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ABSTRACT In this paper, we propose a novel scheme for physical-layer network coding (PNC) in multiway

relay channels (MWRC) from the perspective of sequential multiuser detection. We consider an uplink

MWRC scenario where N users, each equipped with a single antenna, simultaneously transmit their signal

to a relay equipped with K antennas (K < N ). Extraction of the network codes from the superimposed user

signals at the relay node is formulated as an under-determined linear system. To solve this problem with

low decoding complexity, the proposed method combines successive interference cancellation (SIC) with

Babai estimation for regularized integer least squares (ILS). Specifically, SIC decoding is first employed

to detect a selected subset of stronger user signals and remove their interfering effects. Babai estimation

is then applied to extract the remaining user signals, which is formulated as an ILS problem with reduced

dimension. We develop a power allocation scheme to enhance the performance of both SIC and ILS steps,

and discuss an optimal user pairing strategy based on the average decoding error probability. Numerical

results demonstrate the performance improvement of the proposed method in extracting network codes from

multiple superimposed user signals.

INDEX TERMS Babai estimation, multiway relay channel (MWRC), physical-layer network coding (PNC),

successive interference cancellation (SIC).

I. INTRODUCTION

Physical-layer network coding (PNC) [1], [2], which exploits

the broadcast nature of wireless channels to improve the net-

work throughput, has drawn considerable attention in recent

years [3]–[5]. In a classic half-duplex two way relay channel

(TWRC) scenario, two end users attempt to exchange infor-

mation with the help of a relay. In contrast to the conven-

tional network coding (NC) scheme [6], [7], which requires

2 time slots for up-link and 1 time slot for downlink trans-

missions [8], PNC in TWRC only consumes 2 time slots in

total. By exploiting the additive nature of electromagnetic

(EM) waves at the physical layer, PNC allows users to send

signals simultaneously to the relay using only 1 time slot.

After extracting and decoding the superimposed user signals,

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Bai .

the relay encodes this information into an NC signal and

broadcasts it in a subsequent time slot. Upon reception of

the broadcast NC signal, each user decodes the desired signal

from the other user by employing its self-information. Com-

pared with the conventional NC scheme, PNC leads to a 33%

throughput improvement. Hence, it provides an appealing

solution to meet the exacting demands of various applications

envisaged for 5th generation (5G) wireless networks and

beyond, such as streaming 4K video, machine-to-machine

communications, on-line cloud sharing, etc. [9]–[12]. To take

full advantage of PNC for these applications, several studies

have been carried out with focus on specific TWRC issues,

such as: the design of symbol mapping [13], [14], the effect

of time or phase synchronization [15]–[19] , and channel

estimation [20]–[22].

As a natural extension to TWRC, the use of PNC in multi-

way relay channels (MWRC) [23], wheremultiple users share
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information through a single relay, has been less studied. The

superposition of multiple, say N > 2, user signals at the relay

increases the difficulty of extracting network codes due to the

mutual interference. The use of relay equipped with multiple

antennas, say K , provides a simple solution to the MWRC

problem since the spatial diversity can be exploited to dimin-

ish interference. Most of the literature on PNC in MWRC

[24]–[26] focuses on implementation scenarios where the

number of relay antennas is greater than the number of users,

i.e., K ≥ N . To some degree, this assumption defeats the

inherent idea behind PNC, i.e., that the boost in throughput

should result from natural coding in the wireless medium

rather than from the additional cost of space-time processing.

From this perspective, it would seem worthwhile to consider

the case K < N for PNC in MWRC, where the throughput

gain is not solely obtained by the spatial diversity.

To the best of our knowledge, only a limited number of

studies have addressed the problem of PNC in MWRC in the

case K < N . In [27], the multiway relay network is decom-

posed into smaller building blocks, or atoms, over which

existing TWRC techniques can be applied. In [28], a similar

concept is considered where an opportunistic transmission

protocol selects pairs of users for sequential transmission.

Nonetheless, these approaches require at least N − 1 time

slots for up-link transmission in an N -way relay channel.

In [29], constellation design for simultaneous transmission

of user signals in MWRC is formulated as a constrained

optimization, where the aim is to maximize the minimal

distance among the set of network coded symbols. However,

this scheme is designed for AWGN channels where the mul-

tiple user signals barely suffer from channel distortions and

their constellations are correctly superimposed at the relay.

Aside from the intricate design, the scheme’s complexity also

increases rapidly when the number of users or the modula-

tion order becomes large. In general, we find that existing

approaches to the multiway PNC problems tend to follow

concepts advanced for TWRC PNC, and rely on directly

obtaining network codes from the superimposed signals at

the relay. However, unlike the TWRC scenario, this task

becomes extremely challengingwhen the number of colliding

signals increases, requiring: the use of special scheduling

via the decomposition of the network into smaller subnets,

mitigation of the multiuser interference for each code extrac-

tion, or complicated signaling designs allowing the relay

to unambiguously resolve codewords from a large superim-

posed constellation. Consequently, these approaches often

turn out to either have limited efficiency or suffer from high

complexity.

In this paper, we propose a novel scheme for PNC in

MWRC, aiming to address these challenges from a differ-

ent perspective, i.e. sequential multi-user detection (MUD).

The benefits of doing so are twofold: 1) we still treat the

MWRC as a natural encoder within the wireless medium,

which is consistent with the inherent idea of PNC; 2) the

use of MUD offers a powerful framework for the extrac-

tion of the network codes with relatively low complexity.

To be specific, we consider an uplink MWRC scenario where

N users, each equipped with single antenna, simultaneously

transmit signals to a relay equipped with K antennas, with

emphasis on the case K < N . In contrast to existing

approaches which seek to directly obtain the network codes

from the superimposed user signals at the relay, we formulate

this problem as an under-determined linear system in terms of

the user symbols (fromwhich the network codes can be easily

obtained). To solve this problem with low decoding complex-

ity, the proposed method combines successive interference

cancellation (SIC) with Babai estimation [30] for regularized

integer least squares (ILS). Specifically, SIC decoding is

first employed to estimate a selected subset of stronger user

signals and remove their interfering effects. Babai estimation

is then applied to provide a solution to an ILS problem with

reduced dimension, allowing the extraction of the remaining

weaker user signals. We develop a power allocation scheme

to enhance the performance of both the SIC and ILS detection

steps, and discuss the optimal user pairing strategy based on

the average decoding error probability. Through simulations,

it is shown that the proposed method can lead to notable

performance improvement in the extraction of network codes

from superimposed user signals in MWRC.

The rest of the paper is organized as follows. The under-

lying MWRC system model is introduced in Section II.

The proposed scheme for PNC in MWRC is developed in

Section III by building on the SIC and regularized ILS prob-

lem formulations. The power allocation schemes for the SIC

and ILS steps, as well as the proposed user pairing strategy

are developed in Section IV. Supporting simulation results are

presented in Section V, followed by conclusion in Section VI.

Notations: We use bold lower-case and upper-case letters

for vectors and matrices, respectively. A = [aij]M×N denotes

anM×N matrix with aij as the (i, j)
th entry, while I and 0 are

identity and zero matrices of appropriate dimensions.AT and

AH denote the transpose and Hermitian transpose of a matrix

A. diag(d1, . . . , dn) returns a square diagonal matrix with

diagonal entries d1, . . . , dn. ||·|| and |·| refer to the Euclidean
norm of vectors and modulus of scalars, respectively.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a half-duplex multiway

relay network where N users share information with each

other through a common relay R. User terminals are equipped

with single antenna while the relay is equipped with K < N

antennas.1 We assume that there is no direct link among

users, i.e., information exchange between two users needs

to go through the relay. We consider radio transmission over

narrow-band, i.e., frequency flat, slow fading channels. As a

common assumption adopted in most existing works on PNC

in TWRC [18], [31], perfect channel estimation and time

synchronization are available for any node in the network.

1 The use of K ≥ 2 makes it possible to exploit spatial diversity. While
K can take on any integer value, the main focus in this work is on the case
K < N .
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FIGURE 1. Illustration of the MWRC system model.

Data transmission proceeds in two stages, namely: multiple

access (MA) or up-link and broadcast (BC) or downlink.

A. MA STAGE

1) SIMULTANEOUS TRANSMISSION

In the MA stage, all users simultaneously transmit signals to

the relay so that only a single time slot is consumed. The

signal transmitted by the ith user is given by
√
Pisi, where

si is a discrete random modulation symbol with zero mean

and unit variance, while Pi is the allocated power to this user.

To simplify the exposition, binary phase shift keying (BPSK)

modulation is assumed, i.e., si ∈ {−1,+1}, although gen-

eralization to other symbol constellations are possible. The

superimposed signals received at the relay are represented by:

y = HAs+ nR, (1)

where y = [y1, . . . , yK ]
T ∈ C

K×1 is the vector of

received signals at the relay antennas, s = [s1, . . . , sN ]
T ∈

{−1,+1}N×1 is the vector of user symbols, H =
[h1,h2, . . . ,hN ] ∈ C

K×N is the channel matrix with column

hi ∈ C
K×1 representing the channel vector between the ith

user and the relay, A = diag(
√
P1,
√
P2, . . . ,

√
PN ), and

nR ∈ C
K×1 is an additive noise vector with zero mean and

covariance matrix σ 2I.

2) RELAY DETECTION AND NETWORK CODING

After the transmission, the relay generates N − 1 valid code-

word by selecting N − 1 pairs of users and assigning to each

pair a network code based on the received signal vector y.

Different strategies are possible for the selection of the

N − 1 user pairs [32], represented by (i, j) where i, j ∈
{1, 2, . . . ,N }, i < j. In the sequel, we denote by C the selected

set of N − 1 signal pairs. For instance, a straightforward

approach consists in forming pairs by sequentially selecting

neighboring user signals, i.e.:

Cseq = {(i, i+ 1) | i = 1, 2, . . . ,N − 1}. (2)

Alternative strategies that lead to improved performance are

considered in Section IV-D.

For each pair (i, j) ∈ C, the next step consists in estimating

the selected user signals si and sj. To elucidate this step, let

us expand (1) as follows:

y=
(

hi
√

Pisi+hj
√

Pjsj

)

︸ ︷︷ ︸

desired signals

+
(

∑N

m=1
m/∈{i,j}

hm
√

Pmsm+nR
)

︸ ︷︷ ︸

interference+noise

, (3)

where the first term contains the desired signal pair while

the second term represents multi-user interference and noise.

Based on (3), in the literature on PNC, estimation of the

desired signal pair is typically formulated as a constrained

least-squares problem, i.e.:

{ŝi, ŝj}=arg min
si,sj∈{−1,+1}

||y−hi
√
Pisi − hj

√

Pjsj||2. (4)

Clearly, the multi-user interference may severely degrade the

quality of these estimates when N increases.

At last, a valid network code is generated for each pair of

estimated signals by applying a so-called mixing function,

represented by sij = φ(ŝi, ŝj), where sij denotes the resulting
network code. A common choice of mixing function φ(·),
which is used in this work for simplicity, is the bit-wise

modulo-2 sum on the logical values of the estimated signals.

Equivalently, this corresponds to multiplication in the finite

field {−1,+1}, i.e.:
sij = φ(ŝi, ŝj) = ŝiŝj. (5)

Consequently, by proceeding in this manner for every

selected pair (i, j) ∈ C, a finite sequence of N − 1 codewords

is generated, i.e., {sij}(i,j)∈C .

B. BC STAGE

During this stage, the relay broadcasts the network codes

in {sij}(i,j)∈C to the users. Since any uplink performance

gain or loss will be accordingly passed on to the BC stage,

the choice of the downlink transmission approach does not

directly affect the performance evaluation of the detection

schemes at the relay. For simplicity, we therefore consider

a conventional scheme for the BC stage, namely, sequential

broadcast using one time slot per code so thatN−1 time slots

are needed for a complete broadcast of the code sequence.

Specifically, if sij is broadcast in a given time slot, the signal

received at user m is given by:

rm = gm
√

Prsij + nm, (6)

where Pr is the total transmit power of the relay, gm ∈ C

is the downlink channel gain, and nm ∈ C is the downlink

noise. The channel gain gm includes the combined effect of

beamforming or pre-coding at the relay followed by parallel

transmission from the K relay antennas to user m. Under the

slow fading assumption, gm remains constant during the BC

stage.

Based on the observation of rm in the corresponding time

slot, user m obtains an estimate of sij (which we assume

error-free for simplify). Once the broadcast phase is com-

pleted after N − 1 time slots, user m stores the detected

code sequence {sij}(i,j)∈C and then uses its self-information

sm to obtain the complete signal vector s. For instance,
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if C = Cseq, user m obtains s by iteratively recovering each

user signal from the detected sequence {sij}(i,j)∈Cseq , which is

described as:

sk+1 = φ(sk,k+1, sk ), for k = m,m+ 1, . . .N − 1

sl−1 = φ(sl−1,l, sl), for l = m,m− 1, . . . 2 (7)

where the initial input sm is the self-information of user m.

An example of such process is presented in Fig. 2. For the

recovery to be effective, the selection strategy (i.e., set C)

must guarantee that all user signals are retrievable at an arbi-

trary user terminal. If C is not well designed, e.g., replacing

(3, 4) by (1, 3) in Cseq, the code sequence is invalid since the

signal vector s can not be fully recovered in the BC stage.

FIGURE 2. Example of the iterative recovery process for Cseq at user 3.
User 3 first uses its self-information to decode s2 and s4 and then detects
s1 and s5.

III. THE PROPOSED METHOD

According to (3)-(4), the presence of multi-user interference

in the superimposed signals at the relay decreases the reliabil-

ity of the estimated network codes {sij}(i,j)∈C , especially when
N is large. In this section, we discuss methods to overcome

this issue with the relay detection by first investigating the

SIC process, Babai estimation for ILS, and the regularized

ILS.We then develop the proposed method to resolve the user

symbols from the superimposed signals in the MA stage.

A. SUCCESSIVE INTERFERENCE CANCELLATION

SIC can be used at the relay to mitigate the interfering effect,

by discriminating signals on the basis of their relative power

levels. Specifically, the user signal with the largest received

power is first detected and its interfering effect removed from

the observation; the detection then proceeds sequentially to

the next strongest signal. SIC will be used here as a prelimi-

nary step to remove part of the multi-user interference in (4),

thereby facilitating the subsequent estimation of weaker sig-

nals by a more sophisticated ILS technique.

Under the assumption of known channel state information

and power allocation scheme,2 let us arrange the user signals

2Power allocation is discussed in detail in Section IV.

in ascending order of their received power at the relay. That

is, define ̺i = ||hi||2 Pi and assume that ̺i < ̺j, ∀i < j.

Also let γi denote the signal-to-noise-plus-interference ratio

(SINR) under the assumption of perfect signal cancellation at

each iteration of the SIC process, i.e.:

γi =
̺i

∑

j<i ̺j + σ 2
. (8)

Using this notation, the SIC detection can be described by

Algorithm 1, where γo is a threshold for detection. At the

ith iteration, when γi > γ0 the algorithm detects the dom-

inant user signal si as the solution of LS problem (9) and

then cancels its effect from the current observation vector

in (10). Ideally, this process repeats for each iteration until

the weakest signal s1 is detected. Hence, with a proper power

allocation scheme, an estimated signal vector consisting of all

user symbols can be detected, as given by ŝ = [ŝ1, . . . , ŝN ]
T .

Algorithm 1 SIC

1: i = N , y(i)← y

2: while i ≥ 1 do

3: if γi > γ0 then

4: Detecting si from y(i):

ŝi← arg min
ξ∈{−1,+1}

||y(i) − hi
√

Piξ ||2. (9)

5: Removing influence of si:

y(i−1)← y(i) − hi
√

Piŝi. (10)

6: else Break while

7: end if

8: i = i− 1.

9: end while

Note that the SIC process does not depend on the number

of relay antennas K . Algorithm 1 is thus always executable

as long as the condition on γ0 is satisfied. In theory, this

process can recover the user signals at the relay for systems

with arbitrary dimensions including underdetermined ones,

i.e., N > K . In practice, however, the estimation accuracy of

ŝi highly depends on the relative strength of the term hi
√
Pisi

in y(i) at each iteration. Specifically, the accuracy of ŝ depends

on the power difference among the received user signals at

the relay. With a given power limit PT on the user terminals

(i.e., Pi ≤ PT ) and fixed channel gains, when the number

N of the colliding user signals increases, the conditions for

successful application of SIC cannot be maintained. Either

the power difference between user signals is too small or the

weaker signals are dominated by noise and interference.

To overcome this critical dilemma, we propose to use a com-

plementary ILS-based solution for the detection of weaker

signals.

B. BABAI ESTIMATION FOR OVERDETERMINED ILS

MUD in linear systems can also be achieved by solving

an ILS problem for the unknown user signals [33]–[36].
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Specifically, upon receiving the superimposed signal vector y

in (1), the relay may attempt to solve the following problem:

min
s∈B
||y−HAs||2, (11)

whereB is the constraint set of the transmitted signal vector s.

Here, B is determined by the constellation of user signal

symbols, i.e., B = {−1,+1}N . A solution to (11) can

be obtained by the reduction and search processes. When

the system is overdetermined,3 i.e., K ≥ N , matrix H can

be reduced by an QR decomposition with column pivoting,

written as:

H5 = [Q1,Q2]

[

R

0

]

= Q1R (12)

where 5 is a permutation matrix of order N decided by

algorithms such as LLL-P, V-BLAST, or SQRD (see [34] and

the references therein), Q = [Q1,Q2] ∈ C
K×K is unitary,

andR ∈ C
N×N is upper triangular. The reduced ILS problem

is expressed as:

min
s̄∈B
||ȳ− R̄s̄||2 (13)

where ȳ = Q1
Hy, R̄ = R5HA5, and s̄ = 5H s. For

later convenience, we define the permuted matrix Ā =
5HA5 = diag(

√

P̄1, . . . ,
√

P̄N ), where P̄i denotes the power

allocated to s̄i. Note that the optimization problem (11) is

NP-hard. To efficiently find a reasonable estimate of s̄, a sub-

optimal solution called the Babai point s̄B is of interest instead

[34], [37]. The determination of s̄B involves a sequence of

element-wise (binary searches) where at each step, starting

from the bottom row of ȳ − R̄s̄ and moving up, previously

detected signals are canceled followed by nulling of the resid-

ual. This process can be described as follows:

s̄i =
⌊

(ȳi −
N

∑

j=i+1
r̄ijs̄j)/r̄ii

⌉

, (14)

for i = N , . . . , 1, where ⌊·⌉ denotes the nearest integer in

{−1,+1}. The Babai point for estimating s is thus sB = 5s̄B.

C. FORMULATION OF REGULARIZED ILS

According to (14), Babai estimation finds a solution to the

problem (11) for the over-determined system, i.e., when

K ≥ N ; however, it fails for the under-determined system,

i.e., when K < N . In such a case, (12) generates a K × N

upper-trapezoidal matrix R that has N − K + 1 nonzero

entries in the K th row. The additional non-zero terms create

difficulties in the successive estimation of s̄i for i = N , . . . ,K

in (14). Specifically, following the QR decomposition of (1),

we obtain:

ȳi = r̄iis̄i +
N

∑

j=i+1
r̄ijs̄j + n̄i, (15)

where n̄i is the ith entry of n̄ = QH
1 nR. The interfering

term
∑N

j=i+1 r̄Kjs̄j in (15) causes error propagation in the

3An overdetermined system is often defined as one for which K > N ;
however, to simplify the presentation, we include the case K = N as part of
this condition.

successive estimation process, undermining the reliability of

the estimates s̄i.

To overcome this problem, we can regularize the cost

function in (11) and formulate the regularized problem as an

over-determined system with extended dimensions, to which

(14) can be applied. Specifically, the ILS problem (11) is

equivalent to:

min
s∈B
||y−HAs||2 + λ||As||2, (16)

where λ > 0 is a regularization parameter. Since ||As||2 is

constant under the constraint s ∈ B, if s∗ is the optimal

solution to (11), it is also the solution to (16). Once λ is

determined, problem (16) can be formulated as:

min
s∈B
||y̆− H̆As||2, (17)

where y̆ = [yT , 0TN×1]
T and H̆ = [HT ,

√
λIN×N ]T . Since the

dimension of H̆ is extended to (K+N )×N , Babai estimation

can be applied directly to solve (17). We thus can obtain

a reduced system similar to (13) , but with corresponding

variables given by ȳ = Q̆H
1 y̆, R̄ = R̆5̆HA5̆, s̄ = 5̆H s,

where matrices Q̆ = [Q̆1, Q̆2], R̆ and 5̆ now refer to the QR

decomposition of H̆ as in (12).

The regularization parameter λ, whose choice is usually

related to the noise variance σ 2, affects the efficiency of

general search algorithms such as sphere decoding [38], [39].

In the context of Babai estimation, the regularized system

corresponding to (16) is written as:
[

y

0

]

=
[

H√
λI

]

As+
[

nR

−
√
λAs

]

. (18)

Since the noise and the signal vectors nR and s are indepen-

dent, n̆R = [nTR , (−
√
λAs)T ]T has the covariance matrix 6̆ =

diag(σ 2, . . . , σ 2, λP1, . . . , λPN ). After the QR reduction, the

variance of the ith entry of n̄ = Q̆H
1 n̆R is a weighted arithmetic

mean of the diagonal entries of 6̆, given by:

q̆Hi 6̆q̆i =
K

∑

j=1
q̆2ijσ

2 +
N−K
∑

l=1
q̆2i,K+lλPl, (19)

where q̆i is the i
th column vector of Q̆1. On the one hand,

a small value of λ is desirable to reduce the noise variance

and its harmful effects on the estimation accuracy. On the

other hand, too small a value of α can make the matrix H̆

ill-conditioned, which may create numerical instability in

the estimation process. In practice, we find that λ should

be chosen so that the noise variances for n̄ and nR are on

the same level. In light of the power constraint Pi ≤ PT
and considering the variance expression in (19), we adopt

λ = σ 2/PT as the regularization parameter for the Babai

estimation in this paper.

D. THE PROPOSED ALGORITHM

There still remain some issues regarding SIC and Babai

estimation. As pointed out earlier, under power constraint on
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the user terminals, i.e. Pi ≤ PT , the performance of SIC

will degrade as N increases. Besides, the ILS regularization

in (16) is achieved via the introduction of a non-informative

term λ||As||2, which is equivalent to the injection of extrane-
ous noise in an augmented system as seen in (18)-(19). When

N ≫ K , this noise becomes a dominant factor in the solution

of (17), which ultimately limits the ability of Babai estimation

to resolve the user signals.

To overcome these problems, we propose a new algorithm

that combines SIC and Babai estimation to efficiently solve

problem (11) in the under-determined case K < N . The

algorithm derivation relies on two main ideas. First, we note

from (15) that after the QR decomposition, there only remain

N −K +1 superimposed users signals in ȳK , instead of the N

original signals. From the perspective of SIC, this operation is

beneficial since it allows for larger power differences among

the remaining signals. This suggests that we only apply SIC to

extract {s̄i|i = K , . . . ,N } from ȳ, thereby taking advantage of

the reduced number of colliding signals. Second, if a portion

of the user signals, say N − L > 0, can be removed from

the detection before the application of Babai estimation, this

will reduce the regularized system dimension, i.e., lessen the

gap between N and K from N − K to L − K . Consequently,

this will limit the harmful effects of the non-informative

term λ||As||2 on the solution of the regularized ILS problem,

as discussed above.

To be specific, the proposed algorithm, which is presented

as Algorithm 2, starts with a QR reduction of the original

system (11). Under the assumption K < N , this yields:

ȳ = QH
1 y, Ā = 5HA5, R̄ = RĀ, (20)

where Q = [Q1] ∈ C
K×K is unitary and 5 is a permutation

matrix of orderN so that |r̄K ,i| ≤ |r̄K ,j|, ∀i < j ∈ {K , . . . ,N }.
The original system is now reduced to (13) where s̄ = 5H s.

The SIC detection is then executed, aiming to resolve the

last N −K + 1 signals {s̄i|i = K , . . . ,N } of s̄ from ȳK . Let γi
denote the SINR at iteration i, and let L denote the first value

of i, as this index decreases from N to K , at which the condi-

tion on the required SINR for SIC deteciton is no longer met,

i.e. γL < γ0 for some threshold γ0. At this point, the SIC pro-

cess is interrupted and we set s̄L = [01×L , s̄L+1, . . . , s̄N ]T .
The algorithm then cancels the effect of the detected signals

in s̄L from ȳ and generates related quantities as follows:

yT = ȳ− R̄s̄L , sT = Ts̄

HT = RTT , AT = TĀTT (21)

where T = [IL , 0L×(N−L)] is a truncation matrix.

The above steps lead us to the following truncated ILS

problem with reduced dimension:

min
sT∈{−1,+1}L

||yT −HTAT sT ||2, (22)

where the aim is to determine the remaining user signals in sT .

If L = K , the problem is overdetermined (see footnote 3) and

Babai estimation as described in (14) can be applied directly

to (22). If L > K , however, the truncated problem is under-

determined and ILS regularization of (22) is needed prior to

Babai estimation.

Proceeding as in Section III-C, we define:

y̆T = [yTT , 0
T
L×1]

T , H̆T = [HT
T ,
√
λIL ]

T . (23)

We next perform theQRdecomposition of H̆T , which gives

the unitary matrix Q̆T = [Q̆T1, Q̆T2] ∈ C
(K+L)×(K+L), the

permutation matrix 5̆T of order L based on the CH algorithm

in [33], and the upper triangular matrix R̆T = Q̆H
T1H̆T 5̆T ,.

With the help of this decomposition, the regularized system

is reduced to

min
s̄T∈{−1,+1}L

||ȳT − R̄T s̄T ||2, (24)

where s̄T = 5̆H
T sT and

ȳT = Q̆H
T1y̆T , R̄T = R̆T ĀT , ĀT = 5̆TAT 5̆

H
T (25)

At this point, Babai estimation can be applied to solve (24).

IV. POWER ALLOCATION AND USER PAIRING

In this section, a power allocation scheme for the proposed

method that combines Babai estimation and SIC is developed.

An optimal selection strategy for user pairs is also presented

based on the decoding error probability.

A. POWER ALLOCATION FOR BABAI ESTIMATION

The comprehensive performance analysis of Babai estima-

tion for overdetermined ordinary and box-constrained ILS

problems can be found in [33], [34], [40]. Key results from

these studies indicate that in the absence of a power allo-

cation mechanism and when the noise level is small, the

success probability, i.e., Pr(sB = s) where sB is the Babai

point, is upper bounded by a function of the determinant

of the upper triangular factor from the QR decomposition

(see (11)-(12)). Furthermore, the upper bound is reached if

the diagonal entries of this matrix factor are identical.

In the context of Algorithm 2, Babai estimation is applied

to (24) where the upper triangular matrix R̄T (following the

QR decomposition of H̆T ) is given by:

R̄T = R̆T ĀT =








√

P̄′1r̆11 . . .

√

P̄′
L
r̆1,L

. . .
...

√

P̄′
L
r̆L ,L







, (26)

where ĀT = diag(

√

P̄′1, . . . ,
√

P̄′
L
) is the corresponding

power allocation matrix of s̄T after the permutation 5̆T .

According to the stated property of the success probability,

it is desirable that the diagonal entries of R̄T be equal, i.e.:

P̄′i|r̆ii|2 = η, ∀i ∈ {1, . . . , L}, (27)

where η is a constant. However, when considering the power

constraint on the user terminals, i.e. P̄′i ≤ PT , power allo-

cation based on (27) is not always practical. Indeed, when
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Algorithm 2 The proposed algorithm

1: procedure QR-factorization:

2: Input: H, A, y.

3: QR decomposition: [Q,R,5] = qr(H)

4: Return: ȳ, Ā, R̄. ⊲ Refer to (20)
5: end procedure

6: procedure Partial detection using SIC

7: Initialize: i = N , ȳ(i)← ȳK .

8: while i > K do

9: if γi ≥ γ0 then
10: Detect s̄i from y(i):

s̄i← arg min
ξ∈{−1,+1}

|ȳ(i) − r̄K ,iξ |2.

11: Cancel the effect of s̄i:

ȳ(i−1)← ȳ(i) − r̄K ,is̄i.

12: else Break while

13: end if

14: i = i− 1.

15: end while

16: Return L = i, s̄L = [0, s̄L+1, s̄L+2, . . . , s̄N ]T .
17: Removing the effect of s̄L .

18: Obtain: yT , HT , AT . ⊲ Refer to (21)
19: end procedure

20: procedure regularized ILS

21: Regularization of the truncated system.

22: Obtain: y̆T , H̆T ⊲ Refer to (23)
23: QR reduction of the regularized ILS system.

24: Obtain: ȳT , R̄T , ĀT ⊲ Refer to (25)
25: Apply Babai estimation to solve:

min
s̄T∈{−1,+1}L−1

||ȳT − R̄T s̄T ||2

⊲ Refer to (14)
26: Return: s̄T
27: end procedure

matrix R̆T is ill-conditioned, i.e. max{|r̆ii|}/min{|r̆ii|} ≫ 1,

the fulfillment of (27) for larger |r̆ii| requires the transmitted

power P̄′i needs to be very small, causing the additive noise to

become overwhelming during the detection.

Instead of equalizing the diagonal entries of R̄T , we could

try to maximize the signal-to-noise ratio (SNR) of each

received user signal. Assuming perfect cancellation at each

iteration of the Babai estimation, the SNRof the ith user signal

in s̄T is given by:

ρi = P̄′i|r̆ii|2/σ 2
i , i = 1, . . . , L , (28)

where σ 2
i is the noise variance after the regularization and

the QR reduction, which is given by σ 2
i = q̆HT1i6̆T q̆T1i,

where 6̆T = diag(σ 2, . . . , σ 2, λP̄1, . . . , λP̄L ) and q̆T1i is the

ith column vector of Q̆T1 in (25). While the SNR in (28) is

maximized by allocating maximum power to each user, i.e.

P′i = PT , this approach cannot be employed here. Indeed,

we note from (15) that some of the user signals contained in

sT , specifically s̄i for i = K , . . . ,L, will interfere during the

SIC process of Algorithm 2, which is aimed at removing the

last N − L signals in s̄L from ȳ prior to the Babai estimation.

Hence, the elaboration of an adequate power allocation also

requires consideration of the SIC process, which is discussed

in next.

B. POWER ALLOCATION FOR SIC

Let’s consider the power allocation for the user signals

detected during the SIC process, i.e., {s̄i| i = L + 1, . . . ,N }.
Referring to (8), (20) and the SIC procedure in Algorithm 2,

the SINR of s̄i is given by:

γi =
P̄i|rK ,i|2

∑i−1
j=K P̄j|rK ,j|2 + σ 2

, (29)

where the noise variance σ 2 is preserved by the unitary

transformation Q1. Assuming perfect interference removal,

a reliable estimate of s̄i is achieved if it is sufficiently stronger

than the remaining interference plus noise. This requires γi
to exceed a given threshold, say γi ≥ γ0, i = L + 1, . . . ,N .

On the one hand, the greater the value of γi, the more reliable

is the estimate of s̄i is. On the other hand, each s̄i (except

for s̄N ) is seen as interference to its predecessors in the SIC

process, suggesting that γi for i = L + 1, . . . ,N − 1 be also

restrained. Considering this trade-off, a suitable approach for

the selection of the powers P̄i under the constraint P̄i ≤ PT ,

is to maximize the minimum value of γi [41]. The problem

can be formulated as:

max
{P̄i}Ni=L+1

min {γi| i = L + 1, . . . ,N } (30a)

s.t. P̄i ≤ PT , i = L + 1, . . . ,N , (30b)

where in this discussion, the values of P̄K , . . . , P̄L are

assumed to be fixed. We find that the direct solution of

such a maximin problem is quite challenging. Alternatively,

we therefore replace problem (30) by the following more

tractable form, where the goal is to maximize a lower bound

on the SINRs γi:

max
{P̄i}Ni=L+1,γ

γ (31a)

s.t.
P̄i|rK ,i|2

∑i−1
j=K P̄j|rK ,j|2 + σ 2

≥ γ, (31b)

P̄i ≤ PT , i = L + 1, . . . ,N . (31c)

To solve problem (31), we first express constraint (31b)

into the following form:

P̄i|rK ,i|2 ≥ γ (
i−2
∑

j=K
P̄j|rK ,j|2 + σ 2 + P̄i−1|rK ,i−1|2) (32)

where the last term is constrained as:

P̄i−1|rK ,i−1|2 ≥ γ (
i−2
∑

j=K
P̄j|rK ,j|2 + σ 2). (33)
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Substituting (33) into (32) and proceeding iteratively for i =
N , . . . ,L + 2, we obtain a relaxed set of conditions:

P̄i|rK ,i|2 ≥ γ (γ + 1)i−L−1ς2, i = L + 1, . . . ,N , (34)

where

ς2 =
L

∑

j=K
P̄j|rK ,j|2 + σ 2 (35)

is the variance of the interfering terms from the perspective

of s̄L+1. For the largest value of γ satisfying each inequality

in (34), we have:

P̄i|rK ,i|2 = γ (γ + 1)i−L−1ς2, i = L + 1, . . . ,N . (36)

Since P̄i|rK ,i|2/P̄i−1|rK ,i−1|2 = γ + 1 > 1, we infer that

P̄i|rK ,i|2 is decreasing as index i runs from N to L + 1. Note

that signal s̄N is the first one to be canceled and hence does not

interfere with the detection of the remaining signals. For this

reason, the maximum power can be assigned to this signal,

i.e., P̄N = PT , such that:

PT |rK ,N |2 = γ (γ + 1)N−L−1ς2, (37)

from which γ can be obtained.

C. POWER ALLOCATION FOR PROPOSED ALGORITHM

Referring to (25)-(24), let us represent permutation matrix

5̆T of order L by a bijection π of {1, . . . ,L} onto itself,

mapping index i of sT to index j = π (i) of s̄T , so that

s̄i = s̄Tj and accordingly, P̄i = P̄′j. Since the signals s̄i for i =
K , . . . ,L are detected as part of the Babai estimation process,

it is desirable for their SNRs to be as large as possible. This

suggests that the value of ς2 in (35), which involves P̄i for

i = K , . . . , L , can not be too small. However, considering

(37), we see that under a power constraint, this requirement

on ς2 conflicts with that of maximizing γ .

To overcome this difficulty, we modify the single objective

problem (31) into a multi-objective optimization problem

over γ for the SIC process and ρi, i = 1, . . . ,L, for the Babai

estimation. The modified problem is formulated as:

max
{P̄i}Li=1,γ

[γ, ρ1, . . . , ρL], (38a)

s.t. P̄T |rK ,N |2 = γ (γ + 1)N−L−1ς2 (38b)

P̄i ≤ PT , for i = 1, . . . , L , (38c)

where ς2 is given in (35) and P̄i = ρjσ 2
j /|r̆jj|2 with j = π (i).

There exist several approaches [42] to solve the multi-

objective problem (38). Here, we adopt the weighted-sum

method, which aggregates the multiple objectives into a sin-

gle objective via a linear combination with positive weight.

Since all user signals are of equal importance in the network

coding process, it is fair to consider that variables γ and ρi
are also equally important. In addition, γ has an influence on

the detection performance of N − L user signals. Hence, we

assign the weight N − L to γ and a unit weight to each ρi for

i = 1, . . . ,L. The problem (38) is then converted into:

max
{P̄i}Li=1,γ

(N − L)γ +
L

∑

j=1
ρj (39a)

s.t. P̄T |rK ,N |2 = γ (γ + 1)N−L−1ς2, (39b)

P̄i ≤ PT , for i = 1, . . . , L . (39c)

Since problem (39) involves a single objective with non-

linear constraint, a standard nonlinear programming solver

can be applied to obtain the solution, denoted as {P̄∗i }Li=1
and γ ∗. The power allocation in terms of P̄i is thus given as:

P̄i=
{

P̄∗i , i = 1, . . . , L

γ ∗(γ ∗+1)i−L−1ς∗2/|rK ,i|2, i= L+1, . . . ,N ,
(40)

where ς∗2 =
∑

L

i=K P̄
∗
i |rK ,i|2+ σ 2, and γ0 = γ ∗ is set as the

threshold for stopping the SIC process. Finally, the desired

powers Pi of the transmitted signals in (1) can be obtained

by applying an inverse permutation of 5 in (20) to P̄i for

i = 1, . . . ,N .

D. USER PAIRING STRATEGY

As explained in Section II, the detected user signals at the

relay need to be encoded into network codes. The pairing

strategy, represented by the set C of pairs (i, j), will influence

the decoding performance of user terminals in the BC stage.

For this reason, it is worth considering an optimal selection

strategy for the user pairs at the relay.

FIGURE 3. Illustration of the tree structure of the sequential pairing
strategy Cseq in a 6-way relay network. The graph demonstrates a process
where user 3 decodes all other user signals by proceeding through the
branches in two directions.

From the perspective of graph theory, a valid strategy C

can be represented as a tree, where the N users and the N − 1

user pairs form the vertices and edges respectively, and each

pair of vertices in the tree is connected by a unique path.

Taking a 6-way relay network as an example, the graph of

a sequential pairing strategy Cseq (see (2)) takes the form of

the tree depicted in Fig. 3. The iterative decoding process in

a specific user terminal, as given by (7) for Cseq, is equivalent

to a walk in tree, starting from the vertex of that user, and

progressing towards the other users. In general, when a user

terminal i decodes the signal of a user j, the corresponding

path along the tree C is given by:

L(i,j) = {(i, a), (a, b), . . . , (d, j)} ⊂ C, (41)

where a, b, . . . , d represent the intermediate vertices.
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Let us denote by ψij the decoding error probability of

signal sj in user terminal i. Essentially, ψij depends on the

network codes sαβ , where (α, β) ∈ L(i,j). The reliability of

sαβ is related to both up-link and down-link transmissions,

which can be characterized by error probabilities ψul
(α,β) and

ψ
dl,i
(α,β) respectively. For binary signaling, a correct code sαβ

is generated in the MA stage when two correct or two

wrong decisions are made on sα and sβ . Hence, ψ
ul
(α,β) can

be expressed as:

ψul
(α,β) = ψeα(1− ψeβ )+ ψeβ (1− ψeα), (42)

where ψeα and ψeβ represent the error probabilities for the

estimation of signals sα and sβ at the relay. The probability

ψ
dl,i
(α,β) is determined by the quality of the link from the relay

to user i during the BC stage, as represented by (6). Under the

slow fading assumption for the downlink channels, the error

probabilities ψ
dl,i
(α,β) can be regarded as identical for different

edges (α, β) ∈ L(i,j).

We note that an odd number of incorrect codes along

L(i,j) leads to a wrong decision on sj, while an even number

leads to a right decision. Hence, obtaining the exact value of

ψij requires a careful consideration of the error propagation

effects which entails high computational costs. For simplic-

ity, we approximate these effects by adopting a high SNR

assumption as proposed in [43], i.e., ignoring even numbers

of propagated errors whose small probabilities have negligi-

ble influence on ψij. Numerical results later demonstrate that

our approximation approach has a comparable effect to that

observed in [43]. Assuming independence of the uplink and

the downlink transmissions, ψij is hence given by:

ψij = 1−
∏

(α,β)∈L(i,j)

(1− ψul
(α,β))(1− ψ

dl,i
(α,β)). (43)

For a given pairing strategy C , the average decoding error

probability can be expressed as:

ψavg
e = 1

N 2 − N

N
∑

i=1

N
∑

j=1,j 6=i
ψij, (44)

where ψij is given by (43). Finally, an optimal strategy C∗

can be found by an extensive search over all valid pairing

strategies C so that the minimum ψ
avg
e is achieved:

C
∗ = argmin

C
ψavg
e . (45)

In (45), the search space consists of all the spanning trees

of a simple undirected connected graph on N vertices [44],

the size of which is determined by Cayley’s Formula [45].

In this work, the various error probabilities entering the calcu-

lation of the objective (44) are obtained through a simulation

approach.

V. SIMULATION EXPERIMENTS AND DISCUSSIONS

This section presents numerical evaluation results of the

proposed scheme for PNC in MWRC. To this end, we use

Monte Carlo experiments based on the following system con-

figuration. BPSK signaling is adopted at both the relay and

the user terminals, whose maximum transmitting power is

normalized to PT = 1. We assume the various radio links to

be Rayleigh fading, i.e., the entries of the channel matrix H

in (1) are modeled as independent complex circular Gaussian

random variables with zeromean and unit variance. The noise

variance at each receiving antenna is adjusted to obtain the

desired SNR level. To simplify the discussion and minimize

the effects of indirect factors in the performance compar-

ison among the different estimation schemes, we consider

uncoded systems as in, e.g., [46].

FIGURE 4. BER performance of conventional SIC and Babai estimation for
different choices of N and K .

A. CONVENTIONAL SIC AND BABAI ESTIMATION

We begin by investigating the bit-error-rate (BER) perfor-

mance of the conventional SIC and the Babai estimation in

solving underdetermined systems. Fig. 4(a) shows the BER

performance of SIC for K = 3 relay antennas and different

numbers of user N . We can observe that as N increases from

4 to 7 in this case the BER increases rapidly at any given

SNR level. This effect, which is caused by the reduction of

the power difference between the user signals as N increases,

illustrates the fundamental limitation of SIC discussed in

Section III-D. Fig. 4(b) shows the BER performance of Babai

estimation for N = 6 users and different numbers of anten-

nas K . It is seen that as K increases from 2 to 5, the BER

also increases rapidly at any given SNR level. This result

illustrates the harmful effects of the non-informative term in

(16) when the system becomes severely rank deficient.

Next, we investigate the effect of the regularization param-

eter λ in (16) on the performance for Babai estimation.

Fig. 5 illustrates the BER versus λ = ℓσ 2 with ℓ ∈
{0.05, 0.1, 0.2, 0.5, 1, 1.5, 5, 10, 20} for different SNR levels

under configuration N = 6,K = 4. It can be seen that

the best performance is obtained when λ ≈ σ 2/PT =
σ 2, which supports our proposed choice for this parameter

in Section III-C.
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FIGURE 5. Impact of λ on the BER performance for Babai estimation.

FIGURE 6. BER performance of the proposed algorithm, conventional SIC,
Babai estimation, MMSE estimation and ML estimation for
N = 6 and K = 2.

B. EVALUATIONS OF PROPOSED METHOD

Fig. 6 compares the BER performance of the proposed

Algorithm 2 to the conventional SIC and Babai estimation

in the case N = 6 and K = 2. Results of minimum mean

square error (MMSE) and ML estimations are also presented

as benchmarks for comparison. A specific power allocation

scheme is used for each one of these methods as exposed

in Section IV, in order to optimize performance. From the

result, we note that the Babai estimation slightly outperforms

the other two methods in the low SNR range from 0dB to

12dB, but its advantage quickly disappears afterward. Beyond

this point, our proposed Algorithm 2 with power allocation

(40) exhibits the best performance, with a rapid falloff in

BER as the SNR increases. Although the performance of

SIC is superior to Babai estimation at high SNR, the gains

are limited compared to the proposed algorithm. From the

result, we also note that conventional MMSE estimation is

not effective in solving under-determined problem while the

ML estimation achieves the best performance at a cost of

exhaustive search for the optimal solution.

FIGURE 7. Throughput performance of the proposed algorithm and the
Atom I building block approach [27].

In Fig. 7, we investigate the throughput performance of

the proposed algorithm, which is defined as the rate of cor-

rect signal detection at the relay. For the sake of compari-

son, we also consider the Atom I building block structure

in [27], which decomposes the network into N − 1 subnets

to allow simultaneous transmission from only 2 users at a

time (TWRC). This is in contrast to the proposed algorithm

which allows simultaneous transmission from all N users

(MWRC) during the MA stage. Specifically, Fig. 7 shows the

throughput versus SNR forK = 4 andN ∈ {6, 8}, as obtained
by transmitting 50 × 103 symbols from each user within a

common time interval for both schemes. The results clearly

illustrate the advantages of the proposed MWRC detection

algorithm, which leads to a nearly 4dB SNR gain over the

Atom I TWRC scheme. Indeed, under the constraint of a fixed

transmission time, Atom I must reduce the amount of time

allocated to each subnet, which tends to increase the error

rate for the individual user signals.

Next, we compare the decoding complexity of Algorithm 2

to a constellation design approach, i.e., the minimal constella-

tion distance maximization in [29]. The decoding complexity

here refers to the number of constellation points that need to

be searched at the relay for signal detection, assuming BPSK

signaling. In our algorithm, due to its sequential nature, this

number is simply 2N ; for the algorithm in [29], the complex-

ity is obtained by simulations.4 Fig. 8 illustrates the decod-

ing complexities versus the number of users N for the two

approaches. We note that our approach has a linear growth

in complexity with N , which is a prominent advantage over

the constellation design method. The latter needs to generate

a large size constellation to avoid the codeword ambiguity as

N increases, e.g., it is 64 whenN = 6 in this experiment. Due

to this nature, its decoding complexity grows exponentially

with N .

4Wenote that themethod in [29] assumes an additive white Gaussian noise
(AWGN) channel and does not performwell over Rayleigh channels. For this
reason, AWGN is used in order to evaluate its decoding complexity. We also
note that the case of BPSK corresponds to the choice M = 2 in [29].
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FIGURE 8. Decoding complexity for the proposed algorithm and the
constellation design approach [29].

FIGURE 9. CPU time for the proposed algorithm and the searching
algorithm.

The effectiveness of Algorithm 2 in reducing the com-

putational complexity of the estimation process is further

demonstrated by comparing it to the sphere decoding (SD)

approach [47], which is a widely used iterative search algo-

rithm for solving ILS problems. Fig. 9 shows the consumed

CPU time per user symbol versus the number of users N for

both algorithms under K ∈ {2, 4}. We note that the CPU time

of Algorithm 2 is significantly less than that consumed by

SD. Indeed, due to the system’s rank deficiency, the latter

algorithm needs to search back and forth repeatedly to detect

a given user signal, which is often costly. Meanwhile, the pro-

posed algorithm can better cope with the rank deficiency by

combining two different sequential process, namely SIC and

Babai estimation, which simplifies the search process and

allows for a significant reduction in complexity.

In order to demonstrate the applicability of the proposed

algorithm with higher modulation schemes, we also conduct

an experiment using the QPSK modulation. Fig. 10(a) shows

the BER performance of BPSK and QPSKmodulations when

N = 6 and K = 2. From the result, a 3 to 4 dB performance

loss for theQPSKmodulation is observedwhich is reasonable

FIGURE 10. BER performance and decoding complexity of the proposed
algorithm with QPSK modulation.

FIGURE 11. Comparison between the approximation approach used in
ψij in (43) and the one adopted in [43].

due to the existence of the multi-user interference. Fig. 10(b)

shows the decoding complexity versus the number of users

for the two modulation schemes. Although higher than that

of the BPSK modulation, the complexity of the QPSK modu-

lation remains linear with respect to N which is still efficient.

C. USER PAIRING STRATEGY

In this part, we investigate the effect of the selected pairing

strategy C on the performance of network coding in MWRC.

To begin, we validate the approximation used in the deriva-

tion of the error probability (43) by comparing the results

with the approach from [43], which also relies on the SNR

assumption. Fig. 11 shows the average downlink BER versus

the error probability of sequentially paired network codes at

the relay, when evaluated according to the two approximation

approaches for N ∈ {4, 8}. From this figure, we find that the

BER curves for the two approaches exhibit a similar linear

trend and remain reasonably close to each other.This shows

that our approach has a similar effect to that of [43] when

approximating the error propagation.
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FIGURE 12. BER performance for different user pairing strategies.

Next, we consider three different strategies: the sequential

strategy Cseq defined in (2) and commonly adopted in the lit-

erature [29]; the proposed optimal strategy C∗ defined as the

optimal spanning tree minimizing the average decoding error

probability in (45); and a so-called least effective strategy Cw,

defined as the spanning tree that yields the worst performance

in (45). Fig. 12 shows the BER versus SNR obtained with

these three strategies for two different system configurations,

corresponding to K = 2 and N ∈ {5, 6}. It is observed that

the proposed optimal strategy C∗ leads to a notable reduction
in the BER when compared to the other two strategies, espe-

cially in the case N = 6, where the conventional strategy Cseq
provides only a marginal improvement over the least efficient

strategy Cw.

FIGURE 13. Comparisons between the optimal strategy and the
star-shape strategy of [48]. The corresponding BER performances of the
two strategies are evaluated in both the proposed system and the
non-simultaneous decode-and-forward system of [48].

Finally, we compare our optimal pairing strategy with the

star-shape pairing strategy in [48], which pairs the signal

from the user having the maximum channel gain with each

one of the remaining signals. We incorporate each strategy in

both the proposed system and the non-simultaneous system

of [48], and then evaluate the corresponding average BER

versus SNR. Fig. 13(a) and Fig. 13(b) respectively show the

performance comparison between the two pairing strategies

in each system. Due to the existence of multiuser interference

in our system, the use of the signal with themaximum channel

gain in the star-shape strategy does not yield the optimal per-

formance, as shown in Fig. 13(a). In contrast, in a systemwith

non-simultaneous transmission where multiuser interference

does not exist, the performance of both strategies is identical,

as seen in Fig. 13(b).

VI. CONCLUSION

In this paper, we considered an uplink MWRC scenario for

PNC, where N users, each with single antenna, simulta-

neously transmit their signals to a relay equipped with K

antennas (K < N ). A novel detection scheme was proposed

at the relay to iteratively resolve user signals and remove

their interfering effects from the signal set. The proposed

scheme combines a conventional SIC and a regularized ILS

solution using Babai estimation to solve an underdetermined

ILS problem.We developed a power allocation scheme for the

proposed method, and also investigated an optimal user pair-

ing strategy to reduce the decoding error rate at the user termi-

nals. Simulation results revealed the achievable performance

improvement of the proposed method in the detection of

network codes for PNC in MWRC. While this paper focused

on the signal processing aspects of PNC in MWRC, the fur-

ther consideration of related information theoretic aspects

(e.g., achievable rate region), remains an interesting avenue

for future work.
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