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Abstract

Background: Users of a personalised recommendation system face a dilemma: recommendations can be improved

by learning from data, but only if other users are willing to share their private information. Good personalised

predictions are vitally important in precision medicine, but genomic information on which the predictions are based

is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential

privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual

patients cannot be distinguished. However, differentially private learning with current methods does not improve

predictions with feasible data sizes and dimensionalities.

Results: We show that useful predictors can be learned under powerful differential privacy guarantees, and even

frommoderately-sized data sets, by demonstrating significant improvements in the accuracy of private drug sensitivity

prediction with a new robust private regression method. Our method matches the predictive accuracy of the state-of-

the-art non-private lasso regression using only 4x more samples under relatively strong differential privacy guarantees.

Good performance with limited data is achieved by limiting the sharing of private information by decreasing the

dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy.

Conclusions: The proposed differentially private regression method combines theoretical appeal and asymptotic

efficiency with good prediction accuracy even with moderate-sized data. As already the simple-to-implement

method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications

in many fields.

Reviewers: This article was reviewed by Zoltan Gaspari and David Kreil.

Keywords: Differential privacy, Linear regression, Drug sensitivity prediction, Machine learning

Background
The widespread collection of private data, in the health

domain both by individuals and hospitals, creates a major

opportunity to develop new services by learning predic-

tive models from the data. Privacy-preserving algorithms

are required and have been proposed, but for instance

anonymisation approaches [1–3] cannot guarantee pri-

vacy against adversaries with additional side information,

and are poorly suited for genomic data where the entire

data vector is identifying [4]. Guarantees of differential
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privacy [5, 6] remain valid even under these conditions [6],

and differential privacy has arisen as the most popularly

studied strong privacy mechanism for learning from data.

Genomics is an important domain for privacy-aware

modelling, in particular for precision medicine. Many

people wish to keep their and also their relatives’ genomes

private [7], and simple anonymisation is not sufficient to

protect the privacy since a genome is inherently identifi-

able [4]. Furthermore, individual genomes can be recov-

ered from summary statistics [8] as well as phenotype

data such as gene expression data [9]. Hence, the hospi-

tal or clinic holding the genomic data will need to be very

cautious about privacy risks when releasing any genomic

data, even though the data would be needed and use-

ful for future diagnoses and treatment decisions. These

findings have motivated a number of privacy-preserving
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methods for genome-wide association studies, based on

differential privacy [10–12] as well as relaxations that

provide more accurate modelling results under weaker

privacy guarantees [13]. Previous research in drug dosing

for personalised medicine has shown that inefficient dif-

ferentially private models may put the patients at severe

risk [14].

Our work for this paper is motivated by modelling for

personalised medicine. One possible learning scenario in

this field is illustrated in Fig. 1 where the party devel-

oping the predictive model has unrestricted access to at

most a very limited data set (bottom left), for example

from local patients willing to share their data or from

large public research projects with liberal data sharing

practices. At the same time there are potentially a lot

more data available from other sources (top), but access

to those is constrained by privacy concerns. A similar set-

ting was considered previously in [15], which presents

a simple mechanism for combining public and private

data for logistic regression, but the results they obtain

are quite inaccurate. In contrast, our approach for linear

regression is asymptotically efficient and yields signifi-

cantly more accurate results for reasonably-sized privacy-

protected data sets than any previous method. This

creates a promise for new type of data sharing that can

find effective compromises between the utility of the data

for learning new models and the privacy of the data

subjects.

Approach

Efficient differentially private learning

Differential privacy [5, 6] is a formulation of reasonable

privacy guarantees for privacy-preserving computation.

It gives guarantees about the output of a computation

Learning

Data

Non-private data

(optional)

Predictive model

Privacy wall

Fig. 1 Typical modelling setup for differentially private learning of a

predictive model. In many applications most data (top) are available

for learning only if their privacy can be protected

and can be combined with complementary cryptographic

approaches such as homomorphic encryption [16] if the

computation process needs protection too. An algorithm

M operating on a data setD is said to be differentially pri-

vate if for any two data setsD andD′, differing only by one

sample, the ratio of probabilities of obtaining any specific

result c is bounded as

p(M(D) = c)

p(M(D′) = c)
≤ exp(ǫ). (1)

Because of similarity between D and D′ the probabili-

ties need to be similar to satisfy the condition. Differential

privacy is preserved in post-processing, which makes it

flexible to use in complex algorithms. The ǫ is a privacy

parameter interpretable as a privacy budget, with higher

values corresponding to less privacy preservation. Differ-

entially private learning algorithms are usually based on

perturbing either the input [5, 17], output [5, 18] or the

objective [19, 20].

Here we apply differential privacy to regression. The

aim is to learn a model to predict the scalar target yi
from d-dimensional inputs xi (Fig. 1) as yi = f (xi) + ηi,

where f is an unknown mapping and ηi represents noise

and modelling error. We wish to design a suitable struc-

ture for f and a differentially private mechanism for effi-

ciently learning an accurate private f from a data set D =

{(xi, yi)}
n
i=1.

We argue that a practical differentially private algo-

rithm needs to combine two things: (i) it needs to provide

asymptotically efficiently private estimators so that the

excess loss incurred from preserving privacy will diminish

as the number of samples n in the data set increases; (ii) it

needs to perform well on moderately-sized data.

It was recently shown that perturbation of sufficient

statisics of an exponential family model leads to asymp-

totically efficient differentially private Bayesian inference

[21, 22]; to cover the second equally important crite-

rion the methods of this paper are additionally needed.

Asymptotic efficiency is nevertheless important because

such methods always allow reaching stronger privacy with

more samples.

While asymptotic efficiency is a nice guarantee, alone it

is of little help for a specific learning problem with a fixed

finite data set with size far from the asymptotic regime. It

is difficult to prove the optimality of a method on finite

data so performance needs to be studied empirically. We

argue that for a method to perform well it needs to be

designed to control the amount of shared private infor-

mation. This has two components: (a) the dimensionality

needs to be reduced, to avoid the inherent incompatibil-

ity of privacy and high dimensionality which has been

discussed previously [23], and (b) robustness needs to

be introduced by bounding and transforming each vari-

able (feature) to a tighter interval. Controlling the amount
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of shared information also introduces a trade-off: com-

pared to the non-private setting, decreasing the dimen-

sionality may degrade the performance of the non-private

approach (at least when reducing to a very low dimen-

sionality), while a corresponding low-dimensional private

algorithm may attain higher performance than a higher-

dimensional one. This behaviour can be seen in the results

of Fig. 6a where higher-dimensional differentially private

algorithms perform worse than lower-dimensional ones,

while for non-private algorithms a higher dimensionality

would be better.

The essence of differential privacy is to inject a suffi-

cient amount of noise to mask the differences between the

computation results obtained from neighbouring data sets

(differing by only one entry). The definition depends on

the worst-case behaviour, which implies that suitably lim-

iting the space of allowed results will reduce the amount

of noise needed and potentially improve the results. In the

output perturbation framework this can be achieved by

bounding the possible outputs [18].

Here we propose a more powerful approach of bound-

ing the data by projecting outliers to tighter bounds. The

current standard practice in private learning is to lin-

early transform the data to desired bounds [20]. This is

clearly sub-optimal as a few outliers can force a very small

scale for the other points. Significantly higher signal-to-

privacy-noise ratio can be achieved by setting the bounds

to cover the essential variation in the data and projecting

the outliers separately inside these bounds. This approach

also robustifies the analysis against outliers as the projec-

tion can be made independent of the outlier scale. When

applied to linear regression, we call the resulting model

robust private linear regression. It is illustrated in Fig. 2.

Algorithm overview

We incorporate differentially private learning into

Bayesian linear regression. The linear regression model

for scalar target yi, with d-dimensional input xi and fixed

noise precision λ, is defined by

yi|xi ∼ N
(

xTi β , λ
)

(2)

β ∼ N(0, λ0I), (3)

where β is the unknown parameter to be learnt. The λ

and λ0 are the precision parameters of the corresponding

Gaussian distributions, and act as regularisers. Assum-

ing the precision parameters are known and fixed, then

given an observed data set D = {(xi, yi)}
n
i=1, all informa-

tion about the data can be summarised by the sufficient

statistics nxx =
∑n

i=1 xix
T
i and nxy =

∑n
i=1 xiyi, which

together with the prior completely determine the result-

ing posterior distribution. Instead of fixing the precision

parameters, they can be assigned prior distributions. In

Fig. 2 The effect of bounding data for differentially private learning of

a regression model. Top: Bounding the data increasingly tightly (by B;

green square) brings 1D robust private linear regression models (blue

lines illustrating the distribution of results of the privacy-preserving

algorithm) closer to the non-private model (black line) as less noise

needs to be injected. Blue points: data. Bottom: The data are

bounded in robust private linear regression by projecting outliers

within the bounds (red lines; shown only for a subset of the points)

that case, given an observed data set and sufficient statis-

tics nxx, nxy and nyy =
∑n

i=1 y
2
i , we can use auto-

matic differentiation variational inference (ADVI) [24] to

fit a variational distribution to the posterior and then

draw samples from the fitted distribution. We use ADVI

because it gives similar results as Hamiltonian Monte

Carlo sampling but significantly faster.

The robust private linear regression is based on per-

turbing these sufficient statistics. We use independent

ǫi-differentially private Laplace mechanisms [5] for per-

turbing each statistic with ǫi = piǫ for each i = 1, 2, 3 and

p1 + p2 + p3 = 1. By the differential privacy composition

theorem they together provide an ǫ-differentially private

mechanism.

To improve the robustness of themethod, we project the

outliers in the private data sets to fit the data in the inter-

vals [−Bx,Bx] and [−By,By]. A more detailed description

of the learning is in “Methods” section.

Results

Optimal privacy budget split on synthetic data

We find the optimal privacy budget split by generating an

auxiliary data set of size n samples (here n = 500) using

the method described in “Methods” section. As illustrated

in Fig. 3, the optimal split gives the largest proportion

of the privacy budget to the term nxy (60%), the second

largest proportion to the term nxx (35%), and the smallest

possible proportion to the term nyy (5%).



Honkela et al. Biology Direct  (2018) 13:1 Page 4 of 12

Fig. 3 Optimal privacy budget split between sufficient statistics.

Accuracy on a synthetic data set improves as a bigger proportion of

the fixed privacy budget is assigned for nxy. The best performance is

achieved by assigning term nyy the smallest proportion 5%, term nxy

a large 60% proportion, and term nxx the remaining 35% proportion

of the privacy budget. Accuracy has been evaluated with 10-dimensional

synthetic data, measured by Spearman’s rank correlation between

the predicted and true values (higher values are better)

Effectiveness of data bounding on synthetic data

The importance of the projection is illustrated by the sim-

ulation results shown in Fig. 4. The simulation shows that

aggressive projection can lead to clear improvement in

the prediction accuracy. The figure shows the accuracy

of simulated experiments as a function of the projection

threshold represented as standard deviations away from

the mean. As shown in the figure, the optimal threshold

can be less than 0.5 sd away from the mean which implies

that a significant majority of the data points get projected.

Drug sensitivity prediction

Methods We applied the robust private linear regression

model to predict drug sensitivity given gene expression

data, in a setup where a small internal data set can be

complemented by a larger set only available under pri-

vacy protection (Fig. 1). We used an experimental setting

similar as in the recent DREAM-NCI drug sensitivity pre-

diction challenge [25]; we also evaluate the results with the

same measures, that is, Spearman’s rank correlation and

weighted probabilistic concordance (wpc) index.

The data are from the Genomics of Drug Sensitivity

in Cancer (GDSC) project [26, 27] (release 6.1, March

2017, http://www.cancerrxgene.org). Sensitivity measure-

ments of 265 drugs for a panel of 985 human cancer cell

lines are combined with gene expression data for the cell

lines. The dimensionality of the RMA-normalised gene

Fig. 4 The effect of data bounding on regression model accuracy. The

figure illustrates the effect of projecting the outliers to within the

bounds in linear regression, for different sample sizes n with

10-dimensional synthetic data, evaluated by Spearman’s rank

correlation between the predicted and true values (higher values are

better), both for DP (solid lines) and non-private regression (dashed

lines). The lines show a minor decrease in accuracy of the non-private

algorithm as the projection threshold becomes increasingly tight.

This minor decrease is eclipsed by a dramatic increase in the accuracy

of the DP algorithm. Similar plots with higher dimensional data, and

samples from a heavy-tailed distribution are included as Additional

file 1: Figures S1 and S2

expression data was reduced from d = 17, 490 down to

64 based on prior knowledge about genes that are fre-

quently mutated in cancer, provided by the GDSC project

at http://www.cancerrxgene.org/translation/Feature. We

further ordered the genes based on their mutation counts

as reported at http://cancer.sanger.ac.uk/cosmic/curation.

Drug responses were quantified by log-transformed IC50

values (the drug concentration yielding 50% response)

from the dose response data measured at 9 different con-

centrations. The mean was first removed from each gene,

xij := xij −mean(x1:n,j), and each data point was then nor-

malised to have L2-norm ‖xi‖2 = 1, which focuses the

analysis on relative expression of the selected genes, and

equalises the contribution of each data point. The mean

was removed from drug sensitivities, yi := yi−mean(y1:n).

The sensitivity to each drug was predicted with Bayesian

linear regression. We compared the proposed robust

private linear regression to state-of-the-art differentially

private linear regression approaches that are based on

output perturbation [18] and the functional mechanism

[20]. Output-perturbed LR learns parameters β using the

same LR model in Eq. (2), but instead of statistics the

http://www.cancerrxgene.org
http://www.cancerrxgene.org/translation/Feature
http://cancer.sanger.ac.uk/cosmic/curation
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parameters are perturbed, in a data-independent man-

ner. Our implementation of output-perturbed LR makes

use of the minConf optimisation package [28]. For func-

tional mechanism LR we used the code publicly available

at https://sourceforge.net/projects/functionalmecha/.

We carried out a 50-fold Monte Carlo cross-validation

process for different splits of the data set into train and

test sets using different random seeds. For each repeat, we

randomly split the 985 cell lines to two sets: 100 for testing

and the rest for the training. We further randomly par-

titioned the training set to 30 non-private cell lines and

used the rest as the private data set. In the experiments, we

tested non-private data sizes from 0 to 30, and private data

sizes from 100 to 800. After defining each split, the sam-

ples with missing drug responses were dropped, making

the number of cell lines different across different drugs.

The hyperparameters for the Gamma priors of precision

parameters λ, λ0 in Eq. (9) were set to a = b = a0 = b0 =

2. The Gamma(2, 2) distribution has mean 1 and variance

1/2 and defines a realistic distribution over sensible values

of precision parameters which should be larger than zero.

We implemented the model and carried out the infer-

ence with the PyMC3 Python module [29]. Using ADVI,

we fitted a normal distribution with uncorrelated vari-

ables to the posterior distribution. We computed the drug

response predictions using m = 5000 samples from the

fitted variational distribution. The optimal privacy budget

split was based on prediction performance averaged over

five auxiliary data sets of 500 synthetic samples (approxi-

mately half of the GDSC data set size) and five generated

noise samples, and for each split, the optimal projection

thresholds were chosen similarly based on average perfor-

mance over five auxiliary data sets and five noise samples.

The prediction for each split was computed using m =

5000 samples drawn from the variational distribution fit-

ted with ADVI. The final optimal projection thresholds

for each test case were chosen using the optimal budget

split and based on average prediction performance over

20 auxiliary data sets and 20 noise samples. All auxiliary

data sets were generated by fixing the precision parame-

ter values to the prior means, λ = λ0 = 1. The prediction

for each pair of projection thresholds was also computed

using fixed precision parameters as in Eqs. (6) and (7), as

generating samples from the fitted variational distribution

for all test cases would have been infeasible in practice.

Results The prediction accuracies of the compared

methods are illustrated in Fig. 5. Unlike the earlier dif-

ferentially private methods, the proposed robust private

linear regression can improve the prediction accuracy

(ranking of new cell lines [25] to sensitive vs insensitive

as measured by Spearman’s rank correlation and the wpc-

index) over the baseline of using only a small internal data

set, when feasible amounts of privacy protected data are

received. The output-perturbed linear regression is able

to learn something from the private data too, but its per-

formance is significantly worse than with the proposed

approach. Results with more stringent privacy (ǫ = 1

instead of ǫ = 2) in Additional file 1: Figure S3 show over-

all lower accuracy for the private methods but are again

qualitatively similar.

The comparison includes non-private lasso regression

which was the best-performing method in the DREAM

drug sensitivity prediction challenge [25] using only

expression data. Non-private lasso regression is clearly

superior to the other methods for Spearman’s rank cor-

relation. With the more relevant wpc-index, non-private

linear regression is on par with non-private lasso regres-

sion and the proposed robust private linear regression

is quite close behind. Overall, our differentially private

method using 800 samples is on par with non-private lasso

regression with 200 samples, suggesting we can match the

accuracy of the state-of-the-art non-private predictions

under differential privacy with a reasonable increase in the

number of samples needed. The good performance of the

lasso regression which ultimately uses a linear model also

suggests that with better feature selection, private linear

regression could potentially do even better.

Among the state-of-the-art differentially private algo-

rithms, the output perturbation method [18] is the most

accurate one, but it is still significantly less accurate than

the proposed method. The relatively poor performance

of the output perturbation method on our benchmark

compared to their previously reported results is due to

the difficulty and higher dimensionality of our prediction

task.

To improve prediction performance in differentially pri-

vate learning, trade-offs need to be made between dimen-

sionality and the amount of data (Fig. 6a), and between

the strength of privacy guarantees and the amount of data

(Fig. 6c). In our experiments the amount of optional non-

private data matters significantly only when there is very

little private data (Fig. 6b), which is probably due to the

fact that every sample gets equal weight in the model

regardless of its origin.

To understand the reason for the success of the robust

private linear regression, we also tested it without the

projection step. The proposed non-linear projection of

the data to tighter bounds is clearly the key to the suc-

cess of the method, as without it the method performs

very poorly (green line for Private LR in Fig. 5), and

is not able to improve prediction performance using

the available data. Because of the different formulations

they are based on, the alternative differentially private

algorithms considered here cannot directly benefit from

the projection to decrease the amount of injected noise

and hence would not experience a similar improvement in

accuracy.

https://sourceforge.net/projects/functionalmecha/
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Fig. 5 Accuracy of drug sensitivity prediction increases with amount of private data for the proposed robust private linear regression. The

state-of-the-art methods fail to improve over just using the non-private data under strict privacy conditions, with reasonable data amounts. The

baselines (horizontal dashed lines) are learned on 10 non-private data points; the private algorithms additionally have privacy-protected data

(x-axis). The non-private algorithm (LR) has the same amount of additional non-privacy-protected data. Accuracy is measured by Spearman’s rank

correlation coefficient over ranking cell lines by sensitivity to a drug (left; higher is better) and by weighted probabilistic concordance index

(wpc-index; right; higher is better). All methods use 10-dimensional data except the gray baseline showing the best performance with 10

non-private 64-dimensional data points. Private methods use ǫ = 2. Corresponding results for ǫ = 1 are in Additional file 1: Figure S3 and results

including non-private robust LR in Additional file 1: Figure S4. The results are averaged over all drugs and 50-fold Monte Carlo cross-validation; error

bars denote standard deviation over 50 Monte Carlo repeats

Fig. 6 Key trade-offs in differentially private learning. Relative

improvements over baseline (10 non-private data points). a, As the

dimensionality increases, more data are needed to improve

performance of the private methods. b, With enough private data,

adding more non-private data does not significantly increase the

performance. c, More data are needed if privacy guarantees are tighter

(privacy parameter ǫ is smaller). Data dimensionality is 10, the size of

non-private data is 10, and ǫ = 2 (except when otherwise noted)

The effect of the projection is studied further in

Additional file 1: Figure S4 which includes a non-private

robust linear regression using the projection approach.

The performance of this approach is slightly worse than

that of the regular linear regression. This verifies our

assumption that best private learning methods are not

direct translations of best non-private methods but new

methods that take into account the privacy constraints.

Discussion
A key question which needs to be answered before apply-

ing differentially private methods in practical personalised

medicine, is whether they can compromise patient safety

as previously warned [14]. If there are sufficient amounts

of data available without restrictions on their use, the

more accurate non-private methods are certainly prefer-

able. However, we believe in more realistic scenarios the

amount of non-restricted data is limited, and larger sets

are only available under privacy restrictions. As demon-

strated by our results, the proposed differentially private

methods can provide more accurate predictions in this

case. Furthermore, because of the asymptotic efficiency of
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the method, the extra “price” for privacy diminishes as the

size of the data set increases.

At the heart of any privacy-aware data analysis is a

trade-off between privacy and utility of the data in the

analysis. The only way to ensure perfect privacy is not to

use the data at all, which corresponds to zero utility. The

interesting question is how much utility can be obtained

under reasonable privacy guarantees. Asymptotically effi-

cient differentially private methods always allow reaching

a utility arbitrarily close to that of the corresponding non-

private model by adding more samples. In the context of

the results reported here the asymptotic efficiency of the

method means that larger data sets available in the future

will allow higher prediction accuracy, stronger privacy

guarantees or some combination of both.

The modelling setup of Fig. 1 and the ability of our

method to effectively combine data sets under different

privacy requirements creates a promise of newmethods of

sharing and utilising privacy-sensitive data. Because there

have not been learning algorithms capable of leveraging

on privacy-protected data sets, data owners have not had

reasons to share data in a privacy-protected manner. Now

we hope that new methods, including the ones presented

in this paper, will help motivate more differentially private

data sharing that can then in turn increase their utili-

sation, which will enable better predictions and further

better healthcare and services even more generally.

In this paper we have focused on scalar targets in regres-

sion. There is a trivial extension of the same algorithm

that yields a (q+ 1)ǫ/2-differentially private algorithm for

q-dimensional targets, which is non-ideal when q is large.

A simple way around this is to increase the number of

samples as doubling the number of samples allows halving

ǫ with equivalent accuracy. Still, careful selection of which

targets to model or some dimensionality reduction in the

target space will likely be useful for large q.

Robust private linear regression treats non-private and

scrambled private data similarly in the model learning.

An interesting next step for further improving the accu-

racy on very small private data would be to give different

weights to the clean and privacy-scrambled data by incor-

porating knowledge of the injected noise in the Bayesian

inference, as has been proposed for generative models

[30], but which is non-trivial in regression.

Conclusions
We presented methodology that can make use of per-

sonal genomic data for precision medicine modelling

under a strict differential privacy quarantee. Through

improvements in the previously unappreciated data scal-

ing and projection, the simple-to-implement method con-

stitutes a foundation for designing practical differentially

private learning methods. We were able to obtain dramat-

ically more accurate predictions in the very challenging

drug sensitivity prediction task, utilising moderate-sized,

privacy-protected data. Moreover, being asymptotically

efficient, the loss in performance relative to non-private

approach will diminish as the amount of data grows. The

differentially private modelling will likely have a signifi-

cant impact not only in precision medicine but also in

machine learning more generally and change the way

sensitive data are stored and utilised.

Methods

Robust private linear regression

We project the outliers in the private data sets to fit the

data in the intervals [−Bx,Bx] and [−By,By] as

xij = max(−Bx, min(xij,Bx))

yi = max(−By, min(yi,By)). (4)

After the projection, ‖xi‖∞ ≤ Bx and |yi| ≤ By, where

‖xi‖∞ = maxj xij. We add noise to the sufficient statistics

as

nxx + L1, L1 ∼ Laplace

(

0,
(d2 + d)B2

x

p1ǫ

)

nxy + L2, L2 ∼ Laplace

(

0,
2dBxBy

p2ǫ

)

nyy + L3, L3 ∼ Laplace

(

0,
B2
y

p3ǫ

)

. (5)

This generalises earlier work on bounded variables [21]

to the unbounded case by introducing the projection.

It can be shown that this yields a valid differentially

private mechanism (Additional file 1: Supplementary

Information).

Posterior inference and prediction

If the precision parameters λ and λ0 are assumed to be

known and fixed, then given an observed data set D =

{(xi, yi)}
n
i=1 with sufficient statistics nxx =

∑n
i=1 xix

T
i

and nxy =
∑n

i=1 xiyi, the posterior distribution of β is

Gaussian, p(β|D) = N(β ; μ∗,�∗), with precision

�∗ = λ0I + λnxx (6)

and mean

μ∗ = �−1
∗ (λnxy). (7)

After learning with the training data setDtrain, the predic-

tion of yi given xi is computed as follows:

ŷi = xTi μ∗. (8)

Amore robust alternative is to define prior distributions

for the precision parameters. In our case, a Gamma prior

is assigned for both:

λ ∼ Gamma(a, b)

λ0 ∼ Gamma(a0, b0). (9)



Honkela et al. Biology Direct  (2018) 13:1 Page 8 of 12

A variational normal distribution is fitted to the poste-

rior with ADVI. The precision parameters and correlation

coefficients β are then sampled from the fitted distribu-

tion. For this purpose, the data likelihood in Eq. (2) needs

to be expressed in terms of the sufficient statistics nxx, nxy

and nyy =
∑n

i=1 y
2
i , which results in

p(y|X,β , λ)=

(

λ

2π

)n/2

exp

(

−
λ

2

(

βTnxxβ−2βTnxy + nyy
)

)

.

(10)

The prediction of yi is computed using xi and averaging

over a sufficiently large number m of sampled regression

coefficients β(k) as

ŷi =

∫

p(y|β ,Xtest,i)p(β|Dtrain)dβ ≈
1

m

m
∑

k=1

xTtest,iβ
(k). (11)

For evaluation we keep a part of the data set D aside

as Dtest (not used for training), and after predicting ŷi,

we evaluate the error between the actual ytest,i and ŷi. In

this paper, we do this using Spearman’s rank correlation

coefficient to evaluate how well the predictions separate

sensitive and insensitive cell lines.

Determining the privacy budget split and projection

thresholds

The privacy budget proportions p1, p2, p3 and the pro-

jection thresholds Bx and By are important parameters

for good performance. We propose finding the optimal

parameter values on an auxiliary synthetic data set of the

same size, which was found to be effective in our case.

We generate the auxiliary data set of n samples using a

generative model similar to the one specified in Eq. (2):

xi ∼ N(0, I)

yi|xi ∼ N
(

xTi β , λ
)

β ∼ N(0, λ0I), (12)

where d is the dimension.

For all possible combinations of (p1, p2, p3) ∈

{0.05, 0.1, . . . , 0.90}3, where p1 + p2 + p3 = 1, we project the

data using thresholds for the current split, and we perturb

the sufficient statistics according to the current budget

split. We compute the prediction as in Eq. (11) using

samples drawn from the variational distribution fitted

with ADVI and compute the error with respect to the

original values. The error measure we use is Spearman’s

rank correlation between the original and predicted val-

ues. The split which gives the minimum error is used in

all test settings.

We parametrise the projection thresholds as a function

of the data standard deviation as

Bx = ωxσx, By = ωyσy (13)

ωx,ωy ∈ {0.1ω}20ω=1, (14)

where the σx and σy are the standard deviations of x (con-

sidering all dimensions) and y, respectively. With all 400

pairs of (Bx,By) as specified above, we apply the outlier

projection method of Eq. (4). We fit the model using the

projected values and then compute the error with respect

to the original values. The pair of (ωx,ωy) which gives the

minimum error is used to define the (Bx,By) for the real

data as in Eq. (13). As the error we used Spearman’s rank

correlation between original y1:n and predicted ŷ1:n based

on the model learnt with projected values.

Combining internal and external data sets

Our modelling setup (Fig. 1) allows combining non-

private data (also called internal data) with data requiring

privacy protection. Multiple data sets can be combined

in the Bayesian modelling framework by adding the suffi-

cient statistics nxx, nxy and nyy arising from various data

sets together to produce aggregate sufficient statistics for

the combined data. Data sets requiring privacy protection

can be protected by adding noise to the corresponding

sufficient statistics as described.

Algorithm details

We first determine the optimal budget split p1, p2, p3 and

then choose the optimal parameters ωx, ωy using the syn-

thetic auxiliary data method as described above. We test

the algorithm using Monte Carlo cross-validation. For

each repeat, we normalise the data and compute the stan-

dard deviation σx of the input data and σy of the target

data from the normalised private data set. The projection

thresholds Bx, By are then computed as in Eq. (13) and

both the private and non-private training data are pro-

jected using the same acquired thresholds as in Eq. (4).

The prediction for the test data is computed from ADVI

samples as in Eq. (11). The precision is computed between

the predicted and actual yi for the test data.

Alternative interpretation: transformed linear regression

The outlier projection mechanism can also be interpreted

to produce a transformed linear regression problem,

φy(yi)|xi ∼ N
(

φx(xi)
Tβ , λ

)

, (15)

where the functions φy() and φx() implementing the outlier

projection can be defined as

φy(yi) = max(−By, min(By, yi)) (16)

φx(xi) = max(−Bx, min(Bx, xi)). (17)

The normalisation of data can also be included as a

transformation. This interpretation makes explicit the

flexibility in designing the transformations: the differen-

tial privacy guarantees will remain valid as long as the

transformations obey the bounds

φy(yi) ∈
[

−By,By

]

, φx(xi) ∈ [−Bx,Bx] . (18)
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Reviewers’ comments

Reviewer’s report 1: Zoltan Gaspari, Pazmany Peter

Catholic University, Hungary

While the manuscript might be of interest to the statis-

tics community, in its present form it seems to provide

little biological significance. The paper describes how the

sensitivity of different linear regression models changes

as a function of the amount of anonymized data. The

fact that drug-sensitivity data are used is merely a techni-

cal choice, the manuscript provides no novel insights and

the obtained rank correlations (on real data) seem to be

irrelevant even in the best cases.

Authors’ response:We wish to thank the reviewer for express-

ing his opinion but respectfully disagree. Far from being merely a

technical choice, solving the drug sensitivity prediction task was our

primary motivation when developing the method, and we strongly

believe the drug sensitivity modelling community would benefit sig-

nificantly from the work as a proof of principle that this kind of

privacy-preserving modelling is possible. This finding could have

far-reaching implications to future data generation and sharing for

similar tasks, given the privacy concerns with broad availablity of

human genomic data. Given the risk of model inversion attacks,

even highly refined published models carry a risk of leaking private

data used in the training.

It is not clear how the method relates to previously

published ones (http://www.nature.com/nbt/journal/v32/

n12/fig_tab/nbt.2877_T1.html?foxtrotcallback=true) and

whether it is comparable to those at all.

Authors’ response: The results are not directly compara-

ble because we are using a different data set with more samples

but fewer features. We have now added a new comparison to

non-private lasso regression that was the best method using only

expression data in the DREAM challenge (linked above). As shown

in Fig. 5, non-private lasso regression performs really well on the

Spearman’s rank correlation, but with the more relevant weighted

probabilistic concordance index its results are quite similar to

non-private linear regression and our private method is not too

far behind. In summary, our differentially private method using

800 samples is on par with non-private lasso regression with 200

samples, suggesting we can match the accuracy of the state-of-

the-art non-private predictions under differential privacy with a

reasonable increase in the number of samples needed.

The biological relevance of the bounding of the values

and the omission of data in order to reduce the dimen-

sions should also be justified. It is not at all trivial that

these steps are allowed without losing relevant biological

information and insights.

Authors’ response: All models are simplifications of the world

and ours is no different. Interpretability and prediction accuracy

of a model are often at odds. We believe our model attains a good

compromise in this respect because ultimately we only combine

non-linear clipping transformations of scalar variables with easily

interpretable linear regression. Finding new and even better com-

promises that yield accurate predictions while maintaining even

higher biological interpretability is an interesting avenue for future

research.

I recommend that the work should be presented in a

way that allows the judgment of the biological relevance of

the resulting analysis and the possible loss of information

introduced by the transformations. It is highly desirable

that the description of the approach includes a case with

real data where both retaining the biological significance

and the privacy issues can be clearly and effectively shown.

Authors’ response: As noted above, we have added a new

comparison with the top-performing method from the DREAM

challenge using only expression data. All experiments have been

performed with the largest available collection of real data, so we

believe we are addressing the question as well as possible without

extensive and very expensive new data collection.

Reviewer’s report 2: David Kreil, University of Warwick, UK

Increasingly, there are not just academic analyses but also

public concerns about the privacy of patient data. For

instance, data sharing arrangements between a company

developing modern algorithms for precision medicine

(DeepMind) and a group of hospitals of the U.K. National

Health Service were vocally objected, with the privacy of

patient data questioned in the public press [*]. Especially

in this context, the recent work of Honkela et al. reported

in their manuscript on Efficient differentially private

learning improves drug sensitivity prediction are of gen-

eral interest andmay have substantial impact beyond their

immediate field of research.

Machine learning algorithms preserving differential

privacy need to strike many trade-offs, and the devel-

opment of approaches that guarantee some degrees of

privacy while inferring accurate models for prediction is

a novel and highly active field of research [**]. Established

approaches include randomly perturbing the input, the

objective, or the output of a model in training. Besides

questions of privacy guarantees and learning efficiency,

there is a practical aim of effectively exploiting a combi-

nation of private and public data sets with the hope of

deriving better models than can be learned from public

data alone. The authors seek to address this challenge in

the context of linear regression models.

It would be interesting if the authors could relate their

analysis to prior work looking into combining public

and private data, such as distributed differentially private

regression [***].

Authors’ response: Thanks for pointing this out. Ji et al. [15]

have combined public and private data in a different problem,

using a naive algorithm. They have a clever idea of only using the

public data to compute the Hessian matrix needed for Newton–

Raphson optimisation of logistic regression as this can be more

sensitive to the DP noise, but otherwise the algorithm is highly

suboptimal and the classification accuracy is not high. We have

now discussed this at the end of Background section.

http://www.nature.com/nbt/journal/v32/n12/fig_tab/nbt.2877_T1.html?foxtrotcallback=true
http://www.nature.com/nbt/journal/v32/n12/fig_tab/nbt.2877_T1.html?foxtrotcallback=true
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The authors propose and assess a novel feature map-

ping that clips extreme data values to specified bounds.

Together with adding noise to a set of sufficient statistics,

this yields a differentially private mechanisms (as shown

in a Supplement to an identically entitled arxiv deposition

of the authors). The analysis then proceeds to characterize

this approach, both in terms of the response to parameter

choices for the method as well as its properties for differ-

ent private and public data set sizes. Nicely, this clipping of

unusual data points reduces the amount noise that the dif-

ferentially private regression mechanism requires to meet

its privacy guarantees. The authors emphasize that while

the method performs better with more data as required,

they already obtain good results for realistic, reasonably

small data sizes. For sufficiently large private data sets,

the relative penalty for differential privacy begins to van-

ish. The authors take great care in determining method

parameters in a principled way, examining robustness,

and cross-validating their results. While the simulations

to determine an optimal privacy budget splice between

the different sufficient statistics may use data that look

different to ‘real’ data, this will not affect the validity of

the subsequent characterization of their method. If any-

thing, conclusions will be conservative. The real-world

data used for characterizing their approach make use of a

recent release of the Genomics of Drug Sensitivity in Can-

cer (GDSC) project, and thus an up-to-date and topical

use case is employed.

It might in addition also be interesting to see how

strongly performance varies for different kinds of data

and regression problems to examine the effects of domain

specific types of noise (more or less heavy tailed), biases

and correlations in the data, as well as the effects of the

dimensionality of the regressors.

Authors’ response: We have studied the performance of the

proposed method using synthetic data, both higher-dimensional

data and also using a Student’s t distribution with 1 degree of free-

dom, which has much heavier tails than the normal distribution.

We have included two figures in the Supplementary correspond-

ing to these two experiments. The outcome of these experiments

regarding the effect of bounding threshold on data samples is simi-

lar to results in the main text (Fig. 4), but with different curvatures.

The authors in conclusion raise the possibility of future

follow-up work on further improving the algorithm’s

promising performance on very small private data sets.

The authors largely evaluate performance for a privacy

parameter epsilon=2. Their Fig. 6c explores a range of

epsilon=1..3. While other methods have already been fail-

ing for higher epsilon=5, Wu et al. [17] have shown

promising regression results for epsilon as low as 0.1.

What do the authors observe for their approach for such

low privacy budgets and reasonable data set sizes (assum-

ing patient numbers are fixed within a range as shown in

Fig. 5)?

Authors’ response: We have compared with the method by

[17] (now [18]) in our experiments: output perturbed LR (the blue

curve in Fig. 5). Among the state-of-the-art differentially private

algorithms, the output perturbation technique by [18] is the most

accurate one, but it is still clearly inferior compared to the pro-

posed method. It is worth noting that [18] was able to achieve a

very low mean squared error (MSE) over parameters on a very dif-

ferent dataset. Our dataset is quite different and more challenging,

for example due to higher dimensionality. Our evaluation metric

corresponds to the one used in the DREAM challenge and is more

relevant to the task than MSE. We have included this discussion in

the “Results” section.

Further to Fig. 5, I was struck by the relatively low

correlation coefficients achieved (0.1..0.3) even without

guarantees of differential privacy. This contrasts with the

much higher values achieved in simulation ( 0.7, Fig. 3).

If that is to be expected for these data, is Spearman rank

correlation perhaps not an ideal measure for prediction

performance?

Authors’ response: We have considered the evaluation policy

by [25] to use wpc-index and Spearman’s rank correlation coeffi-

cient. We believe these metrics focus better on the task of distinguis-

ing between suitable and unsuitable drugs for a particular patient

instead of wasting modelling effort on predicting specific effective

concentrations. The updated manuscript uses both metrics more

evenly.

Finally, what are the authors’ thoughts regarding the

challenge of model inversion attacks with improvedmodel

quality, as also discussed by Wu et al. [17]? Do the

robustification / bounding steps potentially contribute to

alleviating this issue somewhat?

Authors’ response: From the study by Wu et al. [17] (now

[18]), it is evident that vulnerability to inversion attacks is cor-

related with the privacy budget. That is, with lower value of the

differential privacy parameter (ǫ) the model is more robust to

attacks. This is a major motivation for our work; to find maximally

accurate models that work with as small ǫ as possible. Detailed

study of model inversion attacks for drug sensitivity prediction is

an important topic for future work.

References [*] https://www.cnbc.com/2017/07/03/google

-deepmind-nhs-deal-health-data-illegal-ico-says.html [**]

Aldeen et al. A comprehensive review on privacy pre-

serving data mining. SpringerPlus. 2015, and Dwork

& Roth. The Algorithmic Foundations of Differential

Privacy. FnT-TCS. 2014 [***] Ji Z, Jiang X, Wang S, Xiong

L, and L Ohno-Machado. (2014) Differentially private

distributed logistic regression using private and public

data. BMC Medical Genomics 7, S14. Numbered cita-

tions are to references cited in the original manuscripts

itself.

Editorial and minor points: The manuscript should be

self-sufficient, so instead of citing the Supplement of their

identically titled arxiv deposition that provides further

methodological, I think it would be better if the authors

https://www.cnbc.com/2017/07/03/google-deepmind-nhs-deal-health-data-illegal-ico-says.html
https://www.cnbc.com/2017/07/03/google-deepmind-nhs-deal-health-data-illegal-ico-says.html
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could please add this information to the Additional file 1

or appendix of this manuscript.

Authors’ response: We have included the information as

Additional file 1 to the current paper.

Page 2 “symmetry between D and” → “similarity”? Page

3 “we can automatic differentiation” → “we can use ...”?

Please introduce variables and symbols on first use; it

may also be helpful for some readers to define the norm

“‖xi‖∞ = maxi(|xi|)” on page 7 Figures should be shown

and numbered in the order in which they are refer-

enced in the text. Currently, the second figure referenced

is Fig. 6.

Authors’ response:We have rectified all of the above issues.

Additional file

Additional file 1: Supplementary Information for “Efficient differentially

private learning improves drug sensitivity prediction”. (PDF 342 kb)

Abbreviations

ADVI: Automatic differentiation variational inference; DP: Differential privacy;

GDSC: Genomics of drug sensitivity in cancer; LR: Linear regression
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