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Abstract
The selection of multiple regularization parameters is considered in a general-
ized L-curve framework. Multiple-dimensional extensions of the L-curve for
selecting multiple regularization parameters are introduced, and a minimum
distance function (MDF) is developed for approximating the regularization pa-
rameters corresponding to the generalized corner of the L-hypersurface. For the
single-parameter (i.e. L-curve) case, it is shown through a model that the regu-
larization parameters minimizing the MDF essentially maximize the curvature
of the L-curve. Furthermore, for both the single- and multiple-parameter cases
the MDF approach leads to a simple fixed-point iterative algorithm for comput-
ing regularization parameters. Examples indicate that the algorithm converges
rapidly thereby making the problem of computing parameters according to the
generalized corner of the L-hypersurface computationally tractable.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In many inverse problems occurring in the physical sciences the discrete model of the problem
takes the form

g = H(f) + n, (1)

where H is an operator and g and f are the m- and n-length vectors representing the
observations and the original object, respectively. The error vector n, whose entries consist
of zero mean normally distributed random variables, is included in order to account for the
inaccuracy introduced in the modelling and measurement phases. The objective of the problem
is to obtain an estimate f∗ of the original object f from the noise-corrupted measurements g.
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Attempting to solve (1) in the least-squares sense will most likely fail because the problem
is highly ill posed in the sense that the solution is very sensitive to noise in the data. Hence,
noise in the data is magnified in the least-squares solution to such an extent that the solution is
of little or no practical value. For this reason, many numerical methods treating discrete inverse
problems seek to combat the effects of noise by requiring that f∗ be relatively small as measured
by the norm of the estimate in some function space. This has the effect of making the problem
better conditioned. Such methods are called regularization methods and always include one or
more parameters, called regularization parameters, to control the conditioning of the problem.
An appropriate choice of the regularization parameters is of vital importance for the quality of
the resulting estimate and has been the subject of extensive research [9, 11, 13–16, 20, 25].

For purposes of this work, we restrict ourselves to linear operators (i.e. Hf = H(f)),
which arise, for example, in image and signal processing applications. In this case, the
L-curve [11, 13] is one of the simplest and most popular methods for selecting a single
regularization parameter when no other noise properties are known. The method is based
on a plot, in an appropriate scale, of the size of the solution (measured in an appropriate
norm) against the corresponding residual for all valid regularization parameters. Intuitive
justifications and numerical experiments indicate that the so-called corner of the L-curve gives
a regularization parameter which provides an acceptable compromise between the data misfit
and regularization terms in the cost function [11]. The corner is defined to be the point on
the L-curve where the curvature reaches a maximum [13]. It is important to note that the
L-curve has been shown to have undesirable asymptotic properties [10, 24]; like all parameter
choice methods based on no a priori knowledge of the noise, the solution estimates based
on the parameter chosen via the L-curve fail to converge to the true solution as the noise
norm goes to zero. Nevertheless, it can be surmised from the quantity of recent work on
the method that, in practical settings when noise is present, the L-curve continues to be a
popular and effective parameter selection method when no other information about the noise
is available.

In recent years, there has been a growing interest in sophisticated regularization techniques
which use multiple constraints as a means of improving the quality of inversion [1, 3, 4, 21].
Examples include the inverse problem of electrocardiography [4] where both temporal and
spatial constraints are imposed on the solution, the wavelet domain restoration of blurred
images where each subband in the wavelet decomposition of the image is subjected to a different
degree of regularization [3], and problems involving depth-varying regularization [19]. We
note that, in a sense, what we refer to as multiple constraints can be thought of as a special case
of Tikhonov regularization with an appropriate Sobolev norm (see [8, pp 32–4] for a discussion
in the Hilbert space setting).

Motivated by the simplicity and the success in practice of the L-curve method, we have
developed the L-hypersurface method [2] as a multiparameter generalization of the L-curve.
The L-hypersurface, analogous to the L-curve, is the plot of the residual norm against the size of
multiple constraints imposed on the solution for all valid regularization parameters. Similar to
the one-dimensional case where the corner is defined as the point on the L-curve with maximum
curvature, the generalized corner of the L-hypersurface is defined as the point with maximum
Gaussian curvature. Note that in the single-parameter case, the L-hypersurface reduces to
the L-curve, and as the Gaussian curvature and planar curvature coincide, the L-hypersurface
method reduces to the standard L-curve method.

It has been demonstrated in [2] through numerical examples that the Gaussian curvature of
the L-hypersurface is closely tied to the error between the original and estimated objects and
that regularization parameters maximizing the Gaussian curvature provide acceptable estimates
in terms of estimation error. Indeed, the results in [2] showed that by choosing the parameters
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as the points that gave maximum Gaussian curvature, the corresponding regularized solutions
were close to the optimal solutions (in mean square error).

Determining the point of maximum Gaussian curvature, therefore, is the key computational
issue associated with the use of the L-hypersurface. As we show in section 4, the curvature
surface itself has many extrema thereby causing difficulties for most gradient ascent-type
approaches to maximization. Moreover, computing the Gaussian curvature of the L-
hypersurface is computationally very demanding (see section 2) so that any type of grid search
either for the maximum point or a starting point for a gradient ascent algorithm is far from
attractive.

In this paper, we consider replacing the Gaussian curvature by a surrogate minimum
distance function (MDF) which is far easier to optimize. A similar approach for the single
parameter case with 2-norm constraint is given in [20]. We show that our formulation of the
problem leads naturally to an efficient fixed-point iteration to determine the optimal parameters.
The performance of this approach is evaluated through numerical experiments involving
both standard inverse problems drawn from Hansen’s regularization toolbox [12] as well as
through practical image restoration examples. These experiments demonstrate that there is
little performance loss incurred through the optimization of the MDF as opposed to direct
maximization of the Gaussian curvature; however, the computational burden is significantly
smaller.

In this single-parameter case, the contribution of this paper is not so much a new means
of choosing a parameter but an efficient method for finding the point of max curvature for a
wider range of regularization functionals than are normally considered (see section 2). For the
multiparameter problem, we offer both a new approach to choosing the parameter as well as
an efficient computational method.

In addition to the numerical evaluation of the MDF, we provide theoretical justification
for its performance. Here, we concentrate exclusively on the single-parameter (i.e. L-curve)
case where analysis is tractable. First, we show that under some mild conditions, the
fixed-point iteration for the single-parameter MDF is guaranteed to converge to a critical
point of the underlying cost function. Second, we identify general conditions based on
the geometry of the L-curve under which the MDF approach can be expected to perform
comparably to the curvature method. Clearly, the detailed behaviour of the L-curve for any
particular problem is intimately related to the underlying system matrix and regularization
functional; however, geometrically the utility of the L-curve (when it works) rests on the
fact that there is a discernible corner that separates regions of too little regularization from
those where there is too much. Motivated by this observation, we introduce a model L-
curve parametrized in such a way as to capture the salient geometric characteristics of a true
L-curve, especially in the region near the corner. Use of the model leads to an intuitive
but still rigorous understanding of the MDF in terms of the basic structure of the corner.
Specifically, we relate the ‘sharpness’ of the corner to the point on the model L-curve
which will be selected by MDF optimization. In the appropriate limit where the corner
becomes infinitely sharp, we show that MDF will in fact choose the same parameter as
the curvature method. While this abstracted model is not derived directly from a true L-
curve, we feel that the insight provided by the analysis justifies the consideration of the
model.

Our paper is organized as follows. We give a brief overview of Tikhonov-type
regularization in section 2 and we formally introduce the L-hypersurface method. In section 3,
we introduce the MDF, explore its properties and develop a simple fixed-point iteration to
locate its minimum. In section 4, we illustrate the new method by several numerical examples
and we conclude the paper with a discussion of results in section 5.
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2. Regularization and the L-hypersurface

The simplest and the most well known regularization method is Tikhonov’s method [22] which
consists of solving the following regularized least-squares problem:

f∗(α) = arg min
f

{‖g − Hf‖2
2 + α‖f‖2

2}, H ∈ Rm×n, (2)

where α > 0 is called the regularization parameter. Tikhonov’s method can be extended by
using different regularization functionals or multiple constraints. In this paper, we consider
the following multiply-constrained regularization approach:

f∗(α) = arg min
f

{
‖g − Hf‖2

2 +
M∑

i=1

αi�i(Rif)

}
, Ri ∈ Rm×n (3)

where M denotes the number of constraints, α = [α1, α2, . . . , αM ]T , Ri are
regularization operators and αi are the corresponding regularization parameters, �i (Rif) =∑m

j=1 φi([Rif ] j) and the notation [Rif ] j denotes the j th element of the vector Rif . We
assume that φi(t) is a continuously differentiable, convex, non-negative (φi(t) � 0,∀t), even
function which satisfies the following conditions [6]:

(i) φ′
i(t) � 0, ∀t � 0,

(ii) limt→0+
φ ′

i (t)
t = C, 0 < C < ∞,

where prime denotes differentiation. The formulation in (3) includes many popular
regularization techniques as its special cases. For example, by taking, φi(t) = t2, i =
1, . . . ,M , and Ri as a discrete approximation to the (i − 1)st-order differentiation, we obtain
the conventional Tikhonov method with the discrete Sobolev norm as a constraint. A wavelet
domain image restoration algorithm developed by the authors [3] is also a special case of (3).
In this case the quantities of interest g,H,f ,n represent the wavelet decomposition of the
related quantities, φi(t) = (|t|2 + ε)p/2, i = 1, . . . ,M with 1 � p � 2 and ε a small positive
constant, and Ri , i = 1, . . . ,M are operators extracting the desired portions of the wavelet
coefficients.

We note that most of the literature on single-parameter choice methods (M = 1) has
been devoted to the 2-norm case φi (t) = t2 (see for example [14, 15] and references
therein). Although our primary goal was to construct a parameter selection method for multiple
parameters, one benefit of our MDF approach is its applicability to single-parameter cases with
φi (t) �= t2 (see example 1). If φi (t) = t2 and M = 1, there may be more (computationally)
efficient approaches, some of which were cited in the introduction, and it is not within the
scope of this paper to perform a comparison between those methods and ours in this instance.
For a performance comparison of some of the methods applicable in the φi(t) = t2,M = 1
case, the reader is referred to [14, ch 7] and the references therein.

By taking the gradient of (3) with respect to f and setting the result equal to zero we
obtain the following first-order condition that must be satisfied by f∗(α):

Kf∗f∗ = HT g, (4)

where

Kf∗ = HT H +
1

2

M∑
i=1

αiR
T
i diag

k=1,...,m

[
φ′

i ([Rif
∗]k)

[Rif∗]k

]
Ri . (5)

A key issue with the use of this regularization scheme is the selection of the αi parameters.
Here we propose the L-hypersurface as a multi-dimensional extension of the classical L-curve
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method [11]. To construct the L-hypersurface, we first introduce the following quantities:

z(α) = ‖g − Hf∗(α)‖2
2 (6)

x j(α) = � j [R jf
∗(α)], j = 1, . . . ,M (7)

where α = [α1, α2, . . . , αM ]T and f∗ is defined in (3). With the above definitions, the L-
hypersurface is defined as a subset of RM+1 associated with the map β(α) : RM

+ → RM+1,
such that

β(α) = (ψ[x1(α)], . . . , ψ[xM (α)], ψ[z(α)]), (8)

where ψ is an appropriate scale such as ψ(t) = log(t) or ψ(t) = √
t . For a single constraint,

the L-hypersurface reduces to the conventional L-curve which is simply a plot of the residual
norm versus the norm of the regularized solution drawn in an appropriate scale for a set
of admissible regularization parameters. In this way, the L-curve displays the compromise
between the minimization of these two quantities. It has been argued and numerically shown
that the so-called ‘corner’ of the L-curve corresponds to a point where regularization errors
and perturbation errors are approximately balanced [11].

Analogous to the one-dimensional case, the L-hypersurface is a plot of the residual
norm z(α) against the constraint norms x j(α), 1 � j � M drawn in an appropriate scale.
Intuitively, the ‘generalized corner’ of the L-hypersurface should correspond to a point where
regularization errors and perturbation errors are approximately balanced. By a generalized
corner, we mean a point on the surface around which the surface is maximally warped. We
can quantitatively measure how much a surface is warped around a point by computing its
Gaussian curvature [5, 7]. In this work, we shall assume that the surface β(α) is regular [5]
and therefore its Gaussian curvature is well defined and exists ∀α ∈ RM

+ .
The Gaussian curvature of β(α) can be computed given the first- and second-order partial

derivatives of ψ[z(α)] with respect to ψ[xi(α)], 1 � i � M , and is given by the following
expression [7]:

κ(α) = (−1)M

wM+2
|P |, (9)

where w2 = 1 +
∑M

i=1(
∂ψ(z)
∂ψ(xi )

)2, Pi, j = ∂2ψ(z)
∂ψ(xi ) ∂ψ(x j )

and derivatives are evaluated at
q = (x1(α), . . . , xM(α), z(α)). These derivatives are be obtained by a simple transformation
of partial derivatives of related quantities with respect to regularization parameters [2]. One
difficulty with this calculation is that each of the required partial derivatives can only be found
by solving a linear system of equations of the same size as that of the original inverse problem.

A sample L-hypersurface is shown in figure 1(a) for a least-squares problem with first- and
second-order derivatives of the object as constraints. The middle and the rightmost plots are the
curvature of the L-hypersurface and the norm of the error between the original and estimated
objects. We observe that the points on the curvature plot where the curvature achieves a local
maximum seems to track the local minimum of the estimation error surface. This behaviour
is not limited to this example but is also observed in a variety of different problems [3].

3. Parameter selection via the minimum distance function

3.1. The minimum distance function defined

A major shortcoming of the L-hypersurface method is that direct maximization by evaluating
the Gaussian curvature for a large number of regularization parameters is expensive.
Furthermore, use of a conventional optimization technique to locate the maximum Gaussian



1166 M Belge et al

Figure 1. (a) A typical L-surface; (b) the Gaussian curvature of the L-surface in (a);
(c) corresponding estimation error surface.

curvature point is hampered by the fact that the Gaussian curvature function possesses multiple
extrema. Considering these difficulties, we propose replacing the Gaussian curvature function
by a surrogate function which is far easier to optimize. Our ultimate goal is to choose the
surrogate function so that the regularization parameters obtained from the optimization of this
function are close to those chosen by the L-hypersurface method. To give a flavour of the
simple geometrical ideas behind our approach, we consider a typical L-curve as displayed in
figure 4. We denote the points where extreme solution norm and extreme residual norm regions
start by a and b respectively. Formally, the points a and b are defined as

a = ψ(‖g − Hf∗(αa)‖2
2), b = ψ(�[Rf∗(αb)]), (10)

where αa is the regularization parameter to the left of the corner where the L-curve becomes
approximately horizontal and αb is the regularization parameter to the right of the corner where
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the L-curve becomes approximately vertical (see figure 2). We define an origin, O = (a, b),
and compute the distance from our origin O to the L-curve. Suppose that there is a slowly
expanding bubble located exactly at the origin O. From the geometry, it is easy to see that the
first point on the L-curve that the bubble touches will be close to the corner of the L-curve. Fur-
thermore, as the bubble continues to expand, the circle describing the boundaries of the bubble
intersects the L-curve at exactly two points at the left and right of the corner until the circle
reaches extreme residual norm and extreme solution norm regions. The radius of the circle is in
fact the value of our distance function. The statements concerning the behaviour of the bubble
describes our distance function. That is, the distance function has a minimum at a point close
to the corner and the function increases as we go away from the origin until we reach extreme
residual or signal norm regions. In this way, we define a function whose minimum occurs at or
near the corner and possesses a single minimum for a wide range of regularization parameters.
Hopefully, the newly defined distance function will make our optimization task much easier.

We begin by defining our surrogate function as follows.

Definition 1 (Minimum distance function). Let O = (a, b1, . . . , bM ) denotes the
coordinates of our origin. The MDF, v(α), is the distance from the origin O to the point
β(α) on the L-curve:

v(α) = |ψ[z(α)] − a|2 +
M∑

i=1

|ψ[xi(α)] − bi |2. (11)

Definition 2 (Minimum distance point). The minimum distance point (MDP) is the point
where the Gaussian curvature of the L-curve is positive and v(α) reaches a local minimum:

α∗ = arg min
α∈RM+1

v(α).

3.2. A fixed-point approach for finding the MDP

For the moment let us assume that a minimum to the MDF does in fact exist. If this is the
case, then in general we may use any appropriate optimization technique for finding the α∗;
however, many optimization algorithms require higher-order partial derivatives of z(α) and
xi(α) with respect to αi , i = 1, . . . ,M . It can be easily shown that each of these partials
can be computed from ∂f∗(α)

∂αi
, which in turn, are obtained by solving a linear system whose

size is the same as that of the original problem. Clearly, the computational effort associated
with computing the required partials can be prohibitively large if the size of the problem is big.
However, using elementary properties of the MDF we can easily derive a fixed-point algorithm
for α∗. In the following, for ease of notation we have dropped the explicit dependence of f∗
on α. Differentiating (11) with respect to α j , and equating the result to zero we obtain the
following equation:

M∑
i=1

(ψ[xi ] − bi)ψ
′[xi]

∂xi

∂α j
+ (ψ[z] − a)ψ ′[z]

∂z

∂α j
= 0. (12)

Using (6), (7), it is easy to show the following:

∂z

∂α j
= 2(Hf∗ − g)T H

∂

∂α j
f∗ (13)

∂xi

∂α j
= (f∗)T RT

i diag
k=1,...,m

[
φ′

i([Rif
∗]k)

[Rif∗]k

]
Ri

∂

∂α j
f∗. (14)
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Next, we consider (13):

∂z

∂α j
= 2(Hf∗ − g)T H

∂

∂α j
f∗ = 2(HK−1

f∗ HT g − g)T H
∂

∂α j
f∗

= 2(HT HK−1
f∗ HT g − HT g)T

∂

∂α j
f∗ = 2gT HK−T

f∗ (H
T H − Kf∗)T

∂

∂α j
f∗

= − 2(f∗)T
(

1

2

M∑
i=1

αiR
T
i diag

k=1,...,m

[
φ′

i([Rif
∗]k)

[Rif∗]k

]
Ri

)
∂

∂α j
f∗

= −
M∑

i=1

αi
∂xi

∂α j
, (15)

where the last step follows from (14). Substituting (15) into (12) we obtain the following
equation for j = 1, . . . ,M:

M∑
i=1

((ψ[xi ] − bi)ψ
′[xi ] − αi (ψ[z] − a)ψ ′[z])

∂xi

∂α j
= 0. (16)

Note that (16) is actually a collection of M different equations. We can arrange those M
equations into a matrix–vector equation:

Jr = 0, (17)

where [J] j,i = ∂xi
∂α j

and

[r]i = (ψ[xi ] − bi)ψ
′[xi ] − αi (ψ[z] − b)ψ ′[z], i = 1, . . . ,M. (18)

If J is nonsingular, (17) has only the trivial solution r = 0. However, the non-singularity
of J follows from our assumption that the surface is regular and (15) [5].

Thus (17) implies r = 0. Therefore, the solution of (16) is given by

α∗
i = ψ ′[xi ]

ψ ′[z]

ψ(xi [α∗])− bi

ψ(z[α∗])− a
, i = 1, . . . ,M. (19)

If ψ(t) = log t , (19) reduces to

α∗
i = z(α∗)

xi(α∗)

(
log xi(α

∗)− bi

log z(α∗)− a

)
, i = 1, . . . ,M. (20)

Because (19) xi = xi(α
∗) and z = z(α∗) are also functions of α∗, (20) defines α∗ implicitly.

Based on the formula in (20), we propose the following iterative algorithm to approximate α∗
in log scale:

α
(k+1)
i = z(α(k))

xi(α(k))

(
log[xi(α

(k))] − bi

log[z(α(k))] − a

)
, i = 1, . . . ,M (21)

where α(k) is the vector of regularization parameters at step k. The algorithm is started with
an appropriate initial regularization parameter vector α(0) and iterated until the relative change
in the iterates is determined to be sufficiently small.

Under some assumptions, we are able to prove that if M = 1 (with φ(t) = log10(t)), the
fixed-point iteration converges to a minimum of v.

Theorem 1. Assume v(t) has only one critical point, say t∗ > 0, in some interval (ε1, ε2)

with αa < ε1 < ε2 < αb, and that v is a minimum at that critical point. Further, assume that
z(t),−x(t) are strictly increasing functions of t over the interval5. Let the origin (a, b) be

5 This can be shown to be the case for a particular class of φ(t).
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Figure 2. (a) Assumed curvature function. (b) The corresponding L-curve. The coordinates of the
origin are given by O = (a, b) = (β1(sa), β2(sb)).

defined as in (10). Then if the starting guess t (0) satisfies either ε1 < t (0) < t∗ or t∗ < t (0) < ε2

with
z(t)

z(αa)
� 10,

and
x(t)

x(αb)
> 10,

for all t between t (0) and t∗ then the fixed-point iteration (21) converges to t∗.

Proof. See appendix. �
As a consequence, we know that if we pick a starting point for the single-dimensional

fixed-point iteration which satisfies the hypotheses, the iterates will all be positive. For the
multi-dimensional fixed-point algorithm, it is difficult to determine if and when the algorithm is
guaranteed to converge. We therefore leave this study of convergence for the multi-dimensional
case for future research, but note that in practice, this has not been a difficulty given judicious
choice of origin.

3.3. Properties of the MDF

In this section, we describe the relationship of the minimum MDF point to the point of maximum
curvature. For this discussion, we restrict our attention to the case of a single regularization
parameter (i.e. an L-curve) where the necessary analysis is quite tractable. We emphasize that
numerical experiments demonstrating the utility of this method for the multi-parameter case
for a variety of applications are provided in section 4. We leave to future work the substantially
more difficult analysis of the L-hypersurface.

For the L-curve we wish to show that under appropriate circumstances, the point chosen
by the MDF is ‘close’ if not the same as that selected by maximizing the curvature. Essentially
then we are interested in an analysis based on the geometric structure of the L-curve specifically
in the neighbourhood of the corner. To facilitate this work we introduce a parametrized model
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for the L-curve which emphasizes this geometry. All analysis is done in the context of this
model. This model-based approach allows us to state that for true L-curves (i.e. ones generated
by a linear inverse problem) possessing an appropriate corner geometry one can expect the
MDF method to work comparably to the more intensive curvature maximization approach.

We start the development of the model L-curve by specifying its curvature function which
we represent with three little bumps as seen in figure 2:

κ(s) = θ0
1

σ0
G
(

s − µ0

σ0

)
− θ1

1

σ1
G
(

s − µ1

σ1

)
− θ2

1

σ2
G
(

s − µ2

σ2

)
(22)

where subscripts 1 and 2 represent false corners where the L-curve is concave, subscript 0
represents the desired corner, and µ and σ are parameters adjusting the location and spread of
the bumps. The function G(s) is given by

G(s) =
{ 35

32 (1 − s2)3, for |s| � 1,
0 for |s| > 1.

(23)

For convenience, we choose to parametrize the curvature function κ(s) in terms of arclength,

s = ∫ α
α0

√
| dψ(x)

dα |2 + | dψ(z)
dα |2 dα. Since x(α) and z(α) are continuous functions of α and ds

dα

never vanishes, there is a one-to-one correspondence between s and α. That is, given any s we
can uniquely determine the corresponding α value [17].

There is a unique plane curve (up to a rigid motion) realizing κ(s) in (22), as its
curvature [5]:

β(s) =
(∫ s

0
cosρ(u) du,

∫ s

0
sin ρ(u) du

)
(24)

ρ(u) =
∫ u

0
κ(t) dt . (25)

In our case, an explicit analytic formula for β(s) cannot be found. However, (25) can be
numerically solved in differential form. Figure 2 shows the L-curve obtained from κ(s) in (22).
It is easy to see from this figure that θ0 >

π
2 determines the angle between the approximately

horizontal and vertical parts of the L-curve to the right and left of the corner. On the other
hand, σ0 is a measure of the width of the crossover region (i.e. the regions separating horizontal
and vertical parts). As σ0 approaches zero, the corner of the L-curve becomes sharper.

Using this L-curve model we now show that the α minimizing the MDF essentially
maximizes the curvature of the L-curve. To begin with, we define the tangent vector to
the L-curve, t(s):

t(s) = dβ(s)

ds
=

(
dβ1(s)

ds
,

dβ2(s)

ds

)
. (26)

Based on (26), the unit normal, n(s), is defined as the unit length vector perpendicular to t(s).
Considering the actual behaviour of an L-curve, it is easy to see that t(0) is parallel to

the β1 axis (L-curve becomes horizontal as α → 0) and that t(s) becomes parallel to the β2

axis as s → ∞ (L-curve becomes vertical as α → ∞). This, in turn imposes the following
constraints on θi , i = 0, 1, 2:

θ1 − θ0 + θ2 = π

2
(27)

θ0, θ1, θ2 <
π

2
. (28)

Equation (27) ensures that there are exactly π
2 degrees between the tangent vectors t(0) and

t(∞) and (28) is a natural consequence of the fact that β2(s) is a monotonically decreasing
function of β1(s) [20].
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Figure 3. Parallel curve of a convex plane curve.

Figure 4. A typical L-curve.

We denote the origin chosen for the computation of v(s) by O = (a, b). Point a is
associated with a value β1(sa) where sa < µ0 − σ0 and point b is associated with a value
β2(sb) where sb > µ0 + σ0. Points on the L-curve where s = µi ± σi , i = 0, 1, 2 carry a
special importance for us, namely they represent the points where κ(s) is zero and the L-curve
switches between linear and non-linear.

Before proceeding any further, we introduce the concept of parallel transport of a convex
plane curve (i.e. κ(s) � 0).

Definition 3. Let δ(s) be a convex plane curve (κ(s) � 0) positively oriented. The curve

γ(s) = δ(s) + rn(s) (29)

where r > 0 is a constant and n is the unit normal, is called a parallel curve to δ(s) (figure 3).

It is easy to see from the definition that the parallel curve of a plane curve is obtained
by simply expanding the curve by a constant amount along the direction of the normal. The
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parallel transport of a convex plane curve δ(s), denoted by P(δ), is defined as the region
covered by the parallel curves γ(s) for all r �= 0 and all s such that γ(s) is defined. We use
the notation δ[s1,s2](s) to denote the part of the curve δ restricted to s ∈ [s1, s2]. Thus for the
L-curve β in our example, P(β[s1,s2]) covers all those points on the plane from which we can
draw a line perpendicularly intersecting the curve β[s1,s2]. This property of a parallel transport
will play a crucial role in the proofs of theorems 2–5.

Our first two results, theorems 2 and 3, tell us that by placing the origin O = (a, b) inside
the region bounded by the perpendicular lines at zero-curvature points s = µ0 ± σ0 on the
sides and the L-curve above, we can actually create a function v(s) such that the minimum
of v(s) is close to the corner of the L-curve (point on the L-curve for which s = µ0) and
that v(s) possesses a unique minimum for a wide range of s values. These are, of course,
desirable properties for a surrogate function replacing the curvature since our initial goal was
to create a function approximating the corner of the L-curve and having nice characteristics
for the purpose of optimization.

Theorem 2. v(s) has a unique local minimum at s∗ ∈ [s−
0 , s+

0 ] ≡ [µ0 − σ0, µ0 + σ0]
if O = (a, b) is in the region bounded above by the part of the L-curve lying between
Q−

0 = β(µ0 − σ0) and Q+
0 = β(µ0 + σ0) and the semi-infinite rays n−

0 ,n
+
0 emanating from

the points Q−
0 and Q+

0 and perpendicular to the L-curve at the cited points (shaded region in
figure 4).

Proof. See appendix. �

Theorem 3. Let O be an origin satisfying the hypothesis of theorem 2. Let s∗ be the
corresponding point minimizing v(s) in [s−

0 , s+
0 ] ≡ [µ0 − σ0, µ0 + σ0]. Then s∗ is the unique

minimum of v(s) for all s in (µ1 + σ1, µ2 − σ2).

Proof. See appendix. �
Although theorems 2 and 3 tell us a great deal about the behaviour of v(s), they do not

tell us how to choose an appropriate origin satisfying the condition in theorem 2. However, as
we will see in the next two theorems the choice of the origin O = (a, b) is not crucial for a
well-behaved L-curve.

Theorem 4. As θ0 approaches π
2 , any origin O = (a, b), such that a = β1(sa) where sa < µ0

and b = β2(sb) where sb > µ0, lies in P(β[µ0−σ0,µ0+σ0]) for s ∈ (µ0 − σ0, µ0 + σ0) and r > 0.

Proof. See appendix. �
Now, we are ready to prove our final result.

Theorem 5. Denote the point where v(s) achieves a local minimum in [s−
0 , s+

0 ] ≡ [µ0 −
σ0, µ0 + σ0] by s∗. Let O = (a, b) ∈ P(β[s−

0 ,s
+
0 ]) for s ∈ [µ0 − σ0, µ0 + σ0] and r > 0. Then,

limσ0→0 s∗ = µ0.

Proof. By theorem 2,

µ0 − σ0 � s∗ � µ0 + σ0.

The desired result is obtained by letting σ0 → 0. �
By combining the results of theorems 4 and 5 we obtain the following result.

Corollary 1. Denote the point where v(s) achieves a local minimum in s ∈ (µ0 −σ0, µ0 +σ0)

by s∗. Let O = (a, b) be such that a = β1(sa) where sa < µ0 and b = β2(sb) where sb > µ0.
Then, limσ0→0 θ0→ π

2
s∗ = µ0.
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Figure 5. Illustration for the proof of theorem 4. Shaded region is P(β[µ0−σ0,µ0+σ0]).

In other words, corollary 1 says that as θ0 → π
2 and σ0 → 0 (e.g. the more the curve

looks like the letter L), the point s∗ for which v(s∗) is a minimum coincides with the corner of
the L-curve µ0 no matter where we choose the origin (provided that a falls to the right of the
corner and b falls below the corner).

In the case of multiple regularization parameters, we can make a qualitative argument
as to how one might begin extending the above discussion to the L-hypersurface. To begin,
examining figure 1(b) reveals that the L-hypersurface is convex in the vicinity of the maximum
Gaussian curvature point,α∗ (i.e. κ(α) > 0). Therefore, the L-hypersurface has a bowl-shaped
appearance around α∗ and any point on the L-hypersurface lies above the tangent plane at α∗.
Hence, the unit normal to the L-hypersurface at α∗, N(α∗), defines a line whose points, when
used as an origin for the computation of v(α), yields a MDF which has a local minimum at
α∗. Thus, if we choose our origin O in the close vicinity of the line defined by N(α∗), the
minimum of v(α) hits a close point to the generalized corner of the L-hypersurface. A rigorous
analysis of these ideas is a far from trivial task and one which we leave to future efforts.

3.4. Origin selection in practice

The previous discussion indicated that for well behaved L-curves we expect that the ability of
the MDF to find the corner of the L-curve should be fairly insensitive to the choice of MDF
origin. A priori of course, we have no knowledge as to how well behaved the L-curve is and
therefore a method for selecting the origin must be provided to practically implement the MDF
technique. We give a heuristic and its justification below. A more robust means of selecting
the origin is a subject for future research.

We have found the following heuristic approach to be reliable (see section 4). For the
single-parameter case, we take O = (log z(σ 2

min), log x(σ 2
max )), where σmin, σmax denote the

smallest and largest singular values (or approximations thereof) of H . The justification is as
follows. We would like the origin to fall inside the shaded region (see figure 5) to guarantee a
good estimate of the corner. The more well behaved the curve, the less sensitive the method is
to the origin placement (i.e. the ‘wider’ the shaded region and the easier it is to put the origin
in the shaded region).
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Pick a small parameter that is either near the smallest singular value or, in the case of
numerically singular matrices, just large enough so that the regularized problem is well defined.
As long as the curve is monotonically decreasing, the horizontal component of the origin chosen
in this way will be to the left of corner as desired. Then it remains to pick a vertical component
so that the origin falls in the shaded region. Unless the ‘large’ parameter we use to pick the
vertical component is very large (i.e. very far down the near vertical part past the lower right
‘knee’) and the curve is not well behaved (i.e. the normal n+

0 in figure 5 is far from being
vertical), an origin selected this way will be inside the shaded region. In analogy with the
two-norm analyses of Reginska [20] and Hansen [14], we suggest a value about as large as the
largest singular value should give a point near the bend in the lower right knee and therefore
we should be able to avoid this potential problem with using too large a parameter.

This approach can be extended to cases where there are more than one
regularization functional. Noting that the two points in R3(z(σ 2

min, 0), x1(σmax , 0), 0) and
(z(0, σ 2

min), 0, x2(0, σmax )) would be the 1D origin guesses if either α2 or α1 were 0,
respectively, for M = 2 we take6 O = (log z(σ 2

min, σ
2
min), log x1(σ

2
max , 0), log x2(0, σ 2

max )),
and analogously for M > 2. (Similar to the discussion in the preceding paragraph, if the
matrix is numerically singular than an appropriate multiple of the machine precision should
replace σmin .)

4. Numerical examples

In this section, we verify the statements made concerning the behaviour of the MDF and
demonstrate the effectiveness of the iterative algorithm derived in section 3.2 for both one- and
multi-dimensional parameter selection problems.

4.1. Example 1

We generated a test problem of the form Hf = ḡ by using the function phillips (100)
in Hansen’s regularization toolbox [12] in MATLAB. We modified the exact right-hand side
ḡ by adding normally distributed noise, n, scaled so that variance(n)

variance(ḡ) = 10−5. We employed
total variation (TV) regularization [18, 23] to obtain the regularized solution f . TV is a
special case of (3) where M = 1, φ1(t) = |t| and R1 is a discrete approximation to first-order
differentiation. In order to facilitate an iterative solution as in [23] we slightly modified the cost
functional by substituting φ1(t) = √|t|2 + β where β > 0 is a stabilization parameter. We used
β = 10−8 in our simulations. The L-curve for this problem was computed by samplingα in 100
logarithmically equi-spaced points between 10−15 and 1010. The resulting L-curve is displayed
in figure 6(a). We chose three different origins and computed corresponding v(α) functions.
Each one of the three origins chosen were indicated by the following symbols (figure 6(a)): a
circle, a diamond and a square. The origin indicated by a circle is especially important since
it is the one we advocated using. The other two origins, indicated by the diamond and the
square symbols, are arbitrary and included here to see how sensitive the resulting regularization
parameter is to the selection of the origin. Coordinates of the origin indicated by the circle were
calculated as follows: first we estimated the smallest and largest singular values of the matrix
H which were found to be σmin ≈ 2.2 × 10−6 and σmax ≈ 5.8. According to the preceding
discussion, we took the coordinates of the origin as O = (a, b) = (log z(σ 2

min), log x(σ 2
max ))

(where σi denote the generalized singular values rather than singular values). In figure 6(c) we
display v(α) functions for each of the three origins selected. The minimum of v(α) for each

6 If easy to compute, the appropriate σ values should be replaced by estimates of the generalized singular values for
the corresponding 1D problems.
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Figure 6. Example 1. (a) L-curve for problem phillips. (b) Curvature of the L-curve in (a).
(c) Three different MDF for different choices of the origin.

case is marked with the appropriate symbol from figure 6(a). Also shown in figure 6(c) is the
plot of −sign(κ(α))× log(1 + |κ(α)|) and the location of the minimum of the v(α) functions
for each origin. The region in between the vertical lines in figures 6(b) and (c) represents the
part of the L-curve for which κ(α) � 0. It is nicely seen from figure 6(c) that for all three
cases the minimum of v(α) is inside the crossover region of the L-curve and that the minimum
of v(α) for origin indicated by the circle comes very close to the maximum curvature point.

4.2. Example 2

In our second example, we demonstrate the utility of the MDF in a multiple regularization
parameter setting. The test problem of interest was generated by convolving the 128-point
signal displayed in figure 7(a) with a Gaussian kernel, h(i) = 1√

2σ 2π
exp{i 2/2σ 2}, with

σ = 2.0 and i = −30, . . . , 30. The exact right-hand side is again modified by adding
normally distributed random noise scaled so that variance(n)

variance(ḡ) = ×10−2. The blurred and noisy
signal obtained in this way is displayed in figure 7(b). We obtained the regularized solution
by using Tikhonov’s regularization in the following way:

f∗(α1, α2) = (HT H + α1R1 + α2R2)
−1HT g (30)
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Figure 7. Example 2. (a) Original 128-point signal. (b) Blurred and noisy version of the signal in
(a).

where R1 is an operator extracting the first half of the signal and R2 is an operator extracting
the second half of the signal so that R1 + R2 = I128×128 is the 128 × 128 identity matrix.
Such a selection for the regularization operators is motivated by the fact that the second half
of the blurred, noisy signal (from point 65 to point 128) appears much smoother than the first
half. Thus, it is possible to decrease noise artifacts in the second half of the restored signal by
applying more regularization.

For this problem, the minimum and the maximum singular values of H were σmin ≈
1.3 × 10−4 and σmax ≈ 1.3. The origin chosen for the computation of the MDF was
O = (log z(σ 2

min, σ
2
min), log x1(σ

2
max , 0), log x2(0, σ 2

max )).
We computed the MDF (v) and the mean square error (MSE), 1

N ‖f − f∗(α1, α2)‖2
2, by

sampling regularization parameters at 26 logarithmically equi-spaced points between 10−10

and 102. The resulting MDF and MSE surfaces are displayed in figures 8(a) and (b). We
compared the performance of BFGS with line search, which is guaranteed to converge to a
minimum of the MDF, with our fixed-point iteration. Ideally, we are only interested in α � 0.
We note that neither of these methods is guaranteed to have non-negative iterates, but since
the non-negativity constraint is not violated at the minimum of v and both converge to the
minimum for reasonable starting points, we chose to ignore the non-negativity constraint.

We started our iterative algorithm with three different initial values of α = [α0
1, α

0
2]T . The

stopping criteria we used for BFGS was that the norm of the gradient be less than 10−6. The
stopping criteria we used for our fixed point algorithm was

max
∀i

|αk
i − αk−1

i |/|αk−1
i | � 10−4. (31)

In fact, 10−4 may be a smaller tolerance than is necessary to get good α1, α2; however, since
BFGS tended to converge to solutions where this measure was of order of 10−4, this tolerance
was useful for comparison purposes.

For each run, the points computed by our algorithm at each iteration are indicated on
both the MDF and MSE surfaces. Although it may be difficult to see from the figure, the
optimal parameters were an order of magnitude apart, thereby justifying the use of two
regularization terms. In figures 9(a) and (b), circles indicate the trajectory of the algorithm for
α(0) = [10−8, 10−5], diamonds indicate the trajectory of the algorithm for α(0) = [10−8, 10−8]
and squares indicate the trajectory of the algorithm for α(0) = [10−5, 10−8]. In all three cases,
our fixed-point algorithm converged to the same point (α = [3.5 × 10−3, 2.2 × 10−2]T ) in
fewer than nine iterations. Recall that for every iteration, one system of the form (30) needs
to be solved.
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Figure 8. Example 2. (a) Plot of v function. (b) Corresponding MSE surface. Circles, diamonds
and squares indicate the trajectory of our iterative algorithm for different starting points.

In contrast, BFGS took 26 or 27 iterations, depending on the starting point, to converge
using the stopping criteria based on the norm of the gradient. Further, it took about 47 function
evaluations plus the same number of gradient evaluations to reach convergence for each of
the three cases. Each function evaluation is equivalent to solving one linear system of the
form (30). Additionally, each gradient evaluation requires solving two additional linear systems
of the form (30). Thus, about 47 × 3 linear systems need to be solved before convergence is
reached. Therefore, the number of linear systems required for BFGS with line search to reach
convergence was roughly 15 times more than for our fixed-point algorithm.
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4.3. Example 3

Our next example is a wavelet domain signal restoration experiment where we use L1 norm as
the regularization functional. The original 256 point Blocks sequence,extracted from Donoho’s
WaveLab package7, is convolved with a Gaussian kernel, h(i) = 1√

2σ 2π
exp{(i − m)2/2σ 2},

with parameters σ = 4.0 and m = 128. Zero mean normally distributed random noise
was added to the degraded signal so that variance(n)

variance(ḡ) = 4.62 × 10−5. We obtained the
regularized solution by a wavelet domain signal restoration algorithm developed by the
authors [3]. This regularization approach is a special case of (3) where g,H,f are the
wavelet domain representations of the measurements, the convolution operator and the
original signal, M = 2, φi(t) = √|t|2 + 0.01, R1 is the operator extracting the scaling
coefficients and R2 is the operator extracting the wavelet coefficients of f . Hence, in
this experiment, α1 is the regularization parameter for the scaling coefficients and α2 is
the regularization parameter for the wavelet coefficients of the original signal. For this
problem, we determined that the minimum and the maximum singular values of H were
σmin ≈ 2.2 × 10−19 and σmax ≈ 1.0. The origin chosen for the computation of the MDF was
O = (log z(σ 2

min, σ
2
min), log x1(σ

2
max , 0), log x2(0, σ 2

max )).
As in the previous example, we started our iterative algorithm with three different initial

values for α = [α0
1, α

0
2 ]T , and ran our algorithm until (31) was satisfied. In figures 9(a)

and (b), ‘+’ indicates the trajectory of the algorithm for α(0) = [10−3, 10−10], ‘o’ is the
trajectory of the algorithm for α(0) = [10−10, 10−10] and ‘x’ indicates the trajectory of the
algorithm for α(0) = [10−10, 10−3]. In figure 9, a solid line represents the minimum attainable
MSE, 1

N ‖f − f∗(α1, α2)‖2
2 (as determined by a search over hundreds of α = [α1, α2]) for

this problem. The final MSE value obtained by our iterative algorithm was 0.0490 while the
minimum MSE was 0.0457. Figure 9 shows the convergence of our iterative algorithm. As
observed from this figure the convergence criterion in (31) is satisfied by the eighth iteration
for all starting points.

4.4. Example 4

Our final example is concerned with the restoration of an image from its blurred and noisy
version. The original cameraman image selected for this example is displayed in figure 10. This
image was convolved with a 2D Gaussian kernel,h(i, j) = 1

2σ 2π
exp{((i−m)2+( j−n)2)/2σ 2},

with parametersσ = 2.0 and m = n = 128. Zero-mean normally distributed random noise was
added to the degraded image so that variance(n)

variance(ḡ) = 10−4. To obtain the restored image, we used a
three-parameter regularization scheme where L2 norms of the horizontal, vertical and diagonal
first-order differences of the image were used as regularization functionals (i.e.φi(t) = |t|2, Ri ,
i = 1, 2, 3 are the horizontal, vertical and diagonal differencing operators in the image domain
in (3)). For this problem, we determined that the minimum and the maximum singular values
of H were σmin ≈ 10−18 and σmax ≈ 10−2. The origin chosen for the computation of the MDF
was O = (log z(σ 2

min, σ
2
min, σ

2
min), log x1(σ

2
max , 0, 0), log x2(0, σ 2

max , 0), log x3(0, 0, σ 2
max )).

To obtain the regularized solution which uses the regularization parameters obtained by our
algorithm, we started our iterative algorithm with the initial point α = [10−10, 10−10, 10−10]T ,
and ran our algorithm until (31) was satisfied. It was found that the algorithm converged
within 17 iterations. The restored image obtained in this way is displayed in figure 10(d).
For comparison, we also found the regularization parameters that minimize the MSE

7 The WaveLab documentation and package is available from http://www-stat.stanford.edu/wavelab.
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Figure 9. (a) MSE versus iteration number for three different choices of initial regularization
parameters for the Blocks problem. Solid line shows the minimum attainable MSE. (b) Convergence
of the iterative algorithm for different choices of initial regularization parameters.

1
N ‖f − f∗(α1, α2, α3)‖2

2, by performing an extensive search8 over α1, α2, α3. Figure 10(c)
displays the restored image obtained by using the best regularization parameters (in terms of
minimizing the MSE). The ratio of the MSE value of our iterative algorithm to that of minimum
MSE value was found to be 1.2686.

8 Minimum MSE was determined by sampling αi -space using the MATLAB command logspace(−9, 0, 20),
for a total of 8000 α vectors tested.
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(a) (b)

(c) (d)

Figure 10. (a) Original cameraman image. (b) Blurred, noisy cameraman image. (c) Restored by
using the regularization parameters minimizing the MSE. (d) Restored by using the regularization
parameters obtained by our iterative algorithm.

5. Conclusions and discussion

In this paper, we considered the problem of estimating multiple regularization parameters
in a generalized L-curve framework. We defined a surrogate function, called the MDF, to
replace the curvature function. The analysis we carried out on a hypothetical L-curve model
indicated that, in the single-parameter case, the regularization parameters minimizing the MDF
approximately maximize the curvature as the corner of the L-curve becomes sharper. This latter
point was confirmed by numerical examples performed on actual L-curves. Further, numerical
results indicated that the parameters chosen using our approach gave regularized solutions that
were comparable to the optimal regularized solutions.

We also developed an iterative fixed-point algorithm to approximate the regularization
parameters minimizing the MDF. In the case of a single regularization parameter, we were able
to prove that the fixed point converges to a minimum of the MDF under certain assumptions.
It was shown through numerical experiments that the iterative algorithm quickly converges.
Thus, the computational effort associated with computing approximations to the regularization
parameters that correspond to the generalized corner of the L-hypersurface has been greatly
reduced. The potential tradeoff is a slight degradation in the MSE of the reconstruction if the
origin chosen is not optimal.
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Appendix. Proofs of theorems

Proof of theorem 1. First, define the iteration function as

�(t) ≡ z(t)

x(t)

(
log[x(t)] − b

log[z(t)] − a

)
.

Then the fixed point iteration is written t (k+1) = �(t (k)).

The case t (0) = t∗ is trivial, so in the remainder, we assume t (0) < t∗.
Let I1 denote the interval [ε1, t∗] and let I2 denote the interval [t∗, ε2]. For all t in I1, our

assumptions imply v′(t) < 0 whereas for t in I2, we must have v′(t) > 0. Differentiating (11)
and using (15) we get

v′(t) = 2

ln 10
x ′(t)

(
1

x(t)
(log[z(t)] − a)− t

1

z(t)
(log[x(t)] − b

)
< 0.

But since x ′(t) < 0, it follows that for all t in I1,

�(t) > t

whereas for all t in I2,

�(t) < t .

Now it is straightforward to show that the derivative of the iteration function is given as

�′(t) = ζ(t)
z′(t)

x

(
1 − 1

log[z(t)] − a

)
+

z(t)(−x ′(t))
x2(t)

(
ζ(t)− 1

log[z(t)] − a

)
,

where

ζ(t) =
(

log(x(t))− b

log(z(t))− a

)
.

Using the fact that x(t)
αb

� x(t∗)
αb

> 10 and z(t)
αa

� 10 together with the positivity of x, z,−x ′, z′,
it is easy to show that �′(t) > 0 for t in I1 and I2.

Using the mean value theorem and an induction argument, it follows from the fact that
�(t) > t, t ∈ I1 or�(t) < t, t ∈ I2 together with the fact that�′(t) > 0 that if t (0) < t∗, the
iterates remain to the left of t∗ while if the initial guess is to the right, the iterates remain to the
right. Hence, the iteration is either producing an increasing sequence {t (k)}∞k=0 bounded above
by t∗ or a decreasing sequence bounded below by t∗, depending on where the starting guess is.
Therefore, the sequence started to the left of t∗ converges to a point t̂1 ∈ I1, and the sequence
started on the right converges to a point t̂2 ∈ I2. It is easy to show these limit points are fixed
points. However, if t̂i �= t∗, and yet t̂i is a fixed point, v′(t̂i ) = 0, which is a contradiction of
our assumption on v over I1 and I2. Therefore, either sequence must converge to t∗.

To prove the results in section 3.3, we require the following theorem.

Theorem 6. Let Q be a point on the plane below the convex curve δ(s), which does not lie on
δ(s). A line from Q to δ(s) intersecting δ(s) perpendicularly can be drawn iff Q ∈ P(δ).
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Proof. Follows from the definition of P(δ). �

Proof of theorem 2. Given the point O = (a, b), by the definition of parallel transport and
theorem 6 there exists a scalar r∗ > 0 and s∗ ∈ [s−

0 , s+
0 ] such that O = β[s−

0 ,s
+
0 ](s

∗) + r∗n(s∗).
Define the point on β[s−

0 ,s
+
0 ] at s∗ as P = β[s−

0 ,s
+
0 ](s

∗). Then we can write the vector from P to

O,
−→
P O , as r∗n(s∗). If t (s∗) denotes the tangent to β[s−

0 ,s
+
0 ] at P , it follows that

−→
P O · t (s∗) = 0.

But by our earlier definitions, we have

t (s∗) =
[

dψ [z(s∗)]
ds

,
dψ [x(s∗)]

ds

]
,

−→
P O = [(ψ[z(s∗)] − a), (ψ[x(s∗)] − b)].

Thus, the condition
−→
P O · t (s∗) = 0 implies

(ψ[z(s∗)] − a)
dψ[z(s∗)]

ds
+ (ψ[x(s∗)] − b)

dψ[x(s∗)]
ds

= 0,

which is precisely the condition v′(s∗) = 0. Therefore s∗ is a critical point of v(s) for
s ∈ [s−

0 , s+
0 ].

Now suppose the s∗ is not a minimum. Then there exists ε such that v(s∗ + ε) < v(s∗).
This would imply that β[s−

0 ,s
+
0 ](s

∗ + ε) must lie below t (s∗) since it is closer to O than P is.
But this would contradict the fact that β[s−

0 ,s
+
0 ] is convex. Therefore s∗ must be a minimum of

v(s) in [s−
0 , s+

0 ]. By a similar argument s∗ is also seen to be unique.

Proof of theorem 3. By theorem 2 we know that v(s) has a single minimum, v(s∗), at
s∗ ∈ [µ0 − σ0, µ0 + σ0], so it suffices to prove that v(s∗) is the unique minimum in
(µ1 +σ1, µ0 − σ0)∪ (µ0 + σ0, µ2 − σ2). Since the argument is the same for either subinterval,
we assume without loss of generality that there is another minimum in the left subinterval,
s∗∗ ∈ (s+

0 , s2) ≡ (µ0 + σ0, µ2 − σ2). Let P = β(s∗∗). By theorem 6 applied to the curve
β[s+

0 ,s2], the only way to draw a perpendicular line to P from O is if O ∈ P(β[s+
0 ,s2]). Since O

is not in P(β(s+
0 ,s2)

) by our assumption, we cannot draw a perpendicular line to P . Therefore
−→
P O · t(s∗∗) = v′(s∗∗) �= 0, a contradiction. It follows that s∗ is the unique minimum of v(s)
for s ∈ (µ1 + σ1, µ2 − σ2).

Proof of theorem 4. O = (a, b) falls to the outside of P(β[µ−σ0,µ0+σ0]) only if either O is in
the region to the left of n−

0 = n(µ0 −σ0) or O is in the region to the right of n+
0 = n(µ0 +σ0)

(figure 5). We investigate, without loss of generality, the first case.

Let us consider an origin O(a, b) = (β1[sa], β2[sb]) with sb < µ0 fixed and whose β1

coordinate a is determined by the intersection of the horizontal line β2 = b with n−
0 . Since

P(β[µ0−σ0,µ0+σ0]) (shaded region in figure 4) for r > 0 lies below n−
0 , O = (a, b) as well as

any origin whose β1 coordinate is smaller than a results in an MDF whose minimum is outside
the region covered by s ∈ (µ0 − σ0, µ0 + σ0). In other words, the intersection of the line
β2 = b with n−

0 determines the boundary beyond which an origin falling outside the region
P(β[µ0−σ0,µ0+σ0]) can be found.

Since θ1 − θ0 + θ2 = π
2 and θ0, θ1, θ2 <

π
2 by our assumptions, θ0 → π

2 implicates that
θ1, θ2 → π

2 and as θ0 → π
2 the L-curve takes the limiting shape shown in figure 4 by the

dashed lines. In the limit, as θ0 → π
2 , n−

0 becomes horizontal and the line β2 = b cannot
intersect n−

0 meaning that an O(a, b) that is outside P(β[µ−σ0,µ0+σ0]) cannot be found.
Hence, as θ0 approaches π

2 , P(β[µ−σ0,µ0+σ0]) for r > 0 extends in such a way that
the β1 coordinate, a, of any origin O(a, b), satisfying the conditions in theorem 4, falls in
P(β[µ−σ0,µ0+σ0]).
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