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Abstract

A parallel multithreaded program that is ostensibly deterministic
may nevertheless behave nondeterministically due to bugs in the
code. These bugs are called determinacy races, and they result
when one thread updatesalocation in shared memory while another
thread is concurrently accessingthe location. We haveimplemented
aprovably efficient determinacy-race detector for Cilk, an algorith-
mic multithreaded programming language. If aCilk program run on
a given input data set has a determinacy race, our debugging tool,
which we call the “Nondeterminator,” guarantees to detect and lo-
calizetherace.

The core of the Nondeterminator is an asymptotically effi-
cient serial algorithm (inspired by Tarjan’s nearly linear-time least-
common-ancestors algorithm) for detecting determinacy races in
series-parallel directed acyclic graphs. For aCilk program that runs
in T time on one processor and uses v shared-memory locations,
the Nondeterminator runsin O(T a(v,v)) time, where a is Tarjan’s
functional inverse of Ackermann’sfunction, avery slowly growing
function which, for all practical purposes, is bounded above by 4.
The Nondeterminator usesat most aconstant factor more spacethan
does the original program. On a variety of Cilk program bench-
marks, the Nondeterminator exhibits a slowdown of less than 12
compared with the serial execution time of the original optimized
code, which we contend is an acceptable slowdown for debugging
purposes.

1 Introduction

Cilk [5, 20] isan agorithmic multithreaded programming language
whose threads can concurrently access (read or write) shared mem-
ory without blocking. Many Cilk programs are intended to be de-
terministic, in that a given program produces the same behavior no
matter how its threads are scheduled. If athread updatesalocation
while another thread is concurrently accessing the location, how-
ever, a determinacy race occurs, which may cause the program to
behavenondeterministically. That is, different runsof the samepro-
gram may produce different behaviors. Determinacy-race bugs are
notoriously hard to detect by normal debugging techniques, such as
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breakpointing, because they are not easily repeatable. This paper
describes a system we call the “Nondeterminator” to detect deter-
minacy racesin Cilk programs.

Determinacy races have been given many different namesin the
literature. For example, they are sometimes called access anoma-
lies[7], data races[12], race conditions [19], or harmful shared-
memoryaccesses[16]. Netzer and Miller [15] clarify different types
of races and definea general race or determinacy raceto be arace
that causes a supposedly deterministic program to behave nondeter-
ministically. (They also defineadata race or atomicity raceto bea
racein anondeterministic program involving nonatomic accessesto
critical regions.) We prefer the more descriptive term “determinacy
race.” Emrath and Padua[9] call adeterministic program internally
deterministic if the program execution on the given input exhibits
no determinacy race and exter nally deterministic if the program has
determinacy racesbut its output is deterministic becauseof the com-
mutative and associative operations performed on the shared loca-
tions. Our Nondeterminator program checks whether a Cilk pro-
gramisinternally deterministic, and we have also extended the Non-
determinator to check whether a Cilk program is externally deter-
ministic when the program contains “ atomic accumulations.”

To illustrate how a determinacy race can occur, consider the
simple Cilk program shown in Figure 1. The Cilk procedure
main() forks a subprocedure foo () using the spawn keyword,
thereby allowing main () to continue executing concurrently with
the spawned subprocedure foo (). Then, the main() procedure
spawns another instance of foo(). The sync statement causes
main () tojoin with its two subproceduresby suspendinguntil both
of these instances of foo () complete. (In general, the sync state-
ment causes a procedure to suspend until all subprocedures that
it has spawned have completed.) A spawn tree for this program,
whichillustratesthe relationship between Cilk procedures,is shown
in Figure 2.

The parallel control flow of the Cilk program from Figure 1 can
be viewed as a directed acyclic graph, or dag, asillustrated in Fig-
ure 3. The vertices of the dag represent parallel control constructs,
and the edgesrepresent Cilk threads, which are maximal sequences
of instructions not containing any parallel control constructs. In Fig-
ure 3, the threads of the program are labeled to correspond to code
fragments from Figure 1, and the subdags representing the two in-
stancesof foo () areshaded. (Threadse; and e, contain no instruc-
tions.) In this program, both of the parallel instantiations of proce-
dure foo () update the shared variable x inthex = x + 1 state-
ment. This statement actually causes the processor executing the
threadto perform aread on x, increment thevalue, and then writethe
valueback into x. Sincethese operationsare not atomic, both might
updatex at the sametime. Figure 4 showshow this determinacy race
can cause x to take on different valuesif the threads comprising the
two instantiations of foo () are scheduled simultaneously.



int x;

cilk void foo()

{
x =x+ 1;
}
cilk int main() /* F %/
{
x = 0; /* €y */
spawn foo(); /% Fp *x/
/* e */
spawn foo(); /* Fp x/
/* € x/
sync;
printf("x is %d\n", x); /% e3 */
return 0;
}

Figure 1: A simple Cilk program that contains determinacy races. In the
comments at the right, the Cilk threads that make up the proceduremain ()

are labeled.

Figure 2: A spawn tree for the Cilk programin Figure 1. Each node cor-
responds to a procedure, and its children in the tree are the procedures it
spawns.

The Nondeterminator determinacy-race detector takes asinput a
Cilk program and an input data set and either determineswhich loca-
tionsin the program are subject to determinacy races when the pro-
gram isrun on the data set, or else certifies that the program is race
free when run on the dataset. In general, adeterminacy race occurs
whenever two threads access the same location and one of the ac-
cessesis awrite. If adeterminacy race exists, the Nondeterminator
localizes the bug, providing variable name, file name, line number,
and dynamic context (state of runtime stack, heap, etc.). The Non-
determinator is not a program verifier, because the Nondetermina-
tor cannot certify that the programis race free for all input data sets.
Rather, it is a debugging tool. The Nondeterminator only checksa
program on a particular input data set. What it verifiesisthat every
possiblescheduling of the program execution producesthe same be-
havior. Moreover, even though the Nondeterminator detects deter-
minacy racesin parallel programs, it isitself a serial program.

The Nondeterminator was implemented by modifying the ordi-
nary Cilk compiler and runtime system. Each read and write in the
user’s program is instrumented by the Nondeterminator’s compiler
to perform determinacy-race checking at runtime. The Nondetermi-
nator then executesthe user’s program in a serial, depth-first fash-
ion (like a C execution), but it performsrace-checking actions when
reads, writes, and parallel control statements occur. Figure 5 shows
the performance of the Nondeterminator on several Cilk application
benchmarks running on a 167-megahertz SUN Ultrasparc with the
Solaris 2.5.1 operating system. Since the Nondeterminator is a se-
rial program, our comparisonsare with one-processor executionsof
the benchmarks.

The heart of the Nondeterminator’s runtime system is an algo-
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foo() foo()
® Spawn node @ Sync node

Figure 3: The paralel control-flow dag of the program in Figure 1. A
spawn node of the dag representsa spawn construct, and async noderepre-
sentsa sync construct. The edgesof the dag are labeled to correspond with
code fragments from Figure 1. We assume that the start of the program is
“spawned” by the operating system, and the end of the programis“ synced”
by the operating system.

Casel Case?2
F R e3 F R e3
read x read x
write x read x
read x write x
write x write x
“x is 2" “x is 1"

Figure 4: Anillustration of a determinacy racein the code from Figure 1.
Thevalueof the shared variablex read and printed by thread e; can differ de-
pending on how theinstructionsin the two instancesF; and F, of the foo ()
procedure are scheduled.

rithm for determinacy-race detection that we call the SP-bags al-
gorithm, which was inspired by Tarjan’s nearly linear-time least-
common-ancestorsalgorithm [22]. Like Tarjan’s algorithm, the SP-
bags algorithm uses an efficient data structure [6, Chapter 22] to
managedisjoint sets of elements. Figure 6 comparesthe asymptotic
time and space for the SP-bags algorithm with other race-detection
algorithms in the literature.

The remainder of this paper is organized as follows. Section 2
presentsthe SP-bagsalgorithm that underliesthe Nondeterminator’s
runtime system. Section 3 reviews the basic properties of series-
parallel dags and relates them to the parallel control flow of Cilk
programs, and then Section 4 provesthat the SP-bags algorithm cor-
rectly detects determinacy racesin Cilk programs. The SP-bags al-
gorithm only considers “pure”’ Cilk programs that contain spawn
and sync statements, but none of Cilk’s more advanced constructs
that allow nondeterministic programming. (For a complete speci-
fication of the Cilk language, see [20].) Section 5 shows how to
extend the SP-bags algorithm to detect determinacy races in more
general Cilk programs containing atomic “accumulations,” wherea
variable can be updated when a spawned procedure returns. Sec-
tion 6 describes how we implemented the SP-bags algorithm in the
Nondeterminator and provides empirical data on its performance.
Section 7 discussesrelated work, and we offer some concluding re-
marksin Section 8.

2 The SP-bags algorithm

This section describes the SP-bags algorithm for determinacy-race
detection. Wefirst review the digjoint-set data structure used in the
algorithm, and then we present the algorithm itself, which is in-
spired by Tarjan’s least-common-ancestors algorithm [22]. Finally,
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Figure 5: The slowdown of eight benchmark Cilk programs checked with
the Nondeterminator. The slowdown, shown as a dark bar, is the ratio of
the Nondeterminator runtime to the original optimized runtime (gcc -03)
of the benchmark. For comparison, the slowdown of an ordinary debugging
version (gcc -g) of each benchmark is shown asalight bar.

Time
Algorithm Thread Per Space
creation & access
termination
English-Hebrew
labeling [16] o(p) O(pt) O(vt + min(np,vtp))
Task
recycling [7] o(t) o(t) oMt +t?)
Offset-span
labeling [12] o(p) o(p) O(v+ min(np,vp))
SP-bags
algorithm O(a(v,v)) | O(a(v,v)) O(v)
p = maximum depth of nested parallelism
t = maximum number of logical concurrent threads
v = number of shared locations being monitored
n = number of threadsin an execution

Figure 6: Comparison of determinacy-racedetectionalgorithms. Thefunc-
tion a is the very slowly growing inverse of Ackermann’s function intro-
duced by Tarjan in hisanalysisof an efficient disjoint-set data structure. For
al conceivably practical inputs, the value of thisfunction is at most 4. The
time for the SP-bags algorithm is an amortized bound.

we provethat the running time of thealgorithmisO(T a (v, v)) when
run on a Cilk program that takestime T on one processor and usesv
shared-memory locations, where a is Tarjan’s functional inverse of
Ackermann’sfunction [21].

The SP-bags algorithm is a serial algorithm. It uses the fact that
any Cilk program can be executed on one processor in a depth-first
(C-like) fashion and conforms to the semantics of the C program
that results when all spawn and sync keywords are removed. As
the SP-bags algorithm executes, it employs several data structures
to determine which procedure instances have the potential to exe-
cute “in parallel” with each other, and is thereby able to check for
determinacy races.

The SP-bags algorithm maintains two shadow spaces of shared
memory called writer and reader. For each location of shared
memory, each shadow space has a corresponding location. Every
spawned procedurel is given aunique D at runtime. For eachloca-
tion | in shared memory, the ID of the procedure that wrote the lo-
cation is stored in location | of the writer shadow space. Similarly,
location | of the reader shadow space storesthe ID of a procedure
which previously read location |, although in this case, the ID is not
necessarily that of the most recent reader. The SP-bags algorithm
updatesthe shadow spacesasit executes.

Technically, by “procedure” we mean “procedure instance,” that is, the runtime
state of the procedure.

S P

Figure 7: A snapshot of the SP-bags data structures during the execu-
tion of a Cilk program. The ovals in the figure represent procedures that
are currently on the runtime stack: F; spawns Fg, which spawns Fg, which
spawns F13. Each procedure contains an S-bag and a P-bag. Each descen-
dant of acompleted child of a procedure F belongs either to F’s S-bag or to
F'sP-bag. For example, F,, F3, F4, and Fs are descendants of F; that com-
plete before F; spawns Fg, and so these proceduresbelong to either F;'s S
bag or its P-bag. In addition, every procedure F belongsto its own S-bag.

The SP-bags algorithm usesthe fast disjoint-set data structure [6,
Chapter 22] analyzed by Tarjan [21]. Thedata structure maintainsa
dynamic collection X of disjoint sets and providesthree elementary
operations:

MAKE-SET(X): X+~ XU {{x}}.

UNION(X,Y): ¥ —2—{X,Y}U{XUY}. ThesetsX andY arede-
stroyed.

FIND-SET(X): Returnstheset X € Z suchthat x € X.

Tarjan showsthat any m of these operations on n setstake atotal of
O(ma(m,n)) time.

During the execution of the SP-bags algorithm, two “bags’ of
procedure ID’s are maintained for every Cilk procedure on the call
stack, asillustrated in Figure 7. These bags havethe following con-
tents:

e The S-bag S of aprocedure F containsthe ID’s of those de-
scendants of F’s completed children that logically “precede’
the currently executing thread, as well asthe ID for F itself.

e TheP-bag P+ of aprocedure F containsthe ID’s of those de-
scendantsof F’s completed children that operate logically “in
parallel” with the currently executing thread.

The S-bags and P-bags are represented as sets using a disjoint-set
data structure.

The SP-bagsalgorithmitself isgivenin Figure 8. Asthe Cilk pro-
gram executesin a serial, depth-first fashion, the SP-bags algorithm
performs additional operations whenever one of the five following
actions occurs. spawn, sync, return, write, and read. The cor-
rectness of the SP-bags algorithm is presented in Section 4, but we
give an informal explanation of its operation here.

As the SP-bags algorithm executes, it updates the contents of
the S-bags and P-bags whenever one of the actions spawn, sync,
return occurs. Whenever aprocedureF is spawned, St isinitially
made to contain F, because F’s subsequent instructions are in se-
ries with its earlier instructions. Whenever a subprocedure F’ re-
turns to its parent F, the contents of S/ are emptied into Px, since
theproceduresin S/ can executein parallel with any subprocedures
that F might spawn in the future before performing a sync. When
async occurs, Pr isemptied into its S, since all of F’spreviously



spawn procedure F:
S — MakEe-SET(F)
P 0

sync inaprocedure F:
S — UNION(Sg, Fr)
P 0

return from procedure F' to F:

Pr — UN1oN(P:, Se)

write asharedlocation| by procedure F:
if FIND-SET(reader(l)) isaP-bag
or FIND-SET(writer(l)) is aP-bag
then adeterminacy race exists
writer(l) — F

read ashared location | by procedure F:
if FIND-SET(Writer(l)) isaP-bag
then adeterminacy race exists
if FIND-SET(reader(l)) isan S-bag
then reader(l) — F

Figure 8: The SP-bagsalgorithm. Whenever one of the five actions occurs
during the serial, depth-first execution of a Cilk program, the operationsin
the figure are performed. Operationsfor spawn, sync and return actions
manipulate the S-bags and P-bags of the digjoint-set data structure. Opera-
tionsfor write and read actionsaffect the shadow spacesand detect deter-
minacy races.

spawned subproceduresand their descendantslogically precedeany
future subprocedures spawned by F.

Determinacy races are detected by the codefor write and read.
A race occursif aprocedure F writesalocation | and discoversthat
either the previous reader or the previous writer of | belongsto a P-
bag, which meansthat F and the past accessor of | operatelogically
in parallel. Similarly, a race occurs whenever F reads a location |
and discoversthat the previous writer isin a P-bag. In the normal
case, wheneveralocation| iswritten, location| inthewriter shadow
spaceis updated to be F. The reader of | is updated to be F when
aread occurs, but only if the previous reader operates logically in
serieswith F. Thelogic behind this subtle pieceof codeisexplained
in Section 4, where the SP-bags algorithm is proved correct.

To concludethis section, we analyze the asymptotic performance
of the SP-bags algorithm.

Theorem 1 Consider a Cilk program that executesin time T on
one processor and references v shared memory locations. The SP-
bagsalgorithm can beimplemented to check this program for deter-
minacy racesin O(T a(V,V)) time using O(v) space.

Proof:  Let n bethe number of spawned proceduresduring the ex-
ecution of the SP-bags algorithm, which is also the the total num-
ber of procedure ID’s used by the algorithm. The total humber of
all MAKE-SET, UNION, and FIND-SET operations is at most the
serial running time T. Consequently, by using the fast digjoint-
set data structure analyzed by Tarjan, we obtain a running time of
O(T a(T,n)). Sincethe two shadow spacestake O(v) spaceand the
disjoint-set data structure takes O(n) space, the total space used by
the algorithm is O(v+ n).

By using garbage collection, the time and space can bereducedto
O(Ta(v,v)) and O(v), respectively. Theideaisto run thebasic SP-
bagsalgorithm for v steps, and then scan through the shadow spaces
marking which procedureID’s arein use. Then, we remove the un-
used ID’s from the disjoint-set data structure, which can be donein

(@ (b) (©

Figure 9: Thethreewaysthat aseries-parallel dag can beconstructed. (a) A
base graph. (b) Series composition of two series-parallel dags. (c) Parallel
composition of two series-parallel dags.

O(va(v,v)) time. We repeat the garbage collection every v steps.
Thus, in T time, we perform [T/v] garbage collections, resulting
in arunning time of O(T a(v,v)). Because the amount of spacein
useafter each garbagecollectionis O(v) and at most O(v) additional
space can accumulate during the v steps between garbage collec-
tions, the algorithm uses a total of O(v) space. [ ]

In practice, it is probably not worthwhile to implement the
garbage collection, and the Nondeterminator doesnot implement it.
Also, the worst-case bounds can easily be improved if they are ex-
pressed using more detailed parametersthan T and v.

3 Series-parallel dags

Series-parallel dags [23] are a straightforward extension of the no-
tion of series-parallel graphs[8, 11, 17]. In this section, we review
basic properties of series-parallel dags and show how a Cilk pro-
gram execution correspondsto a series-parallel dag. These proper-
tieswill be usedin Section 4 to provethe correctnessof the SP-bags
algorithm.

We first define various relationships among Cilk threads. A
thread e; precedesathread ey, denoted e; < ey, if thereisapathin
the Cilk dag that includes both e; and e, in that order. Two distinct
threads e; and e, operatelogically in parallel, denoted ey || e, if
e1 £ e ande, £ ;. Informally, e; < e, meansthat e; must execute
before e, in any legal scheduling of a Cilk program, whilee; || e,
meansthat e; and e, can execute at the sametime. The precedence
relation < is transitive.

A series-parallel dag G = (V, E) is adirected acyclic graph with
two distinguished vertices, asources € V andasinkt € V, whichis
constructed recursively in one of the following ways, as illustrated
in Figure 9:

Base: The graph consists of a single edge e connecting the source
stothesinkt.

Seriescomposition: The graph consistsrecursively of two series-
parallel dags G; and G, with disjoint edge sets in which the
sourceof G, iss, thesink of G, ist, and the sink of G, isthe
source of G.

Parallel composition:  The graph consists recursively of two
series-parallel dags G1 and G, with disjoint edge setsin which
the sourcesof G, and G, are both sand the sinksof G; and G,
are both't.

Note that for series composition, it makes a difference which sub-
graph precedesthe other, but the order of parallel composition does
not matter. Moreover, one can prove by induction that any series-
parallel dag isindeed a dag.

The following properties of series-parallel dags are presented
without proof.

Lemma 2 Let G beaseries-parallel dag, let G be aseries-parallel
subdagof G, and let sandt bethe sourceand sink of G, respectively.
Then, the following properties hold:
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Figure 10: The dag of a spawned Cilk procedurethat contains spawn and sync statements. It consists of alinear sequence of sync blocks (rectanglesin the
figure) terminated by a return statement. Each e correspondsto athread of the Cilk procedure, and each F correspondsto a spawned subprocedure.

1. Thereexistsapathin G from sto any edgein G.
2. Thereexistsapathin G from any edgein Gtot.
3. Every pathin G’ that beginsoutside of G and enters G passes

through s.
4. Every pathin G' that begins within G and leaves G passes
throught. [ |

Thefollowing theorem shows that any Cilk parallel control-flow
dag, such asthat in Figure 3, is series-parallel.

Theorem 3 A Cilk parallel control-flow dag is a series-parallel
dag.

Proof:  We use induction on the depth of the Cilk spawn tree. A
Cilk procedurethat contains no spawn or sync statementsis aleaf
of the spawn tree and is trivially abase series-parallel dag.

Consider a Cilk procedure that contains spawn and sync state-
ments. The parallel control flow of the procedure at runtime can be
viewed as alinear sequenceof sync blocksterminated by areturn
statement, where each sync block consists of a sequence of spawn
statements interleaved with C code and terminated by async. In
other words, the execution of a procedure hasthe form

€, spawn F; € spawnF; € ...; spawnF; € sync;
€, spawn F; € spawnF; € ...; spawnF; € sync;
€, spawn F; € spawnF; € ...; spawnF; € sync;
€, return,

where each eis athread of the Cilk procedure, each F is a spawned
subprocedure, and each line except the last is a sync block. The
dag correspondingto the parallel control flow isshownin Figure 10.
By induction, the computation arising from each spawned subproce-
dureis aseries-parallel dag. Each syncblock is aseries-parallel dag
created by alternating series and parallel compositions of threads,
the spawned procedures, and the spawn and sync nodes. The Cilk
dag representing the procedure and all its descendants can now be
assembled by serially composing all the sync blocks. [ |

A series-parallel dag can be represented by a binary parsetree,
as illustrated in Figure 11 for the Cilk procedure from Figure 10.
Theleaf nodesof the parsetree correspondto edgesof the dag (Cilk
threads), and each internal nodeis either an S-node S, which corre-
sponds to a series composition of its two children, or a P-node P,
which correspondsto a parallel composition of its children.

A canonical parse tree for a Cilk dag can be constructed as fol-
lows. Wefirst build aparsetree recursively for each child of theroot
procedure. For each sync block of the root procedure, we apply al-
ternating parallel and series composition on the child parse tree to

Figure 11: The canonical parsetreefor ageneric Cilk procedure. The nota-
tion F represents the parse tree of any subprocedure spawned by this proce-
dure, and e represents any thread of the procedure. All nodesin the shaded
areasbelong to the procedure, and the nodesin each oval belongto the same
sync block. A sequence of S-nodes forms the spine of the parse tree, com-
posing al sync blocksin series. Each sync block containsan alternating se-
quenceof S-nodes and P-nodes. Observe that the left child of an S-nodein
async block is alwaysathread, and that the left child of a P-nodeis aways
asubprocedure.

create a parse tree for the sync block. Finally, we string the parse
trees for the sync blocks together into a spine for the procedure by
applying asequenceof series compositionsto the sync blocks. Sync
blocks are composed serially, because a sync statement is never
passeduntil all previously spawned subprocedureshave completed.
Theonly ambiguitiesthat might arisein the parsetree occur because
of the associativity of series composition and the commutativity of
parallel composition. If, as shownin Figure 11, the alternating S-
nodesand P-nodesin a sync block always place threads and subpro-
cedures on the left, and the series compositions of the sync blocks
are applied in order from last to first, then the parse tree is unique.
Such acanonical parse tree is shown in Figure 12 for the Cilk dag
in Figure 3.

The canonical parse tree satisfies an interesting property with re-
spect to a serial, depth-first execution of the Cilk program. Specifi-
cally, an ordinary depth-first tree walk (see[6, p. 245]) of the parse
tree visits the threads of the computation in the same order as the
threads are encountered when the Cilk program is executed in a
depth-first (C-like) fashion on a single processor.
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Figure 12: The canonical parsetree for the Cilk dagin Figure 3.

4 Correctness of the SP-bags algorithm

In this section, we prove the correctness of the SP-bags algorithm.
We begin by showing how either aprecedencerelation < or aparal-
lel relation || between two threadsin a Cilk dag can beinferred from
the threads' least common ancestor in the parse tree of the dag. We
then prove alemmacthat characterizesthe contents of S-bagsand P-
bagsduring the execution of the SP-bagsalgorithm. We concludeby
showing that the SP-bags algorithm correctly detects determinacy
races.

The SP-bags algorithm hingeson the notion of the least common
ancestor of two nodesin atree. Given two nodesx andy in arooted
tree, their least common ancestor, denoted L CA(X, ), is the deep-
est node in the tree that is a common ancestor of both x and y. Al-
ternatively, if one traces the unique simple path from x to y, their
least common ancestor is the node on the path that is closest to the
root. Thenext lemmaand its corollary show how the least common
ancestor of two threads in the parse tree can be used to determine
whether the threads operate logically in parallel or whether one pre-
cedesthe other.

Lemma 4 Let e; and e, be distinct threadsin a Cilk dag, and let
LCA(ey,e,) betheir least common ancestor in a parse tree for the
dag. Then, e; || ey if and only if LCA(ey,ey) isaP-node.

Proof: (=-) Assume for the purpose of contradiction that e || e,
and LCA(ey,e) isan S-node. Let G be the graph corresponding
to the left subtree of LCA(ey,€,), and let G, be the graph corre-
spondingto the right subtree. By Lemma 2, there exists a path from
e, tothesink of G; and a path from the source of G, to e,. Since G;
and G, are composed in series, the sink of G, and the source of G,
are the same node, and hencee; < e,, contradicting the assumption
that e || e.

(«) Assume for the purpose of contradiction that e; < e, and
LCA(ey,e,) isaP-node. Let G; be the graph corresponding to the
left subtree of LCA (e, &), and let G, be the graph corresponding
to the right subtree. By Lemma 2, the path from e; to e, must go
through the sink of G; and the source of G,. Since G; and G, are
composedin parallel, the sink of G; isthe sink of G, and the source
of G; isthe source of G,. Thus, we have a path from the sink of G;
to the source of G, contradicting the fact that G, is adag. [ |

Corollary 5 Lete; and e, bedistinct threadsin a Cilk dag, and let
LCA(e1,ey) betheir least common ancestor in a parse tree for the
dag. Then, e; < e, if and only if LCA(ey,e,) isan S-node, e is
in the left subtree of LCA(ey,€p), and e, isin theright subtree of
LCA(ey,e). [ ]

Asan example of the use of Lemmad4, in Figure 12 we haveF, ||
F», because LCA(F,F,) is aP-node. In contrast, since e; occurs
to the left of F, in the parsetree and LCA(ey, F,) is an S-node, by
Corollary 5 we can concludethat e; < F,.

The SP-bags algorithm takes advantage of relationships among
threadsthat can be derived from the serial, depth-first execution or-
der of the dag. The following two lemmas exploit the depth-first
execution order of the algorithm to determine when threads operate
logically in parallel.

Lemma 6 Supposethat three threads e;, e, and e3 executein or-
der in a serial, depth-first execution of a Cilk dag, and suppose that
e; < e andey || es. Then, wehavee; || es.

Proof: Assume for the purpose of contradiction that e, < es.
Then, since e; < &, we have e; < e3 by transitivity, contradicting
the assumption that e, || es. [ |

Lemma 7 (Pseudotransitivity of ||) Supposethat three threads
e1, e, and e3 executein order in aserial, depth-first execution of a
Cilk dag, and supposethat e, || e, ande, || e3. Then, wehavee, || e3.

Proof: Consider the parsetree of the Cilk dag with e, e,, and es.
Letag = LCA(ep,er) anday = LCA(ey, €3). Lemmad impliesthat
both a; and a, are P-nodes. Becausee;, e,, and e3 execute in or-
der, one can show that either a; or a, is the least common ancestor
of e; and e3, and since both a; and a, are P-nodes, it follows from
Lemma4that ey || es. [ ]

From the construction of the canonical parsetree for the Cilk dag,
it isapparent that each procedurein the spawntreeis represented by
an assembly of threads and internal nodesin the parsetree. We de-
fine the mapping h of threads or nodes in the canonical parse tree
to proceduresin the spawntree to be the procedurification function
for the parsetree. This procedurification function isused in the next
lemmato relate the S-nodes and P-nodes in the parse tree to proce-
dure ID’s in the S-bags and P-bags during the execution of the SP-
bags algorithm.

Lemma 8 Consider an execution of the SP-bags algorithm on a
given Cilk dag. Let h bethe procedurification function mapping the
canonical parsetreefor thedagto proceduresin the spawntree. Sup-
posethread e; is executed beforethread e;, and leta= LCA(ey, &)
be their least common ancestor in the parse tree. If aisan S-node,
then the procedure ID for h(e;p) belongsto the S-bag of h(a) when
e, isexecuted. Similarly, if aisaP-node, then the procedure ID for
h(e;) belongsto the P-bag of h(a) when e, is executed.

Proof: We shall first show that if a isan S-node of the parse tree,
then the procedure ID for h(e;) belongs to the S-bag of the pro-
cedure h(a). There are two possibilities (as can be seen from Fig-
ure 11) depending on whether a belongsto the spine or async block
of the parsetree.

If abelongsto the spine, then e; belongsto a’'sleft subtree, which
isrooted in a sync block of the parse tree. At the time thread e, is
executed, in what bag doesthe procedureD for h(e;) reside? From
thecodefor the SP-bagsalgorithmin Figure 8, we can seethat when
e; is executed, the ID for h(ep) is placed in h(e;)’s own S-bag by
the spawn action. From the construction of the canonical parsetree
(seeFigure 11), we observethat either h(e;) = h(a) or h(e;) isade-
scendant of h(a). From thetime that e; is executedto thetime e, is
executed, the only operations that move the ID for h(e;) are sync
and return, which never move the ID down the spawn tree, and
indeed, h(e;)’s ID moves up exactly when one of its ancestors re-
turns. Consequently, when the sync correspondingto a isexecuted,
h(e;)’sID isplaced into the S-bag of h(a), if it isnot already there.
From that point until e, is executed, no operations remove h(e;)’s
ID from h(a)’s S-bag.

If abelongsto oneof h(a)’ssyncblocks, then the construction of
the canonical parse tree implies that e; isthe left child of a, as can



be seenin Figure 11. Consequently, we have h(e;) = h(a), and the
SP-bags algorithm places the procedure ID for h(e;) into h(a)’'s S
bag at the moment that h(a) is spawned. From that moment until the
time e, is executed, the S-bag of h(a) is never emptied, since h(a)
does not return until after executing e,. Thus, h(e;)’sID belongsto
h(a)’s S-bag when e, is executed.

We now show that if a isaP-node of the parsetree, then the pro-
cedurelD for h(e;) belongsto the P-bag of the procedureh(a). If a
isaP-node, thenthe thread e; belongsto theleft subtree of aandthe
thread e, belongsto a'sright subtree. Asin the argument for when
aisan S-nodein h(a)’s spine, when e, is executed, the procedure
h(e;) must belong to abag in the procedure h(a) of their least com-
mon ancestor a. In this case, however, the procedure ID for h(ey)
belongsto h(a)’s P-bag, sinceh(e; ) is aproper descendant of h(a),
the ID for h(ey) is placed in h(a)’s P-bag when h(a)’seft child re-
turns, and the P-bag of h(a) is not emptied until a’sentire syncblock
is executed. |

Corollary 9 Consider an execution of the SP-bags algorithm on a
given Cilk dag, and let h be the procedurification function mapping
the canonical parse tree for the dag to proceduresin the spawn tree.
Suppose thread e, is executed before thread e,. Then, e; < & if
and only if the procedure 1D for h(e;) belongsto an S-bag when e,
is executed. Similarly, e; || e, if and only if the procedure ID for
h(e;) belongsto a P-bag when e, is executed.

Proof: Combine Lemma4, Corollary 5, and Lemma8. [ |

We now prove that the SP-bags algorithm is correct.

Theorem 10 The SP-bagsalgorithm detectsadeterminacy racein
aCilk program if and only if a determinacy race exists.

Proof: (=) Supposethat the SP-bagsalgorithm detects adetermi-
nacy race when executing athread e,. According to the SP-bagsal-
gorithm (see Figure 8), one of three casesoccurs:

1. e, performsawrite andreader(l) belongsto a P-bag;

2. e, performsawrite andwriter(l) belongsto a P-bag;

3. e, perfformsaread and writer(l) belongsto a P-bag.

In the first case, the procedure ID stored in reader(l) is set by a
thread e; which executesbefore e, and reads|, and henceby Corol-
lary 9, we have ey || e,. Since e; readsl, e, writes I, and the two
threads operate logically in parallel, adeterminacy race exists. The
other two cases are similar.

(«~=) We now show that if a program contains a determinacy race
on alocation |, then the SP-bags algorithm reports a determinacy
race on location |. Let e; and e, be two threads involved in a de-
terminacy race onlocation |, where if there are several determinacy
raceson |, we choosethe determinacy race whose second thread ex-
ecutes earliest in the depth-first execution order of the program. By
definition of a determinacy race, we have e || e, and without loss
of generality, e; executesbeforee,.

There are three possible ways the determinacy race could oc-
cur:

1. e; writes| and e, readsl;

2. ep writes| and e, writesl;

3. e reads| and e, writes|.

In each case, let h be the procedurification function mapping threads
or nodes of the canonical parse tree to proceduresin the spawn tree.

Case 1. Supposethat e; writes | and e, reads|. When e, is ex-
ecuted, supposethat writer(1) = h(e) for somethread e. If e=ey,
then sincee, || e, Corollary 9 impliesthat writer(l) belongsto aP-
bag and the determinacy raceisreported. If e # e1, however, thene
must be executed after e; but before e,, because otherwise € swrite

tol would be overwritten by e;’swrite, andwriter (1) wouldlikewise
be overwritten. We have two possibilities: either e; < eore; || e.
If e; < e, then we must have e || e, by Lemma 6. Consequently,
Corollary 9impliesthat h(e) = writer (1) belongsto aP-bag, andthe
determinacy race between e and e, is detected. If e; || e, however,
then since both e; and e write |, a write/write determinacy race ex-
ists between e; and e, contradicting the assumption that e, executes
earliest in the depth-first execution order of the program, over all
determinacy races on location |.

Case 2. Thiscaseissimilar to Case 1.

Case 3. In this case, when e, is executed, suppose that
reader(l) = h(e) for somethread e. If e= e, thensincee, || e,
Corollary 9 implies that reader(l) belongs to a P-bag and the de-
terminacy raceis reported. Consequently, we may assumethat e #
e;. We consider two situations depending on whether e; updates
reader(l) when it executes.

If e; updatesreader(1), then consider the sequence of updatesto
reader(l) from the time e; executesup to and including thetime e
executes. Let the threads performing the updatesbe €, €, ... , &,
where e} = e; and €, = e. From the code for read in Figure 8, we
must havefori=1,2,... k—1that € < € ;, sinceby Corollary 9,
the ID of h(e) belongs to an S-bag when € ; executes. By tran-
sitivity, therefore, we have e; < e. Sincee, || e;, by Lemma6, it
follows that e || e,. Consequently, by Corollary 9, the determinacy
race between e and e, is detected.

If e; does not update reader(l), then when e; executes, we must
have h(€') = reader(l) for some thread € || e; that executes be-
foree;. Sinceey || e, by pseudotransitivity (Lemma7) it follows
that € || e,. Looking at the sequence of updates of reader(l) from
the execution of € up to and including the execution of e, we can
concludethat € < e. Since€ || e,, Lemma6 impliesthat e|| e,, and
hence the determinacy race between e and e, is reported. [ |

5 Support for atomic accumulation

Cilk supports the atomic accumulation of results returned by
spawned procedures. |If the operators used to augment the ac-
cumulated variable are commutative—they are all += or -=, for
example—wewould likethe concurrent accessing of the updatesnot
to be viewed as races, because the order of accumulation does not
affect the “external determinacy” [9] of the computation. That is,
the behavior of the program is deterministic, even though different
executionsmay cause some variablesto passthrough different inter-
mediate states. In this section, we show how to extend the SP-bags
algorithm to detect determinacy racesin Cilk code where races be-
tween accumulations are considered to be “legal .”

Consider the Cilk procedurefoo () from Figure 13. Cilk guaran-
teesthat this code producesthe same result for the integer variable
x no matter how threads are scheduled. The basic ideais that accu-
mulations of this kind are performed atomically with respect to one
another, and the updatesto x arecommutative: no matter what order
they are executed, x hasthe same value after the sync. Thus, even
though different executions may cause x to pass through different
intermediate states, the final result isthe same. A determinacy race
in an externally deterministic programis called alegal determinacy
race, and it isillegal otherwise.

Cilk guaranteesthe atomicity of accumulationsonly for accumu-
lationswithin the same procedureinstance. Accumulationsby other
procedureinstancesthat operatelogically in parallel are not guaran-
teed to be atomic by Cilk’s runtime system, and they can causenon-
determinism. Atomicity aloneis not sufficient for araceto belegal,
however. It must also involve commutative updates. For example,
if the accumulation operator “-=" in foo () is replaced by the op-
erator “*=", the race is illegal, because the order of execution can



cilk int foo()

{ ..
X += spawn bar();
x —-= spawn baz();
x += 1;
sync;

}

Figure 13: Anillustration of the use of accumulationinaCilk program. The
integer variable x may or may not belocal to theprocedurefoo (). Although
determinacy races occur between updatesto x, theracesare legal, since the
updates occur atomically.

affect the final value of x, even though the updates are performed
atomically.

The SP-bags algorithm can be modified to accommodate legal
races. There are two key changes to the data structures. First, we
create a shadow spaceto record the operator whenever an accumu-
lation or assignment occurs. (The assignment operator = is consid-
ered to be a degenerate accumul ation operator which does not com-
mute with any other operators, includingitself.) Second, in addition
to procedure ID’s, the SP-bags algorithm assigns each sync block a
distinct ID. The sync-block ID and operator are stored in a shadow
space whenever an accumulation occurs.

Figure 14 extends the SP-bags algorithm of Figure 8 to detect the
determinacy races in Cilk code containing accumulations. In ad-
dition to the introduction of a new action accumulate that deals
with the case when the returned result of a spawned procedure is
accumulated, only the write action needsto be extended. A new
shadow space called operator stores the operator for each location
in the shared memory. When aprocedure F in async block B writes
alocation | with accumulation operator op, and it discoversthat the
previous writer of | belongsto a P-bag, a determinacy race occurs
only if the previouswriter is not B or if the previouswriter’s opera-
tor does not commutate with op. If no determinacy race occurs, the
operator of | is updated to op. When a spawned procedure returns
its result to procedure F and accumulatestheresult into alocation|,
the operations are almost the same asthe write action except that
it is necessary to check whether the current sync block B belongsto
any bag. If not, the unique ID for B is placed into the P-bag of F, if
it is not there already.

Theorem 11 The extended SP-bags algorithm detects a determi-
nacy racein a Cilk program containing accumulationsif and only if
an illegal determinacy race exists.

Proof sketch:  The proof is similar to that of Theorem 10. Once
again, the “only if” direction is straightforward, and the hard part
isthe “if” direction. The extended SP-bags algorithm contains an
additional check when athread performs awrite and writer(l) be-
longs to a P-bag. If writer(l) is the ID of the current sync block,
then | has been accumulated by the returned result of a previously
spawned procedure in the same sync block. If the operator is also
commutative with operator(l), then the determinacy race is legal,
because the accumulations are performed atomically. Otherwise,
the determinacy race isillegal and is reported. Determinacy races
caused by the accumulate action are checked similarly to the ones
by thewrite action. [ |

6 The Nondeterminator

This section presents the implementation of the Nondeterminator,
our determinacy-race detector for Cilk programs. We discuss how

write asharedlocation| with operator op by procedureF in sync
block B:
if FIND-SET(reader(l)) isaP-bag
then adeterminacy race exists
if FIND-SET(Writer(1)) is aP-bag
and (writer(l) # B
or op does not commutate with operator(l))
then adeterminacy race exists
writer(l) — F
operator(l) — op

accumulate returned result of spawned procedure into a shared
location | with operator op by procedure F in sync block B:
if FIND-SET(reader(l)) isaP-bag
then adeterminacy race exists
if FIND-SET(Writer(1)) is aP-bag
and (writer(l) # B
or op does not commutate with operator(l))
then adeterminacy race exists
if FIND-SET(B) =0
then Pr — UNION(P:, MAKE-SET(B))
writer(l) — B
operator(l) — op

Figure 14: The extended SP-bags algorithm of Figure 8 for Cilk code con-
taining accumulations. Operationsfor thewrite action are extended. Oper-
ationsfor the accumulate action are performed when atomic accumulation
occurs.

the Nondeterminator implements the SP-bags algorithm by modify-
ing the Cilk compiler and runtime system. We describe some mod-
ificationsto the SP-bags algorithm that enhancethe Nondetermina-
tor’s performance. Empirical datafrom avariety of benchmark Cilk
programs showsthat the Nondeterminator typically runsin lessthan
12 times the execution time of the original optimized program.

The first phase of checking a user’s Cilk program is to run
the code through the Cilk compiler with an option that turns on
determinacy-race detection. This compiler option produces object
codewith calls to the Nondeterminator’s runtime system for every
read and write of shared memory. In addition, the compiler inserts
hooksthat allow the Nondeterminator’s runtime system to perform
actionsfor every spawn, sync, and return.

At runtime, before it starts executing the user code, the Nonde-
terminator setsup the reader and writer shadow spaces. We usethe
Unix memory-mapping primitive mmap () to fix the starting address
of each shadow space so that the shadow-space address can be ob-
tained quickly from the corresponding shared-memory address. It
also initializes the digjoint-set data structure.

During execution of the user program, the Nondeterminator per-
forms the SP-bags algorithm (without garbage collection), modi-
fied slightly to improve performance. First, if the compiler can
determine that a memory reference is to a nonshared memory re-
gion, such as a local variable whose address is never computed,
no determinacy-race check is necessary, because no determinacy
race is possible. Second, we modify the SP-bags algorithm to up-
date reader(l), as well as writer(l), whenever a write or accumu-
late to a location | occurs. This change allows us to check only
reader(l) inthe codefor write andaccumulate (See Figure 8 and
Figure 14); and in the codefor read, we need only check writer (1)
when reader(l) belongsto a P-bag. Third, during the execution of
athread, we save addressesthat have previously been checkedin a
software cacheto avoid checkingthem againwithin the samethread.

We have measured the performance of the Nondeterminator on



Program Original | Nondeterminator | Slowdown | Number of actions | Average overhead | Cache-hit ratio
(seconds) (seconds) (nanoseconds)
mmult 354 32.06 9.05 317,947,466 89.69 77.26%
lu 2.36 20.93 8.87 184,738,250 100.52 89.14%
sparsky 14.91 97.02 6.51 289,381,593 283.74 44.17%
hutch 471 48.58 10.31 200,693,060 21857 77.29%
heat 2.60 21.37 8.21 125,143,001 149.94 78.23%
1t 417 23.03 5.18 39,411,729 471.43 7.39%
multisort 5.22 57.94 11.09 179,988,858 292.86 42.15%
knapsack 7.39 17.73 241 34,752,741 298.30 33.34%

Figure 15: Eight benchmark Cilk programs that were checked with the Nondeterminator. The slowdown is the ratio of the Nondeterminator runtime and the
original optimized runtime of the benchmark. The total number of actions (spawns, syncs, returns, shared reads, and shared writes) is given, along with the
average overhead of the Nondeterminator for each action and the fraction of accessesthat hit the Nondeterminator’s software cache.

eight benchmark Cilk programs:
e nmult — Block multiplication of two dense 512 x 512 matri-
ces, written by Keith Randall.
e 1lu— LU-decomposition of adense512 x 512 matrix, written
by Robert D. Blumofe.

e sparsky — Cholesky factorization of a sparse 3600 x 3600
matrix with 15,100 nonzeros, written by Aske Plaat and Keith
Randall.

e hutch — Barnes-Hut n-body calculation with 4096 cells,
written by Keith Randall.

e heat — Heat diffusion ona4096 x 16 mesh, written by Volker
Strumpen.

o £ft — Fast Fourier transformation of a vector of length 220,
written by Matteo Frigo.

e multisort— Sort arandom permutation of 4 million 32-bit
integers, written by Matteo Frigo and Andrew Stark.

e knapsack— Solvethe 0-1 knapsack problem on 30 items us-
ing branch and bound, written by Matteo Frigo.

The results of our tests, which were run on a 167-megahertz SUN
Ultrasparc with the Solaris2.5.1 operating system, are shownin Fig-
ure 15. Aswe can seefrom Figure 8 and Figure 14, the SP-bagsal-
gorithm is invoked when a spawn, sync, return, shared read, or
shared write occurs. Each of these invocations, which we call an
action, contributes to the overhead incurred by the Nondetermina-
tor. The number of actionsin each benchmark programis given in
Figure 15.

We observe that the average overhead per action varies among
these benchmark programs, ranging from 90 nanoseconds to 472
nanoseconds. The variation is due to the Nondeterminator’s soft-
ware cache. Whenever the cache-hit ratio is large (i.e., a thread
exhibits substantial temporal locality in its shared-memory access
patterns), relatively few shared read or write accesses need to in-
cur the full overhead of the SP-bags algorithm. Thus, the average
overhead per action is small. For example, the £t and knapsack
programs exhibit small cache-hit ratios, and thus the overhead per
action is comparatively high. For other benchmarks, the software
cacheis reasonably effective, and the overhead per action iswithin
300 nanoseconds.

The Nondeterminator has caught determinacy races in several
Cilk programs. For example, it caught a subtle bug in a program to
solve the N-queens puzzle which was included as a programming
examplein the Cilk softwaredistribution. The goal of the N-queens
puzzleis to find a configuration of n queenson an n x n chesshboard
such that no queen attacks another. The standard backtrack algo-
rithm to solve this puzzleisto place queensrow by row, and back-
track whenever adeveloped configuration containstwo queensthat
attack each other.

cilk char #nqueens(char *board, int n, int row)
{ char *new_board;

new_board = malloc(row+1);
mencpy (new_board, board, row);/* read *board */
for (j = 0; j < mn; j++) {

new_board[row] = j; /* write *new_board */

spawn nqueens (new_board, n, row+l);

sync;

Figure 16: A fragment of a Cilk program solving the N-queenspuzzle. A
determinacy race existsinvolving the commented linesin the code.

Therecursive Cilk procedurenqueens in Figure 16illustrates the
bug in the original implementation of this backtrack algorithm. It
is called with three arguments: board, which is the current con-
figuration of queens on the chessboard; n, which is the size of the
chesshoard; and row, which is the row number where a queen will
be placed. Before aqueenis placed, space for a new configuration
new_board isallocated usingmalloc so that the child that will be
recursively spawned to solve the new configuration does not over-
write the storage in the parent. The current configuration board is
copied into new_board using memcpy. The spawn in the for loop
causesthe searchesto be spawnedin parallel to solve configurations
in which the just-placed queenisin different columns of the current
row.

When the nqueens code ws run through the Nondeterminator, it
reported that board and new_board are involved in races. Specifi-
cally, arace exists between the read of board in a spawned subpro-
cedure and the write of new_board in its parent procedure. Since
the passed board argument of the subprocedure points to the same
storageasthenew_board of its parent procedure, when the subpro-
cedureis reading the board in memcpy, the parent procedure may
be updating the new_board at the same time, resulting in a deter-
minacy race.

Besides the N-queens puzzle, several Cilk users have used the
Nondeterminator to discover determinacy-race bugs in their pro-
grams, which haveincluded aradiosity calculation for graphicsren-
dering, enumeration of magic squares, and an old version of our
heat-diffusion benchmark. Some Cilk users have not taken advan-
tage of this tool, however, much to their detriment. In a student



assignment at MIT to implement Strassen’s matrix multiplication
algorithm in Cilk, half of the submitted codes turned out to have
determinacy races that were not detected during the students’ re-
peated test runs. Thesebugswereinstantly caught when theinstruc-
tors ran the programs through the Nondeterminator. The students
could have easily run the Nondeterminator themselves (the theory
of whichwastaughtintheir class), but their overconfidencewasnat-
ural, sincetheir codeworked on every test run. Indeed, determinacy
races are latent bugs that can escape extensive testing, rearing their
ugly headsonly intermittently and confounding naive debugging at-
tempts. With the release of the Nondeterminator as part of the over-
all Cilk system, we hope more Cilk programmerswill routinely use
the Nondeterminator as a debugging tool to produce more reliable
parallel code.

7 Related work

This section briefly reviews related work on the problem of de-
tecting determinacy races in parallel programs. A comparison of
the asymptotic time and space requirements of the Nondetermina-
tor with work in the literature was presented in Figure 6.

Bernstein [3] identifies determinacy races as a cause of nondeter-
ministic behavior. Netzer and Miller [15] present a formal model
for understanding race conditionsin parallel programs, distinguish-
ing determinacy racesfrom atomicity races. They reference several
algorithms for atomicity-race detection, but we do not discuss this
type of race detection here. Static analysis of parallel programsto
uncover nondeterminacy has been studied extensively, for example,
in [9, 13]. Various systems have been developed for determinacy-
race detection that do not allow nested parallelism, as for exam-
ple[2].

We now review related work on determinacy-race detection for
programs with nested parallelism.

Nudler and Rudolph [16] give an “English-Hebrew labeling” al-
gorithm that detects determinacy races in programs with series-
parallel dependences, but their model also allows messagesbetween
threads, which produces a richer and more difficult class of pro-
gramsto check. Their algorithm assignsto each thread a pair of la-
bels: an “English” label, which is produced by performing a left-
to-right preorder numbering on the task tree, and a“ Hebrew” label,
whichis produced symmetrically for aright-to-left ordering. To de-
termine whether two threads operatelogically in parallel, acompar-
ison of the labels of two threads suffices.

Dinning and Schonberg [7] improve the performance of the
English-Hebrew labeling algorithm by “task recycling,” but at the
cost of failing to detect some determinacy races. Each thread (task)
has a unique task identifier, and a version number. In order to save
space, a task identifier can be reassigned to another thread during
the program execution. Each thread also maintains a parent vector
containing the largest version number of its ancestor threads. With
the parent vector, checking whether two blocks are logically paral-
lel is reduced to one access of the parent vector and one compar-
ison, which are constant-cost operations. Dinning and Schonberg
give performance data indicating a slowdown of between 3 and 11
to check between 50 and 80 percent of potential determinacy races.

Mellor-Crummey [12] proposes a scheme called “ offset-span la-
beling” in programs with nested fork-join parallelism, amodel that
exhibitsonly series-parallel dependences. Theideaof his schemeis
to storealist of labelsfor each executingthread. Whenever athread
spawns, the length of the list grows by one, and whenever a thread
syncs, the length is reduced by one. This strategy avoids a problem
in the English-Hebrew labeling algorithm whereby the length of a
label might grow in proportion to the number of spawn operations
encountered in the execution path.

Min and Choi [14] propose a determinacy-race detection algo-
rithm that piggybackson a protocol for distributed shared-memory.
Theideaisthat adeterminacy race occurswhen aprocessor accesses
memory that was previously accessedby another processor. Conse-
quently, determinacy-race detection can be performed at the same
time as the distributed shared-memory protocol, thereby avoiding
individual access checks. This reduced overhead is achieved at the
cost of additionally storing the history of accessesof each sharedlo-
cation, however. Moreover, the length of the history is proportional
to the depth of nested parallelism.

Steele [19] proposes a scheme to detect determinacy races in
a programming model with asynchronous threads of control. His
schemerequires each location to maintain state information record-
ing the sequence of threads that have accessed the location as well
asthe type of accessperformed. In addition, each thread maintains
aresponsibility set of which locationsit has accessed. The Nonde-
terminator’s reader and writer shadow spacesare similar to Steele’s
location state, but rather than keepinglists, in our schemeonly asin-
gle reader and writer need be stored per location. Although he does
not mention it, the programs that he is capable of checking exhibit
series-parallel dependences. Steele provides an implementation of
his algorithm in the Scheme programming language.

The space and time requirements of all these determinacy-race
detection algorithms are larger than those for the SP-bagsalgorithm.
Our agorithm spendsamost constant time checking each read and
write access, and it uses only a constant factor more memory than
doesthe program itself.

8 Conclusion

To concludethis paper, we shall discusssome of the open problems
arising out of our work. These problemsinclude how to parallelize
our algorithm, whether a faster algorithm for determinacy-race de-
tection might exist, and how to tolerate intended nondeterminism
while still catching other determinacy races.

The SP-bagsalgorithm seemsinherently serial, becauseit heavily
relies on the serial execution order of the parallel program. Never-
theless, we feel that it may be possibleto develop aparallel version
of the SP-bags algorithm. We have started investigating a parallel
schemein which each of several processors executing the program
usesthe SP-bags algorithm locally, but when aremote child proce-
dure returns, it reconciles its shadow spacesin a manner similar to
the BACKER algorithm [4] for maintaining dag consistency. Such a
result may be mostly of theoretical interest, however, since debug-
ging is usually done in the development phase of a program using
small data sets, and thus typically, the performance of the debugger
isnot acrucial concern.

Linear-time algorithms for the least-common-ancestors algo-
rithm exist in the literature [10, 18], and it is natural to wonder
whether a determinacy-race detector exists that operates in linear
time, instead of the almost-linear-time performance of the SP-bags
algorithm. Theattraction of Tarjan’s algorithm, as opposedto exist-
ing linear-time algorithms and the seminal algorithm given by Aho,
Hopcroft, and Ullman [1], is that it operates, in Mellor-Crummey’s
words [12], “on the fly.” That is, the least common ancestors can
be queried during a simple tree walk without ever requiring the en-
tire tree to be expanded at any time. We expect that the discovery
of alinear-time on-the-fly least-common-ancestorsal gorithm would
have direct application to determinacy-race detection.

Some programs may intentionally contain nondeterminism. How
can adebugging program, such asthe Nondeterminator, tolerate in-
tended nondeterminism while still catching unintentional determi-
nacy races?

One strategy that Cilk users have used successfully in debugging
nondeterministic codes is for the user to “turn off” the intentional



nondeterminismin hiscode so that he can debug adeterministic ver-
sion of hisprogram. Our experienceisthat intentional nondetermin-
ism does not occur in many places in user programs, and the user
usually has the ability to disableit. For example, in our xSocrates
chess-playing program, aswitch wasincluded that could turn off the
aspectsof the program that produced nondeterministic behavior. Of
coursg, if the user’s bug isin the nondeterministic part of his code,
this strategy will not work, but knowing that the deterministic part
containsno determinacy racesisneverthelessextremely helpful dur-
ing debugging.

Another strategy that the Nondeterminator supports is to allow
the user to turn off monitoring of certain variables. For example,
our benchmark knapsack hasanintentional determinacy race when
independent threads atomically update the variable containing the
bound in its branch-and-bound search. To check this code, we sim-
ply disabled the monitoring of the location containing the bound. A
disadvantage of this strategy, however, is that turning off the moni-
toring of onelocation may hideinadvertent nondeterminismin other
locations. Thus, it is not clear what is guaranteed when such a pro-
gram passesthe Nondeterminator test. Nevertheless, turning off the
monitoring of certain locations seemsto be a useful strategy.

The Nondeterminator has been included in the latest Cilk re-
lease [20]. The Nondeterminator in the release runs about 25 per-
cent slower than the onein this paper. We traded off some perfor-
mance for usability and simplicity. The released version provides
more user options in the runtime system, such as a switch for de-
ciding whether fl oating-point operations should be deemed commu-
tative. (They are not, due to round-off error, but sometimes users
wish to ignore the minor nondeterminaciesthat result.) To simplify
the maintenance of the code, the released version also lacks some
aggressive compiler optimizations that reduce the amount of instru-
mentation. Software, the user’'s manual, and other related informa-
tion about Cilk and its Nondeterminator are available via the World
WideWeb at http://theory.lcs.mit.edu/ " cilk.
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