
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1997

Efficient Detection of Unusual Words Efficient Detection of Unusual Words

Alberto Apostolico

Mary Ellen Bock

Stefano Lonardi

Report Number:
97-050

Apostolico, Alberto; Bock, Mary Ellen; and Lonardi, Stefano, "Efficient Detection of Unusual Words" (1997).
Department of Computer Science Technical Reports. Paper 1386.
https://docs.lib.purdue.edu/cstech/1386

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT DETECTION OF UNUSUAL WORDS

Alberto Apostolico
Mary Ellen Bock
Stefano Lonardi

CSD-TR #97-050
October 1997

(Revised November 1997)

EFFICIENT DETECTION OF UNUSUAL WORDS

Alberto ApostoHco"
Purdue Univ. fj UnilJ. of PadOl)(J

Mary Ellen Bockt

Purdue UflilJer~il!l

Purdue CS TR 97-050
(October 97-(rev 1))

Abstract

Stefano Lonardi t
Purdue Un;v. & Univ. of Padouu

In most approaches to the detection of unusual frequencies of words in sequences,
the words (up to a certain length) are enumerated more or less exhaustively and indi
vidually checked in terms of observed and expected frequencies, variances, and scores
of discrepancy and significance thereof. Here we take the global approach of annotating
the suffix tree of a sequence with some such values and scores, having in mind to use
it as a collective detector of all unexpected behaviors, or perhaps just as a preliminary
filter for words suspicious enough to undergo a more accurate scrutiny. Our main result
consist of showing that such annotations can be carried out in a time- and space efficient
fashion for the mean, variance and some of the adopted measures of significance, even
without setting limits on the length of the words considered. Specifically, we concentrate
on the simple probabilistic model in which sequences are produced by a random source
emitting symbols from a known alphabet independently and according to a given dis
tribution. We discuss data structures and tools for computing and storing the expected
value and variance of ail substrings of a given sequence of n symbols in (optimal) D(n:!)
overall worst-case, D(n log n) expected time and space. The D(n2) time bound consti~

tutes an improvement by a linear factor over the direct method. We show that under
several accepted measures of deviation from expected frequency, the candidates over·
or underrepresented words are restricted to the O(n) words that end at internal nodes
of a compact suffix tree, as opposed to the 6(n2

) possible substrings. This surprising
fact is a consequence of properties in the form that if a word than ends in the middle of
an arc is, say, overrepresented, then its extension to the nearest node of the tree is even
more so. Based on this, we design global detectors of favored and unfavored words for
our probabilistic framework, and display the results of some preliminary experiments.

Key Words and Phrases: Design and analysis of algorithms, combinatorics on
strings, pattern matching, substring statistics, word count, suffix tree, annotated suffix
tree, period of a string, over- and under-represented word, DNA sequence.

"Department of Computer Sciences, Purdue University, Computer Sciences Building, West Lafayette,
IN 47907, USA and Dipartimento di Elettronica e Informatica, Universita di Padova, Padova, Italy.
axafcs.purdue.edu. Work supported in part by NSF Grant CCR-9700276, by NATO Grant CRG 900293,
by British Engineering and Physical Sciences Research Council Grant GR/L19362, and by the National
Research Council of Italy.

lDepartment of Statistics, Purdue University, Math. Sciences Building, West Lafayette, IN 017907, USA.
mbockfBtat.purdue.edu.

IDepartment of Computer Sciences, Purdue University, Computer Sciences Building, West Lafayelle, IN
47907, USA. stelofcs.purdue.edu.

1 Introduction

Given an alphabet E, we use 2:+ to denote the free semigroup generated by E, and set E·
= E+ U{A}, where >'15 the empty word. An element of E+ is called a string or sequence
or word, and is denoted by one of the letters S, u, V, w, x ,y and z. The same letters, upper
case, are used to denote random strings. We write x = XtX2- ••Xn when giving the symbols
of x explicitly. The number of symbols that form a string w is called the length of wand
denoted by lwl. If x = vwy, then w is a substring of x and the integer 1+lvl is its (starting)
position in x. Let I = [i,j] he an interval of positions of a string x.

Let X = XtXz ... X n be a textstring produced randomly by a source that emits symbols
from alphabet E independently and according to a given probabily distribution. We use x
to denote an observation of X. Let y = Y1Y2 .•. Yrn (m < (n +1)/2) be an arbitrary but
fixed pattern string on :E. For i E {I, 2, ... , n - m + I}, define Zily to be I if Y occurs in
X starting at position i and 0 otherwise. We are interested in the the expected value and
variance of Zlv, the total number of occurrences of Y in X:

n-m+1

Zly = I: Z;!y.
;=1

It is immediate that

E[Zly] = (n - m + 1)ft (1)

where, with Pi denoting the probability for any given k that Xk = Yi,

p= II~1Pi.

For any symbol a in E, computing the expected value Zlya from p and the probability
of a is trivially done in constant time. Thus, the expected values associated with all prefixes
of a string can be computed in linear time.

Dnder the stated assumption 1 that m ~ (n + 1)/2, it is possible to express the variance
in the following form [ABX-97J:

Va,(Zly) = (n - m + 1)P(1- PJ - p2(2n - 3m+ 2)(m - 1)

(2)+
'm

2p 2)n - m + 1 - dl)IIj=m_dl+lPj
1=1

where the dl's are the periods ofy that satisfy 1 $ d l < d2 < ... < d~m $ min(m-l,n-m).
Recall that a string z has a period w if z is a prefix of wk for some integer k. A string
may have several periods. Sometimes the word "period" is also used to refer to the length
of a period. The shortest period (or period length) of a string z is called the period of z.
Clearly, a string is always a period of ltseU. This period is called the trivial period. We say
that a non-empty string w is a bomer of a string z if z starts and ends with an occurrence
of w. That is, z = uw and z = wv for some possibly empty strings u and v. Clearly, a
string is always a border of ltseU. This border is called the trivial border. The notions of
period and border are complementary.

lWe concent.rate on t.his assumption for practical reasons and brevity only; the treatment of the case
m> (n + 1)/2 is quite similar.

2

•
Fact 1.1 A string x of length k has period oj length q, such that q < k, if and only if it has
a non-trivial border of length k - q.

Suppose that we wanted to compute the variance of Zly for all substrings y of x in
accordance to the formula above. Applying the formula from scratch to each substring would
require time 0(lxI3), since the number of possible distinct words appearing as substrings
of x may be quadratic in Ixl. In [ABX-97], it is proved that our variance can be computed
for all prefixes of a string y in overall time O(lvD, which brings the overall cost for string x
down to O(lxl').

Let YIY2"'Ym be a prefix of some string y and let S(m) = {bl,m}i::\ he the set of borders
at m associated with the periods of YIY2"'Ym' The following crucial property is implicit in
the structure of a classical tool of fast string searching that computes the longest borders
(and correspondlng periods) of all prefixes of a string in overall linear time and space. Let
bord(m) be the longest border of YIY2 ...Ym.

Fact 1.2 S(m)" (bord(m)) U S(bord(m)).

One computation of longest borders is reported in Figure 1 below, for the convenience of
the reader. We refer for details and proofs of linearity to discussions of "failure functions"
and related constructs such as found in, e.g., [AHU.74, Ah-90, CR·94, AG·97].

procedure maxborder (Y)
begin
bord(O] +- -1; r +- -1;
for m= Ito hdo

while r ~ 0 and Yrtl t- Ym do
r +- bord[r);

endwhile
r = r + 1; bord[m] = T

endfor
end

Figure 1: Computing the longest borders for all prefixes of Y

The combination of procedure maxborder and Fact 1.2 1s specially useful in the compu
tation of the last term of V ar(ZIYtY2 ...Ym). Specifically, lett1ng

'm
B(m) = 2:)n - m+ 1 ~ dl)IIj=m_dl+lPj,

1=1

we note that the computation of B depends on the structure of all periods d/ OfYIY2 ...Ym that
are less than or equal to min(m - 1, n - m). By simple adaptation of Procedure maxborder,
it is possible to derive B(m) quickly from knowledge of bord(m) and of the previously
computed values B(I), B(2), ..., B(m - 1). Specifically, letting the border associated with
period dl at position m to be

bl,m = m-d/,

the follow1ng expression of B(m) holds [ABX-97]:

3

B(m) = (n - 2m + 1 +bord(m))IIj'=:bord(m)+lPj

Sbord(m)
+2(bord(m) - m) :L: IIj.=:b l ,bOTd(m)+IPj

1=1

+ (IIi=bord(m)+IPj) B(bord(m)),

where the fact that B(m) = 0 for bord(m) ~ 0 yields the initial conditions. Note that
each product of probabilities can be extracted in constant time from a precomputed table
containing the products of the probabilities of aU consecutive prefixes of x. From knowledge
of n, m, bord(m) and these prefix probability products, we can clearly compute the first one
of the terms of B(m) in constant time. Except for (bord(m) - m), the second term is
essentially a sum of probability products taken over all distinct borders of YIY2 ...Ym. Thus,
given such a sum and B(bord(m)) at this point would dearly enable us to compute B(m)
whence also our varlance, in constant time. Maintaining knowledge of the value of such
sums during maxborder is easy, since the value of the sum

obeys the recurrence:

T(m} = (T(bord(m)) + 1) IIi=bo.d(bo.d(m»+IPj,

with T(m) = 0 for bord(bord(m)),; O.
The above discussion can be summarized in the following statement.

Theorem 1.3 Under the independently distributed source model, the mean and variances
of all prefixes of a string can be computed in time and space linear in the length of that
string.

The table of Figure 2 compares the costs of computing B(m) with both methods for
Fibonacci words of increasing lengths. Fibonacci words are defined by a recurrence in the
form: Fi+I = Fi~·_l for i ~ 1, with Fo = band F1 = u, and exhibit a rich repetitive
structure.

Application of this treatment to every suffix of a strlng yields the mean and variance of
aU substrings in overall optimal quadratic time.

To conclude this section, it may be of interest to compare values of the variance obtained
with and without consideration of overlaps. The data in the tables in Figures 3 and 4 refer
to Fibonacci words and some DNA sequences. The tables report absolute and relative errors
incurred when overlaps are neglected and the computation of the variance is truncated after
the term Var(Zly) = (n - m + l}p(l- pl.

As it turns out, relative errors are found to increase with the length of y, while absolute
errors attain their maxima for relatively short values of lyl. This is lllustrated in Figure 4,
which displays the figures obtained when the analysis is limited to words oflength 10.

4

•
8 55 0.0002 0.0002
10 144 0.0009 0.0005
12 377 0.0023 0.0011
14 987 0.0080 0.0034
16 2584 0.0245 0.0086
18 6765 0.0737 0.0244
20 17711 0.2305 0.0710
22 46368 0.6817 0.2211
24 121393 2.0063 0.6227

OJ 11'1 I Naive (sm) I [ABX] (sees) I

Figure 2: Number of seconds (averaged over 100 runs) for computing the table of B(m)
m = 1,2, ... , Wi!) for some initial Fibonacci words

Sequence Size max,,{IIVaT(Zly) VaT(Zly)lI} {"v",'z"'.Y.,'z",,,}
maxy Var Z

F, 8 0.9602194787 0.7599085664
F, 21 3.2320196710 0.9194370603
Fa 55 9.3307557400 0.9697021325
FlO 144 25.3675915500 0.9886363636
F'2 377 67.3815245300 0.9956896552
F14 987 177.3868259000 0.9983579639

Mito DNA yeast 512 0.1394922421 0.7500000000
HSVI 1000 0.2010200834 0.1488536677

Figure 3: Absolute and relative error between Var and VaT.

Sequence Size max,(IIVaT(Zly) VaT(ZIY)II} {IIV.,'z','· Y.,'z",,,}
maxy VaT Z

F, 8 0.9602194787 0.7599085664
F, 21 3.2320196710 0.6622122047
Fa 55 9.3307557400 0.5898851595
FlO 144 25.3675915500 0.5653963244
F12 377 67.3815245300 0.5564646785
F

"
987 177.3868259000 0.5533094307

Mito DNA yeast 512 0.1394922421 0.0834768161
HSVI 1000 0.1488536677 0.0091604370

Figure 4: Absolute and relative error for a maximum word length of 10.

5

2 Computing and Storing Substring Frequencies

Tables for storing the number of occurrences in a string of substrings of (or up to) a given
length ace routinely computed in applications. Actually. clever methods are available to
compute and organize the counts of occurrences of all substrings of a given string. The
corresponding tables take up the tree-like structure of a special kind of digital search index
or trie (see, e.g., [Mc-76J, [Ap-85]. [AP-96]). These trees have fOllnd use in numerous
applications [Ap-85]. including of course computational biology [Wa-95].

A convenient way to allocate the substring statistics for a string 1s by resort to an
auxiliary index such as a suffix tree 2 [Mc-76] (see, e.g., [Ah-90, CR-94, AG-97] for more
recent and extensive bibliography). Given a string x of length n on the alphabet 'E, and a
symbol $ not in 'E, the suffix tree Tx associated with x is the digital search tree that collects
the first n suffixes of x$ (see Figure 5). In the expanded representation of Tx, each arc is
labeled with a symbol of 'E, except for terminal arcs, that are labeled with a substring of x$.
The space needed can be 0(n2) in the worst case [AHU-74]. In the compact representation
of Tx chains of unary nodes are collapsed into single arcs, and every arc of Tx is labeled with
a substring of x$. A pair of pointers to a common copy of x can be used for each arc label,
whence the overall space taken by this version ofTx is O(n). In both representations, suffix
suJi of x$ (i ;:::: 1,2, ... , n) is described by the concatenation of the labels on the unique path
of Tx that leads from the root to leaf i. Similarly, any vertex a of Tx distinct from the root
describes a subword w(a) of x in a natural way: vertex a is called the proper locus of w(a).
In the compact Tx, the locus of w is the unique vertex of Tx such that w is a prefix of w(a)
and w(Father(a)) is a proper prefix of w.

a

a
b
a

$

,

123456

abaaba
7 8 9 10 11 12 1] 14 15 16 17 18 19 20 21

baab aaba baaba bas

Figure 5: A partial suffix tree weighted with substring statistics

One can build a suffix tree in the following way. (See Figure 6.) We start with an empty

2The reader already familiar with suffix trees, their basic properties and uses may skip this section.

6

tree and add to it the suffixes of x$ one at a time. Conceptually, the insertion of suffix
!Jut; (i ::= 1,2, ... , n + 1) consists of two phases. In the first phase, we search for lJuj; in
Ti _ l . Note that the presence of $ guarantees that every suffix will end in a distinct leaf.
Therefore, this search will end with failure sooner or later. At that point, though, we will
have identified the longest prefix of sui; that has a locus in T;_l. Let head; be this prefix
and a the locus of head;. We can write suf; ::= head; . tail; with tail; nonempty. In the
second phase, we need to add to T;_l a path leaving node a and labeled taih. This achieves
the transformation of Ti-l into T;.

procedure buildtree (x, T:r:)
begin
To +- 0;
for i::= 1 to n + 1 do T; +-inBert(su!i, T;_l);
Tx +- Tn +!;
end

Figure 6: Building an expanded suffix tree

We can assume that the first phase of insert is performed by a procedure findhead,
which takes sufi as input and returns a pointer to the node a. The second phase is
performed then by some procedure addpath, that receives such a pointer and directs a
path from node a to leaf i. The details of these procedures are left for an exercise. As
is easy to check, the procedure buildtree takes time 8(n2) and linear space in the worst
case. However, it is possible to prove (see, e.g., [AS-92]) that the average length of head;
is O(logi), whence building T:r: by brute force requires O(nlogn) time on average. Clever
constructions such as in [Mc-76} avoid the necessity of tracking down each suffix starting at
the root.

Irrespective of the type of construction used, some simple additional manipulations on
the tree make it possible to count the number of distinct (possibly overlapping) instances
of any pattern w in x in O(lwl) steps. For thls, observe that the problem of finding all
occurrences of w can be solved in time proportional to Iwl plus the total number of such
occnrrences: either visit the subtree of Tx rooted at the locus of w, or preprocess Tx once
and for all by attaching to each node the list of the leaves in the subtree rooted at that node.
A trivial bottom·up computation on T:r: can then weight each node of Tx with the number of
leaves in the subtree rooted at that node. This weighted version serves then as a statistical
index for x [Ap-85, AP-96]' in the sense that, for any w, we can find the frequency of w
in x in O(lwl) time. We note that thls weighting cannot be embedded in the linear time
construction of Tx , while it is trivially embedded in the brute force construction: Attach
a counter to each node; then, each time a node is traversed during insert, increment its
counter by 1; if insert culminates in the creation of a new node f3 on the arc (Father(a), a),
initialize the counter of f3 to 1 + counter of a. The suffix tree of Figure 5 has weights in its
nodes.

7

3 Detecting Unusual Words

In most approaches to the detection of unusual frequencies of words in sequences, the words
(up to a certain length) are enumerated more or less exhaustively and individually checked
in terms of observed and expected frequencies, variances, and scores of discrepancy and
significance thereof. Here we take the global approach of annotating a suffix tree Tx with
some such values and measures, with the intent to use it as a collective detector of all
unexpected behaviors, or perhaps just as a preliminary filter for words to undergo more
accurate scrutiny. OUf main concern consists of carrying out such annotations in a time
and space-efficient fashion for the mean, variance and some of the adopted measures of
significance, even without setting limits on the length of the words considered. In fact,
the discussion of the previous sections h~ already shown that mean and variance can be
computed for every locus in the tree in overall O(n2) worst-case, O(nlogn) expected time
and space. The developments of this section suggest that the values and scores stored only
at the branching internal nodes of T;r;, hence within linear space, might suffice in a variety
of cases.

We begin by observing that the frequency counter associated with the locus of a string
in T;r; reports its correct frequency even when the string terminates in the middle of an arc.
This important "right-context" property is conveniently reformulated as follows.

Fact 3.1 Let the substrings of x be partitioned into equivalence classes C j , C 2, .•• , Ck, so
that the substrings in Ci (i = 1,2, ... ,k) occur precisely at the same positions in x. Then
k -:5. n.

In the example of figure 5, for instance, {ab, aba} forms one such C-cl~s and so does
{abaa, abaab, abaaba}. Fact 3.1 already seems to suggest that we might only need to look
among O(n) substrings of a string of n symbols in order to find unusual words. The following
considerations show that under our probabilistic assumptions this statement can be made
even more precise.

A number of measures have been set up to assess the departure of observed from ex
pected behavior and its statistical significance. We refer to [LM5-96, 5-97] for a recent
discussion and additional references. Some such measures are computationally easy, others
qulte imposing. Below we consider a few initial ones, and our treatment does not pretend
to be exhaustive.

Perhaps the naivest possible measure is the difference:

Ow fw - (n -Iwl + l)p,

where p is the product of symbol probabilities for wand Zlw takes the value fw. Let
us say that an underrepresented (respectively, overrepresented) word w in some class Cis
o-significant if no extension (respectively, prefix) of w in C achieves the same value of o.

Theorem 3.2 For m «: n the only o-significant words in x of length at most m are those
having a propel· locus on T;r;, so that there are at most n such words.

Proof: We prove essentially that no o-significant word of x may end in the middle of an
arc of T;r;. Specifically, any o-significant word in x either has a proper locus in T;r;, or else
corresponds to extending by one symbol a string that ends at a node of T;r;. Assume for a
contradiction that w is a o-significant overrepresented word of x ending in the middle of an

8

arc of T;r;. Let z = wv be the shortest extension of w with a proper locus in T;r;, and let ij be
the probability ,,",ociated with v. Then, '. ~ f. - (n-izi + l)M ~ f, - (n-Iwl +Ivl + l)M·
But we have, by construction, that fz = fw. Moreover, pq < p, and (n-Iw]+]vl+ 1) ~ (n
m +Ivl +1). Thus, 0;; > OW' The proof for underrepresented words proceeds symmetrically
and is omitted. 0

For words w which are not only short compared to n but also have a probability p not
exceeding 1/2 (which means essentially all words in most biological applications), a claim
similar to that of Theorem 3.2 can be derived for a more accurate normalized measure in
the form (=ow/~.

The notion of (-significance is adapted from that of a-significance in a natural way, after
which, we can state the following:

Theorem 3.3 If V ur(Zlw) decreases as p decreases, for m -< nand p~ 1/2, the number
of (-significant words w of length at most m and probability p in a string x of n symbols is
O(n).

For example, consider the following (-score (cf. [LMS-96], [Wa-95]), in which we are
computing the variance neglecting all terms due to overlaps:

fw - (n -Iwl + l)fi
(w ~ V(n=lwl + l)p(l p)

The concave product p(1 - P) which appears in the divisor of Ow is maximum for p =
1/2, so that, under our assumption that fi ~ 1/2, the ratio owl~ increases with
decreasing p.

Since we are also assuming again n - m to be a constant for small variations of m, then
we conclude once more that it suffices to consider the (scores of the O(n) words that have
a proper locus in Tx •

In the scores computed so far expectations are based on first order probability distribu
tions. The final score we consider in this extended abstract is from [BBT-86] and is defined
as follows. Let R(w) = fWI ... wm_1 X fW2 ...wm /fW2 ...w m _l. The standard deviate [BBT-86] is:

f.-R(w)
'w ~ -m-'-ax""{-..;"'R"'(w"")'-=,ICC}

It is clear that a claim similar to the theorems above applies to (w, since along an arc of
Tx , fw may be taken as constant while R(w) decreases. More interestingly, it is not difficult
to show that the value of R(w), whence that of (w, can be computed in overall linear time
at the branching nodes of Tx , whence this measure is also computationally viable.

The algorithms and the data structures described above have been coded in C++ using
the Standard Template Library (STL), a clean collection of containers and generic func
tions [MS-94]. Overall, the implementation consists of circa 2,500 lines of code. Besides
outputting information in more or less customary tabular forms, our programs generate
source files capable of driving some graph drawing programs such as DOT [GKNV-93] or
DA VINCI [FW.95] while allowing the user to dynamically set and change visual parameters
such as font size and color. The overall facility was dubbed VERBUMCULUS in an allusion
to its visualization features. The program is, however, a rather extensive analysis tool that

9

Figure 7: An example output of VERBUMCULUS (into DOT), as applied to the first 512 bps
of the mitochondrial DNA of the yeast (5. cerevisiae), under the score Ow = Iw - E

collects the statistics of a given text file in one or more suffix trees, annotates the nodes of
the tree with the expectations and variances as given in [ABX-97], etc.

Figure 7 displays an example visual output ofVERBuMcuLus. Additional colored figures
are found at the end of the paper. The whole word terminating at each node is printed
in correspondence with that node and with a font size that is proportional to its score;
underrepresented words that appear in the string are printed in red, black is reserved
for overrepresented words. To save space, words that never occur in the string are not
displayed at all, and the tree is pruned at the bottom. The first three colored figures show
an application to the first 512 bps of the mitochondrial DNA of the yeast under scores °
(again, only this time enlarged), (and <;, with noticeable differences. On the other hand,
using the more refined computation of the variance in the expression of (did not seem to
produce significant visual changes.

The last four figures are related to computations presented in [LMS-96] in the context
of a comparative analysis of various statistical measures of over· and underrepresentation
of words. It should be clarified that here we are only interested in the issue of effective
detection of words that are unusual according to some pre-determined score or measure
the intrinsic merits of which are not part of our concern. The histograms of Figures 11
and 13 represent our own reproduction of computations and tables originally presented in
[LMS-96], and related to occurrence counts of few extremal 4- and 5-mers in some genomes.
Such occurrences are counted in a sliding window of length approximately 0.5% of the
genomes themselves. We use for a concrete example the counts of to the occurrences of
CACCA and CCGCT, respectively, in HSVI (circa 150k bps). Peaks are clearly visible
in the tables, thereby denouncing local departures from average in the behavior of those
words. Such peaks are found, e.g., in correspondence with some initial window position in

10

the plot drawn for CACCA, and more towards the end in the table of CCGCT. Note that
in order to find, say, which 5-mers occur with unusual frequencies (by whatever measure),
one would have to first generate and count individually each 5-mer in this way. Next, to
obtain the same kind of information on 6-mers, 7-mers or 8-mers, the entire process would
have to be repeated. Thus, every word is processed separately, and the count of a specific
word in a given window is not directly comparable to the counts of other words, both of
the same as well as different length, appearing in that window.

Figures 12 and 14 display trees (suitably pruned at the bottom) produced at some of the
peak-windows in the corresponding histograms. Not surprisingly, VERBUMCULUS isolates
the same words as found in corresponding table. Note, however, that in both cases the
program exposes as unusual a family of words related to the single one used to generate
the histogram. The words in the family are typically longer than the one of the histogram,
and each actually represents an equally, if not more surprising, context string. Finally,
VERBUMCULUS finds that the specific words of the histograms are, with their detected
extensions, overrepresented with respect to the entire population of words of every length
within a same window, and not only with respect to their individual average frequency.

11

___ I...,.

Figure 8: VERBUMCULUS + DOT on the first 512 bps of the mitochondrial DN A of the
yeast S. cerevisiae, under score ow:::: lw - (n -[wi + 1}]3

12

___ ,__ TAT~TTAn:

-,.",,,,..,

Figure 9: VERBUMCULUS + DOT on the first 512 bps of the mitochondrial DNA of the
yeast S. cerevisiae, under score (w = (fw - (n - Iwl + l)P)j J(n -IW] + 1)P(1- P)

Figure 10: VERBUMCULUS + DOT on the first 512 bps of the mitochondrial DNA of the
yeast S. cerevisiae, under score ~w = (fw - R(w »/ maxi viR(w), I}

13

"PtovI.gII!»" --

"

, ,~

Figure 11: Occurrences of GAGGA as counted in a sliding window of 800 bps over the
whole HSVI genome

.~=~;;L.-=-.:..-=== _llgClIg

j:=~-E~ _-:-=-.::.
/~

'O:::::::::'~:---

"-:-== ======--;;=~---

~; ~i-=i-~=:"-~~: - ---=---L-..",,== _ ... -- -------- -- ----- -- ----..-E: :: =====---
.~ ..~.. -=

V --- -

-.~:-: ['~~~~"."",,:~= gagg!~cgg == = _

~; =,======-/~-~~ =~=----
.~:~;::_~---===:-==---

--:

\
\~j~t: _

'"-=.;

~:-E= :::
:~:"",;~~
'\ "--.~: .

Figure 12: VERBUMCULUS + DOT on window 0 (first 800 bps) of HSVl, under score
(ur = (Jw - (n -Iwl + l)p)j../(n - [W] + l)p{1- fi) (frequencies of individual symbols are
computed over the whole genome)

14

~ ,,--- ~:o""',,"'=~="~=-.:::":;"';c'.c':::~='""'=--_-.----,
!"II"",.~--_ ..

"

"

"

Figure 13: Occurrences of CCGCT as counted in a sliding window of 800 bps over the whole
HSVI genome

4;;;.:==;g~j~2::~~~~~-
~~..~-- gctcct

/. =-=z=:§.~~=,---=='===~=
~~~ -
~~ c::====

.~:

Figure 14: VE:RBUMCULUS + DOT on window 157 (first 800 bps) of HSVl, under score
(Ill = (fill - (n -Iwl + l)jJ)fJ(n - fWl + 1)]3(1- P) (frequencies of individual symbols are
computed over the whole genome)

15



References

AHU-74 Aho, A.V., J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Compuler Algorithms,
Addison-Wesley. Reading, Mass. (1974).

Ah-90 Aho, A.V., Algorithms for Finding Patterns in Strings, in Handbook of Theoretical Computer
Science. Volume A: Algorithms and Complexity, (1. van Leeuwen, 00.), Elsevier, 255-300
(1990).

Ap-85 Apostolico, A., The Myriad Virtues of Suffix Trees, Combinatorial AlgorithmlJ on Woms, (A.
Apostolico and Z. GaIil, 005.), Springer-Verlag Nato ASI Series F, Vol. 12,85-96 (1985).

ABX-97 Apostolico, A., M.E. Bock and X. Xuyan, Annotated Statistical Indices for Sequence Analysis,
(invited paper) Proceedings of Compression and Complexity of Sequences 97, IEEE Compuler
Society Press (1997, in press).

AG-97 Apostolico, A. and Z. Galil (ed5.), Pa/tern Matching Algorithms, Oxford University Press
(1997).

AP-96 Apostolico, A. and F.P. Preparata, Data Structures and Algorithms for the String Statistics
Problem, Algori!hmica, IS, 481-494 (1996).

A5-92 Apostolico, A. and W. Szpankowski, Self-Alignments in Words and Their Applications, Journal
of Algorithms, 13, 446-467 (1992).

BBT-86 Brendel, V., J.S. Beckman and E.N. Trifonov, Linguistics of Nudeotide Sequences; Morphology
and Comparison of Vocabularies, Journal of Biomolecular Strudure and Dynomics, 4, I, 11-21
(1986).

CR-94 Crochemore, M. and W. Rytter, Text Algorithms, Oxford University Press, New York (1994).

FW-95 Frohlich, M., and M. Werner, Demonstration of the Interactive Graph Visualization System
Davino, In Proceedings of DIMA as Workshop on Groph Drowing 'g4, Princeton (USA) 1994,
LNCS No. 894 (1995), R. Tamassia and I. Tallis, £ds., Springer Verlag.

GKNV-93 Gansner, E. R., Koutsofios, E., North,S., and Va, K.-P., A Technique for Drawing Directed
Graphs. IEEE Trona. Software Eng. 19, 3, 214-230 (1993)..

LMS-96 Leung, M.Y., G.M. Marsh and T.P. Speed, Over and Underrepresentation of Short DNA Words
in Herpesvirus Genomes, Joumol 0/ Computotional Biology 3, 3, 345 - 360 (1996).

L0-83 Lothaire, M., Combinatorica on Words, Addison Wesley, Reading, Mass., (1982).

L5-62 Lyndon, R.C., and M. P. Schutzemberger, The Equation aM = bNcP in a Free Group, Mich.
Moth. Jour1lo19, 289-298 (1962).

Mc-76 McCreight, E.M., A Space Economical Suffix Tree Construction Algorithm, Jour. of the ACM,
25, 262-272 (1976).

MS-94 Musser, D. R., and A. A. Stepanov, Algorithm-oriented Generic Libraries, Softwore-Prodice
and Experience 24, 7, 623-642 (1984).

5-97 Schbath, 5., An Efficient Sta.tistic to Detect Over- and Under-represented Words, J. Compo
Bioi. 4, 2, 189-192 (1997).

Wa-95 Waterman, M.S., Introduction to Computolional Biology, Chapman & Hall (1995).

16


	Efficient Detection of Unusual Words
	Report Number:
	

	tmp.1307986960.pdf.bXFyo

