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Abstract Moving point object data can be analyzed through the discovery of patterns
in trajectories. We consider the computational efficiency of detecting four such
spatio-temporal patterns, namely flock, leadership, convergence, and encounter,
as defined by Laube et al., Finding REMO—detecting relative motion patterns in

geospatial lifelines, 201–214, (2004). These patterns are large enough subgroups of the
moving point objects that exhibit similar movement in the sense of direction, heading
for the same location, and/or proximity. By the use of techniques from computational
geometry, including approximation algorithms, we improve the running time bounds
of existing algorithms to detect these patterns.
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1 Introduction

Moving point object data is becoming increasingly more available since the develop-
ment of GPS and radio transmitters. One of the objectives of spatio-temporal data
mining [16], [23] is to analyze such data sets for interesting patterns. For example,
a group of caribou with radio collars gives rise to the positions of each caribou
at a sequence of time steps. Analyzing this data gives insight into entity behavior,
in particular, migration patterns [22]. The analysis of moving objects also has
applications in sports (e.g., soccer players [12]) and in socio-economic geography [8].

There is ample research on data mining of moving objects (e.g., [13], [25],
[27], [28], [30]) in particular, on the discovery of similar trajectories or clusters.
Trajectories for moving points are also referred to as (geo)spatial lifelines. In general
the input is a set of n moving point objects whose locations are known at t consecutive
time steps, that is, the path of each moving object is a polygonal line that can self-
intersect (see Fig. 1). For brevity, we will call moving point objects entities from now
on.

The REMO framework (RElative MOtion) was developed by Laube and Im-
feld [14] to define similar behavior in groups of entities. To this end, they define a
collection of spatio-temporal patterns based on similar direction of motion or change
of direction. These patterns are meaningful, for example, with respect to data that
represents the movement of a caribou herd or data that represents change of political
opinions in a space where dimensions represent left–right, liberal–conservative,
and ecological–technocratic. Laube et al. [15] extended the framework by not only
including direction of motion, but also location itself. They defined several spatio-
temporal patterns, including flock, leadership, convergence, and encounter, which can
occur for a subset of the entities at a given time step or time interval. They also give
algorithms to compute these patterns efficiently. We formalize the patterns below.

We assume that the data to be analyzed consists of n entities, each with t locations
at consecutive time steps. We also assume that the locations of the entities are known
at the same time steps (concurrent observation), but we do not make any assumptions
on the distance traveled in any time step for any entity. We will treat each time step
separately. Hence, at each time step, we have to analyze a set of n points with a
given motion direction and speed. The flock pattern describes entities moving in the
same direction while being close to each other (see Fig. 1). We formalize “being

Fig. 1 Left, a flock pattern for p1, p2, p3 at the eighth time step. It is also a leadership pattern with
p2 as the leader. Right, a convergence pattern if m = 4 for p2, p3, p4, p5
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close” as being inside a circle of some specified radius r, whose position is initially
not known. A set of entities can have many flock patterns and even one single entity
can be involved in several flock patterns. The leadership pattern is similar to the flock
pattern, except that one of the entities was already heading in the specified direction
for some time before the flock pattern occurs. Convergence refers to moving to the
same location, given that the direction of motion does not change. The entities need
not arrive at the same time. Again, “same location” is formalized as a circle whose
radius can be specified and whose position is unknown. Finally, encounter refers to
moving to and meeting at the same location, so it is a convergence pattern where the
entities arrive at the same time. In all cases we are looking for “interesting” patterns,
which means that a large enough subgroup of all entities forms the pattern in a small
enough region.

Formally, flock, leadership, convergence, and encounter patterns are defined for
some given set of entities at a specified time step i. The time step i allows us to obtain
the locations of the n entities from the input, and the directions and speeds of all
entities can be determined from their locations at time steps i and i + 1. Alternatively,
we can choose a longer time interval than one time step, which again allows us to
determine a general direction of motion and an average speed. Hence, we can assume
that location, direction and speed are known. To form a pattern, we require that a
sufficient number of entities are involved, and denote the minimum number by m.
The four patterns are defined as follows:

Flock Parameters: m > 1 and r > 0. At least m entities are within a circular
region of radius r and they move in the same direction.

Leadership Parameters: m > 1, r > 0, and s > 0. At least m entities are within a
circular region of radius r, they move in the same direction, and at
least one of the entities was already heading in this direction for at
least s time steps.

Convergence Parameters: m > 1 and r > 0. At least m entities will pass through the
same circular region of radius r (assuming they keep their direction).

Encounter Parameters: m > 1 and r > 0. At least m entities will be simulta-
neously inside the same circular region of radius r (assuming they
keep their speed and direction).

All four patterns are related to clustering, especially the flock pattern. In clustering
it is common to allow clusters of arbitrary shape, but another choice is identifying
groups of entities inside a fixed region type. For example, the Geographical Analysis
Machine [18] considers circular regions that contain many points. Density measures
for point sets also assume fixed regions [19]. Especially for convergence and en-
counter, fixed region types are natural, because these patterns are not realized yet.
They are only extrapolated to occur later.

For each of the four patterns, we must specify what we want to find and report
in a given data set. One possibility is simply to detect whether a pattern occurs. If
so, we may want to report one example of such a pattern. Secondly, we may want to
find all patterns that occur. Thirdly, we may want to report the largest size subset of
entities that form a pattern. We refer to these pattern problems as detect, find all, and
find largest.

In the following sections we address the algorithmic problems of computing flock,
leadership, convergence, and encounter patterns. Exact algorithms solving these
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Table 1 Running time bounds for finding patterns; δ > 0 is an arbitrarily small positive constant, ε

is the relative approximation error, and M is the size of the largest pattern

Pattern Exact (from [15]) Exact (new) Approximate

Flock O(nm2 + n log n) – O( n
ε2 log 1

ε
+ n log n)

(radius)

Leadership O(ns + nm2 + n log n) – O(ns + 1
ε2 n log 1

ε
+ n log n)

(radius)

Convergence O(n2) – O(n2+δ/(εm)) (subset)

O(n3) (all) O( 1
ε

n2 log n) (radius)

Encounter O(n4) O((m + log n)n2) (detect)

O((M + log n)n2 log M)

(largest)

In the “find all” problems, the time needed to report the output must be added.

problems were already given in [15] and here we improve the exact results only for
the encounter pattern—albeit in three different ways (see Table 1). However, recall
that our patterns always involve a “sufficiently large” group of entities being in or
passing through a “sufficiently small” area which we formalize by using a threshold
m for the number of entities and a radius r defining the circle that represents the area.
Any exact values of m and r hardly have a special significance—20 caribou meeting
in a circle with radius 50 m form as interesting a pattern as 19 caribou meeting in a
circle with radius 51 m. Therefore the problem of computing these patterns is ideally
suited for approximation algorithms.

Our results for one time step are listed in Table 1. When comparing the running
times of the exact and the approximate algorithms, we observe that probably an
order of magnitude can be saved due to approximation. The improvements for flock,
leadership, and encounter are more significant than for convergence. The precise
efficiency improvements cannot be given, because they also depend on the size of
the input, the size of the patterns to be found, the quality of the approximation, and
the implementation. The asymptotic notation of running times in Table 1 shows that
for large data sets, the improvements are more significant than for smaller data sets.

The algorithms consider the time steps from τ1 up to τt consecutively, and hence, t

is a multiplicative factor in all time bounds in the table when we consider all starting
times. Since the time steps can be considered in sequence, not all input data is needed
in main memory at the same time. Therefore, we do not need to deal with secondary
memory issues. We note that we look only for patterns defined by the given input
locations and time steps, not for patterns defined by locations in between. This is
referred to as the snapshot view of time [20]. If time is sampled sufficiently densely,
this is no severe limitation. Furthermore, our algorithms do not assume that the
extrapolated time instances for convergence and encounter are sampled, and we find
these for any time instance.

In Section 2 we examine what it means for two patterns to be different and discuss
a method to determine a set of sufficiently different patterns as a postprocessing
step. In Sections 3, 4, and 5 we describe efficient approximation algorithms for all
four patterns, where we let either the size of the region or the specified subset size
deviate slightly from what is specified (see Table 1). In particular, approximating
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the size of the region means that a region with a radius between r and (1 + ε)r

that contains at least m moving entities may or may not be reported as a pattern
while a region with a radius of at most r that contains at least m entities will always
be reported. Approximating the size of the subset, m, implies that we will find all
patterns that involve at least (1 + ε)m entities, we may or may not find patterns that
involve between m and (1 + ε)m entities, and we will not find patterns with less than
m entities.

2 Different patterns and postprocessing

When reporting a pattern that was detected, the most complete information that
can be supplied is giving the position of the pattern, in case of encounter also the
time, and furthermore the complete subset of entities that form the pattern. For
our patterns, there may be several circles with radius r that yield a pattern with the
same subset of entities, and therefore it seems natural to define that two patterns are
different if they involve a different subset. It is well-known that there can be �(n2)

combinatorially distinct ways to place a circle of radius r amidst n points in the plane,
and therefore there can be �(n2) flock patterns and leadership patterns involving
different subsets of entities. Similarly, there can be �(n2) convergence patterns and
�(n3) encounter patterns. Even if we require that the entities of one pattern may not
be a subset of the entities of another pattern (that is, only maximal patterns should
be reported), there may still be as many patterns, asymptotically. If an algorithm
would output all patterns by also reporting all entities involved, the output size and
therefore the time required can be �(n3) for the flock, leadership, and convergence
pattern, and �(n4) for the encounter pattern.

Many of the patterns we find may be similar, for example, two patterns may share
m − 1 entities and differ in only one. The question arises when we should consider
patterns to be different. The issue of finding sufficiently different patterns is related to
the concept of interestingness of a pattern [11], [26]. In our case, we wish to compute
an interesting set of patterns, with the idea that in each such set, only one of two very
similar patterns should appear. We treat the issue of different patterns objectively:
only the data itself determines when a set of patterns is interesting; it is not user-
dependent [26].

One could take the simple view that two patterns are different if they involve
different subsets of entities. After finding all patterns, we can then identify patterns
that are the same and report only one of each. This postprocessing step can be done
using sorting. If we use a different definition of when two patterns are different,
then a different postprocessing step should be used. Most of our algorithms are
approximation algorithms on either the radius or the subset size. In these cases,
the definition of different patterns is more complex. We cannot require reporting
all different patterns, and even if we could, it would undo the efficiency savings that
we get from computing approximate patterns. Intuitively, due to the approximation
algorithm ideas, we often find one representative of a group of patterns that are
similar.

We present a simple definition and a general algorithm for dealing with similar
patterns. We define that two patterns are different if their circle centers are at
distance at least ρ. If we choose ρ < 2r then the circles of different patterns can
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overlap, and two circles can contain exactly the same entities. If we choose ρ > 2r

then the circles are disjoint, and patterns cannot contain the same entities.
Assume that for some pattern, the find all algorithm returns a set of circles that

contain a sufficient number of entities to form a pattern (or an approximate pattern).
We construct a geometric graph G where the nodes represent the patterns that we
found and where two nodes are connected by an arc if the centers of the circles
are at distance at most ρ. An independent set I of nodes in G represents a set of
different patterns by definition. A maximal independent set I has the property that
for every node not in I , there is a neighboring node in I . When reporting a maximal
independent set of nodes and their patterns, this implies that for any pattern not
reported there is another pattern with its center within distance ρ that is reported.
We remark that computing a maximum independent set in G is NP-hard, but we are
only interested in a maximal independent set.

We will not construct G explicitly. If we find N patterns, G may have �(N2) edges,
and hence constructing G already takes more time than we want to spend. Instead,
we can compute a maximal independent set incrementally. Assume that the patterns
that are found have circle centers c1, . . . , cN . Assume we have treated c1, . . . , ci−1,
and we have reported some maximal independent set I of them. We use a data
structure D for the points in I that can answer closest point queries. To decide if
we should report the pattern for circle center ci we search in D to find the closest
center from I . If it is at distance at most ρ, then we discard ci and continue with ci+1.
Otherwise, we report the pattern corresponding to circle center ci and store ci in D.
With the logarithmic method [3] applied to point location in the Voronoi diagram
(Theorem 7.3.4.1 in [21]), we can process a sequence of at most N queries and N

insertions in O(N log2 N) time.

3 Flock and leadership

This section discusses the detection of the flock pattern and its extension, the
leadership pattern. The leadership pattern is discussed only briefly, since its detection
is a fairly straightforward extension of the flock algorithm.

For flock detection, we are given a set of n moving entities as well as a radius
r and the minimum size m ≤ n for a subset to form a pattern. As in [15] we first
separate the input data into eight subsets according to their motion direction and
then treat each subset separately. (Ideally, we should repeat the process with the
eight subsets which we obtain after splitting the input according to motion directions
that are rotated by π/8 degrees.) Laube et al. [15] propose an algorithm that is based
on higher-order Voronoi diagrams with a running time of O(nm2 + n log n). Finding
all flock patterns, or the largest flock pattern, takes O(n2) time by computing the
depth in an arrangement of circles. Detecting one flock pattern takes O(nm + n log n)

time by incrementally constructing an arrangement of circles (de Berg, personal
communication, 2005). An approximately largest flock pattern can be found in
O( n

ε2 log2 n) time for any constant ε > 0; this pattern is guaranteed to have at least
(1 − ε)M entities, where M is the size of the largest flock pattern [1].

We are presenting an approximation algorithm that approximates the size of the
significant region and requires O( n

ε2 log 1
ε

+ n log n) time.
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3.1 Approximating the radius

We will use a quadtree [24] as a building block for our algorithm. Let S = {p1, . . . , pn}

be a set of n points in the plane contained in a square C of length ℓ. A quadtree T for
S is recursively constructed as follows. The root of T corresponds to the square C.
The root has four children corresponding to the four subsquares of C of side length
ℓ/2. The leaves of T are the nodes whose corresponding square contains exactly one
point. Using a compressed quadtree [2] for T reduces its size to O(n) by removing
nodes not containing any points of S and eliminating nodes having only one child. A
compressed quadtree for a set of n points in the plane can be constructed in O(n log n)

time.
Now consider a subset S of the input as described earlier. We already know that

all entities in S move in roughly the same direction so it remains to report all circles
of radius r that contain the positions of at least m entities. That implies that we can
treat S simply as a set of points in the plane for the remainder of this section.

We first construct a compressed quadtree T for S with the additional property that
every non-empty square C corresponding to a node ν has side length between ε

4
r and

ε
8
r. That is, we stop the recursion as soon as we reach a small enough side length;

several points can be in any such square. We then build the arrangement A of all
squares in T (see Fig. 2). A can be built from T in O(n log n) time. Each non-empty
face/cell C of A stores information about the number of points of S within the cell,
denoted by SC.

A simple packing argument yields the following observation:

Observation 3.1 A disc D of radius O(r) intersects O(1/ε2) cells of A.
We now process the O(n) non-empty cells in A one-by-one. Consider a non-empty

cell C of A, and denote the center of C by c. We traverse A, starting at C, and find all
cells of A within distance (2 + ε

4
)r of c. By using a standard breadth-first search in the

arrangement this can be done in time proportional to the number of cells reported,
thus in O(1/ε2) time according to Observation 3.1. We then sort the reported cells

Fig. 2 The input set S contained in a square (left). The arrangement A of the squares obtained from
the quadtree for S (right)
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Fig. 3 Sweeping A with a circle D of radius (1 + ε
4
)r. Starting position of D (left), the non-empty cell

Ci enters D (right)

into an event queue for a rotational plane sweep around c with a disc D of radius
(1 + ε

4
)r and with c fixed at distance ε

4
r from the boundary of D, as illustrated in

Fig. 3. (Note that for the sake of illustration ε is chosen very large with respect to
r in the figures.) Each non-empty cell Ci can cause at most two events since it can
enter or leave D at most once. The event queue can be built in time O(1/ε2 log 1/ε)

by using a standard sorting algorithm.
Initially D is placed such that its bottom point is at distance ε

4
r from c (see Fig. 3

(left)). We compute the number of points of S which are contained in the cells of A
that have a non-empty intersection with D. This number is denoted by SD and can
be computed in O(1/ε2) time since each cell contains information about the number
of points within it. Now we rotate D clockwise around c and process events as they
occur. If a non-empty cell Ci enters D then we increment SD by SCi

, if Ci leaves
D then we decrement SD by SCi

. If SD ≥ m then we report the disc D′ with radius
(1 + ε)r centered at the center cD of D. (Note that every non-empty cell of A that
intersects D necessarily lies entirely within D′.)

It remains to show that our circular sweeps do indeed find all patterns. Consider
a set F of entities that form a flock pattern. There exists a disc DF of radius r that
contains F and whose boundary passes through a point p ∈ S, as shown in Fig. 4.
Consider the cell C of A containing p and let c be its center. Since C is non-empty we
will perform a circular sweep around c. At some point during this sweep the center
cD of D will necessarily lie on the line through c and the center of cF of DF . The
triangle inequality then implies that cD lies within a circle of radius ε

4
r around cF and

therefore DF is completely contained in D. This means that F is contained in D and
so SD ≥ m.

Theorem 1 Given a set of n moving entities, a radius r, the minimum size m ≤ n for a

subset to form a pattern, and a positive constant ε. Using a (1 + ε)-approximation with

respect to the radius of the flocking pattern in 2D, one can compute:

1. The existence of flock patterns in O( n
ε2 log 1

ε
+ n log n) time.
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Fig. 4 The center cD of D lies
on the line through c and cF

2. All flock patterns in O( n
ε2 log 1

ε
+ n log n + N) time, where N is the size of the

output.

Proof The two claims follow from the fact that there are O(n) non-empty cells, and
the event queue for each cell can be built and processed in O( 1

ε2 log 1
ε
) time. Building

the quadtree requires O(n log n) time, thus the theorem follows. ⊓⊔

3.2 Different patterns and postprocessing

The flock patterns that we compute consist of a circle of radius (1 + ε
4
) · r that

contains a set of O( 1
ε2 ) grid squares that together contain at least m points. Since we

rotate about centers of grid squares, we will find the same set of O( 1
ε2 ) grid squares

during at most O( 1
ε2 ) sweeps. We can prove a better bound.

Lemma 1 The algorithm computes at most O( 1
ε
) circles that contain the same set of

non-empty grid squares.

Proof Let A be any set of non-empty grid cells. During a sweep around the center c

of a cell C, we find A at most once, namely at the event where it first appears. Cell
C must also be non-empty, otherwise we would not have used c as a sweep center.
A packing argument shows that there can be O( 1

ε
) non-empty cells whose center is

used for a sweep and for which the circle contains all cells of A but not any other
non-empty cell. ⊓⊔

The O( 1
ε
) circles that contain the same non-empty cells as in the lemma are slightly

different. Therefore, they may contain different entities if we take the ones in cells
that intersect the circles too, as in Fig. 5. We may accept that the same pattern may be
found O( 1

ε
) times. If not, we must detect patterns that potentially are the same, and

we should do this without considering all points in all patterns for efficiency reasons.
We will only report one circle from a group whose circles contain the same set of
non-empty grid squares. This implies that for every pattern that we do not report,
there is another pattern that shares at least m entities with it.

Since the circles of a group are not precisely the same, we cannot sort all circles
lexicographically on (x, y, r), the coordinates of the center and the radius, to remove
reoccurring patterns. Instead, for each circle that we find during the algorithm, we
compute the smallest enclosing circle of the set A of non-empty grid squares (in fact,
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Fig. 5 Two discs that contain
the same non-empty squares
(dark grey), but D1 contains
one fewer entity than D2

of their corner vertices). Although A can have size O( 1
ε2 ), we can easily adapt the

detection algorithm so that it reports a circle together with the leftmost and rightmost
non-empty grid cell of every row that lies inside the circle. We simply maintain it
during the sweep. The smallest enclosing circle for these O( 1

ε
) grid cells is the same

as for A. Smallest enclosing circle computation takes time linear in the number of
points. Now all circles that contain the same non-empty grid cells have the same
coordinates and we can sort lexicographically on (x, y, r) to remove duplicates. In
total, the O(n/ε2) circles for flock patterns each require a smallest enclosing circle
computation. The additional time needed is O( n

ε3 + n
ε2 log n).

3.3 Adaptations for the leadership pattern

To detect or find all leadership patterns we are given an additional parameter s

that prescribes during how many time steps the leader was already moving in the
specified direction. We modify the flock pattern algorithm to find leadership patterns
as follows. Before starting flock detection, we decide for each entity whether it can be
a leader, that is, whether that entity was already heading in the same direction during
the previous s − 1 time steps. This takes O(ns) time. For each grid cell obtained
from our compressed quadtree, we also store whether it contains a leader. During
the sweep we maintain whether the circle D contains some leader. When a flock
pattern with a leader is discovered, it is a leadership pattern. We conclude that the
time bounds in the theorem above also hold for the leadership pattern if we add an
additional O(ns) time term. Note that to find leadership patterns for all t time steps
of the input data, only O(nt) additional time is needed (and not O(ns · t) time).

4 Convergence

In this section we discuss the detection of the convergence pattern. Again, we are
given a set of n moving entities as well as a time step τi, a radius r, and the minimum
size m ≤ n for a subset to form a pattern. For each entity, we take its locations pi

and pi+1 at time steps τi and τi+1, respectively, to determine a half-line that starts
at pi and passes through pi+1 (see Fig. 6). Alternatively, we can choose to take a
larger number of time steps to determine a half-line that represents the extrapolated
future locations. This may be more reliable. In [15] Laube et al. show how to use
this representation to detect convergence patterns in O(n2) time. They compute the
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Fig. 6 Half-lines (left) converted into half-strips of a given width (middle), such that for each cell the
number of half-strips covering it can be determined (right)

arrangement formed by the thickened half-lines which are turned into half-strips of
width 2r. For each of the O(n2) cells of the arrangement they compute the number
of half-strips that cover it (see Fig. 6), and report each cell that is covered by at least
m half-strips.

If r = 0, that is, the region of interest consist of only a single point, then the dual
of the convergence problem (where lines are turned into points and vice versa) can
be expressed as follows. Given a set of n points in the plane, test whether there is
a line that passes through at least m points. For this special case Guibas et al. [9]

show how to report all lines containing at least m points in time O(min{ n2

m
log n

m
, n2}).

Furthermore, Erickson [7] shows that the problem of deciding if any three lines have
a common intersection point has a lower bound of 
(n2) time in a particular model of
computation which in addition to standard operations also allows sidedness queries.

We are presenting an approximation algorithm that approximates the minimum
size of a subset to form a pattern. Our algorithm reports a set of N circles of radius
r that are each visited by at least (1 + ε)m moving entities, and takes O(n2+δ/(εm) +

N) time for any constant δ > 0. A circle that is visited by less than m entities will not
be reported, while a circle visited by at least m entities and less than (1 + ε)m entities
may, or may not, be reported. For any circle with at least (1 + ε)m entities that is not
reported, a similar pattern that differs by at most εm entities is reported.

4.1 Approximating the subset size

We are using the representation of the problem proposed in [15], that is, we
study the arrangement of the thickened half-lines of width 2r described above. The
approximation algorithm is a simple divide-and-conquer algorithm using the well-
known cutting lemma which we state here for completeness.

For a given set of lines L and a parameter s, we seek a partition of the plane into
a set of h (possibly unbounded) triangles �1, . . . , �h such that the interior of each
triangle �i is intersected by at most n/s lines of L. A partitioning of the plane with
this property is called a 1/s-cutting of the arrangement A(L). Chazelle proved the
following lemma:

Lemma 2 (Cutting lemma [5]) A 1/s-cutting of A(L) that uses �(s2) triangles can be

computed in O(ns) time.
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Now consider the set H of the n half-strips of width 2r in the plane, and the set
L of 3n lines supporting the edges and half-lines that bound the half-strips. Initially
we construct a triangle � that contains all intersections between the half-strips. The
number of half-strips that completely cover �, denoted by |�|, is zero.

In a generic step of our algorithm we receive a triangle � as input. If the number
of lines from L intersecting � is greater than εm then we apply the cutting lemma
with the parameter s to partition � into h = O(s2) smaller triangles �1, . . . , �h. For
each triangle �i we compute |�i| by adding |�| to the number of half-strips that
intersect � and cover �i. Hence, if n half-strips intersect � then we can compute |�i|

for 1 ≤ i ≤ h in O(ns2) time.
If the number of lines from L intersecting � is at most εm, so is the number of

half-strips from H. If |�| ≥ m, then any disc of radius r and center within � contains
at least m entities and forms an approximate convergence pattern; it is therefore
reported by choosing any point inside it as the disc center. If |�| < m, then any disc
of radius r and center within � contains less than m + εm entities and we do not
report these patterns.

Theorem 2 Given a set of n moving entities, a radius r, the minimum size m ≤ n for

a subset to form a pattern, and a positive constant ε. Using a (1 + ε)-approximation

with respect to the minimum size of a subset to form a convergence pattern, one can

compute:

1. The existence of convergence patterns in O(n2+δ/(εm)) time, for any constant δ>0.

2. The approximate largest convergence pattern in O(n2+δ/(εm)) time, for any

constant δ > 0.

3. All convergence patterns in O(n2+δ/(εm) + N) time, where N is the size of the

output and δ is any positive constant.

Proof Using the cutting lemma the time complexity can be described by the follow-
ing recurrence: T(n) = O(ns2) + h · T(n/s) if n ≥ εm, and T(n) = O(n) if n ≤ εm.
For any δ > 0, we can choose h = O(s2) to be some constant, and apply the master
theorem [6] to prove that the recurrence solves to O(n2+δ/(εm)). ⊓⊔

4.2 Different patterns and postprocessing

The algorithm that we presented determines a set of disjoint triangles such that: (1)
each point in some triangle lies inside at least m half-strips, and (2) two points in the
same triangle lie in the same half-strips with the possible exception of at most εm of
them. The triangles can have widely varying diameter: from much smaller to much
larger than r. (the latter can happen when m or more half-strips are nearly parallel).
For every triangle, we choose one point inside that is the center of a circle containing
at least m entities. Consequently, for every pattern with at least (1 + ε)m entities that
is not reported, there is a pattern with at least m entities the same which is reported.
This pattern need not be spatially close to the not reported pattern, however.

It can be the case that two points in different triangles lie in the same subset of
half-strips. Therefore, we might report different circles which in fact contain the same
entities. These circles can even be very far apart. To assure that the same pattern
is reported only once, we have to look at all entities of all patterns that we found
explicitly, which can take O(Nn) time for N patterns consisting of O(n) entities each.
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As an alternative to guarantee different patterns, we can apply the exact O(n2) time
algorithm of Laube et al. [15] to find all N = O(n2) patterns with at least m entities,
and then apply the independent set formulation on the centers of the circles as in
Section 2. This yields the property that every not reported pattern is spatially close
to some reported pattern. The running time is O(n2 + N log2 N).

5 Encounter

This section discusses the encounter pattern. Assume that a set of n entities is given,
as well as a time step τ j, a radius r and the minimum size m ≤ n of a subset required
to form a pattern. We consider how to report all patterns, consisting of some location
specified by a point p and radius r, a time τ , and a subset S′ ⊆ S, |S′| ≥ m, of entities
that are within distance r from p at time τ , where τ > τ j.

We model the problem as a 3D geometric problem by adding time as the third
dimension to the position of each entity. We create a half-line for each entity, starting
at the plane z = τ j and extending upwards. The half-line starts at the location of the
entity at time τ j and contains a point (x, y, τ j ′), where (x, y) is the known location
at time step τ j ′ with j ′ > j. The slope of the half-line with respect to the horizontal
plane represents speed.

5.1 Exact: Find all

For an exact algorithm that finds all patterns, we start out with the set of half-lines
just described. For any entity pi, the region of all points that are within distance r

from pi at some moment in time is represented by a cylinder-like region, such that
every cross-section with a horizontal plane is a disc of radius r.

The subdivision of space induced by the n cylinders consists of O(n3) cells, which
is a tight bound in the worst case. For any point inside a cell, the subset of cylinders
containing that point is the same, and hence, also the subset of entities that are within
distance r at a given time. If the cell is inside at least m cylinders, then it represents a
pattern.

One way to convert this idea into an algorithm is the following. Take the cyl-
inder-like region of one entity pi and call it Ci. All other cylinders C1, . . . , Ci−1,

Ci+1, . . . , Cn intersect it in saddle-like curves. Build the arrangement of these curves
on the boundary of the cylinder Ci. It has quadratic complexity and can be con-
structed in quadratic expected time [10], [17]. More precisely, the running time is
O(n log n + k) expected, where k is the number of intersection points of the curves
on Ci. We then traverse the arrangement on Ci and determine for every cell (a curved
2D facet) how many cylinders contain it. Using the fact that two adjacent cells have
a count that differs by only 1, we can fill in the numbers in O(n + k) time. We add
one more, for Ci itself, so that the arrangement represents the counts for the 3D cells
inside the cylinder Ci. We do this for all cylinders, resulting in an O(n2 log n + K) =

O(n3) expected time bound, where K is the total size of all arrangements that were
built. The storage requirements for the algorithm are O(n + kmax) = O(n2).

The cubic running time is not particularly efficient, but the quadratic working
storage requirement is an even bigger problem. Below we present an O(n3 log n)

time algorithm that uses only linear storage.
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Consider a pair of half-lines ℓi and ℓj from the set. At any time, there are at
most two circles with radius r that have a point pi ∈ ℓi and a point pj ∈ ℓj on the
boundary (see Fig. 7 (left)). Such circles exist at any time when the (horizontal)
distance between ℓi and ℓj is less than 2r. There is only one interval in time where
this occurs for ℓi and ℓj. Let us consider one of the two discs, and the swept volume
it makes in the relevant time interval. This volume is a cylinder-like shape with a
curved central axis. The pair of lines ℓi and ℓj gives rise to two such volumes which
we denote by Vij,1 and Vij,2 (see Fig. 7 (right)).

Let V =Vij,1; later we will test Vij,2 in the same way. Any third half-line ℓh can
intersect V in at most two disjoint time intervals. When at least m − 2 intervals
intersect V at the same time, we have found a pattern. This will happen for the first
time at an endpoint of an interval, which is an intersection point of some half-line
with V.

The algorithm to find all patterns is as follows. For any two half-lines ℓi and ℓj (for
entities pi and pj), compute the volumes Vij,1 and Vij,2. For each of these, compute all
intervals of intersections with the other half-lines and consider only the time-interval.
We sort the endpoints of the intervals by time, and traverse them in increasing order
of time. Every endpoint of an interval is an addition of an entity to a subset within
radius r, or the removal of an entity from a subset. We can report all subsets of size
at least m.

The algorithm takes O(n3 log n) time to detect all patterns, and O(n4) time in the
worst case if we report all patterns explicitly, with the whole subset involved. If we
only report the time and place of a pattern, we spend O(n3) time on reporting, and
the algorithm takes O(n3 log n) time overall.

Theorem 3 All encounter patterns involving at least m entities can be found in

O(n3 log n + N) time using linear storage, where N is the time needed to report the

output. The patterns can also be found in O(n3 + N) expected time using O(n2)

storage.

Alternatively, we can identify the first subset in which pi and pj participate. Since
we find the first pattern for pi and every other entity, we can select the first one of
these to get the first pattern for pi. Hence, we can find the first pattern for every
entity using O(n3 log n) time overall.

Fig. 7 Two discs of radius
r through two points (left).
Swept volume V = Vij,1 (right)
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5.2 Exact: Detect

Next we show that we can detect a pattern in O(mn2 log n) time. If m is considerably
smaller than n, then this method is more efficient than using an adaptation of the
algorithm that finds all patterns. We again make use of cylinders centered at each
one of the half-lines. This time the intersection of a cylinder with a horizontal plane
is a disc of radius 2r. Many half-lines may have an interval of intersection with a
cylinder. However, m − 1 half-lines that intersect a cylinder at the same time need
not form a pattern, because a cylinder now has twice the radius. Our method is based
on the following:

Lemma 3 Let ℓi be a half-line for entity pi, and let Vi be the region of points that are

within distance 2r of pi at some time. If at least 7m half-lines intersect Vi at the same

time, then a pattern of size at least m exists (this pattern need not include pi itself).

Proof Follows by a packing argument. A disc of radius 2r can be covered by seven
discs of radius r. By the pigeon-hole principle, one of the radius-r discs must be
intersected by at least 7m/7 = m half-lines [29]. ⊓⊔

Globally, our detection algorithm works as follows. For every entity pi, consider
its half-line ℓi and cylinder Vi as defined above. For all other entities, compute the
interval of intersection and consider the time-dimension. Sort the endpoints of the
interval by time and traverse the endpoints as before. If we discover that at some
moment in time there are at least 7m half-lines in Vi, then we stop and report that
a pattern exists. If we have tested all entities and have not discovered a pattern yet,
we use a different algorithm that makes use of the fact that for any cylinder, at most
O(m) half-lines can intersect it at the same time. In fact, the algorithm is similar to the
previous, O(n3 log n) time algorithm for all patterns, but it is initialized differently.
Observe that so far, we have spent only O(n2 log n) time.

Consider one cylinder Vi and the time intervals I1, . . . , In′ of half-lines that
intersect Vi. Consider the endpoints sorted by time, which we have already done.
For every interval Ij, define the subset overlap(Ij) ⊆ {I1, . . . , Ij−1, Ij+1, . . . , In′} of
intervals that have a non-empty overlap with Ij.

Lemma 4 Given a cylinder Vi for which at no time there are 7m or more half-lines

inside, all subsets overlap(Ij) together have size O(mn).

Proof When two intervals Ij and Ih overlap, then they occur in the subset of each
other. We charge both occurrences to the smaller size subset, that is, if |overlap(Ij)| ≤

|overlap(Ih)|, then we charge both occurrences to Ij and otherwise we charge both
to Ih.

Consider the interval with the smallest overlap subset and assume without loss of
generality that it is Ij. We may assume that no interval Ih is properly contained in Ij,
otherwise we take that interval as the smallest instead. We claim that |overlap(Ij)| <

14m. Assume the contrary for a contradiction. Observe that all intervals in overlap(Ij)

contain the left or the right endpoint of Ij (or both). Hence, the left or the right
endpoint is covered by at least 7m intervals. But by assumption, there cannot be 7m

half-lines in Vi at the same time. We conclude that |overlap(Ij)| < 14m. We charge
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all overlaps that include Ij to Ij and since we charge twice per overlap, Ij is charged
at most 28m. Now we remove Ij from all subsets overlap(..) in which it occurs and we
repeat the argument until no intervals remain. Every interval is charged O(m) times.
Since there are up to n − 1 intervals I1, . . . , In′ , we charge O(mn) in total. ⊓⊔

Our algorithm computes all subsets overlap(..) in O(mn) time, finds the smallest
one, and runs the exact, all patterns algorithm on pi and pj and the subset overlap(Ij).
If we do not find a pattern, then we remove Ij from all other subsets and continue
with the interval with the next smallest overlap(..) subset. If we maintain appropriate
pointers, then we can perform these updates in O(m) time and find the next smallest
in O(log n) time. Specifically, we store an overlap subset overlap(Ij) by a counter and
a pointer to a doubly-linked list. If Ih is in overlap(Ij), it is a list element. Also, Ij

is a list element in the list for overlap(Ih). We create cross-pointers between them.
Every list element also stores a back-pointer to the (representation of) overlap(Ij).
The counters store the number of elements in the lists.

When we treat overlap(Ij), we traverse its list, use the cross-pointers to access all
occurrences of Ij in other lists overlap(Ih), delete this occurrence, and we use the
back-pointer to decrease the counter of overlap(Ih) by one.

Finally, all subsets are stored in a Fibonnacci Heap [6] on the counters (current
size of the subset). We can extract the minimum from a Fibonnacci Heap in
O(log n) time. When we decrease a counter by one, we perform a Decrease-Key
on that subset, which takes O(1) amortized time. For Vi and all intervals, we spend
O(mn + n log n) time, and for all cylinders this is O((m + log n) · n2) time.

Theorem 4 Detection of the existence of some encounter pattern involving at least m

entities from a set of n entities can be done in O((m + log n) · n2) time.

5.3 Exact: Find largest

We can use the detection algorithm to search for the largest pattern, which is the
largest subset of entities that are expected to come within a disc of radius r. Let M be
the (unknown) size of this largest subset. We first guess m = 2 and run the detection
algorithm. If a pattern is detected, we know that M ≥ m, we set m to be 2m and
repeat (run the detection algorithm). As soon as detection fails for some m, we know
that m/2 ≤ M < m. Using a binary search in this interval, we determine the exact
value of M.

The detection algorithm is called O(log m) = O(log M) times, and hence the total
running time is O((M + log n) · n2 log M).

Theorem 5 The largest subset of entities that are involved in an encounter pattern can

be determined in O((M + log n) · n2 log M) time.

5.4 Approximating the radius

The cubic time algorithms to find all patterns, or find the first pattern for each entity,
are rather time consuming. If we let go of the precise value of r, the radius of the disc
needed to form a pattern, then we can obtain a near-quadratic time algorithm. The
value of r need only be relaxed slightly: choose any constant value ε > 0, then we
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will be sure to find a pattern consisting of m entities if they lie in a region of radius
at most r, and we may or may not find any pattern with a region of radius between r

and (1 + ε) · r. The algorithm runs in O((n2 log n)/ε) time.
The general idea is that the number of cylinders that we are going to process

will be 4/ε per half-line. Let an entity pi and its half-line ℓi be given. Consider the
cylinder-like shape Ci with ℓi as the center and such that every cross-section with
a horizontal plane is a disc of radius r. Place 4/ε evenly spaced markers, denoted
v1, . . . , v4/ε, on some cross-section boundary, and consider the half-lines ℓi,1, . . . , ℓi,4/ε

containing v1, . . . , v4/ε and in the boundary of Ci (they are parallel to ℓi). For each
half-line ℓi, j through vj we define the cylinder-like shape Ci, j such that every cross-
section is a disc of radius (1 + ε)r (see Fig. 8 (left)). Each cylinder Ci, j is processed
in the same way as described for the exact problem: we determine the time intervals
where other half-lines intersect Ci, j, and find subsets of size at least m − 1. The time
complexity is, just as before, O(n log n) per cylinder. Since the number of cylinders is

O(n/ε) we get a total running time of O( n2

ε
log n).

No region of radius (1 + ε)r with less than m entities is reported by the algorithm,
hence it suffices to prove that the algorithm returns all regions of radius r with at least
m entities. This is proven by showing that every horizontal disc D of radius r and a
half-line ℓi intersecting its perimeter must lie entirely within one of the cylinders of
ℓi that is processed. Consider D and let Ci, j be the cylinder treated for ℓi that is
closest to D, that is, whose center vj is closest to the center cD of D. Let D′ be
the horizontal disc of Ci, j at the same moment of time as D, see Fig. 8 (right). We
need to show that D ⊂ D′. Note that the angle between the two horizontal segments
from the centers of D and D′ to ℓi is bounded by επ/4, and the distance between the
centers of D and D′ is at most 2r sin(επ/8) < rεπ/4 < εr. Since the radius of D′ is
(1 + ε)r it follows that D must lie within D′. We have proven the following result.

Theorem 6 Given a set of n moving entities, a radius r, the minimum size m ≤ n for a

subset to form a pattern, and a positive constant ε. Using a (1 + ε)-approximation with

respect to the radius of the encounter pattern in 2D, one can compute:

1. The existence of approximate encounter patterns in O( n2

ε
log n) time.

2. The approximate largest encounter pattern in O( n2

ε
log n) time.

3. All approximate encounter patterns in O( n2

ε
log n + N) time, where N is the size

of the output.

Fig. 8 The cylinder Ci, j for pi

(left). The center cD of D is
closest to vj (right)
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5.5 Different patterns and postprocessing

Both the exact and the approximate find all problem for encounter can find the
same pattern many times. We cannot directly use the definition and technique from
Section 2 for sufficiently different patterns, because patterns are represented by
horizontal circles in three-dimensional space. Circles at the same x, y-location but
at different time instances may represent completely different patterns.

One option is to use a three-dimensional definition of different patterns: two
patterns are different if the distance of the centers of their defining circles is at least
some value ρ. The value ρ is a distance in the time–space, and therefore we have to
find a suitable scaling of the time–axis, depending on the data that is analyzed. For
this reason, the three-dimensional definition of different patterns is less attractive
than the two-dimensional version. Still, it is a relatively simple extension and it is
unclear at present how to define different patterns appropriately.

To identify different patterns in a set of N retrieved patterns we can use the
approach of computing a maximal independent set in the graph G, as before. This
time we need a three-dimensional nearest neighbor query structure. This would
lead to an 
(N2) time bound, because the three-dimensional Voronoi diagram has
quadratic complexity in the worst case. It is more practical to use an approximate
nearest neighbor query structure [2], [4], which, when combined with the logarithmic
method [3], [21], gives an O(N log2 N) time algorithm. For any constant δ > 0, any
two patterns reported have circle centers that are at distance at least ρ, while for
every pattern that was not reported, there is a pattern within distance (1 + δ)ρ that
is reported.

6 Conclusion

In this paper we described efficient approximation algorithms to compute four
spatio-temporal patterns, namely flock, leadership, convergence, and encounter. Ap-
proximation algorithms—a technique frequently used in computational geometry—
are ideally suited for the algorithmic problems arising from these patterns. The
approximation algorithms presented in this paper are significantly faster than their
exact counterparts. During interactive detection of patterns, such efficiency savings
are important.

Alternatively, our results imply that larger sets of data can be analyzed in the same
amount of time. We observe from Table 1 that our algorithms are especially fast if
the quality of the approximation is not so important, that is, the subset size, or radius
of the region, is allowed to be, say, up to 20% off from the specified size or radius.

We have also presented a possible solution to the problem of detecting many
patterns that are very similar. However, improvements or better solutions to this
problem may exist. Any particular definition of the difference of two patterns will
lead to an algorithmic problem of efficiently computing a set of different patterns
that is “close” to all occurring patterns. More research to address this topic is needed.
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