one.

User Defined Ptr is the cost in our framework for imple-

menting all pointers as structures at the user level. The pri-

mary factors affecting performance here are increased loads,

stores, and function calls. The first factor is due to the MIPS

cc compiler’s handling of structure variables; once wrapped

in a structure, the field variables are no longer eligible for reg-

297

45

R

I,~..nI

Anagram Backvcp BC Min-Span Partition YACR-2

U Or@nalPrw-am EZZ Usar OefinsdFtr ~ Spat!a Dat9

~ SpatralChecks m TemFoialoat. ~ Tempml Cheds

Figure 9: Execution overheads.

ister allocation. Wrapping attributes around pointers also in-

creases the costs of procedure call parameter passing. MIPS

cc compiler passes most scalar arguments through registers;

however, composite structures are always passed through

memory (on the stack). The second major factor affecting

performance is an increased number of function calls. The

AT&T C++ compiler simplifies complex expressions created

during template instantiation by extracting portions of the

expression into static functions. This cost is only a side-effect

of our implementation.

Spatial Data is the cost of maintaining and copying spatial

object attributes. For the optimized executions, this over-

head includes the cost of maintaining the pointer dirty bits

and previous index values. Spatial Checks is the cost of per-

forming spatial checks. Temporal Data is the cost of main-

taining and copying temporal object attributes. For the op-

timized executions, this overhead includes the cost of main-

taining the additional counter variable. Temporal Checks is

the cost of performing temporal checks.

For BC, Man-Span, and Partition, run-time resolved opti-

mization paid off with a slightly lower execution cost for spa-

tial checking. For Anagram, Backprop, and YA CR-2, adding

run-time checks resulted in a higher cost for spatial access

checking; and in the case of Backprop, a higher overall exe-

cution overhead.

These programs demonstrate the trade-offs involved in

providing run-time resolved optimization. Run-time opti-

mization-adds the extra overhead of copying, maintaining,

and checking the extra safe pointer state. If this added over-

head, plus the overhead of the required checks, is greater than

doing all the checks, there is no advantage to run-time check

optimization. With faster checks, compile-time optimization,

and spatially complex programs, this trade-off becomes even

more acute. Since Anagram, Backprop, and YACR-2 must

execute many of their checks (t?9~0, 67Y0, and 86% respec-

tively), they do not benefit from the run-time optimizations.

For YACR-2, the effects are much less pronounced because

dereferences aremuch less frequent (asshownin Table l).

The second effect to observe when comparing the opti-

mized to unoptimized execution costs is that the greatest

benefit of run-time check optimization always comes from

eliding temporal checks. In fact, adding run-time optimiza-

tion for temporal checks caused a significant decrease in all

execution overheads except Backprop. There are two facets

to this result. First, temporal checks are very expensive

(requiring an associative search), so eliding one has a great

Anagram Backprcp SC Mm-Span Pariilon YACR-2

oOnglnal Prqiam@ll Usar C!efinwlPtr ~Spat.l Data

w Spat.1 Chds D Tempo.1 oat. ~ TeinForalChaeks

Figure 10: Text overheads.

performance advantage. Second, our run-time resolved op-

timization of temporal checks is very effective. Temporal

checks are rarely required, even for BC and Mwz-Span, both

of which free storage often. In the case of Backprop, adding

run-time optimization for temporal checks resulted in an in-

creased execution overhead. Backprop has only one dynamic

object, an array, so temporal checking is relatively cheap

without any optimization (the capability is always at the

head of the hash bucket chain). In this case, the cost of

maintaining the extra storage required for the free counter

outweighs the cost of executing all temporal checks.

Adding checking code reduces the effectiveness of many

traditional compiler optimizations. We inline all check code

except for calls to ValidCapabi.lit y () and abort (), These

functions are both externally defined, so the compiler must

make conservative assumptions as to what actions they take.

This conservative approximation has the effect of limiting the

effectiveness of many optimizations such as invariant code

motion, register allocation, copy propagation, and common

subexpression elimination. Neither of these functions pro-

duce any side-effects for normal executions. Hence, better

compiler integration, i.e., providing a special channel of com-

munication between the safe program generator and the com-

piler optimizer, would cert airily increase the performance of

our safe executions.4

Text size overheads are shown in Figure 10. All check-

ing code, except the capability routines and what the G++

compiler extracts for expression simplification, is inlined into

the original program text. Surprisingly, the text overheads

are quite small; 3570 to ?IOO~o for the unoptimized executa-

ble and 41% to 340% for the run-time optimized programs.

The text sizes for the run-time optimized programs are larger

due to additional code required for maintaining, copying, and

checking the extra object attributes. As shown by comparing

Table 1 and Figure 10, there is a strong correlation between

static dereference density and the resulting text overhead.

The data size overheads, shown in Figure 11, are mea-

sured as the total size of initialized (. data) and uninitialized

(. b..) data segments plus the size of the heap segment when

the program terminates execution. The data size overheads

on the stack were not measured. All programs, except Min-

4Many compilers, e.g. GNU gee, already understand the sPe-

cial semantics of abort () and use this inter-procedural information

to improve optimizations. We should be able to achieve the same

results for ValidCapabilityo.

298

4,5-

Il!l

4- ~.

3 5+---------.--. ---{ t.l..

i33.-
m

s
~ 25

%
Q2

E
0 1s
z

1

0s

0

Anagram Backprcp BC Mm-Span Patttion YACR-2

0 Omy.al Programn Useros.finadW ~ Spahaloats C7 Temwal Data

Figure 11: Data overheads.

Span, have data size overhead below 100%. Backprop haa the

lowest overhead (less than 5%) because most of its storage

is large global arrays which do not require any object at-

tributes. Min-Span has the highest overhead (330%), which

stems from the high density of pointers in its heap alloca-

tions, most of which contain eight pointers and three inte-

gers. Some of the run-time optimized programs have slightly

larger overheads due to the additional object attributes.

To summarize the main points of our results:

●

●

●

●

●

Execution overheads, even without compile-time opti-

mization, are low enough to make our methodology use-

ful during program development. However, the over-

heads are not likely low enough that programmers would

releaae software with checking enabled. We are currently

exploring the use of compile-time optimization and bet-

ter compiler integration as means of increasing the per-

formance of our approach.

The largest contributing factors to execution overhead

are 1) safe pointer structures are not register allocated,

and 2) many traditional optimizations fail with the addi-

tion of checks. Other performance losses are attributed

to the C++ compiler simplifying expressions through

the use of static functions, and, due to a bug in the

C++ compiler, the need to include the type size of the

referent in the object attributes. None of these difficul-

ties are without recourse, however. Better integration

between the safe compiler and the optimizer could fix

most problems.

Dynamically eliding spatial checks is generally ineffec-

tive, primarily because maintaining the extra state, and

checking it, quickly outweighs the cost of executing all

checks. Our spatial check is very cheap to execute, and

pointer intensive programs tend to execute most of the

checks anyway.

Temporal checks, on the other hand, are very expensive

to perform and are rarely required, so run-time opti-

mization shows to be beneficial in most cases.

The text and data size overhead are generally quite low.

The text overheads for all programs with run-time op-

timization, range from 41% to 340Y0, with all but two

below 100%. Data overheads range from 5% to 330%,

with all but one below 100%. Run-t ime optimized exe-

cutions have slightly larger text and data sizes.

7 Related Work

Our first attempt at creating a safe programming environ-

ment for C employed reference chaining. The technique is

similar to that used by many “smart pointer” implementa-

tions [EP91, Gin92]. The idea is to insert any pointer which

is generated either through use of explicit storage allocation,

e.g., rnalloc t J, the reference operator (’%’), or assignment
into a reference chain rooted at the referent. When a pointer

value is destroyed, e.g., through assignment, storage deallo-

cat ion, or at procedure returns, the pointer is removed from

the reference chain. This technique has a number of useful

properties. First, it is possible to ensure temporal safety by

destroying all pointer values when a referent is freed – just

march down the reference chain assigning NULL to all point-

ers. Second, if a destructed pointer value is the last value in

the referent’s reference chain, a storage leak hss occurred

and it is detected immediately. Unfortunately, this tech-

nique cannot be made to work reliably in C. It is relatively

easy for the programmer to subvert the checking mechanism

through recasting and typeless calls to free (). Storage leak

detection also fails in the presence of circular references. The

safe programming technique described in this paper is signif-

icantly more reliable because its correctness does not rely on

tracking pointer values.

Some researchers have recently proposed providing com-

plete program safety through limiting the constructs allowed

in the language. The main thrust of this work is the de-

sign of languages that support garbage collection reliably

and portably. In [ED93], a safe subset of C++ is defined.

The safe subset does not permit any invalid pointers to be

created; this restriction, for example, precludes the use of

any explicit pointer arithmetic. The safe subset also requires

some checking, but much less than our checking technique re-

quires. Languages which can easily be made totally safe have

existed for a long time; for example, many FORTRAN imple-

mentations provide complete safety through range checking.

However, these languages tend to be less expressive than in-

trinsically unsafe languages such as C or C++. We felt that

it was important not to restrict the expressiveness available

to the programmer. Our checking technique is not limited

by the language upon which it is applied, it can be applied

successfully to compiled or interpreted languages with sub-

scripted and mutable pointers, local references, and explicit

and type-less dynamic storage management.

Table 2 details our work (Sa~e-C) and five other published

systems that support memory access checking.

Hastings’ and Joyce’s Purify [HJ92] is a commercially

available memory access checking tool. It is particularly con-

venient to use because it does not require program source
. all transformations are applied to the object code. Pu-

rify supports both spatial and temporal access error check-

ing to heap storage only through the use of a memory state

map which is consulted at each load and store the program

executes. Purify also provides uninitialized read detection,

and storage leak detection through a conservative collector

[Boe93, BW88]. Spatial access errors are detected by brack-

eting both ends of any heap allocation with a ‘led zone”.

These zones are marked in the memory state map as inac-

cessible. When a load or store touches a red zone a memory

access error is flagged. Temporal access errors are detected

by cietting the memory state of freed storage to inaccessible.

Purify cannot detect all memory access errors. For exam-

ple, accessing past the end of an array into the region of the

next variable, or accessing freed storage that has been real-

located cannot be detected. These limitations occur because

Purzfy does not determine the intended referent of memory

299

Name Environment Method Error Model

Sped,d Checka7 TemPoralChecks7 Extensions

Safe-C c/c-t+ source-to-source yes* yes* errant free’s

translation

Purify object files object code yes yes errant free’s, uninitialized

[HJ92] translation limited to heap limited to heap reads, storage leaks

RTCC c safe yes* no

[Ste92] compiler

CodeCenter c/c-t+ interpreter yes* yes errant free’s, uninitialized reads,

[KLP88] dynamic type checking, etc.

Bcc c source-to-source yes* no alignment checks,

[Ken83] translation overflow checks

UW-Pascal Pascal safe yes* yes errant free’s,

[FL80] compiler arithmetic faults, etc.

Table 2: Comparison of memory access checking work. Entries with an asterisk (*) indicate that the method detects all errors for

that particular error class.

accesses – it can only verify that the accessed storage is ac-

tive. Our checking technique, on the other hand, can detect

all memory access errors because it tracks not only the state

of storage, but also the intended referents of all pointer val-

ues. To increase the effectiveness of temporal error checking,

Purify “ages” the heap, holdlng freed storage in the heap

free list longer than needed. This aging increases the storage

requirements of programs that use the heap. The primary

disadvantage of our technique compared to Purify is that we

require source code before any checking can be implemented;

thus, source code is required if libraries are to be checked.

Our technique is also not portable across languages, that is,

a given implementation must be tailored for a specific lan-

guage. However, our technique is quite portable across differ-

ent platforms, especially if implemented as a source-to-source

translator. Although Purify is portable across languages (on

a given platform), it is not portable across platforms.

Steffen’s RTCC [Ste92] extended the functionality of the

C language compiler PCC to include spatial error checking.

RTCC attaches object attributes to pointers in a fashion sim-

ilar to our technique; it does not, however, detect temporal

access errors, nor does it explore the use of check opt imiza-

tion. Our checking technique finds both spatial and temporal

access errors, and incorporates run-time and compile-time

optimizations through which access checks can be elided. In

the implementation of RTCC the issue of interfacing to li-

brary and system calls is addressed through encupsulatio~

Steffen also augmented sdb to provide users with transparent

debugging support.

Code Center [KLP88] is an interpreted C language environ-

ment. The error checking provided is very rich – it detects

many memory access errors as well as provides dynamic type

checking (i. e., the type of the last store to memory must

match the type of subsequent loads), uninitialized read de-

tection, errant free detection, and other useful checks. The

published information describing Code Center is somewhat

ambiguous as to how it implements memory access checking.

Object attributes (namely, type and size) are attached to all

storage when it is initialized. If a reference is made to stor-

age, it appears that the base and size attributes, associated

with the referent storage, are also attached to the pointer

value. Using this information, Code Center provides com-

plete coverage for spatial access errors. However, it does not

employ a capability based temporal checking scheme, so it is

(sometimes) possible to access freed storage after it has been

reallocated for another purpose. Temporal access checking

can also fail for pointer references to local variables. Because

our checking technique employs a capability based scheme,

it never misses temporal access errors. The primary dis-

advantage of Code Center is its resource requirements. Since

programs run in an interpreter, the execution overheads may

discourage its use, and in the case of long running programs,

may preclude its use. Due to our use of compile-time in-

strumentation, resource requirements are significantly lower.

Compile-time instrumentation also allows us to employ static

check optimizations.

Kendall’s Bcc [Ken83] is a commercial source-to-source

translator for the C language. It supports spatial error check-

ing, but temporal error checking is limited to NULL checks at

all pointer dereferences. The published information on Bcc

does not specify how the checking is implemented, however,

one figure in the paper, showing the output of the translator,

suggests that base and bound object attributes are attached

to all pointer values.

Fischer and LeBlanc’s UW-Pascal compiler [FL80] sup-

ports both temporal and spatial error checking. However, the

lack of mutable pointers and dynamically sized arrays makes

access checking much easier. While U W-Pascal detects all

spatial access errors, temporal access errors may not be de-

tected if storage is reallocated. Use of our checking technique

is not limited by the expressiveness of the language; that

is, it can be applied successfully to compiled or interpreted

languages with subscripted and mutable pointers, local ref-

erences, unions, and explicit and typeless dynamic storage

management.

A closely related area of work, which can benefit from

our safe programming technique, is storage leak detection

[Boe93, BW88, ZH88]. A storage teak is any storage to which

the program can no longer generate a name. These leaks

occur when the last accessible pointer to a heap object is

overwritten. Without the ability to generate a name to the

heap object, it cannot be freed, hence it has “leaked” out of

the heap.

For languages like C and C++, leak detection is commonly

implemented with a conservative collector. A conservative

collector sweeps memory looking for unreferenced storage.

Because it is difficult to know where all pointers are located,

the collector makes the conservative assumption that all pro-

gram accessible (non-heap) storage contains pointers. It then

uses a traditional mark and sweep collection method. While

300

effective, this method has some drawbacks. First, storage

leak detection is not immediate, it is usually applied only

when the programmer demands it or when the program com-

pletes execution. Thus, for it to be useful, some dynamic

information, like a partial call chain, must be kept with allo-

cations, in order for the programmer to deduce the circum-

stances under which the storage leak occurred. Second, the

conservative pointer assumption can cause non-pointer val-

ues to be mistaken as pointer values which seem to reference

heap storage. These false hits can hide a storage leak. The

problem is aggravated by large storage allocations because it

is more likely that non-pointer values inadvertently reference

them; unfortunately, it is these large allocation leaks that we

would most like to find. Third, if the program hides pointers,

for example, by encoding type information in the upper bits

of a pointer, or does not keep all pointers within the bounds

of memory allocations, the collector may regard heap storage

as a leak when it is still in use.

These false leaks cannot occur under our checking scheme

because the base field always holds a pointer to the head

of the allocation, and the program cannot manipulate this

value. We can also address the problem of false hits, that

is, non-pointer values which appear to reference heap stor-

age, by applying safe pointer invariants to possible references.

One trivial test is to ensure that both the capability and the

free counter values of the possible reference are valid. If an

incrementing counter is used for each, each value should be

less than the current counter value. To summarize, using a

conservative collector to detect storage leaks with our safe

programming technique makes the process intrinsically more

reliable by eliminating false leaks and reducing the possibility

of false hits.

Acknowledgements

We thank Jim Larus, Tom Ball, Alain Kagi, and Alvy Lebeck

for numerous discussions which helped shape this paper.

Also, thanks to Mary Baker, Hans-Juergen Boehm, John El-

lis, Mark Sullivan, Mark Weiser, Ben Zorn, and the anony-

mous referees for providing useful comments and directing

us to relevant references.

References

[ASUS6]

[Boe93]

p3w8s]

[ED93]

[EP91]

[FHSS]

[FL80]

[Gin92]

[GuP90]

8 Conclusions

In this paper, we presented a pointer and array access check-

ing technique that provides complete error coverage through

a simple set of program transformations. Our technique,

based on an extended safe pointer representation, has a num-

ber of novel aspects. It is the first technique that detects all

spatial and temporal access errors. Its use is not limited

by the expressiveness of the language; that is, it can be ap-

plied successfully to compiled or interpreted languages with

subscripted and mutable pointers, local references, unions,

and explicit and type-less dynamic storage management. We

showed the transformations required in the context of the

C language, and also developed run-time and compile-time

check optimization frameworks. Finally, we described our

prototype implementation, and used it to analyze the execu-

tion, text and data size overheads of six non-trivial, pointer

intensive C programs. We showed that performance with

only run-time resolved optimizations was quite good. For all

six programs, instruction execution overheads ranged from

130~o to 540%, with text and data size overheads typically

below 100Yo. The primary factors to performance degrada-

tion in safe programs are the lack of safe pointer register al-

location and ineffective optimization in the presence of check

functions. We see the solution to these problems as better

integration between the safe compiler and the code genera-

tor.

Our prototype implementation, while successful at show-

ing the viability of our compile-time safe programming meth-

ods, leaves many questions of efficiency and usability unan-

swered. We are addressing these issues with the development

of our fully automatic, optimizing Saje- C compiler.

[HJ92]

[Ken83]

[KLPss]

[Lar93]

[Lee91]

[MFS90]

[RosS?]

[SC91]

[Ste92]

[zH88]

A.V. Aho, R. Sethi, and J.D, Unman. Con@ers: Prin-

ciples, ?’echnzques, and Tools. Addisoll-Wesley, Readiug,

MA, 1986.

Hans-Juergen Boehm. Space efficiel,t conservative garbage

collection. Proceedings of the A C’M SIGPLA N ’93 Confer=

ence on Programming Language Deszgn and Implementa-

tion, 2S(6):197–204, June 1993.

Hans-Juergen Boehm and Mark Weiser. Garbage collection

in an uncooperative environment. Software – Pract2ce and

Experience, 18(9):807–820, September 1988.

John R. Ellis and David L. Detlefs. Safe, efficient garbage

collection for C++. Technical Report 102, DEC Systems

Research Center, June 1993.

D. R. Edelson and I. Pohl. Smart pointers: They’re smart

but they’re not pointers. Proceedings of the 1991 Userux

C++ Conference, April 1991.

Anthony J. Field and Peter G. Harrison. Functional Pro-

gramming. Addison-Wesley Publishing Company, 1986.

Charles N. Fischer and Richard J. LeBlanc. The implemen-

tation of run-time diagnostics in Pascal. IEEE Transactions

on Software .%gineemng, SE-6(4):313–319, 1980.

Andrew Ginter. Design alternatives for a cooperative

garbage collector for the C++ programming language. Tech-

nical Report 91/417/01, Department of Computer Science,

University of Calgary, 1992.

Rajiv Gupta. A fresh look at optimizing array bound check-

ing. proceedings of the ACM SIGPLA N ’90 Conference on

Programmmg Language Design and Implementation, pages

272–282, June 1990.

Reed Hastings and Bob Joyce. Purify: fast detection of

memory leaks and access errors. Proceedings of the Winter

fJsenzz Conference, 1992.

Samuel C. Kendall. Bee: Runtime checking for C programs.

Proceedings of the summer Usenzz Conference, 1983.

Stephen Kaufer, Russel Lopez, and Sesha Pratap. Saber-

C: an interpreter-based programming environment for the C

language. Proceedings of the Summer Usenix Conference,

pages 161–171, 198S.

James R. Larus. Efficient program tracing. IEEE Computer,

26(5):52–61, May 1993.

Peter Lee, editor. Topzcs in Advanced Language Implemen-

tation. The MIT Press, Cambridge, MA, 1991.

Barton P. Miller, Lars Fredriksen, and Bryan So. An empiri-

cal study of the reliability of Unix utilities. Communications

of the ACM, 33(12):32–44, December 1990.

Graham Ross. Integral C – a practical environment

for C programming. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Enmronments (SIGPLAN

Notzces), pages 42–48. Association for Computing Machiu-

ery, January 1987.

Mark Sullivan and Ram Chillarege. Software defects and

their impact on system availability – a study of field fail-

ures in operating systems. Digest of the 21st International

S~mposzum on Fault Tolerant Computing, pages 2–9, June

1991.

Joseph L. Steffen. Adding run-time checking to the

Portable C Compiler. Software – Practice and &cperience,

22(4):305–316, 1992.

Benjamin Zorn and Paul Hilfinger. A memory allocation pro-

filer for C and Lisp programs. %oceedmgs of the Summer
Usemz Conference, pages 223–237, 1988.

301

