
Formal Methods in System Design, 18, 141–163, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Detection of Vacuity in Temporal
Model Checking

ILAN BEER
SHOHAM BEN-DAVID shoham@il.ibm.com
CINDY EISNER
IBM Research Laboratory in Haifa, Israel

YOAV RODEH
IBM Research Laboratory in Haifa, Israel; Weizmann Institute of Science, Rehovot, Israel

Received May 26, 1998; Revised January 21, 2000

Abstract. The ability to generate a counter-example is an important feature of model checking tools, because
a counter-example provides information to the user in the case that the formula being checked is found to be
non-valid. In this paper, we turn our attention to providing similar feedback to the user in the case that the formula
is found to be valid, because valid formulas can hide real problems in the model. For instance, propositional logic
formulas containing implications can suffer from antecedent failure, in which the formula is trivially valid because
the pre-condition of the implication is not satisfiable. We call this vacuity, and extend the definition to cover
other kinds of trivial validity. For non-vacuously valid formulas, we define an interesting witness as a non-trivial
example of the validity of the formula. We formalize the notions of vacuity and interesting witness, and show how
to detect vacuity and generate interesting witnesses in temporal model checking. Finally, we provide a practical
solution for a useful subset of ACTL formulas.

Keywords: model checking, temporal logic, vacuity, formal verification, interesting witness

1. Introduction

The ability to generate a counter-example is an important feature of model checking tools,
because a counter-example provides information to the user in the case that the formula
being checked is found to be non-valid. In this paper, we turn our attention to providing
similar feedback to the user in the case that the formula is found to be valid. At first glance,
such a goal may seem strange, because proving formulas valid is the supposed goal of model
checking. However, additional information regarding valid formulas is indeed important,
because a valid formula may hide real problems in the model.

Several years of experience in practical formal verification of hardware at IBM [3] have
shown us that during the first formal verification runs of a new hardware design, typically
20% of formulas are found to be trivially valid, and that trivial validity always points to a
real problem in either the design or its specification or environment. Of the formulas which
are found to be non-trivially valid, examination of a non-trivial example trace discovers a
problem for approximately 10% of the formulas.

142 BEER ET AL.

The problem of a trivially valid formula was first noted by Beatty and Bryant [2], who
termed it antecedent failure. Antecedent failure means that a formula is trivially valid
because the pre-condition (antecedent) of the formula is not satisfiable in the model. If the
validity of a formula is trivial, this must be indicated to the user. If it is not, the usefulness
of formal verification is compromised, since a trivially valid formula is not intentionally
part of a specification (and therefore indicates a problem in the design or an error in the
specification). For instance, consider the following formula:

AG(request→ AXack) (1)

In a model M in which a request is never made, i.e., M |= AG¬request, Formula 1 is
trivially valid.

Antecedent failure is an intuitively easy concept to grasp. However, the fact that it depends
on the use of a particular operator is disturbing. We would like to capture the same problem
in the equivalent formula:

AG(¬request ∨ AXack) (2)

Because we are concerned with temporal logic, we would also like the notion of a trivially
valid formula to include a temporal aspect. For instance, consider the following formula:

AG(p→ AX (q → AXr)) (3)

If p never occurs, and thus M |= AG¬p, then Formula 3 is trivial by antecedent failure.
However, we would also like the notion of a trivially valid formula to cover the case that,
while q may occur, and thus M |= E Fq , q never occurs at a next state of p, and thus
M |= AG(p→ AX¬q).

In addition, the notion of a trivially valid formula should capture other potential problems,
such as that illustrated by the following formula:

AG(request→ A[¬data valid Uwrite enable]) (4)

As with the previous examples, Formula 4 is trivially valid in a model in which a request
is never made. However, even in a model M in which M |= EF request, it is possible that
the validity of Formula 4 is trivial. If M |= AG(request→ write enable), then there are no
states in which it is required that the sub-formula ¬data valid hold; in other words, there
is “nothing left for the model checker to check”. In such a model, the validity of Formula 4
is trivial. In this paper, we extend and formalize the notion of trivial validity to these and
other cases. We use the term vacuity for the extended definition, and call a formula which
suffers from vacuity a vacuously valid formula.

Trivial validity is usually an indication of a problem in the model (rather than the speci-
fication). A related problem is a formula which is non-vacuously valid, but which does not
express the property that was intended by the user. In other words, we would like to provide
a way to discover errors in the formula, even when the formula is non-vacuously valid. We
confront this problem by formalizing the notion of an interesting witness: a trace which

EFFICIENT DETECTION OF VACUITY 143

shows a non-trivial example of the validity of a formula. Examining a positive example
provides some confidence that the formal specification accurately reflects the intent of the
user, one of the weak links in the practical application of formal verification to hardware
design.

As an example, consider Formula 3. An interesting witness to Formula 3 is a path on
which p occurs at some state si , q occurs at state si+1, and r occurs at state si+2.

Note that simply negating the original formula will not provide a non-trivial example. If
we negate Formula 3, we get:

E F(p ∧ E X (q ∧ E X¬r)) (5)

Obviously, since Formula 5 is the negation of Formula 3, Formula 5 is false if Formula 3
is true. However, because Formula 5 is an existential formula, there is no trace which can
show it is false, and the counter-example mechanisms of [13] and of SMV [18, 9] will not
generate a trace.

Negating the single operand of the AG operator in Formula 3 as follows:

AG¬(p→ AX (q → AXr)) (6)

will also not guarantee an interesting witness. For instance, a valid counter-example to
Formula 6 is a path to a state in which p does not occur. Once again, this is a trivial positive
example of the truth of the original Formula 3.

Our motivation is temporal model checking. However, the notions of vacuity and inter-
esting witness are not limited to temporal logics. Therefore, we will first define our terms
in general, and only then discuss vacuity detection and generation of interesting witnesses
in temporal model checking. Finally, we will show a practical solution for a useful subset
of ACTL formulas under temporal model checking.

The remainder of this paper is organized as follows. In Section 2 we define some important
temporal logics. In Section 3 we formalize the notion of vacuity, and show how to efficiently
detect vacuity using a model checker. In Section 4 we formalize the notion of interesting
witness and show how to generate interesting witnesses using a model checker. In Section 5
we provide a practical solution for a useful subset of ACTL. In Section 6 we compare our
work with a previous version of our theory, and with related work. In Section 7 we conclude.

2. Preliminaries

CTL∗ [11] is a logic with the following syntax:

1. Every atomic proposition is a formula.
2. If f and g are formulas, then so are ¬ f and f ∧ g.
3. If f is a formula, then E f is also a formula.
4. If f and g are formulas, then f Ug and X f are also formulas.

144 BEER ET AL.

Additional operators can be viewed as abbreviations of the above, as follows:

– f ∨ g = ¬(¬ f ∧ ¬g)
– Fg = true U g
– G f = ¬(true U¬ f)
– f V g = ¬(¬ f U¬g)
– A f = ¬E¬ f

The semantics of a CTL∗ formula is defined with respect to a Kripke structure K . A
Kripke structure is a quadruple (S, S0, R, L), where S is a finite set of states, S0 ⊆ S is a
set of initial states, R ⊆ S × S is the transition relation, and L is the valuation, a function
mapping each state with a set of atomic propositions true in that state. We require that there
is at least one transition from every state.

A path π of a Kripke structure K is an infinite sequence of states π = (π0, π1, π2, . . .)

such that R(πi , πi+1) is true for every i . Given a path π , we will denote by π+i the path
starting from the i-th state in π . More formally:

π+i = (πi , πi+1, πi+2, . . .)

The semantics of CTL∗ is then as follows:

– (K , π) |= p⇔ p ∈ L(π0), where p is an atomic proposition.
– (K , π) |= ¬ f ⇔ (K , π) 6|= f .
– (K , π) |= f1 ∧ f2 ⇔ (K , π) |= f1 and (K , π) |= f2.
– (K , π) |= Ef ⇔ for some path π ′ in K , starting from π0, (K , π ′) |= f .
– (K , π) |= X f ⇔ (M, π+1) |= f .
– (K , π) |= f1U f2 ⇔ ∃n ≥ 0 such that (K , π+n) |= f2, and for all i such that 0 ≤ i < n,

we have (K , π+i) |= f1.

We say that K |= f iff for every path π in K , such that π0 ∈ S0, we have (K , π) |= f .
A CTL∗ formula is in normal form when the operator ¬ modifies only atomic proposi-

tions.
ACTL∗ is a subset of CTL∗ in which the only path quantifier is A (when the formula is

in normal form).
CTL [7] is a subset of CTL∗ in which each temporal operator (F , G, U , V , and X) must

be immediately preceded by a path quantifier (A or E).
ACTL [12] is a subset of CTL in which the only path quantifier is A (when the formula

is in normal form).
LTL [21] is a subset of CTL∗ is which there are no path quantifiers.

3. Vacuity

The intuitive notion of vacuity derives from that of propositional antecedent failure. Proposi-
tional antecedent failure means that a formula is trivially valid because some pre-condition
is not satisfiable, where a pre-condition is the left-hand-side of an implication. Another
way to think of it is to say that the right-hand-side of the implication does not affect the

EFFICIENT DETECTION OF VACUITY 145

validity of the formula. This gives an intuitive extension of vacuity to any operator: vacuity
occurs when one of the operands does not affect the validity of the formula. We use the nota-
tion ϕ[ψ ← ψ ′] to denote the formula obtained fromϕ by replacing sub-formulaψ withψ ′.

Definition 1 (Affect). A sub-formula ψ of formula ϕ affects ϕ in model M if there is a
formula ψ ′, such that the truth values of ϕ and ϕ[ψ ← ψ ′] are different in M .

Definition 2 (Vacuity). Formula ϕ is vacuous in model M if there is a sub-formula ψ of
ϕ such that ψ does not affect ϕ in M .

These definitions capture the intuitive notion of vacuity in a manner which is independent
of a particular logic. However, they are not very useful when it comes to vacuity detection,
because there are an infinite number of cases to check. In the remainder of this section we
will show sufficient conditions on logics such that only a finite and small number of cases
are required. We will first show that it is enough to check only a subset of the sub-formulas.
Then, we will define logics with polarity for which it is enough to check the replacement
of a sub-formula by either true or false.

3.1. Vacuity with respect to a minimal set of sub-formulas

In this section, we will show that vacuity can be checked by examining only a subset of
the sub-formulas. These will be the sub-formulas which are minimal with respect to the
sub-formula pre-order (denoted ≤). We assume that each sub-formula is unique. That is,
we consider two separate occurrences of the same sub-formula to be different sub-formulas.

Lemma 3. If χ ≤ ψ ≤ ϕ, and ψ does not affect ϕ in model M , then χ does not affect ϕ
in M .

Proof: Assume ψ does not affect ϕ in M , but χ does affect ϕ. Then there is a formula χ ′

such that the truth value of ϕ[χ ← χ ′] in M is different than that of ϕ in M . Since χ ≤ ψ
we get that

ϕ[ψ ← ψ[χ ← χ ′]
︸ ︷︷ ︸

ψ ′

] = ϕ[χ ← χ ′]

So ϕ[ψ ← ψ ′] = ϕ[χ ← χ ′]. But the truth value of ϕ[χ ← χ ′] in M is different than
the truth value of ϕ in M . Thus the truth value of ϕ[ψ ← ψ ′] in M is different than the
truth value of ϕ in M , which means that ψ affects the value of ϕ in M , contradicting our
assumption. 2

For the sequel, we will need the following definitions:

Definition 4 (Vacuity with respect to a sub-formula). Let χ be a sub-formula of formula
ϕ (denoted χ ≤ ϕ). Formula ϕ is χ -vacuous in model M if χ does not affect ϕ in M .

146 BEER ET AL.

Definition 5 (Vacuity with respect to a set of sub-formulas). Let S be a set of sub-formulas
of formula ϕ (S ⊆ {χ |χ ≤ ϕ}). Formula ϕ is S-vacuous in model M if there exists χ ∈ S
such that ϕ is χ -vacuous in M .

Definition 6 (Minimal sub-formulas). Let S be a set of sub-formulas. We define the min-
imal sub-formulas of S as:

min(S) = {χ ∈ S | There is no χ ′ ∈ S s.t. χ ′ ≤ χ}

Theorem 7. ϕ is S-vacuous iff ϕ is min(S)-vacuous.

Proof.

– (⇒) If ϕ is S-vacuous in M , there is a χ ∈ S that does not affect ϕ. Since S is finite and
≤ is a pre-order, there is a χ ′ ∈ min(S) such that χ ′ ≤ χ . Using Lemma 3, since χ does
not affect ϕ in M , χ ′ does not affect ϕ in M either. This means that ϕ is min(S)-vacuous
in M .

– (⇐) If ϕ is min(S)-vacuous in M , there is a χ ∈ min(S) ⊆ S that does not affect ϕ in
M , and therefore ϕ is S-vacuous in M . 2

It follows immediately that to check vacuity of ϕ it is enough to check for vacuity with
respect to only the minimal sub-formulas of ϕ. We will now show that for logics with
polarity, it is enough to check the replacement of a sub-formula by either true or false.

3.2. Logics with polarity

In this section we will define logics with polarity. First, we will need a notation with which
to denote all models M in which a formula ϕ is valid. We use the following notation:

[[ϕ]] = {M |M |= ϕ}

We use the notation [[ϕ]]c to denote the complement of [[ϕ]]. We will now define what we
mean by the polarity of an operand, then define operators with polarity, and finally define
logics with polarity.

Definition 8 (Polarity of an operand). If σ is an n-ary operator in a logic, we say that
the i-th operand of σ has positive(negative) polarity if for every fixing of ϕ1, . . . , ϕi−1,
ϕi+1, . . . , ϕn , and two formulas ψ1, ψ2, such that [[ψ1]] ⊆ [[ψ2]] ([[ψ2]] ⊆ [[ψ1]]) we have
that

[[σ(ϕ1, . . . , ϕi−1, ψ1, ϕi+1, . . . , ϕn)]] ⊆ [[σ(ϕ1, . . . , ϕi−1, ψ2, ϕi+1, . . . , ϕn)]]

We say that an operator has polarity if every one of its operands has some polarity (positive
or negative).

EFFICIENT DETECTION OF VACUITY 147

Definition 9 (Logic with polarity). A logic with polarity is a logic in which every operator
has polarity.

For example, the standard Boolean logic with operators ∨,∧,¬ is a logic with polarity,
since for every two formulas ϕ1, ϕ2, we have

[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[¬ϕ1]] = [[ϕ1]]c

This immediately implies that the operands of∨ and∧ have positive polarity, and the single
operand of ¬ has negative polarity.

An example of a logic which is not a logic with polarity is the standard Boolean logic
with the addition of the exclusive-or operator:

[[a ⊕ b]] = ([[a]] ∩ [[b]]c) ∪ ([[a]]c ∩ [[b]])

If we set a = true, we get:

[[true⊕ b]] = [[b]]c

But if we set a = false, we get

[[false⊕ b]] = [[b]]

In the first case the polarity of the second operand is negative, and in the second positive.
This means that ⊕ does not have polarity.

Proposition 10. CTL∗ is a logic with polarity.

Proof: First, note that the set of models that a CTL∗ formula satisfies is a subset of
{(K , π)|π is a path in the structure K }. As we have already shown, the standard Boolean
operators ∨,∧ and ¬ all have polarity.

We now show that the single operand of the path quantifier E has a positive polarity.
Given ϕ1 and ϕ2, where [[ϕ1]] ⊆ [[ϕ2]], if (K , π) |= E(ϕ1) then there is a path π ′ in K that
starts at the same state that π does, and (K , π ′) |= ϕ1. This implies that (K , π ′) |= ϕ2, and
therefore (K , π) |= E(ϕ2).

We proceed to prove that both operands of the U operator have positive polarity.

1. Let us fix the second operand of the U operator to be some ψ . Given ϕ1 and ϕ2, where
[[ϕ1]] ⊆ [[ϕ2]], if (K , π) |= ϕ1Uψ , then there is an integer n, s.t.

– for all 0 ≤ i < n we have (K , π+i) |= ϕ1, and therefore, (K , π+i) |= ϕ2.
– (K , π+n) |= ψ

Which proves that (K , π) |= ϕ2Uψ

148 BEER ET AL.

2. Let us fix the first operand of U to be some ψ . Given ϕ1 and ϕ2, where [[ϕ1]] ⊆ [[ϕ2]], if
(K , π) |= ψUϕ1, then there is an integer n, s.t.

– for all 0 ≤ i < n we have (K , π+i) |= ψ
– (K , π+n) |= ϕ1, and therefore (K , π+n) |= ϕ2.

which proves that (K , π) |= ψUϕ2

Finally, we show that the single operand of the operator X has positive polarity. Given ϕ1

and ϕ2, where [[ϕ1]] ⊆ [[ϕ2]], if (K , π) |= X (ϕ1), then (K , π+1) |= ϕ1. By the assumption
(K , π+1) |= ϕ2, meaning that (K , π) |= X (ϕ2), which concludes the proof. 2

3.3. Vacuity detection in logics with polarity

In this section we will show that in logics with polarity it is enough to check the replacement
of a sub-formula by either true or false.

First we define the polarity of a sub-formula, then we will present the main result of this
section.

Definition 11 (Polarity of sub-formula). Given a formula ϕ, we define the polarity of
sub-formulas of ϕ recursively:

– ϕ has positive polarity
– If χ = σ(χ1, . . . , χn), and χ is of positive(negative) polarity, thenχi has positive polarity

if the i-th operand of σ has a positive(negative) polarity, and χi has negative polarity
otherwise.

Lemma 12. In a logic with polarity, if χ ≤ ϕ, and χ is with a positive(negative) polarity,
then if [[χ]] ⊆ [[χ ′]] ([[χ ′]] ⊆ [[χ]])

[[ϕ]] ⊆ [[ϕ[χ ← χ ′]]]

Proof: The proof proceeds by induction on the size of the formula ϕ.

– (base case:) ϕ is an atom, so χ = ϕ, χ has positive polarity, and ϕ[χ ← χ ′] = χ ′.
Therefore, if [[χ]] ⊆ [[χ ′]], we get [[ϕ]] ⊆ [[ϕ[χ ← χ ′]]].

– (induction step:) ϕ = σ(ψ1, . . . , ψn). If χ = ϕ, then we have the same as in the base
case. Otherwise, we know that there is one i such that χ ≤ ψi . There are two cases:

1. The i-th operand of σ is of positive polarity. In this case, the polarity of χ in ψi is
as it is in ϕ, therefore, according to the induction hypothesis, [[ψi]] ⊆ [[ψi [χ ← χ ′]]]
and since the i-th operand of σ is of positive polarity, then by Definition 8 we have
[[ϕ]] ⊆ [[ϕ[χ ← χ ′]]].

2. The i-th operand of σ is of negative polarity. In this case, the polarity of χ in ψi

is the opposite of its polarity in ϕ. Therefore, by the induction hypothesis [[ψi]] ⊇
[[ψi [χ ← χ ′]]] and since the i-th operand of σ is of negative polarity, we have [[ϕ]] ⊆
[[ϕ[χ ← χ ′]]]. 2

EFFICIENT DETECTION OF VACUITY 149

In [4] we defined a subset of ACTL, and a set of important sub-formulas, and proved that in
order to detect vacuity with respect to this set it is enough to show that M |= ϕ[ψ ← false]
where ψ is the minimal sub-formula of all the important sub-formulas (See section 5).
In [14], Kupferman and Vardi expand on this result by showing that for CTL∗, a formula ϕ
is vacuous iff there is some minimal sub-formulaψ of ϕ such that M satisfies ϕ[ψ ← true]
iff M satisfies ϕ[ψ ← false]. We will now prove a very similar result that holds for all
logics with polarity. The proof is practically the same as the one in [14]; we give it here for
the sake of completeness.

We define the semantics of true and false as follows: [[true]] = {M |M is a model} and
[[false]] = ∅.

Theorem 13. Let ψ be a sub-formula of formula ϕ in a logic with polarity. Then, for
every model M the following are equivalent:

1. ψ does not affect ϕ in M .
2.

M |= ϕ ⇔ M |= ϕ[ψ ← X]

Where X = false if M |= ϕ andψ is of positive polarity, or M 6|= ϕ andψ is of negative
polarity. Otherwise X = true.

Proof:

– (⇒)ψ does not affect ϕ in M . This means that for everyψ ′, and specifically forψ ′ = true
and ψ ′ = false, M |= ϕ ⇔ M |= ϕ[ψ ← ψ ′] which concludes this part of the proof.

– (⇐) Note that for every ψ ′ we have:

[[false]] ⊆ [[ψ ′]] ⊆ [[true]]

Two cases:

1. If ψ is of positive polarity, then using Lemma 12, we get

[[ϕ[ψ ← false]]] ⊆ [[ϕ[ψ ← ψ ′]]] ⊆ [[ϕ[ψ ← true]]]

• If M |= ϕ then by the assumption M |= ϕ[ψ ← false], but by the containment
above, this implies that for every ψ ′, M |= ϕ[ψ ← ψ ′], meaning that ψ does not
affect ϕ in M .
• If M 6|= ϕ then by the assumption M 6|= ϕ[ψ ← true]. By the same argument as

above we get that for everyψ ′, M 6|= ϕ[ψ ← ψ ′], meaning thatψ does not affect
ϕ in M .

2. If ψ is of negative polarity, then using Lemma 12, we get

[[ϕ[ψ ← true]]] ⊆ [[ϕ[ψ ← ψ ′]]] ⊆ [[ϕ[ψ ← false]]]

• If M |= ϕ then by the assumption M |= ϕ[ψ ← true], but by the containment
above, this implies that for every ψ ′, M |= ϕ[ψ ← ψ ′], meaning that ψ does not
affect ϕ in M .

150 BEER ET AL.

• If M 6|= ϕ then by the assumption M 6|= ϕ[ψ ← false], but by the containment
above, this implies that for every ψ ′, M 6|= ϕ[ψ ← ψ ′], meaning that ψ does not
affect ϕ in M . 2

In Section 3.1 we showed that it is enough to check vacuity for ϕ with respect to a subset
of the sub-formulas ϕ. In this section we showed that for logics with polarity, it is enough
to check the replacement of a sub-formula by either true or false. We now combine these
two results in the following corollary:

Corollary 14. In a logic with polarity, for a formula ϕ, and a set S of sub-formulas of ϕ,
for every model M , the following are equivalent:

– ϕ is S-vacuous in M
– There is ψ ∈ min(S) such that:

M |= ϕ ⇐⇒ M |= ϕ[ψ ← X]

Where X = false if M |= ϕ(M 6|= ϕ) and ψ is of positive(negative) polarity. Otherwise,
X = true.

This corollary gives us the ability to check vacuity of a formula in a logic with polarity
by checking a relatively small number of other formulas, each of them of size not greater
than that of ϕ. To be more precise, for S-vacuity, we need to check |min(S)| + 1 formulas:

1. Check ϕ.
2. For each sub-formula ψ ∈ min(S), check the new formula ϕ[ψ ← X]. The value of X

is either true or false, according to whether ϕ is valid or not, and the polarity of ψ .

Formula ϕ is S-vacuous iff at least one of these formulas has the same truth value as that
of ϕ.

Since CTL∗ is a logic with polarity, we have shown the result of [14]: We can use a
CTL∗ model checker to check vacuity in complexity O(|ϕ| ·CM(|ϕ|)), where CM(n) is the
complexity of checking a formula of size n in model M .

4. Interesting witnesses

The definition of vacuity refines the traditional distinction between valid and non-valid
formulas with respect to a model M . We now classify formulas as either non-valid, vacuously
valid, or non-vacuously valid. We would like to make the same refinement in the method
we use to distinguish between the classes. Traditionally, we show that a formula is valid by
means of a proof, and that a formula is non-valid by means of a counter-example. We will
now define an interesting witness, which is the means we will use to show that a formula
is non-vacuously valid. In this section we assume that the formula in question ϕ is valid in
model M .

EFFICIENT DETECTION OF VACUITY 151

To make our definitions clear we use model checking problem of propositional logic as an
example: The logic is the standard propositional logic on n boolean variables. A Model M
is some non-empty subset of the set of assignments to the n variables. We say that M |= ϕ
if ϕ is true under all assignments in M . For example, if M is the set of all assignments, then
M |= ϕ iff ϕ is a tautology.

4.1. Pre-order and counter-examples

Before defining an interesting witness, we first formalize the notion of a counter-example.
We will require two things from a counter-example to a formula.

1. That its existence proves the non-validity of the formula.
2. That it is small.

The second requirement is natural, since the smaller the counter-example is, the more
useful it is to the user. Our approach is to define a pre-order on the set of models, such that
non-validity on a smaller model always proves non-validity of a larger one. Then, we will
require that a counter-example be a model which is minimal with respect to this pre-order.

Definition 15 (The natural pre-order of a logic). Given a logic L , we define the natural
pre-order of the logic ≺L on the set of models. M ′≺L M iff for all ϕ ∈ L we have that
M |= ϕ ⇒ M ′ |= ϕ

Claim 16. The natural pre-order of propositional logic is containment.

Proof:

– (⇒) If M ′ ⊆ M , then any propositional formula that is valid for all assignments in M ,
will also be valid for all assignments in M ′.

– (⇐) if M ′ 6⊆ M , then there is at least one assignment α = (α1, α2, . . . , αn) to the n
variables that is in M ′ and not in M . We define the following propositional formula:

ϕ(x1, x2, . . . , xn) = ¬

n∧

i=1

(xi ∧ αi) ∨ (¬xi ∧ ¬αi)

This formula is true on any assignment that is not equal toα, and false onα itself. Therefore
we have that M ′ 6|= ϕ, and M |= ϕ. 2

We can now define a counter-example:

Definition 17 (Counter-example). In logic L , a model C is a counter-example to ϕ in
model M , if it satisfies the following conditions:

152 BEER ET AL.

1. C ≺L M .
2. C 6|= ϕ.
3. C is minimal w.r.t. ≺L among the models that satisfy properties 1 and 2.

It follows immediately from the definition that:

Claim 18. M 6|= ϕ iff there exists a counter-example to ϕ in M .

We now return to our example of propositional logic, and show that counter-examples
are as we expected:

Claim 19. In propositional logic, If C is a counter-example to formula ϕ in model M , then
C is a model with one assignment.

Proof: If C is a counter-example, then C 6|= ϕ, therefore there is an assignment α ∈ C
such that ϕ(α) is false. A = {α} is a model, A ⊆ C and A 6|= ϕ. Since C is minimal w.r.t.⊆,
we get that C = A, since there is no model A′ such that A′ ⊆ A (we required that models are
non-empty). ¤

4.2. Pre-orders and counter-examples in temporal logic

We have previously shown that for the case of propositional logic, Definition 17 captures
our intuitive notion of what a counter-example is. Since the motivation of this paper is
temporal logic, we would like to examine more closely the properties of a counter-example
in some important temporal logics.

– LTL: in [22] Pnueli has proved that the natural pre-order for LTL according to Defini-
tion 15 is:
M1 ≺LTL M2 iff L(M1) ⊆ L(M2), where L(M) = {π |π is a computation path in M}. In
LTL, if M 6|= ϕ, then there is a computation path π in M , such that {π} 6|= ϕ. Using the
same arguments as in the proof of claim 19, we can show that a counter-example to ϕ
will always be a model with one computation path in it.

– CTL and CTL∗: Milner in [19] has proved that for CTL and CTL∗, the natural pre-order
is:
M1 ≺CTL M2 iff M1 bi-simulates M2. This means that CTL and CTL∗ have only trivial
counter-examples that are the model itself. Indeed, the formula E F(p) cannot be shown
false by any model that has less behavior than the original, since we might have removed
states where p was true. Note that even if we did have some method of specifying larger
models as counter-examples, CTL would still be problematic. The formula E F(p) ∨
AG(q), cannot be proved false using neither a larger model, nor a smaller one.

– ACTL and ACTL∗: Using the same proof as in [19], it can be shown that for ACTL and
ACTL∗, the natural pre-order is:
M1 ≺ACTL M2 iff M2 simulates M1. For these logics, it is difficult to characterize counter-
examples. A model M always simulates a computation path π in it (π ≺ACTL M), meaning

EFFICIENT DETECTION OF VACUITY 153

that computation paths may serve as counter-examples. For instance, a counter-example
to the formula AG(p) is a path on which ¬p holds at some state. However, there are
formulas and models for which a path cannot serve as a counter-example. The formula
AX (p) ∨ AX (¬p) cannot have a path as a counter-example, since on any deterministic
path it will be evaluated to be true. A counter-example for this formula must be more
complex. Buccafurri, Eiter, Gottlob and Leone have addressed this problem in detail
in [6].

4.3. Interesting witnesses

In the case of a non-valid formula, a standard model checker provides a counter-example to
the user. If the formula is valid, and using our vacuity checking procedure we can prove it
non-vacuous, we would like to provide an interesting witness to the user, which is an analog
of a counter-example — it proves non-vacuity, while a counter-example proves non-validity.

Definition 20 (Interesting witness with respect to a sub-formula). In logic L , a model W
is a ψ-interesting witness to ϕ in M , if it satisfies the following conditions:

1. W ≺L M .
2. W |= ϕ, and ϕ is not ψ-vacuous in W .
3. W is minimal w.r.t ≺L among the models that satisfy properties 1 and 2.

We now get an analogous claim to claim 18:

Claim 21. if M |= ϕ, then there exists a ψ-interesting witness W to ϕ in M iff ϕ is not
ψ-vacuous in M .

Proof:

– (⇒) W ≺L M , and M |= ϕ. Therefore, W |= ϕ. Since ϕ is not ψ-vacuous in W , there is
a ψ ′ such that W 6|= ϕ[ψ ← ψ ′]. Again, since W ≺L M , M 6|= ϕ[ψ ← ψ ′]. This means
that ϕ is not ψ-vacuous in M .

– (⇐) The set of models that are smaller than M , and ϕ is not ψ-vacuous in them is non-
empty, since M is such a model. Therefore any one of the minimal elements in this set is
a ψ-interesting witness to ϕ in M . ¤

So, under the assumption thatϕ is valid in M , an interesting witness proves the non-vacuity
of one sub-formula. Now we would like to have such proofs of more general non-vacuity,
for sets of sub-formulas (and in particular , for the set of all sub-formulas). However, a
single interesting witness will not always suffice.

Consider the formula ϕ = (p ∨ q), in a model M such that M |= ϕ. If ϕ is non-vacuous
there is no single example which can show non-vacuity. In order to show p-non-vacuity, q
must be set to 0, and in order to show q-non-vacuity, p must be set to 0. But since M |= ϕ,
we cannot show an example in which both p and q are 0 simultaneously.

154 BEER ET AL.

The naive solution would be to generate one interesting witness for every sub-formula.
However, an interesting witness to one sub-formula, may also be an interesting witness to
a different sub-formula. This is shown in the following proposition.

Proposition 22. Assume M |= ϕ. If W is a ψ-interesting witness to ϕ in M , and
ψ ≤ χ ≤ ϕ, then W is also a χ -interesting witness to ϕ in M .

Proof: Since W is a ψ-interesting witness to ϕ, ψ affects ϕ in W , and according to
Lemma 3 χ affects ϕ in W , meaning that W is a χ -interesting witness to ϕ in M .

We shall now use Proposition 22 to get a more general result:

Corollary 23. If M |= ϕ, and ϕ is not S-vacuous in M , then a set that has aψ-interesting
witness for every ψ in min(S) also has a ψ-interesting witness for every ψ in S.

4.4. Interesting witness generation in logics with polarity

In Section 3.3 we have shown that if our logic is a logic with polarity, then checking vacuity
is much easier than the general case. The same result holds for interesting witness generation.

Lemma 24. In a logic with polarity L , if M |= ϕ, C ≺L M , and ψ ≤ ϕ is of posi-
tive(negative) polarity, then the following are equivalent:

– C 6|= ϕ[ψ ← X], where X = false (X = true).
– ϕ is not ψ-vacuous in C .

Proof:

– (⇒) Since M |= ϕ, and C ≺L M , we get that C |= ϕ. Now, since C 6|= ϕ[ψ ← X], ϕ is
not ψ-vacuous in C .

– (⇐) Since M |= ϕ, and C ≺L M , we get that C |= ϕ. Since ϕ is notψ-vacuous in C , then
using Theorem 13, we get that C 6|= ϕ[ψ ← X]. 2

Theorem 25. In a logic with polarity L , if M |= ϕ, and ψ ≤ ϕ is of positive(negative)
polarity in ϕ, the following are equivalent:

– C is a counter-example to ϕ[ψ ← X], Where X = false (X = true).
– C is a ψ-interesting witness to ϕ in M .

The proof follows directly from Lemma 24, which proves that the two are equivalent, but
omits the requirement of minimality. Adding this requirement to both of them obviously
leaves them equivalent.

This theorem gives us the ability to easily generate interesting witnesses if we can generate
counter-examples to the formulas in the logic: a ψ-interesting witness to ϕ in M is really a

EFFICIENT DETECTION OF VACUITY 155

counter-example to one specific formula obtained by replacingψ by true or false, depending
on the polarity of ψ in ϕ. Note that if this formula is valid in M , then ϕ is ψ-vacuous in M .

If we now assume that we have a logic with polarity, and that we have a model checker
for this logic that generates counter-examples to non-valid formulas, then we can enhance
our model checker to have the following properties:

Enhanced model-checker. Given a formula ϕ, a model M , and a set S of sub-formulas
of ϕ:

1. If M 6|= ϕ, generate a counter-example.
2. If M |= ϕ, and ϕ is S-vacuous in M , then output all sub-formulas in min(S) that do not

affect ϕ in M .
3. If M |= ϕ, and ϕ is not S-vacuous in M , then generate |min(S)| interesting witnesses of

M , such that for each ψ ∈ S, at least one of them is a ψ-interesting witness for ϕ in M .

The number of formulas checked if the formula is valid is |min(S)|+1, since for eachψ
in min(S) we generate a formula to be model checked. If it is valid, then ϕ is S-vacuously
valid. Otherwise, the model checker returns a counter-example, which is an ψ-interesting
witness for ϕ. Since all formulas we generate are smaller in size than ϕ, we get that the
complexity of the enhanced model checker is O(|min(S)| · CM(|ϕ|)), where CM(n) is the
complexity of model checking a formula of size n.

In the case where ϕ is S-vacuous, the enhanced model checker only outputs all the
minimal sub-formulas that do not affect ϕ. However, the user may be interested in knowing
exactly which of the sub-formulas in S are vacuous. To achieve this goal, we may need to
check as many as |S| formulas.

5. Practical vacuity detection and interesting witness generation

The motivation of this work was to provide an indication of vacuity and interesting witnesses
to users of model checking. However, the complexity results of Sections 3.3 and 4.4 do not
allow this in reasonable time. While the complexity of determining vacuity and generating
interesting witnesses is only |ϕ| times the complexity of model checking a formula of size
|ϕ|, in practical terms this is too high, because a typical formula ϕ may take hours of CPU
time to verify. We would like a method of determining vacuity and generating an interesting
witness for a formula ϕ that is no more expensive than model checking ϕ.

In order to give an efficient solution, we will limit ourselves to a subset of ACTL, called
w-ACTL, and to a subset of the sub-formulas, called important sub-formulas with respect
to which we will check vacuity. We will then show that the complexity of checking vacuity
of important sub-formulas in w-ACTL is exactly the complexity of the model checking ϕ
in M . Finally, we show some examples.

5.1. Witness-ACTL (w-ACTL)

In this section we define witness-ACTL (w-ACTL), a subset of ACTL, which is in turn a
subset of CTL. Informally, w-ACTL formulas are ACTL formulas in which for all binary

156 BEER ET AL.

operators (∧,∨, AU, AV), at least one of the operands is a propositional formula. We divide
the ACTL operators into propositional operators (¬, ∧, ∨) and temporal operators (AX,
AG, AF, AU, AV), and call a formula which has only propositional operators, a simple
formula. w-ACTL is the set of state formulas described by the following:

Definition 26 (w-ACTL).

1. Every simple formula is a state formula.
2. If f is a simple formula, χ is a state formula, and ◦ is some binary operator of ACTL

(∨, ∧, AV, AU), then f ◦ χ and χ ◦ f are state formulas.
3. If χ is a state formula, and ◦ is some unary temporal operator of ACTL (AG, AF, AX),

then ◦(χ) is a state formula.

The definition of w-ACTL may seem artificial at first glance. However, in our experience
this is not the case. Most of the formulas written by users are w-ACTL formulas, which
capture nicely the linear nature of most specifications.

5.2. Important sub-formulas

In order to be able to efficiently check vacuity and generate interesting witnesses for w-
ACTL formulas, we have to restrict ourselves to a subset of the sub-formulas for which
vacuity will be detected. Rather than being a drawback, we show that distinguishing between
important and non-important sub-formulas is an advantage, as it is a reflection of how
engineers use CTL to specify their designs.

We first define the set of important sub-formulas of a formula, with respect to which
vacuity will be checked. Basically, the important sub-formulas are all the temporal (non-
simple) ones.

Definition 27 (Important sub-formulas). Let ϕ be a w-ACTL formula, we define I mp(ϕ)
recursively:

1. If ϕ is simple, then I mp(ϕ) = {ϕ}.
2. If ϕ = ψ ◦ f or ϕ = f ◦ ψ , where ψ is non-simple, and f is simple, then I mp(ϕ) =
{ϕ} ∪ I mp(ψ).

3. If ϕ = A[f1 U f2] or ϕ = A[f1 V f2], where f1 and f2 are simple, then I mp(ϕ) =
{ϕ} ∪ I mp(f1).

4. If ϕ = ◦(ψ), then I mp(ϕ) = {ϕ} ∪ I mp(ψ).

The choice made in item 3 above may seem arbitrary. The reason that only f1 is important
is that f2 is the only operand that can cause vacuity. For A[f1 U f2], f2 can cause vacuity
of f1 if it is always true immediately. However, f1 cannot cause vacuity of f2 because even
if f1 is always true forever, the AU operator still requires something of f2: that eventually it
occurs. For the AV operator, f2 can cause vacuity of f1 if it is always true forever, because

EFFICIENT DETECTION OF VACUITY 157

then nothing is required of f1. However, f1 cannot cause vacuity of f2 if it is always true
immediately, because in that case, the AV operator still requires something of f2: that it
occurs at the same time.

We justify our choice of the temporal sub-formula of a binary operator as an important
sub-formula as follows. The choice is simply a reflection of how engineers tend to use CTL
to code a specification, as well as how they tend to design their hardware. For instance,
consider the following specification:

AG(request→ AX (req accepted→ AX AX (read busy ∨ wri te busy))) (7)

which expresses the requirement that if a request is accepted (which happens or not one
cycle after it appears), then two cycles later either the read busy signal is asserted, or the
write busy signal is asserted. Logically, this is equivalent to the formula:

AG(¬request ∨ AX (¬req accepted ∨ AX AX (read busy ∨ write busy))) (8)

Vacuity of Formula 7, which detects that M |= AG(¬request) would probably detect a
problem in the model, because otherwise the signal called request is meaningless. How-
ever, a vacuity which detects that M |= AG(AX (¬req accepted ∨ AX AX (read busy ∨
write busy))) is quite often useless to the engineer, as it is highly likely that she has designed
her logic intentionally for this to be so, and prevents read busy or write busy from being
asserted spuriously by not asserting req accepted if there was not a request the previous
cycle. Thus, for the binary operators, we have chosen the non-simple operand to be the
important sub-formula.

5.3. Vacuity and interesting witnesses for w-ACTL formulas

Recall that ϕ is I mp(ϕ)-vacuous, if it is vacuous with respect to a sub-formula χ ∈
min(I mp(ϕ)) (Theorem 7). We now show that min(I mp(ϕ)) has only one sub-formula
in it, meaning that I mp(ϕ)-vacuity checking will be easy.

Claim 28. For every ϕ in w-ACTL the size of min(I mp(ϕ)) is one.

Proof: The proof proceeds by induction:

1. If ϕ is simple, then |I mp(ϕ)| = 1, and we are done.
2. If ϕ = ◦(ψ), then I mp(ϕ) = {ϕ} ∪ I mp(ψ). Every sub-formula in I mp(ψ) is a

sub-formula of ψ and therefore of ϕ. This means that ϕ is not minimal in I mp(ϕ), so
min(I mp(ϕ)) = min(I mp(ψ)). Using the induction hypothesis |min(I mp(ψ))| = 1.

3. If ϕ = ψ1 ◦ ψ2, then I mp(ϕ) = {ϕ} ∪ I mp(ψ1), or I mp(ϕ) = {ϕ} ∪ I mp(ψ2). Using
the same argument as above, ϕ is not in min(I mp(ϕ)), meaning that min(I mp(ϕ)) =
min(I mp(ψ1)), or in the second case min(I mp(ϕ)) = min(I mp(ψ2)). Again, using the
induction hypothesis, we conclude that |min(I mp(ϕ))| = 1. ¤

158 BEER ET AL.

Since we are dealing with ACT L formulas (negation can be applied to atomic propo-
sitions only), and because of the way we choose the important sub-formula (an important
sub-formula is never an operand of “¬”), we get that min(I mp(ϕ)) always has a positive
polarity in ϕ. We now define the formula witness(ϕ) as follows:

witness(ϕ) = ϕ[min(I mp(ϕ))← false]

According to Corollary 14 and Theorem 25, it is enough to check witness(ϕ) in order to
detect I mp(ϕ)-vacuity and generate an I mp(ϕ)-interesting witness. Given a model checker
that can generate counter-examples for ACTL formulas, we can design an enhanced model
checker for w-ACTL (see Section 4.4) with the following properties: Given a w-ACTL
formula ϕ and model M ,

1. If M 6|= ϕ generate a counter example.
2. If M |= ϕ and M |= witness(ϕ), output that the formula passed vacuously.
3. If M |= ϕ and M 6|= witness(ϕ) output one interesting witness W , such that W |= ϕ,

and for every important sub-formula ψ (ψ ∈ I mp(ϕ)), W is a ψ-interesting witness to
ϕ in M .

5.4. Detailed vacuity

If I mp(ϕ)-vacuity is detected by our enhanced model checker, there is no indication of
which of the pre-conditions caused the vacuity. As we said before, we can solve this by
checking |I mp(ϕ)| + 1 formulas instead of just 2. However, in our specific case, we can
actually check only log2(|I mp(ϕ)|) + O(1) formulas. One can easily prove (using the
same proof as in Claim 28) that the sub-formulas in I mp(ϕ) are linearly ordered. Also,
it follows directly from Lemma 3 that if χ ≤ ψ then if ϕ is ψ-vacuous, then ϕ is also
χ -vacuous. Combining these observations, we get that there is one minimal sub-formula
ψ ∈ I mp(ϕ), such that for all χ ∈ I mp(ϕ), ϕ is χ -vacuous iff χ ≤ ψ . This means that
we can use binary search on I mp(ϕ) to find this ψ . To Implement this, we need only check
log2(|I mp(ϕ)|)+ O(1) formulas.

5.5. Semantic refinements

The careful reader will have noted that our definition of important sub-formulas will not de-
tect vacuity in some basic cases, among them propositional antecedent failure. For instance,
consider the following formula:

AG(read request→ read enable) (9)

The vacuity detection (and witness generation) formula we generate for Formula 9 as
defined above is:

AG(false) (10)

EFFICIENT DETECTION OF VACUITY 159

Formula 10 is valid only in a model with no fair paths, and thus detects vacuity only in
that case. Intuitively, this is not satisfying. We would like to be able to detect propositional
antecedent failure.

Another problem is shown by the following Sugar1 formula:

AG(request→ next event(grant)(acknowledge)) (11)

Formula 11 expresses the requirement that the first grant after a request must be accom-
panied by an acknowledge. The ACTL normal form of Formula 11 is:

AG(¬request ∨ A[grantV (¬grant ∨ acknowledge)]) (12)

Thus, the vacuity detection formula for Formula 11 as defined above is:

AG(¬request ∨ A[falseV¬grant ∨ acknowledge]) (13)

Simplification of the above formula gives:

AG(¬request ∨ AG(¬grant ∨ acknowledge)) (14)

Formula 14 will not detect vacuity in the case that a request is never followed by a grant.
Once again, this is not intuitively satisfying. The next event operator expresses a kind of
temporal implication, thus the failure of a grant to occur is a kind of temporal antecedent
failure, and we would like to detect it.

We therefore expand our definition of important sub-formulas as follows:

1. If ϕ = f1 ∨ f2 or ϕ = f2 ∨ f1, where both f1 and f2 are simple, and the ∨ operator is
derived from the use of the→ operator by the user (ϕ = ¬ f1 → f2), then I mp(ϕ) =
{ϕ} ∪ I mp(f1).

2. If ϕ = next event(f1)(f2), where both f1 and f2 are simple, then I mp(ϕ) = {ϕ} ∪
I mp(f1).

5.6. Implementation details

In theory, a computation path is infinite and therefore, every example is infinite. In practice,
however, the algorithm of [9] will sometimes give finite counter-examples, when a finite
counter-example is enough to show that the formula is false. In every case but one, the finite
counter-example given by [9] is “interesting enough” for our purposes. The exception is
the AU operator. As a positive example to A[χUψ], we would like to see a trace on which
ψ occurs, but [9] may give us a counter-example to A[falseUψ] which ends before ψ has
occurred. Therefore, we use A[(AF false)Uψ] to get an infinite counter-example, just as [9]
uses EG true to get an infinite example.

160 BEER ET AL.

5.7. Examples

We now show the generation of an interesting witness formula. We use a typical Sugar
formula as an example:

AG(request→ next event(data)[4](last data)) (15)

Formula 15 states that last data should be asserted with the fourth data after a request.
Since last data is considered to be non-simple (because it is the second operand of a
next event operator) the interesting witness formula is:

AG(request→ next event(data)[4](false)) (16)

We convert Formula 16 into ACTL normal form:

AG(¬request ∨ A[dataV (¬data ∨ AX A[dataV (¬data ∨

AX A[dataV (¬data ∨ AX A[dataV (¬data ∨ false)])])])]) (17)

It is easy to see that Formula 17 is valid iff either a request never occurs, or no request is
ever followed by four datas. Also, it is clear that if Formula 17 is found to be non-valid, the
counter-example will be an interesting witness of Formula 15, on which a request followed
by four datas will occur.

Now examine the following formula, which expresses the fact that we require q to occur
an infinite number of times:

AG AF q (18)

The interesting witness formula for Formula 18 is:

AG AF false (19)

If Formula 18 is valid, it cannot be vacuously valid unless there are no fair paths, and
indeed Formula 19 is non-valid in all non-empty models. The counter-example to For-
mula 19 will be a computation path, on which q will appear infinitely many times (because
Formula 18 is valid).

6. Comparison with previous and related work

In this section, we compare our work with a previous version of our theory, and with related
work.

6.1. Comparison with previous work

In a previous version of this paper [4], we required that an interesting witness to formula
ϕ to be a single path, on which all important sub-formulas affect the validity of ϕ. This

EFFICIENT DETECTION OF VACUITY 161

requirement was a result of the practical motivation of our original work. In this paper, an
interesting witness is defined per sub-formula, so that interesting validity is demonstrated by
multiple paths. The new definition is more natural, because, as we showed in Section 4.4, it
allows us to guarantee interesting witnesses whenever we can guarantee counter-examples.
It thus solves the problem raised by [14] of the following formula:

G(request→ Fgrant) (20)

Consider a model M with two paths, one path that never satisfies request and a second
path that always satisfies grant. If we require that an interesting witness be a single path,
then there is no interesting witness to Formula 20 in such a model, despite the fact that there
exists a counter-example to Formula 20 in any model in which Formula 20 is not valid.

6.2. Comparison with related work

Other works, including [2] and [20], have noted the problem of trivial validity, and shown
how to avoid them using hand-written checks. Our original paper [4] was, we believe, the
first attempt to formalize the notion of trivial validity, as well as the first attempt to detect
it automatically under symbolic model checking.

Philosophers have also dealt with the problem of trivial validity. Relevance logic (also
known as relevant logic) is a non-standard logic designed to prevent the paradoxes of material
and strict implication. These occur when an antecedent is irrelevant to the consequent, as
in the formula p → (q → p) [1, 17]. While relevance logic deals with the problem by
defining a new logic, our approach is different. We formalize the notion of vacuity and
provide a method to detect it while leaving the logic itself unchanged.

In this paper, we use the term interesting witness to mean a computation path showing
one non-trivial example of the validity of a valid formula. We are the first to use the term
interesting witness, and the first to generate positive examples for valid non-existential for-
mulas. In [13], Hojati, Brayton and Kurshan describe counter-example generation for model
checking using CTL and language containment using L-automata [15]. In [9], Clarke, Grum-
berg, McMillan and Zhao describe the counter-example and witness generation algorithm
of SMV [18]. Neither [13] nor [9] produce interesting witnesses for valid non-existential
formulas.

In [14], Kupferman and Vardi presented an extension of [4] from w-ACTL to CTL∗. Their
results for vacuity are the same as those presented here, but they require that an interesting
witness to a CTL∗ formula be a single path.

7. Conclusions and future work

We have formalized the notion of vacuity and interesting witness for logics with polarity. We
have shown a practical method for detecting vacuity and generating interesting witnesses
for w-ACTL formulas. As discussed above, the ability to detect vacuity and provide an
interesting witness are extremely important in the practical application of model checking
to industrial hardware designs.

162 BEER ET AL.

Although the definition of vacuity we have presented is simple and elegant, there is still
territory left uncovered. Pnueli [24] has suggested the following example: in a model M
such that M |= AGp, the formula AG AFp is valid, but our intuition tells us that the user
is somehow “missing the point”. A possible approach for solving this problem, is to refine
our definition of vacuity. Instead of checking whether a sub-formula can be replaced by any
other sub-formula, we will check whether it can be replaced by some “simpler” formula.
The term “simpler” is a vague notion, but there are some immediate examples: p is simpler
than AF(p), AG(p) is simpler than AF(p), and perhaps even AG(p)∨ AF(q) is simpler
than A[pUq].

A possible improvement could be done to the efficiency of vacuity checking. Instead
of using the model checker as a black box, devise efficient model checking algorithms
specifically for vacuity checking. A trivial enhancement would be to cache intermediate
results in the model checker, since all the vacuity checking formulas are very similar.

Note

1. Sugar is a syntactic sugaring of CTL [7] formulas, and is the specification language used by the RuleBase
formal verification tool. In [3] we outlined its basic features.

References

1. A.R. Anderson and N.D. Belnap, Jr., Entailment: The Logic of Relevance and Necessity, Princeton University
Press, Princeton, Vol. 1, 1975, Vol. 2 (with J. Michael Dunn), 1992.

2. D. Beatty and R. Bryant, “Formally verifying a microprocessor using a simulation methodology,” in Design
Automation Conference ’94, pp. 596–602.

3. I. Beer, S. Ben-David, C. Eisner, and A. Landver, “RuleBase: An industry-oriented formal verification tool,”
in Proc. 33rd Design Automation Conference 1996, pp. 655–660.

4. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity in ACTL formulas,” in CAV
’97, LNCS 1254, pp. 279–290.

5. M.C. Browne, E.M. Clarke, and O. Grumberg, “Characterizing finite Kripke structures in propositional tem-
poral logic,” Theoretical Computer Science, Vol. 59, No. 1–2, 1988, pp. 115–131.

6. F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, “On ACTL Formulas Having Deterministic Counterexam-
ples,” University of Technology Vienna Technical Report INFSYS RR-1843-99-01.

7. E.M. Clarke and E.A. Emerson, “Design and synthesis of synchronization skeletons using Branching Time
Temporal Logic,” in Proc. Workshop on Logics of Programs, Lecture Notes in Computer Science, Vol. 131
(Springer, Berlin, 1981) pp. 52–71.

8. E.M. Clarke and E.A. Emerson, “Characterizing properties of parallel programs as fixed-point,” in Seventh
International Colloquium on Automata, Languages, and Programming, Vol. 85 of LNCS, 1981.

9. E. Clarke, O. Grumberg, K. McMillan, and X. Zhao, “Efficient generation of counterexamples and witnesses
in symbolic model checking,” in Design Automation Conference 1995, pp. 427–432.

10. E.M. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.
11. E.A. Emerson and J.Y. Halpern, “‘Sometimes’ and ’Not Never’ revisited: On branching versus linear time

temporal logic,” Journal of the Association for Computing Machinery, Vol. 33, No. 1, pp. 151–178, 1986. .
12. O. Grumberg and D. Long, “Model checking and modular verification,” in J.C.M. Baeten and J.F. Groote,

(Eds), Procceedings of CONCUR ’91: 2nd International Conference on Concurrency Theory, Vol. 527 of
LNCS, 1991.

13. R. Hojati, R.K. Brayton, and R.P. Kurshan, “BDD-based debugging of designs using language containment
and fair CTL,” in CAV ’93, pp. 41–58.

EFFICIENT DETECTION OF VACUITY 163

14. O. Kupferman and M.Y. Vardi, “Vacuity Detection in Temporal Model Checking,” in CHARME 99, LNCS
1703, Springer-Verlag 1999.

15. R. Kurshan, Analysis of Discrete Event Coordination, LNCS 1990.
16. D. Long, “Model Checking, Abstraction and Compositional Verification,” Ph.D. Thesis, CMU, 1993.
17. Edwin D. Mares, “Relevance Logic,” The Stanford Encyclopedia of Philosophy, (Fall 1999 Edition), Ed-

ward N. Zalta (Ed.), URL=http://plato.stanford.edu/archives/win1999/entries/logic-relevance/.
18. K.L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
19. R. Milner. “An algebraic definition of simulation between programs,” in Proc. 2nd International Joint Con-

ference on Artificial Intelligence, British Computer Society, September 1971.
20. B. Plessier and C. Pixley, “Formal verification of a commercial serial bus interface,” in International Phoenix

Conference on Computers and Communications, 1995, pp. 378–382.
21. A. Pnueli, “A temporal logic of concurrent programs,” Theoretical Computer Science, Vol. 13, pp. 45–60,

1981.
22. A. Pnueli, “Linear and Branching Structures in the semantics and logics of reactive systems,” in Proc. 12th

Int. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Springer-
Verlag, 1985.

23. A. Pnueli, N. Shankar, and E. Singerman, “Fair synchronous transition systems and their liveness proofs,” in
A.P. Ravn and H. Rischel, (Eds), FTRTFT 98: 5th International School and Symposium on Formal Techniques
in Real-time and Fault-tolerant Systems, Lecture Notes in Computer Science, Springer-Verlag, 1998.

24. A. Pnueli, Question from the Audience, CAV ’97.
25. G. Shurek and O. Grumberg, “The computer-aided modular framework—motivation, solutions and evaluation

criteria,” in Workshop on Computer Aided Verification, 1990.

