
Efficient Detection of Determinacy Races in Cilk Programs

Mingdong Feng
Department of ISCS

National University of Singapore
10 Lower Kent Ridge Road

Republic of Singapore 119260fengmd@iscs.nus.sg Charles E. Leiserson
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

USAcel@mit.eduAbstract
A parallel multithreaded program that is ostensibly deterministic
may nevertheless behave nondeterministically due to bugs in the
code. These bugs are called determinacy races, and they result
when one thread updates a location in shared memory while another
thread is concurrently accessing the location. We have implemented
a provably efficient determinacy-race detector for Cilk, an algorith-
mic multithreaded programming language. If a Cilk program run on
a given input data set has a determinacy race, our debugging tool,
which we call the “Nondeterminator,” guarantees to detect and lo-
calize the race.

The core of the Nondeterminator is an asymptotically effi-
cient serial algorithm (inspired by Tarjan’s nearly linear-time least-
common-ancestors algorithm) for detecting determinacy races in
series-parallel directed acyclic graphs. For a Cilk program that runs
in T time on one processor and uses v shared-memory locations,
the Nondeterminator runs in O(T α(v;v)) time, where α is Tarjan’s
functional inverse of Ackermann’s function, a very slowly growing
function which, for all practical purposes, is bounded above by 4.
The Nondeterminator uses at most a constant factor more space than
does the original program. On a variety of Cilk program bench-
marks, the Nondeterminator exhibits a slowdown of less than 12
compared with the serial execution time of the original optimized
code, which we contend is an acceptable slowdown for debugging
purposes.1 Introduction
Cilk [5, 20] is an algorithmic multithreaded programming language
whose threads can concurrently access (read or write) shared mem-
ory without blocking. Many Cilk programs are intended to be de-
terministic, in that a given program produces the same behavior no
matter how its threads are scheduled. If a thread updates a location
while another thread is concurrently accessing the location, how-
ever, a determinacy race occurs, which may cause the program to
behave nondeterministically. That is, different runs of the same pro-
gram may produce different behaviors. Determinacy-race bugs are
notoriously hard to detect by normal debugging techniques, such as

This research was supported in part by the Defense Advanced Research Projects
Agency under Grant N00014-94-1-0985. Mingdong Feng did this work as a Postdoc-
toral Fellow in the MIT Laboratory for ComputerScience. Parallel computingfacilities
were providedby the MIT Xolas Project througha generousdonation by Sun Microsys-
tems, Inc.

breakpointing, because they are not easily repeatable. This paper
describes a system we call the “Nondeterminator” to detect deter-
minacy races in Cilk programs.

Determinacy races have been given many different names in the
literature. For example, they are sometimes called access anoma-
lies [7], data races [12], race conditions [19], or harmful shared-
memoryaccesses[16]. Netzer and Miller [15] clarify different types
of races and define a general race or determinacy race to be a race
that causes a supposedly deterministic program to behave nondeter-
ministically. (They also define a data race or atomicity race to be a
race in a nondeterministic program involving nonatomic accesses to
critical regions.) We prefer the more descriptive term “determinacy
race.” Emrath and Padua [9] call a deterministic program internally
deterministic if the program execution on the given input exhibits
no determinacy race and externally deterministic if the program has
determinacy races but its output is deterministic becauseof the com-
mutative and associative operations performed on the shared loca-
tions. Our Nondeterminator program checks whether a Cilk pro-
gram is internally deterministic, and we have also extendedthe Non-
determinator to check whether a Cilk program is externally deter-
ministic when the program contains “atomic accumulations.”

To illustrate how a determinacy race can occur, consider the
simple Cilk program shown in Figure 1. The Cilk proceduremain() forks a subprocedure foo() using the spawn keyword,
thereby allowing main() to continue executing concurrently with
the spawned subprocedure foo(). Then, the main() procedure
spawns another instance of foo(). The sync statement causesmain() to join with its two subprocedures by suspending until both
of these instances of foo() complete. (In general, the sync state-
ment causes a procedure to suspend until all subprocedures that
it has spawned have completed.) A spawn tree for this program,
which illustrates the relationship between Cilk procedures, is shown
in Figure 2.

The parallel control flow of the Cilk program from Figure 1 can
be viewed as a directed acyclic graph, or dag, as illustrated in Fig-
ure 3. The vertices of the dag represent parallel control constructs,
and the edges represent Cilk threads, which are maximal sequences
of instructions not containing any parallel control constructs. In Fig-
ure 3, the threads of the program are labeled to correspond to code
fragments from Figure 1, and the subdags representing the two in-
stances of foo() are shaded. (Threads e1 and e2 contain no instruc-
tions.) In this program, both of the parallel instantiations of proce-
dure foo() update the shared variable x in the x = x + 1 state-
ment. This statement actually causes the processor executing the
thread to perform a read on x, increment the value, and then write the
value back into x. Since these operations are not atomic, both might
updatex at the same time. Figure 4 shows how this determinacy race
can cause x to take on different values if the threads comprising the
two instantiations of foo() are scheduled simultaneously.

int x;cilk void foo(){ x = x + 1;}cilk int main() /* F */{ x = 0; /* e0 */spawn foo(); /* F1 *//* e1 */spawn foo(); /* F2 *//* e2 */sync;printf("x is %d\n", x); /* e3 */return 0;}Figure 1: A simple Cilk program that contains determinacy races. In the
comments at the right, the Cilk threads that make up the procedure main()
are labeled. foo() foo()F

F2F1

main()Figure 2: A spawn tree for the Cilk program in Figure 1. Each node cor-
responds to a procedure, and its children in the tree are the procedures it
spawns.

The Nondeterminator determinacy-race detector takes as input a
Cilk program and an input data set and either determines which loca-
tions in the program are subject to determinacy races when the pro-
gram is run on the data set, or else certifies that the program is race
free when run on the data set. In general, a determinacy race occurs
whenever two threads access the same location and one of the ac-
cesses is a write. If a determinacy race exists, the Nondeterminator
localizes the bug, providing variable name, file name, line number,
and dynamic context (state of runtime stack, heap, etc.). The Non-
determinator is not a program verifier, because the Nondetermina-
tor cannot certify that the program is race free for all input data sets.
Rather, it is a debugging tool. The Nondeterminator only checks a
program on a particular input data set. What it verifies is that every
possible scheduling of the program execution produces the same be-
havior. Moreover, even though the Nondeterminator detects deter-
minacy races in parallel programs, it is itself a serial program.

The Nondeterminator was implemented by modifying the ordi-
nary Cilk compiler and runtime system. Each read and write in the
user’s program is instrumented by the Nondeterminator’s compiler
to perform determinacy-race checking at runtime. The Nondetermi-
nator then executes the user’s program in a serial, depth-first fash-
ion (like a C execution), but it performs race-checking actions when
reads, writes, and parallel control statements occur. Figure 5 shows
the performance of the Nondeterminator on several Cilk application
benchmarks running on a 167-megahertz SUN Ultrasparc with the
Solaris 2.5.1 operating system. Since the Nondeterminator is a se-
rial program, our comparisons are with one-processor executions of
the benchmarks.

The heart of the Nondeterminator’s runtime system is an algo-

sync nodespawn node

e1 e3e0 e2

Fmain()
F1foo() foo()F2Figure 3: The parallel control-flow dag of the program in Figure 1. A

spawn node of the dag represents a spawn construct, and a sync node repre-
sents a sync construct. The edges of the dag are labeled to correspond with
code fragments from Figure 1. We assume that the start of the program is
“spawned” by the operating system, and the end of the program is “synced”
by the operating system.

Case 1 Case 2
F1 F2 e3 F1 F2 e3read x read xwrite x read xread x write xwrite x write x

“x is 2” “x is 1”Figure 4: An illustration of a determinacy race in the code from Figure 1.
The value of the shared variablex read and printed by thread e3 can differ de-
pending on how the instructions in the two instances F1 and F2 of the foo()
procedure are scheduled.

rithm for determinacy-race detection that we call the SP-bags al-
gorithm, which was inspired by Tarjan’s nearly linear-time least-
common-ancestorsalgorithm [22]. Like Tarjan’s algorithm, the SP-
bags algorithm uses an efficient data structure [6, Chapter 22] to
manage disjoint sets of elements. Figure 6 compares the asymptotic
time and space for the SP-bags algorithm with other race-detection
algorithms in the literature.

The remainder of this paper is organized as follows. Section 2
presents the SP-bags algorithm that underlies the Nondeterminator’s
runtime system. Section 3 reviews the basic properties of series-
parallel dags and relates them to the parallel control flow of Cilk
programs, and then Section 4 proves that the SP-bags algorithm cor-
rectly detects determinacy races in Cilk programs. The SP-bags al-
gorithm only considers “pure” Cilk programs that contain spawn
and sync statements, but none of Cilk’s more advanced constructs
that allow nondeterministic programming. (For a complete speci-
fication of the Cilk language, see [20].) Section 5 shows how to
extend the SP-bags algorithm to detect determinacy races in more
general Cilk programs containing atomic “accumulations,” where a
variable can be updated when a spawned procedure returns. Sec-
tion 6 describes how we implemented the SP-bags algorithm in the
Nondeterminator and provides empirical data on its performance.
Section 7 discusses related work, and we offer some concluding re-
marks in Section 8.2 The SP-bags algorithm
This section describes the SP-bags algorithm for determinacy-race
detection. We first review the disjoint-set data structure used in the
algorithm, and then we present the algorithm itself, which is in-
spired by Tarjan’s least-common-ancestors algorithm [22]. Finally,

0 1 2 3 4 5 6 7 8 9 10 11 12

knapsackmultisortfftheathutchsparskylummultFigure 5: The slowdown of eight benchmark Cilk programs checked with
the Nondeterminator. The slowdown, shown as a dark bar, is the ratio of
the Nondeterminator runtime to the original optimized runtime (gcc -O3)
of the benchmark. For comparison, the slowdown of an ordinary debugging
version (gcc -g) of each benchmark is shown as a light bar.

Time
Algorithm Thread Per Space

creation & access
termination

English-Hebrew
labeling [16] O(p) O(pt) O(vt+min(np;vtp))

Task
recycling [7] O(t) O(t) O(vt+ t2)
Offset-span

labeling [12] O(p) O(p) O(v+min(np;vp))
SP-bags

algorithm O(α(v;v)) O(α(v;v)) O(v)
p = maximum depth of nested parallelism
t = maximum number of logical concurrent threads
v = number of shared locations being monitored
n = number of threads in an executionFigure 6: Comparison of determinacy-race detection algorithms. The func-

tion α is the very slowly growing inverse of Ackermann’s function intro-
duced by Tarjan in his analysis of an efficient disjoint-set data structure. For
all conceivably practical inputs, the value of this function is at most 4. The
time for the SP-bags algorithm is an amortized bound.

we prove that the running time of the algorithm is O(T α(v;v))when
run on a Cilk program that takes time T on one processor and uses v
shared-memory locations, where α is Tarjan’s functional inverse of
Ackermann’s function [21].

The SP-bags algorithm is a serial algorithm. It uses the fact that
any Cilk program can be executed on one processor in a depth-first
(C-like) fashion and conforms to the semantics of the C program
that results when all spawn and sync keywords are removed. As
the SP-bags algorithm executes, it employs several data structures
to determine which procedure instances have the potential to exe-
cute “in parallel” with each other, and is thereby able to check for
determinacy races.

The SP-bags algorithm maintains two shadow spaces of shared
memory called writer and reader. For each location of shared
memory, each shadow space has a corresponding location. Every
spawned procedure1 is given a unique ID at runtime. For each loca-
tion l in shared memory, the ID of the procedure that wrote the lo-
cation is stored in location l of the writer shadow space. Similarly,
location l of the reader shadow space stores the ID of a procedure
which previously read location l, although in this case, the ID is not
necessarily that of the most recent reader. The SP-bags algorithm
updates the shadow spaces as it executes.

1Technically, by “procedure” we mean “procedure instance,” that is, the runtime
state of the procedure.

F1

F4 F6

F6 F9

F14

F8

F13

spawn spawn spawn
SF9

PF9

PF13
SF13

F2 F3

F1 F5

F7

F12

SF1
PF1

SF6
PF6

F11

F9

F10

F13Figure 7: A snapshot of the SP-bags data structures during the execu-
tion of a Cilk program. The ovals in the figure represent procedures that
are currently on the runtime stack: F1 spawns F6, which spawns F9, which
spawns F13. Each procedure contains an S-bag and a P-bag. Each descen-
dant of a completed child of a procedure F belongs either to F’s S-bag or to
F’s P-bag. For example, F2, F3, F4, and F5 are descendants of F1 that com-
plete before F1 spawns F6, and so these procedures belong to either F1’s S-
bag or its P-bag. In addition, every procedure F belongs to its own S-bag.

The SP-bags algorithm uses the fast disjoint-set data structure [6,
Chapter 22] analyzed by Tarjan [21]. The data structure maintains a
dynamic collection Σ of disjoint sets and provides three elementary
operations:Make-Set(x): Σ Σ[ffxgg.Union(X ;Y): Σ Σ�fX ;Yg[fX[Yg. The sets X and Y are de-

stroyed.Find-Set(x): Returns the set X 2 Σ such that x 2 X .

Tarjan shows that any m of these operations on n sets take a total of
O(mα(m;n)) time.

During the execution of the SP-bags algorithm, two “bags” of
procedure ID’s are maintained for every Cilk procedure on the call
stack, as illustrated in Figure 7. These bags have the following con-
tents:� The S-bag SF of a procedure F contains the ID’s of those de-

scendants of F’s completed children that logically “precede”
the currently executing thread, as well as the ID for F itself.� The P-bag PF of a procedure F contains the ID’s of those de-
scendants of F’s completed children that operate logically “in
parallel” with the currently executing thread.

The S-bags and P-bags are represented as sets using a disjoint-set
data structure.

The SP-bags algorithm itself is given in Figure 8. As the Cilk pro-
gram executes in a serial, depth-first fashion, the SP-bags algorithm
performs additional operations whenever one of the five following
actions occurs: spawn, sync, return, write, and read. The cor-
rectness of the SP-bags algorithm is presented in Section 4, but we
give an informal explanation of its operation here.

As the SP-bags algorithm executes, it updates the contents of
the S-bags and P-bags whenever one of the actions spawn, sync,returnoccurs. Whenever a procedure F is spawned, SF is initially
made to contain F, because F’s subsequent instructions are in se-
ries with its earlier instructions. Whenever a subprocedure F0 re-
turns to its parent F, the contents of SF0 are emptied into PF , since
the procedures in SF0 can execute in parallel with any subprocedures
that F might spawn in the future before performing a sync. When
a sync occurs, PF is emptied into its SF , since all of F’s previously

spawn procedure F:
SF Make-Set(F)
PF /0sync in a procedure F:
SF Union(SF ;PF)
PF /0return from procedure F0 to F:
PF Union(PF;SF0)write a shared location l by procedure F:
if Find-Set(reader(l)) is a P-bag

or Find-Set(writer(l)) is a P-bag
then a determinacy race exists

writer(l) Fread a shared location l by procedure F:
if Find-Set(writer(l)) is a P-bag

then a determinacy race exists
if Find-Set(reader(l)) is an S-bag

then reader(l) FFigure 8: The SP-bags algorithm. Whenever one of the five actions occurs
during the serial, depth-first execution of a Cilk program, the operations in
the figure are performed. Operations for spawn, sync and return actions
manipulate the S-bags and P-bags of the disjoint-set data structure. Opera-
tions for write and read actions affect the shadow spaces and detect deter-
minacy races.

spawned subproceduresand their descendants logically precede any
future subprocedures spawned by F.

Determinacy races are detected by the code for write and read.
A race occurs if a procedure F writes a location l and discovers that
either the previous reader or the previous writer of l belongs to a P-
bag, which means that F and the past accessor of l operate logically
in parallel. Similarly, a race occurs whenever F reads a location l
and discovers that the previous writer is in a P-bag. In the normal
case, whenevera location l is written, location l in the writer shadow
space is updated to be F. The reader of l is updated to be F when
a read occurs, but only if the previous reader operates logically in
series with F. The logic behind this subtle piece of code is explained
in Section 4, where the SP-bags algorithm is proved correct.

To conclude this section, we analyze the asymptotic performance
of the SP-bags algorithm.Theorem 1 Consider a Cilk program that executes in time T on
one processor and references v shared memory locations. The SP-
bags algorithm can be implemented to check this program for deter-
minacy races in O(T α(v;v)) time using O(v) space.

Proof: Let n be the number of spawned procedures during the ex-
ecution of the SP-bags algorithm, which is also the the total num-
ber of procedure ID’s used by the algorithm. The total number of
all MAKE-SET, UNION, and FIND-SET operations is at most the
serial running time T . Consequently, by using the fast disjoint-
set data structure analyzed by Tarjan, we obtain a running time of
O(T α(T;n)). Since the two shadow spaces take O(v) space and the
disjoint-set data structure takes O(n) space, the total space used by
the algorithm is O(v+n).

By using garbage collection, the time and space can be reduced to
O(T α(v;v)) and O(v), respectively. The idea is to run the basic SP-
bags algorithm for v steps, and then scan through the shadow spaces
marking which procedure ID’s are in use. Then, we remove the un-
used ID’s from the disjoint-set data structure, which can be done in

(c)

e G2

G2

(b)(a)

ts ss t tG1

G1Figure 9: The three ways that a series-parallel dag can be constructed. (a) A
base graph. (b) Series composition of two series-parallel dags. (c) Parallel
composition of two series-parallel dags.

O(vα(v;v)) time. We repeat the garbage collection every v steps.
Thus, in T time, we perform dT=ve garbage collections, resulting
in a running time of O(T α(v;v)). Because the amount of space in
use after each garbage collection is O(v) and at most O(v) additional
space can accumulate during the v steps between garbage collec-
tions, the algorithm uses a total of O(v) space.

In practice, it is probably not worthwhile to implement the
garbage collection, and the Nondeterminator does not implement it.
Also, the worst-case bounds can easily be improved if they are ex-
pressed using more detailed parameters than T and v.3 Series-parallel dags
Series-parallel dags [23] are a straightforward extension of the no-
tion of series-parallel graphs [8, 11, 17]. In this section, we review
basic properties of series-parallel dags and show how a Cilk pro-
gram execution corresponds to a series-parallel dag. These proper-
ties will be used in Section 4 to prove the correctness of the SP-bags
algorithm.

We first define various relationships among Cilk threads. A
thread e1 precedes a thread e2, denoted e1 � e2, if there is a path in
the Cilk dag that includes both e1 and e2 in that order. Two distinct
threads e1 and e2 operate logically in parallel, denoted e1 k e2, if
e1 6� e2 and e2 6� e1. Informally, e1 � e2 means that e1 must execute
before e2 in any legal scheduling of a Cilk program, while e1 k e2
means that e1 and e2 can execute at the same time. The precedence
relation � is transitive.

A series-parallel dag G = (V;E) is a directed acyclic graph with
two distinguished vertices, a source s2V and a sink t 2V , which is
constructed recursively in one of the following ways, as illustrated
in Figure 9:

Base: The graph consists of a single edge e connecting the source
s to the sink t.

Series composition: The graph consists recursively of two series-
parallel dags G1 and G2 with disjoint edge sets in which the
source of G1 is s, the sink of G2 is t, and the sink of G1 is the
source of G2.

Parallel composition: The graph consists recursively of two
series-parallel dags G1 and G2 with disjoint edge sets in which
the sources of G1 and G2 are both s and the sinks of G1 and G2
are both t.

Note that for series composition, it makes a difference which sub-
graph precedes the other, but the order of parallel composition does
not matter. Moreover, one can prove by induction that any series-
parallel dag is indeed a dag.

The following properties of series-parallel dags are presented
without proof.Lemma 2 Let G0 be a series-parallel dag, let G be a series-parallel
subdagof G0, and let s and t be the source and sink of G, respectively.
Then, the following properties hold:

sync block

F

e e

F F

e e

sync block

F

e e e

F

� � �� � � � � �
sync block

F

e e e

F

� � �
F

e e

F

e ee eFigure 10: The dag of a spawned Cilk procedure that contains spawn and sync statements. It consists of a linear sequence of sync blocks (rectangles in the
figure) terminated by a return statement. Each e corresponds to a thread of the Cilk procedure, and each F corresponds to a spawned subprocedure.

1. There exists a path in G from s to any edge in G.
2. There exists a path in G from any edge in G to t.
3. Every path in G0 that begins outside of G and enters G passes

through s.
4. Every path in G0 that begins within G and leaves G passes

through t.

The following theorem shows that any Cilk parallel control-flow
dag, such as that in Figure 3, is series-parallel.Theorem 3 A Cilk parallel control-flow dag is a series-parallel
dag.

Proof: We use induction on the depth of the Cilk spawn tree. A
Cilk procedure that contains no spawn or sync statements is a leaf
of the spawn tree and is trivially a base series-parallel dag.

Consider a Cilk procedure that contains spawn and sync state-
ments. The parallel control flow of the procedure at runtime can be
viewed as a linear sequence of sync blocks terminated by a return
statement, where each sync block consists of a sequence of spawn
statements interleaved with C code and terminated by a sync. In
other words, the execution of a procedure has the form

e; spawn F; e; spawnF; e; : : : ; spawn F; e; sync;
e; spawn F; e; spawnF; e; : : : ; spawn F; e; sync;� � �
e; spawn F; e; spawnF; e; : : : ; spawn F; e; sync;
e; return;

where each e is a thread of the Cilk procedure, each F is a spawned
subprocedure, and each line except the last is a sync block. The
dag corresponding to the parallel control flow is shown in Figure 10.
By induction, the computation arising from each spawnedsubproce-
dure is a series-parallel dag. Each sync block is a series-parallel dag
created by alternating series and parallel compositions of threads,
the spawned procedures, and the spawn and sync nodes. The Cilk
dag representing the procedure and all its descendants can now be
assembled by serially composing all the sync blocks.

A series-parallel dag can be represented by a binary parse tree,
as illustrated in Figure 11 for the Cilk procedure from Figure 10.
The leaf nodes of the parse tree correspond to edges of the dag (Cilk
threads), and each internal node is either an S-node S, which corre-
sponds to a series composition of its two children, or a P-node P,
which corresponds to a parallel composition of its children.

A canonical parse tree for a Cilk dag can be constructed as fol-
lows. We first build a parse tree recursively for each child of the root
procedure. For each sync block of the root procedure, we apply al-
ternating parallel and series composition on the child parse tree to

P
P S

P
P

S

P

S

P

S

F

e

F

F

F

e

e

e
e

e

S

e

S

S

S

S

F

F

e

F

e

eFigure 11: The canonical parse tree for a generic Cilk procedure. The nota-
tion F represents the parse tree of any subprocedure spawned by this proce-
dure, and e represents any thread of the procedure. All nodes in the shaded
areas belong to the procedure, and the nodes in each oval belong to the same
sync block. A sequence of S-nodes forms the spine of the parse tree, com-
posing all sync blocks in series. Each sync block contains an alternating se-
quence of S-nodes and P-nodes. Observe that the left child of an S-node in
a sync block is always a thread, and that the left child of a P-node is always
a subprocedure.

create a parse tree for the sync block. Finally, we string the parse
trees for the sync blocks together into a spine for the procedure by
applying a sequenceof series compositions to the sync blocks. Sync
blocks are composed serially, because a sync statement is never
passed until all previously spawned subprocedureshave completed.
The only ambiguities that might arise in the parse tree occur because
of the associativity of series composition and the commutativity of
parallel composition. If, as shown in Figure 11, the alternating S-
nodes and P-nodes in a sync block always place threads and subpro-
cedures on the left, and the series compositions of the sync blocks
are applied in order from last to first, then the parse tree is unique.
Such a canonical parse tree is shown in Figure 12 for the Cilk dag
in Figure 3.

The canonical parse tree satisfies an interesting property with re-
spect to a serial, depth-first execution of the Cilk program. Specifi-
cally, an ordinary depth-first tree walk (see [6, p. 245]) of the parse
tree visits the threads of the computation in the same order as the
threads are encountered when the Cilk program is executed in a
depth-first (C-like) fashion on a single processor.

S

P

PF1

F2

e1

S

SF:
e3

e0

e2Figure 12: The canonical parse tree for the Cilk dag in Figure 3.4 Correctness of the SP-bags algorithm
In this section, we prove the correctness of the SP-bags algorithm.
We begin by showing how either a precedence relation� or a paral-
lel relation k between two threads in a Cilk dag can be inferred from
the threads’ least common ancestor in the parse tree of the dag. We
then prove a lemma that characterizes the contents of S-bags and P-
bags during the executionof the SP-bags algorithm. We concludeby
showing that the SP-bags algorithm correctly detects determinacy
races.

The SP-bags algorithm hinges on the notion of the least common
ancestor of two nodes in a tree. Given two nodes x and y in a rooted
tree, their least common ancestor, denoted LCA(x;y), is the deep-
est node in the tree that is a common ancestor of both x and y. Al-
ternatively, if one traces the unique simple path from x to y, their
least common ancestor is the node on the path that is closest to the
root. The next lemma and its corollary show how the least common
ancestor of two threads in the parse tree can be used to determine
whether the threads operate logically in parallel or whether one pre-
cedes the other.Lemma 4 Let e1 and e2 be distinct threads in a Cilk dag, and let
LCA(e1;e2) be their least common ancestor in a parse tree for the
dag. Then, e1 k e2 if and only if LCA(e1;e2) is a P-node.

Proof: ()) Assume for the purpose of contradiction that e1 k e2
and LCA(e1;e2) is an S-node. Let G1 be the graph corresponding
to the left subtree of LCA(e1;e2), and let G2 be the graph corre-
sponding to the right subtree. By Lemma 2, there exists a path from
e1 to the sink of G1 and a path from the source of G2 to e2. Since G1
and G2 are composed in series, the sink of G1 and the source of G2
are the same node, and hence e1 � e2, contradicting the assumption
that e1 k e2.

(() Assume for the purpose of contradiction that e1 � e2 and
LCA(e1;e2) is a P-node. Let G1 be the graph corresponding to the
left subtree of LCA(e1;e2), and let G2 be the graph corresponding
to the right subtree. By Lemma 2, the path from e1 to e2 must go
through the sink of G1 and the source of G2. Since G1 and G2 are
composed in parallel, the sink of G1 is the sink of G2 and the source
of G1 is the source of G2. Thus, we have a path from the sink of G1
to the source of G1, contradicting the fact that G1 is a dag.Corollary 5 Let e1 and e2 be distinct threads in a Cilk dag, and let
LCA(e1;e2) be their least common ancestor in a parse tree for the
dag. Then, e1 � e2 if and only if LCA(e1;e2) is an S-node, e1 is
in the left subtree of LCA(e1;e2), and e2 is in the right subtree of
LCA(e1;e2).

As an example of the use of Lemma 4, in Figure 12 we have F1 k
F2, because LCA(F1;F2) is a P-node. In contrast, since e1 occurs
to the left of F2 in the parse tree and LCA(e1;F2) is an S-node, by
Corollary 5 we can conclude that e1 � F2.

The SP-bags algorithm takes advantage of relationships among
threads that can be derived from the serial, depth-first execution or-
der of the dag. The following two lemmas exploit the depth-first
execution order of the algorithm to determine when threads operate
logically in parallel.Lemma 6 Suppose that three threads e1, e2, and e3 execute in or-
der in a serial, depth-first execution of a Cilk dag, and suppose that
e1 � e2 and e1 k e3. Then, we have e2 k e3.

Proof: Assume for the purpose of contradiction that e2 � e3.
Then, since e1 � e2, we have e1 � e3 by transitivity, contradicting
the assumption that e1 k e3.Lemma 7 (Pseudotransitivity of k) Suppose that three threads
e1, e2, and e3 execute in order in a serial, depth-first execution of a
Cilk dag, and suppose that e1 k e2 and e2 k e3. Then, we have e1 k e3.

Proof: Consider the parse tree of the Cilk dag with e1, e2, and e3.
Let a1 = LCA(e1;e2) and a2 = LCA(e2;e3). Lemma 4 implies that
both a1 and a2 are P-nodes. Because e1, e2, and e3 execute in or-
der, one can show that either a1 or a2 is the least common ancestor
of e1 and e3, and since both a1 and a2 are P-nodes, it follows from
Lemma 4 that e1 k e3.

From the construction of the canonicalparse tree for the Cilk dag,
it is apparent that each procedure in the spawn tree is represented by
an assembly of threads and internal nodes in the parse tree. We de-
fine the mapping h of threads or nodes in the canonical parse tree
to procedures in the spawn tree to be the procedurification function
for the parse tree. This procedurification function is used in the next
lemma to relate the S-nodes and P-nodes in the parse tree to proce-
dure ID’s in the S-bags and P-bags during the execution of the SP-
bags algorithm.Lemma 8 Consider an execution of the SP-bags algorithm on a
given Cilk dag. Let h be the procedurification function mapping the
canonicalparse tree for the dag to procedures in the spawn tree. Sup-
pose thread e1 is executed before thread e2, and let a= LCA(e1;e2)
be their least common ancestor in the parse tree. If a is an S-node,
then the procedure ID for h(e1) belongs to the S-bag of h(a) when
e2 is executed. Similarly, if a is a P-node, then the procedure ID for
h(e1) belongs to the P-bag of h(a)when e2 is executed.

Proof: We shall first show that if a is an S-node of the parse tree,
then the procedure ID for h(e1) belongs to the S-bag of the pro-
cedure h(a). There are two possibilities (as can be seen from Fig-
ure 11) depending on whether a belongs to the spine or a sync block
of the parse tree.

If a belongs to the spine, then e1 belongs to a’s left subtree, which
is rooted in a sync block of the parse tree. At the time thread e2 is
executed, in what bag does the procedure ID for h(e1) reside? From
the code for the SP-bags algorithm in Figure 8, we can see that when
e1 is executed, the ID for h(e1) is placed in h(e1)’s own S-bag by
the spawn action. From the construction of the canonical parse tree
(see Figure 11), we observe that either h(e1) = h(a) or h(e1) is a de-
scendant of h(a). From the time that e1 is executed to the time e2 is
executed, the only operations that move the ID for h(e1) are sync
and return, which never move the ID down the spawn tree, and
indeed, h(e1)’s ID moves up exactly when one of its ancestors re-
turns. Consequently,when the sync corresponding to a is executed,
h(e1)’s ID is placed into the S-bag of h(a), if it is not already there.
From that point until e2 is executed, no operations remove h(e1)’s
ID from h(a)’s S-bag.

If a belongs to one of h(a)’s sync blocks, then the construction of
the canonical parse tree implies that e1 is the left child of a, as can

be seen in Figure 11. Consequently, we have h(e1) = h(a), and the
SP-bags algorithm places the procedure ID for h(e1) into h(a)’s S-
bag at the moment that h(a) is spawned. From that moment until the
time e2 is executed, the S-bag of h(a) is never emptied, since h(a)
does not return until after executing e2. Thus, h(e1)’s ID belongs to
h(a)’s S-bag when e2 is executed.

We now show that if a is a P-node of the parse tree, then the pro-
cedure ID for h(e1) belongs to the P-bag of the procedure h(a). If a
is a P-node, then the thread e1 belongs to the left subtree of a and the
thread e2 belongs to a’s right subtree. As in the argument for when
a is an S-node in h(a)’s spine, when e2 is executed, the procedure
h(e1) must belong to a bag in the procedure h(a) of their least com-
mon ancestor a. In this case, however, the procedure ID for h(e1)
belongs to h(a)’s P-bag, since h(e1) is a proper descendant of h(a),
the ID for h(e1) is placed in h(a)’s P-bag when h(a)’s left child re-
turns, and the P-bag of h(a) is not emptied until a’s entire sync block
is executed.Corollary 9 Consider an execution of the SP-bags algorithm on a
given Cilk dag, and let h be the procedurification function mapping
the canonical parse tree for the dag to procedures in the spawn tree.
Suppose thread e1 is executed before thread e2. Then, e1 � e2 if
and only if the procedure ID for h(e1) belongs to an S-bag when e2
is executed. Similarly, e1 k e2 if and only if the procedure ID for
h(e1) belongs to a P-bag when e2 is executed.

Proof: Combine Lemma 4, Corollary 5, and Lemma 8.

We now prove that the SP-bags algorithm is correct.Theorem 10 The SP-bags algorithm detects a determinacy race in
a Cilk program if and only if a determinacy race exists.

Proof: ()) Suppose that the SP-bags algorithm detects a determi-
nacy race when executing a thread e2. According to the SP-bags al-
gorithm (see Figure 8), one of three cases occurs:

1. e2 performs a write and reader(l) belongs to a P-bag;
2. e2 performs a write and writer(l) belongs to a P-bag;
3. e2 performs a read and writer(l) belongs to a P-bag.

In the first case, the procedure ID stored in reader(l) is set by a
thread e1 which executes before e2 and reads l, and hence by Corol-
lary 9, we have e1 k e2. Since e1 reads l, e2 writes l, and the two
threads operate logically in parallel, a determinacy race exists. The
other two cases are similar.

(() We now show that if a program contains a determinacy race
on a location l, then the SP-bags algorithm reports a determinacy
race on location l. Let e1 and e2 be two threads involved in a de-
terminacy race on location l, where if there are several determinacy
races on l, we choose the determinacy race whose second thread ex-
ecutes earliest in the depth-first execution order of the program. By
definition of a determinacy race, we have e1 k e2, and without loss
of generality, e1 executes before e2.

There are three possible ways the determinacy race could oc-
cur:

1. e1 writes l and e2 reads l;
2. e1 writes l and e2 writes l;
3. e1 reads l and e2 writes l.

In each case, let h be the procedurification function mapping threads
or nodes of the canonical parse tree to procedures in the spawn tree.

Case 1. Suppose that e1 writes l and e2 reads l. When e2 is ex-
ecuted, suppose that writer(l) = h(e) for some thread e. If e = e1,
then since e1 k e2, Corollary 9 implies that writer(l) belongs to a P-
bag and the determinacy race is reported. If e 6= e1, however, then e
must be executed after e1 but before e2, because otherwise e’s write

to l would be overwritten by e1’s write, and writer(l)would likewise
be overwritten. We have two possibilities: either e1 � e or e1 k e.
If e1 � e, then we must have e k e2 by Lemma 6. Consequently,
Corollary 9 implies that h(e)=writer(l) belongs to a P-bag, and the
determinacy race between e and e2 is detected. If e1 k e, however,
then since both e1 and e write l, a write/write determinacy race ex-
ists between e1 and e, contradicting the assumption that e2 executes
earliest in the depth-first execution order of the program, over all
determinacy races on location l.

Case 2. This case is similar to Case 1.
Case 3. In this case, when e2 is executed, suppose that

reader(l) = h(e) for some thread e. If e = e1, then since e1 k e2,
Corollary 9 implies that reader(l) belongs to a P-bag and the de-
terminacy race is reported. Consequently, we may assume that e 6=
e1. We consider two situations depending on whether e1 updates
reader(l) when it executes.

If e1 updates reader(l), then consider the sequence of updates to
reader(l) from the time e1 executes up to and including the time e
executes. Let the threads performing the updates be e0

1;e0
2; : : : ;e0

k ,
where e0

1 = e1 and e0
k = e. From the code for read in Figure 8, we

must have for i= 1;2; : : : ;k�1 that e0
i � e0

i+1, since by Corollary 9,
the ID of h(e0

i) belongs to an S-bag when e0
i+1 executes. By tran-

sitivity, therefore, we have e1 � e. Since e1 k e2, by Lemma 6, it
follows that e k e2. Consequently, by Corollary 9, the determinacy
race between e and e2 is detected.

If e1 does not update reader(l), then when e1 executes, we must
have h(e0) = reader(l) for some thread e0 k e1 that executes be-
fore e1. Since e1 k e2, by pseudotransitivity (Lemma 7) it follows
that e0 k e2. Looking at the sequence of updates of reader(l) from
the execution of e0 up to and including the execution of e, we can
conclude that e0 � e. Since e0 k e2, Lemma 6 implies that e k e2, and
hence the determinacy race between e and e2 is reported.5 Support for atomic accumulation
Cilk supports the atomic accumulation of results returned by
spawned procedures. If the operators used to augment the ac-
cumulated variable are commutative—they are all += or -=, for
example—wewould like the concurrent accessingof the updatesnot
to be viewed as races, because the order of accumulation does not
affect the “external determinacy” [9] of the computation. That is,
the behavior of the program is deterministic, even though different
executionsmay cause some variables to pass through different inter-
mediate states. In this section, we show how to extend the SP-bags
algorithm to detect determinacy races in Cilk code where races be-
tween accumulations are considered to be “legal.”

Consider the Cilk procedure foo() from Figure 13. Cilk guaran-
tees that this code produces the same result for the integer variablex no matter how threads are scheduled. The basic idea is that accu-
mulations of this kind are performed atomically with respect to one
another, and the updates to x are commutative: no matter what order
they are executed, x has the same value after the sync. Thus, even
though different executions may cause x to pass through different
intermediate states, the final result is the same. A determinacy race
in an externally deterministic program is called a legal determinacy
race, and it is illegal otherwise.

Cilk guarantees the atomicity of accumulations only for accumu-
lations within the same procedure instance. Accumulations by other
procedure instances that operate logically in parallel are not guaran-
teed to be atomic by Cilk’s runtime system, and they can cause non-
determinism. Atomicity alone is not sufficient for a race to be legal,
however. It must also involve commutative updates. For example,
if the accumulation operator “-=” in foo() is replaced by the op-
erator “*=”, the race is illegal, because the order of execution can

cilk int foo(){ � � �x += spawn bar();x -= spawn baz();x += 1;sync;� � �}Figure 13: An illustration of the use of accumulation in a Cilk program. The
integer variablexmay or may not be local to the procedurefoo(). Although
determinacy races occur between updates to x, the races are legal, since the
updates occur atomically.

affect the final value of x, even though the updates are performed
atomically.

The SP-bags algorithm can be modified to accommodate legal
races. There are two key changes to the data structures. First, we
create a shadow space to record the operator whenever an accumu-
lation or assignment occurs. (The assignment operator = is consid-
ered to be a degenerate accumulation operator which does not com-
mute with any other operators, including itself.) Second, in addition
to procedure ID’s, the SP-bags algorithm assigns each sync block a
distinct ID. The sync-block ID and operator are stored in a shadow
space whenever an accumulation occurs.

Figure 14 extends the SP-bags algorithm of Figure 8 to detect the
determinacy races in Cilk code containing accumulations. In ad-
dition to the introduction of a new action accumulate that deals
with the case when the returned result of a spawned procedure is
accumulated, only the write action needs to be extended. A new
shadow space called operator stores the operator for each location
in the shared memory. When a procedure F in a sync block B writes
a location l with accumulation operator op, and it discovers that the
previous writer of l belongs to a P-bag, a determinacy race occurs
only if the previous writer is not B or if the previous writer’s opera-
tor does not commutate with op. If no determinacy race occurs, the
operator of l is updated to op. When a spawned procedure returns
its result to procedure F and accumulates the result into a location l,
the operations are almost the same as the write action except that
it is necessary to check whether the current sync block B belongs to
any bag. If not, the unique ID for B is placed into the P-bag of F, if
it is not there already.Theorem 11 The extended SP-bags algorithm detects a determi-
nacy race in a Cilk program containing accumulations if and only if
an illegal determinacy race exists.

Proof sketch: The proof is similar to that of Theorem 10. Once
again, the “only if” direction is straightforward, and the hard part
is the “if” direction. The extended SP-bags algorithm contains an
additional check when a thread performs a write and writer(l) be-
longs to a P-bag. If writer(l) is the ID of the current sync block,
then l has been accumulated by the returned result of a previously
spawned procedure in the same sync block. If the operator is also
commutative with operator(l), then the determinacy race is legal,
because the accumulations are performed atomically. Otherwise,
the determinacy race is illegal and is reported. Determinacy races
caused by the accumulate action are checked similarly to the ones
by the write action.6 The Nondeterminator
This section presents the implementation of the Nondeterminator,
our determinacy-race detector for Cilk programs. We discuss how

write a shared location l with operator op by procedure F in sync
block B:

if Find-Set(reader(l)) is a P-bag
then a determinacy race exists

if Find-Set(writer(l)) is a P-bag
and (writer(l) 6= B

or op does not commutate with operator(l))
then a determinacy race exists

writer(l) F
operator(l) opaccumulate returned result of spawned procedure into a shared

location l with operator op by procedure F in sync block B:

if Find-Set(reader(l)) is a P-bag
then a determinacy race exists

if Find-Set(writer(l)) is a P-bag
and (writer(l) 6= B

or op does not commutate with operator(l))
then a determinacy race exists

if Find-Set(B) = /0
then PF Union(PF ;Make-Set(B))

writer(l) B
operator(l) opFigure 14: The extended SP-bags algorithm of Figure 8 for Cilk code con-

taining accumulations. Operations for the write action are extended. Oper-
ations for the accumulateaction are performed when atomic accumulation
occurs.

the Nondeterminator implements the SP-bags algorithm by modify-
ing the Cilk compiler and runtime system. We describe some mod-
ifications to the SP-bags algorithm that enhance the Nondetermina-
tor’s performance. Empirical data from a variety of benchmark Cilk
programs shows that the Nondeterminator typically runs in less than
12 times the execution time of the original optimized program.

The first phase of checking a user’s Cilk program is to run
the code through the Cilk compiler with an option that turns on
determinacy-race detection. This compiler option produces object
code with calls to the Nondeterminator’s runtime system for every
read and write of shared memory. In addition, the compiler inserts
hooks that allow the Nondeterminator’s runtime system to perform
actions for every spawn, sync, and return.

At runtime, before it starts executing the user code, the Nonde-
terminator sets up the reader and writer shadow spaces. We use the
Unix memory-mapping primitive mmap() to fix the starting address
of each shadow space so that the shadow-space address can be ob-
tained quickly from the corresponding shared-memory address. It
also initializes the disjoint-set data structure.

During execution of the user program, the Nondeterminator per-
forms the SP-bags algorithm (without garbage collection), modi-
fied slightly to improve performance. First, if the compiler can
determine that a memory reference is to a nonshared memory re-
gion, such as a local variable whose address is never computed,
no determinacy-race check is necessary, because no determinacy
race is possible. Second, we modify the SP-bags algorithm to up-
date reader(l), as well as writer(l), whenever a write or accumu-
late to a location l occurs. This change allows us to check only
reader(l) in the code for write and accumulate (see Figure 8 and
Figure 14); and in the code for read, we need only check writer(l)
when reader(l) belongs to a P-bag. Third, during the execution of
a thread, we save addresses that have previously been checked in a
software cache to avoid checking them again within the same thread.

We have measured the performance of the Nondeterminator on

Program Original Nondeterminator Slowdown Number of actions Average overhead Cache-hit ratio
(seconds) (seconds) (nanoseconds)mmult 3.54 32.06 9.05 317,947,466 89.69 77.26%lu 2.36 20.93 8.87 184,738,250 100.52 89.14%sparsky 14.91 97.02 6.51 289,381,593 283.74 44.17%hutch 4.71 48.58 10.31 200,693,060 218.57 77.29%heat 2.60 21.37 8.21 125,143,001 149.94 78.23%fft 4.17 23.03 5.18 39,411,729 471.43 7.39%multisort 5.22 57.94 11.09 179,988,858 292.86 42.15%knapsack 7.39 17.73 2.41 34,752,741 298.30 33.34%Figure 15: Eight benchmark Cilk programs that were checked with the Nondeterminator. The slowdown is the ratio of the Nondeterminator runtime and the

original optimized runtime of the benchmark. The total number of actions (spawns, syncs, returns, shared reads, and shared writes) is given, along with the
average overhead of the Nondeterminator for each action and the fraction of accesses that hit the Nondeterminator’s software cache.

eight benchmark Cilk programs:� mmult— Block multiplication of two dense 512�512 matri-
ces, written by Keith Randall.� lu— LU-decomposition of a dense 512�512 matrix, written
by Robert D. Blumofe.� sparsky — Cholesky factorization of a sparse 3600� 3600
matrix with 15,100 nonzeros, written by Aske Plaat and Keith
Randall.� hutch — Barnes-Hut n-body calculation with 4096 cells,
written by Keith Randall.� heat— Heat diffusion on a 4096�16 mesh, written by Volker
Strumpen.� fft — Fast Fourier transformation of a vector of length 220,
written by Matteo Frigo.� multisort— Sort a random permutation of 4 million 32-bit
integers, written by Matteo Frigo and Andrew Stark.� knapsack— Solve the 0-1 knapsack problem on 30 items us-
ing branch and bound, written by Matteo Frigo.

The results of our tests, which were run on a 167-megahertz SUN
Ultrasparc with the Solaris 2.5.1 operating system, are shown in Fig-
ure 15. As we can see from Figure 8 and Figure 14, the SP-bags al-
gorithm is invoked when a spawn, sync, return, shared read, or
shared write occurs. Each of these invocations, which we call an
action, contributes to the overhead incurred by the Nondetermina-
tor. The number of actions in each benchmark program is given in
Figure 15.

We observe that the average overhead per action varies among
these benchmark programs, ranging from 90 nanoseconds to 472
nanoseconds. The variation is due to the Nondeterminator’s soft-
ware cache. Whenever the cache-hit ratio is large (i.e., a thread
exhibits substantial temporal locality in its shared-memory access
patterns), relatively few shared read or write accesses need to in-
cur the full overhead of the SP-bags algorithm. Thus, the average
overhead per action is small. For example, the fft and knapsack
programs exhibit small cache-hit ratios, and thus the overhead per
action is comparatively high. For other benchmarks, the software
cache is reasonably effective, and the overhead per action is within
300 nanoseconds.

The Nondeterminator has caught determinacy races in several
Cilk programs. For example, it caught a subtle bug in a program to
solve the N-queens puzzle which was included as a programming
example in the Cilk software distribution. The goal of the N-queens
puzzle is to find a configuration of n queens on an n�n chessboard
such that no queen attacks another. The standard backtrack algo-
rithm to solve this puzzle is to place queens row by row, and back-
track whenever a developed configuration contains two queens that
attack each other.

cilk char *nqueens(char *board, int n, int row){ char *new_board;� � �new_board = malloc(row+1);memcpy(new_board, board, row);/* read *board */for (j = 0; j < n; j++) {� � �new_board[row] = j; /* write *new_board */spawn nqueens(new_board, n, row+1);� � �}sync;� � �}Figure 16: A fragment of a Cilk program solving the N-queens puzzle. A
determinacy race exists involving the commented lines in the code.

The recursive Cilk procedurenqueens in Figure 16 illustrates the
bug in the original implementation of this backtrack algorithm. It
is called with three arguments: board, which is the current con-
figuration of queens on the chessboard; n, which is the size of the
chessboard; and row, which is the row number where a queen will
be placed. Before a queen is placed, space for a new configurationnew_board is allocated using malloc so that the child that will be
recursively spawned to solve the new configuration does not over-
write the storage in the parent. The current configuration board is
copied into new_board using memcpy. The spawn in the for loop
causes the searches to be spawned in parallel to solve configurations
in which the just-placed queen is in different columns of the current
row.

When the nqueens code ws run through the Nondeterminator, it
reported that board and new_board are involved in races. Specifi-
cally, a race exists between the read of board in a spawned subpro-
cedure and the write of new_board in its parent procedure. Since
the passed board argument of the subprocedure points to the same
storage as the new_boardof its parent procedure, when the subpro-
cedure is reading the board in memcpy, the parent procedure may
be updating the new_board at the same time, resulting in a deter-
minacy race.

Besides the N-queens puzzle, several Cilk users have used the
Nondeterminator to discover determinacy-race bugs in their pro-
grams, which have included a radiosity calculation for graphics ren-
dering, enumeration of magic squares, and an old version of our
heat-diffusion benchmark. Some Cilk users have not taken advan-
tage of this tool, however, much to their detriment. In a student

assignment at MIT to implement Strassen’s matrix multiplication
algorithm in Cilk, half of the submitted codes turned out to have
determinacy races that were not detected during the students’ re-
peated test runs. These bugs were instantly caughtwhen the instruc-
tors ran the programs through the Nondeterminator. The students
could have easily run the Nondeterminator themselves (the theory
of which was taught in their class), but their overconfidencewas nat-
ural, since their code worked on every test run. Indeed, determinacy
races are latent bugs that can escape extensive testing, rearing their
ugly heads only intermittently and confounding naive debugging at-
tempts. With the release of the Nondeterminator as part of the over-
all Cilk system, we hope more Cilk programmers will routinely use
the Nondeterminator as a debugging tool to produce more reliable
parallel code.7 Related work
This section briefly reviews related work on the problem of de-
tecting determinacy races in parallel programs. A comparison of
the asymptotic time and space requirements of the Nondetermina-
tor with work in the literature was presented in Figure 6.

Bernstein [3] identifies determinacy races as a cause of nondeter-
ministic behavior. Netzer and Miller [15] present a formal model
for understanding race conditions in parallel programs, distinguish-
ing determinacy races from atomicity races. They reference several
algorithms for atomicity-race detection, but we do not discuss this
type of race detection here. Static analysis of parallel programs to
uncover nondeterminacy has been studied extensively, for example,
in [9, 13]. Various systems have been developed for determinacy-
race detection that do not allow nested parallelism, as for exam-
ple [2].

We now review related work on determinacy-race detection for
programs with nested parallelism.

Nudler and Rudolph [16] give an “English-Hebrew labeling” al-
gorithm that detects determinacy races in programs with series-
parallel dependences,but their model also allows messagesbetween
threads, which produces a richer and more difficult class of pro-
grams to check. Their algorithm assigns to each thread a pair of la-
bels: an “English” label, which is produced by performing a left-
to-right preorder numbering on the task tree, and a “Hebrew” label,
which is produced symmetrically for a right-to-left ordering. To de-
termine whether two threads operate logically in parallel, a compar-
ison of the labels of two threads suffices.

Dinning and Schonberg [7] improve the performance of the
English-Hebrew labeling algorithm by “task recycling,” but at the
cost of failing to detect some determinacy races. Each thread (task)
has a unique task identifier, and a version number. In order to save
space, a task identifier can be reassigned to another thread during
the program execution. Each thread also maintains a parent vector
containing the largest version number of its ancestor threads. With
the parent vector, checking whether two blocks are logically paral-
lel is reduced to one access of the parent vector and one compar-
ison, which are constant-cost operations. Dinning and Schonberg
give performance data indicating a slowdown of between 3 and 11
to check between 50 and 80 percent of potential determinacy races.

Mellor-Crummey [12] proposes a scheme called “offset-span la-
beling” in programs with nested fork-join parallelism, a model that
exhibits only series-parallel dependences. The idea of his scheme is
to store a list of labels for each executing thread. Whenever a thread
spawns, the length of the list grows by one, and whenever a thread
syncs, the length is reduced by one. This strategy avoids a problem
in the English-Hebrew labeling algorithm whereby the length of a
label might grow in proportion to the number of spawn operations
encountered in the execution path.

Min and Choi [14] propose a determinacy-race detection algo-
rithm that piggybacks on a protocol for distributed shared-memory.
The idea is that a determinacy race occurs when a processoraccesses
memory that was previously accessedby another processor. Conse-
quently, determinacy-race detection can be performed at the same
time as the distributed shared-memory protocol, thereby avoiding
individual access checks. This reduced overhead is achieved at the
cost of additionally storing the history of accessesof each shared lo-
cation, however. Moreover, the length of the history is proportional
to the depth of nested parallelism.

Steele [19] proposes a scheme to detect determinacy races in
a programming model with asynchronous threads of control. His
scheme requires each location to maintain state information record-
ing the sequence of threads that have accessed the location as well
as the type of access performed. In addition, each thread maintains
a responsibility set of which locations it has accessed. The Nonde-
terminator’s reader and writer shadow spaces are similar to Steele’s
location state, but rather than keeping lists, in our scheme only a sin-
gle reader and writer need be stored per location. Although he does
not mention it, the programs that he is capable of checking exhibit
series-parallel dependences. Steele provides an implementation of
his algorithm in the Scheme programming language.

The space and time requirements of all these determinacy-race
detection algorithms are larger than those for the SP-bags algorithm.
Our algorithm spends almost constant time checking each read and
write access, and it uses only a constant factor more memory than
does the program itself.8 Conclusion
To conclude this paper, we shall discuss some of the open problems
arising out of our work. These problems include how to parallelize
our algorithm, whether a faster algorithm for determinacy-race de-
tection might exist, and how to tolerate intended nondeterminism
while still catching other determinacy races.

The SP-bags algorithm seems inherently serial, because it heavily
relies on the serial execution order of the parallel program. Never-
theless, we feel that it may be possible to develop a parallel version
of the SP-bags algorithm. We have started investigating a parallel
scheme in which each of several processors executing the program
uses the SP-bags algorithm locally, but when a remote child proce-
dure returns, it reconciles its shadow spaces in a manner similar to
the BACKER algorithm [4] for maintaining dag consistency. Such a
result may be mostly of theoretical interest, however, since debug-
ging is usually done in the development phase of a program using
small data sets, and thus typically, the performance of the debugger
is not a crucial concern.

Linear-time algorithms for the least-common-ancestors algo-
rithm exist in the literature [10, 18], and it is natural to wonder
whether a determinacy-race detector exists that operates in linear
time, instead of the almost-linear-time performance of the SP-bags
algorithm. The attraction of Tarjan’s algorithm, as opposed to exist-
ing linear-time algorithms and the seminal algorithm given by Aho,
Hopcroft, and Ullman [1], is that it operates, in Mellor-Crummey’s
words [12], “on the fly.” That is, the least common ancestors can
be queried during a simple tree walk without ever requiring the en-
tire tree to be expanded at any time. We expect that the discovery
of a linear-time on-the-fly least-common-ancestorsalgorithm would
have direct application to determinacy-race detection.

Some programs may intentionally contain nondeterminism. How
can a debugging program, such as the Nondeterminator, tolerate in-
tended nondeterminism while still catching unintentional determi-
nacy races?

One strategy that Cilk users have used successfully in debugging
nondeterministic codes is for the user to “turn off” the intentional

nondeterminism in his code so that he can debug a deterministic ver-
sion of his program. Our experience is that intentional nondetermin-
ism does not occur in many places in user programs, and the user
usually has the ability to disable it. For example, in our ?Socrates
chess-playingprogram, a switch was included that could turn off the
aspects of the program that produced nondeterministic behavior. Of
course, if the user’s bug is in the nondeterministic part of his code,
this strategy will not work, but knowing that the deterministic part
contains no determinacy races is neverthelessextremely helpful dur-
ing debugging.

Another strategy that the Nondeterminator supports is to allow
the user to turn off monitoring of certain variables. For example,
our benchmarkknapsackhas an intentional determinacy race when
independent threads atomically update the variable containing the
bound in its branch-and-bound search. To check this code, we sim-
ply disabled the monitoring of the location containing the bound. A
disadvantage of this strategy, however, is that turning off the moni-
toring of one location may hide inadvertentnondeterminism in other
locations. Thus, it is not clear what is guaranteed when such a pro-
gram passes the Nondeterminator test. Nevertheless, turning off the
monitoring of certain locations seems to be a useful strategy.

The Nondeterminator has been included in the latest Cilk re-
lease [20]. The Nondeterminator in the release runs about 25 per-
cent slower than the one in this paper. We traded off some perfor-
mance for usability and simplicity. The released version provides
more user options in the runtime system, such as a switch for de-
ciding whether floating-point operations should be deemed commu-
tative. (They are not, due to round-off error, but sometimes users
wish to ignore the minor nondeterminacies that result.) To simplify
the maintenance of the code, the released version also lacks some
aggressive compiler optimizations that reduce the amount of instru-
mentation. Software, the user’s manual, and other related informa-
tion about Cilk and its Nondeterminator are available via the World
Wide Web at http://theory.lcs.mit.edu/~cilk.Acknowledgments
We would like to thank Arvind and his dataflow group at MIT
for their insightful discussions about the determinacy-race problem.
Larry Rudolph of MIT acquainted us with much related work, in-
cluding his own. Bradley Kuszmaul of Yale University was helpful
in providing pointers on related work. Long ago, Guy Blelloch of
Carnegie Mellon University pointed out the series-parallel structure
of Cilk dags. David Karger and Matt Levine of MIT serendipitously
renewed our interest in Tarjan’s least-common-ancestors algorithm
just before we discovered it was relevant to the determinacy-race
problem. The members of our Cilk development group—Robert
Blumofe of University of Texas at Austin and Matteo Frigo, Ching
Law, Phil Lisiecki, Aske Plaat, Keith Randall, Bin Song, Andrew
Stark, and Volker Strumpen of MIT—provided many helpful sug-
gestions and donated their Cilk application programs for testing.
Also, many thanks to Keith (Schwartzenegger) Randall for suggest-
ing the name “Nondeterminator.”References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest com-
mon ancestor in trees. SIAM Journal on Computing, 5(1):115–132,
March 1976.

[2] T. R. Allen and D. A. Padua. Debugging Fortran on a shared mem-
ory machine. In Proceedings of the 1987 International Conference on
Parallel Processing, pages 721–727, August 1987.

[3] A. J. Bernstein. Analysis of programs for parallel processing. IEEE
Transactions on Electronic Computers, EC-15(5):757–763, October
1966.

[4] Robert D. Blumofe, Matteo Frigo, Chrisopher F. Joerg, Charles E.
Leiserson, and Keith H. Randall. An analysis of dag-consistent dis-
tributed shared-memory algorithms. In Proceedings of the Eighth
Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 297–308, Padua, Italy, June 1996.

[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded runtime system. In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 207–216, Santa Barbara, California,
July 1995.

[6] ThomasH. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. The MIT Press and McGraw-Hill Book Com-
pany, 1990.

[7] Anne Dinning and Edith Schonberg. An empirical comparison of mon-
itoring algorithms for access anomaly detection. In Proceedingsof the
Second ACM SIGPLAN Symposium on Principles & Practice of Par-
allel Programming (PPoPP), pages 1–10. ACM Press, 1990.

[8] R. J. Duffin. Topology of series-parallel networks. Journal of Mathe-
matical Analysis and Applications, 10:303–318, 1965.

[9] Perry A. Emrath and Davis A. Padua. Automatic detection of nonde-
terminacy in parallel programs. In Proceedings of the Workshop on
Parallel and Distributed Debugging, pages 89–99, Madison, Wiscon-
sin, May 1988.

[10] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest
commonancestors. SIAM Journalon Computing, 13(2):338–355,May
1984.

[11] P. A. MacMahon. The combination of resistances. The Electrician,
April 1892.

[12] John Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Proceedings of Supercomput-
ing’91, pages 24–33. IEEE Computer Society Press, 1991.

[13] John Mellor-Crummey. Compile-time support for efficient data race
detection in shared-memory parallel programs. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debugging, pages
129–139, San Diego, California, May 1993. ACM Press.

[14] Sang Lyul Min and Jong-Deok Choi. An efficient cache-based access
anomaly detection scheme. In Proceedings of the Fourth International
Conferenceon ArchitecturalSupport for Programming Languagesand
Operating Systems (ASPLOS), pages 235–244, Palo Alto, California,
April 1991.

[15] Robert H. B. Netzer and Barton P. Miller. What are race conditions?
ACM Letters on Programming Languages and Systems, 1(1):74–88,
March 1992.

[16] Itzhak Nudler and Larry Rudolph. Tools for the efficient development
of efficient parallel programs. In Proceedings of the First Israeli Con-
ference on Computer Systems Engineering, May 1986.

[17] John Riordan and C. E. Shannon. The number of two-terminal series-
parallel networks. Journal of Mathematics and Physics, 21:83–93,
1942.

[18] Baruch Schieber and Uzi Vishkin. On finding lowest common ances-
tors: Simplification and parallelization. SIAM Journal on Computing,
17(6):1253–1262, December 1988.

[19] Guy L. Steele Jr. Making asynchronousparallelism safe for the world.
In Proceedings of the Seventeenth Annual ACM Symposium on Princi-
ples of ProgrammingLanguages (POPL), pages 218–231.ACM Press,
1990.

[20] Supercomputing Technology Group, Massachusetts Institute of Tech-
nology, 545 Technology Square, Cambridge, Massachusetts 02139.
Cilk-5.0 (Beta 1) Reference Manual, March 1997. Available on the
World Wide Web at URL “http://theory.lcs.mit.edu/~cilk”.

[21] Robert Endre Tarjan. Efficiency of a good but not linear set union
algorithm. Journal of the Association for Computing Machinery,
22(2):215–225, April 1975.

[22] Robert Endre Tarjan. Applications of path compression on bal-
anced trees. Journal of the Association for Computing Machinery,
26(4):690–715, October 1979.

[23] Jacobo Valdes. Parsing Flowcharts and Series-Parallel Graphs. PhD
thesis, Stanford University, December 1978. STAN-CS-78-682.

