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Abstract. Electron diffraction gratings can be used to imprint well-defined phase

structure onto an electron beam. For example, diffraction gratings have been used

to prepare electron beams with unique phase dislocations, such as electron vortex

beams, which hold promise for the development of new imaging and spectroscopy

techniques for the study of materials. However, beam intensity loss associated with

absorption, scattering, and diffraction by a binary transmission grating drastically

reduces the current in the beam, and thus the possible detected signal strength it

may generate. Here we describe electron-transparent phase gratings that efficiently

diffract transmitted electrons. These phase gratings produce electron beams with the

high current necessary to generate detectable signal upon interaction with a material.

The phase grating design detailed here allows for fabrication of much more complex

grating structures with extremely fine features. The diffracted beams produced by

these gratings are widely separated and carry the designed phase structure with high

fidelity. In this work, we outline a fabrication method for high-efficiency electron

diffraction gratings and present measurements of the performance of a set of simple

prototypical gratings in a transmission electron microscope. We present a model for

electron diffraction gratings that can be used to optimize the performance of diffractive

electron optics. We also present several new holograms that utilize manipulation of

the diffraction efficiency to produce new types of electron beams.
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1. Introduction

Scanning transmission electron microscopy (STEM) has recently offered a large number

of critical insights into the structure and behavior of materials at the atomic scale

[1, 2, 3]. As a result of several decades of advancements in electron optics, modern STEM

instruments use precisely controlled electric and magnetic fields to prepare Ångstrom-

sized 60 to 300 keV electron probe beams with currents on the order of nano-Amperes

[4, 5]. The focused probes have an approximately Gaussian intensity distribution and a

flat phase profile.

Following the development of atomic-scale STEM, there has been a surge of interest

in using shaped probe beams with carefully designed phase structure and non-Gaussian

intensity distributions. The interaction of such a shaped probe beam with a material

can offer more information than is available through the use of a traditional probe

beam [6, 7]. For example, electron vortex beams [8, 9, 10] may soon be employed to

accomplish atomic resolution spin imaging [9, 11] with STEM. Holographic diffraction

gratings [9, 10, 12, 13] and phase plates – both material [8] and magnetic [14, 15] – have

been successfully used to imprint the helical phase that defines a vortex beam.

Electron probe beams with well-defined phase structure can be produced via

diffraction from a nanofabricated holographic diffraction grating placed in the probe-

forming aperture of a STEM instrument (see Figure 1). A second aperture lower in the

column can be used to isolate one of the diffracted probes and use it to form an image.

One can, in general, define the surface shape s(x, y) of a holographic diffraction grating

by interference of a wavefunction of interest Ψ(x, y) with a reference wave [16]:

s(x, y) = |Ψ(x, y) + Ψref(x, y)|
2 (1)

For example, to produce an electron vortex beam with m~ orbital angular momentum

in the first diffraction order of a linear grating periodic in x, one uses the shape

s(x, y) =
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One can create such a diffraction grating from a material which only modulates the

phase of the incoming wave by varying the thickness of the grating in proportion to

the surface shape s(x, y). We will return to the theory which guides the design of

holographic diffraction gratings in Section 4.

Other methods exist for imprinting a spiral phase dislocation onto electron beams;

both material phase plates [8] and magnetic nanowire phase plates [14, 15] add a

spiral phase to an electron passed through them. However, production of pure spiral

phase states with integer topological charge m is a significant challenge with these

techniques. The topological charge imprinted depends on electron beam energy and is

highly sensitive to fabrication errors and fringing fields, respectively. Diffractive electron

optics offer the advantage that arbitrary phase structure can be imprinted on the electron

beam with high fidelity and independent of beam energy. Furthermore, these devices can
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Figure 1. (Top image) Layout of the diffraction process in a STEM showing the

grating in the condenser aperture producing separated STEM probes at the specimen

plane. When placed at the condenser aperture plane, the patterned circular area of

the transparent grating has the same beam-defining properties as a regular circular

condenser lens aperture. The diffracted beams can either be isolated using a second

aperture, or the entire set of beams can be scanned across a local sample feature,

providing multiple images of the object each containing unique information. (Bottom

image) TEM image of multiple diffracted STEM probes from a 50 µm-wide fork-

dislocation grating at the specimen plane.

simultaneously produce multiple probe beams with complementary phase dislocations

for dichroism techniques [17, 6].

There are two common challenges that must be addressed before diffractive electron
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optics may be widely adopted for use in electron microscopy. First, diffraction gratings

must produce sufficiently intense diffracted beams so that information carried by a

diffracted probe is measurable. Second, the multiple diffracted probe beams must

be sufficiently separated in the specimen plane for use in the study of materials with

varied shapes and sizes. For example, several recent diffractive structures used to create

electron vortex beams [9, 12, 13] are composed of patterns of slits milled all the way

through a relatively thick foil that is opaque to electrons. These structures operate

by selectively subtracting beam current through high-angle scattering in the material

and transmitting the rest through the slits. Thus, these structures behave as binary

amplitude gratings, which can only place a maximum of 10.1 % of the incident electrons

into the first diffraction order. This is particularly troublesome for STEM applications,

in which beam current must be maximized in order to generate a detectable signal of

interest over background noise. These electron amplitude gratings furthermore have

small separation between diffracted beams; it is thus difficult to isolate signal generated

by a particular beam. An amplitude grating must be sufficiently thick so as to be

opaque to electrons. This restricts the smallest lateral feature size that can be patterned,

which consequently limits the diffraction angle. One recent demonstration of electron

vortex production employed an amplitude diffraction grating which produced a beam

separation of 3 µrad [9], or, equivalently, a real-space separation on the order of 5 nm

in the specimen plane of a modern high-resolution STEM instrument.

To address these challenges, in our work developing electron vortex beams [18, 10]

we have devoted considerable effort towards developing electron-transparent phase

grating structures [19] that modulate the phase of the electron wave rather than

the amplitude. Here we present a detailed study of these diffractive phase optics

for electrons. We discuss the materials and nanofabrication method, performance

measurements, and a model for these devices that incorporates the effects of both

phase and amplitude modulation. Here we primarily discuss simple straight gratings

periodic in one dimension, as shown in Figure 2, in order to elucidate the role

of several basic grating structure parameters on diffraction efficiency. Optimization

of the nanofabrication process for these simple gratings can then be applied to

fabricate diffraction holograms which produce electron beams with non-trivial transverse

wavefunctions Ψ(x, y). In Figure 3, we demonstrate four gratings which produce

diffracted beams with various different phase dislocations.

2. Electron Diffractive Phase Optics Design Goals

To be broadly useful for novel electron microscopy techniques, diffractive electron optics

should efficiently diffract beam current into a desired diffraction order, and produce

diffraction orders that are well-isolated from one another.
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Figure 2. Uniform phase gratings for electrons, which serve as a simple prototype

to measure performance. In a TEM operated at 300 keV these gratings are nearly

transparent – all of these images were recorded in an SEM at 5 keV in order to show

contrast. (a) An example of a FIB patterning dose array in which the ion beam dwell

time was varied. (b) A smaller, 10 µm diameter grating with 120 nm pitch. (c) A

perspective view of a FIB cross section of the phase grating shows the corrugated

surface. Approximately 50 nm of Pt was deposited on the corrugated surface only so

that the cross section could be prepared and imaged – this Pt coating is not normally

included in phase gratings meant for TEM.

2.1. Diffraction Efficiency

In emerging STEM techniques using beams with engineered phase dislocations, it is

important to maximize current in the probe beam. The efficiency of the diffraction

hologram producing the beam thus becomes a primary concern. The diffraction

hologram can be designed to generate just one electron probe beam, or simultaneously

produce two or more probe beams with complementary phase dislocation properties. For

example, a forked grating hologram with a symmetric thickness profile simultaneously

produces pairs of electron probe beams with phase dislocations that are equal in

magnitude but opposite in sign. It is expected that these two beams with opposite
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Figure 3. Examples of several phase grating designs that produce beams with non-

trivial phase structure, together with the corresponding diffraction patterns. (a)

A spiral phase dislocation grating produces beams with Lz = 5n~ orbital angular

momentum at a defocus n∆f , where n is the diffraction order number. The diffraction

pattern is defocused so that the n = +1 order is in focus. (b) Multiple spatially

separated fork dislocations produce diffracted beams with a net 〈Lz〉 = 0~ when

in focus. (c) A Hermite Gaussian (1, 2) mode pattern. (d) An inner double fork

dislocation grating and an outer zero-dislocation grating produces beams that are co-

propagating superpositions of vortex beam and spherical wave. Note the suppressed

0-order intensity and enhanced ±1-order intensities. In all of these examples, the

beams have been defocused to reveal the details of their intensity and phase.

wavefront topologies can be used to provide dichroic image contrast [17, 6]. While in

some applications it is desirable to produce only these two beams, in other instances it

is desirable to also have a conventional electron probe beam with no phase dislocation

to use for a reference signal. In all of these circumstances, the thickness profile of the

hologram can be tailored to maximize the current in the electron beam and diffract it

into one or more desired beams. It is also possible to form a blazed diffraction hologram

that produces only one probe beam with a particular magnitude and/or sign of phase

dislocation.

There are several important independent figures of merit for the diffraction
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efficiency of a holographic grating. Absolute diffraction efficiency η
(i)
n , transmitted

diffraction efficiency η
(t)
n , and relative diffraction efficiency η

(n′)
n are each useful for

characterizing total detectable current, total detectable current as a fraction of the

theoretical maximum for a given grating design, and detectable current relative to the

noise produced by inelastic scattering in the grating, respectively.

The absolute diffraction efficiency is defined as

η(i)n ≡ In
Iinc

(3)

where In is the current in the nth diffraction order, and Iinc is the total current incident

on the diffraction grating. Potential electron microscopy applications require a maximal

beam current in the +1st diffraction order, in which case η
(i)
+1 is the primary figure of

merit. For a binary transmission grating, however, the maximum η
(i)
+1 is only 10.1 %.

We demonstrate phase gratings that have twice this diffraction efficiency. When using

blazed gratings, η
(i)
+1 can be made even larger at the expense of η

(i)
−1.

For material electron diffractive phase optics, some loss of electrons due to inelastic

scattering is unavoidable. The total coherently transmitted beam current Itrans, equal

to the sum of currents in all diffraction orders, is always less than the incident beam

current, Itrans =
∑

n In < Iinc, and this is largely independent of the parameters of the

particular groove shape. So to compare just the effects of groove shape and depth on

diffraction efficiency independently from the effects of different thicknesses of material,

it is then useful to define a transmitted diffraction efficiency describing the intensity

in a particular diffraction order relative to the integrated intensity of all coherently

transmitted electrons:

η(t)n ≡ In
Itrans

(4)

For STEM EELS with diffracted probes, quantitative analysis of an energy loss

spectrum depends not just on the overall current in the beam, but also on the isolation

of signal from a single diffracted probe. Adjacent diffraction orders may contribute

to background signal. Thus, for such an application, the relative diffraction efficiency,

defined as the ratio of intensity of the nth order to the n′th order, η
(n′)
n , is a key figure

of merit

η(n
′)

n ≡ In
In′

. (5)

In most of the applications proposed to date for shape probe beams, the probe of interest

is in the n = ±1 order, and the next most intense probe is the n′ = 0 order. We will

explicitly discuss the relative efficiency η
(0)
1 of gratings produced in this work.

Each of these figures of merit for efficiency represents a unique property of the

STEM probes produced by a grating; absolute efficiency η
(i)
n measures total detectable

current in the nth diffracted order, transmitted efficiency η
(t)
n is a good measure of total

detectable current as a function of theoretical maximum, and relative efficiency η
(n′)
n

affects the signal-to-noise ratio for a measurement involving the nth probe where noise

from the n′th is a concern. During review of this manuscript, Grillo et al. reported 25 %
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efficiency for the first-order diffracted probe of their phase diffraction gratings [20]; we

note that this was a transmitted efficiency. Using our model developed in Section 4, we

estimate that the 120 nm thick excess silicon nitride material supporting the grating

structure blocked or incoherently scattered at least 90 % of the incident intensity; after

accounting for this intensity loss, the absolute efficiency could have been no larger than

2.5 %.

As we shall see in Section 4, the diffraction efficiency of a grating is a function of the

shape and depth of grooves, the projected mean inner potential of the grating material,

and the electron beam energy. The theoretical maximum efficiency of a sinusoidal pure

phase grating is 33.9 % [21]. For electron sinusoidal phase gratings made of silicon nitride

(Si3N4), our model predicts that a physical groove depth of about 33 nm achieves this

maximum. Utilizing high resolution FIB milling we have consistently fabricated gratings

with η
(i)
1 > 20 %.

2.2. Diffraction Order Separation

A diffractive optical element in a STEM application produces in general multiple probe

beams, and there must be sufficient angular separation between them such that the

signal they each generate can be isolated. To meet this design goal and provide large

free space diffraction angles, electron diffractive optical elements should be fabricated

with as small a feature size as possible without sacrifing pattern fidelity.

For electrons of de Broglie wavelength λ transmitted through a grating-like

diffraction hologram with pitch d, where typically λ ≪ d, the angular separation ∆θ

between diffracted beams is

∆θ =
λ

d
. (6)

In the specimen plane of a STEM, the real-space physical separation ∆x between

diffracted probe spot centers at the specimen plane is

∆x =
z∆θ

M
=

zλ

Md
(7)

where M is the magnification of the lower probe-forming STEM optics (not the image

magnification) and z is the physical distance between the diffraction hologram and the

specimen plane. Alternatively, in terms of the effective camera length L of the lower

probe-forming optics, the spot separation is

∆x =
Lλ

d
. (8)

In the TEAM 1 instrument at the National Center for Electron Microscopy, a

grating with pitch d = 83 nm installed in the second condenser lens aperture produces

diffracted 300 keV (λ = 1.97 pm) probe beams separated by ∆x = 43 nm in the specimen

plane (See Figure 1).

We note that it is easier to achieve larger angular separation between diffraction

orders using diffractive phase optics. A distinct advantage of phase gratings over
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amplitude gratings is that they can be fabricated with much finer feature sizes, and so

can produce much wider separation between diffracted beams. Free-standing amplitude-

type gratings must be sufficiently robust to support the mass of the relatively thick,

electron-opaque material; this condition limits the minimum lateral feature size of such

a structure. Amplitude-blocking diffractive optics demonstrated to date [9, 12, 13] have

a minimum periodic feature size on the order of 1 µm. On the other hand, phase

gratings can be much thinner than amplitude gratings, and can be fabricated on an

electron-transparent supportive membrane [19]. In [10] we demonstrated phase gratings

with 75 nm period, and have since fabricated gratings with periodic feature sizes down

to 20 nm [22].

3. Nanofabricated Diffractive Electron Optics

To achieve our stated design goals for efficient electron diffractive optics, we explored

a diverse array of nanofabrication techniques for imprinting the phase grating onto

electron-transparent materials. High-quality gratings may be produced with high-

resolution focused ion beam (FIB) milling, electron beam-induced deposition (EBID),

and electron beam lithography (EBL); the choice of technique places some limitations

on the structure of the gratings produced but is primarily a question of practical

considerations. In this work, we consider prototypical electron diffractive optics

produced by focused ion beam (FIB) milling, as FIB instruments are present in many

TEM labs and can be used safely to produce an electron diffraction grating with minimal

training. Some specific considerations for nanofabrication of gratings with FIB are

detailed in the Appendix.

4. Phase Grating Model for Optimizing Diffraction Efficiency

To compare the measured diffraction efficiencies of our holographic phase gratings

to theoretical limits, we developed a model for mixed phase/amplitude gratings for

electrons. The structure of the grating is a thin membrane with a modulated thickness

h(x, y). Figure 4 shows the thickness patterns of several fabricated grating measured

with atomic force microscopy (AFM). The transmission function describing the effects

of this structure on transmitted electron wavefunctions is

t(x, y) = e−αh(x,y) · eiCV0h(x,y) = eik̃h(x,y) (9)

where k̃ = CV0 + iα is the effective complex wavenumber of the electron within the

material. The amplitude decay coefficient α describes the effects of inelastic and high

angle scattering, and V0 is the mean inner potential of the grating material. C depends

only on the energy of the beam [23]. If such a grating is illuminated by an incident

electron wave ψi, then the transmitted electron wavefunction immediately behind the

grating is

ψt(x, y) = ψi(x, y)e
ik̃h(x,y). (10)
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Figure 4. (top) Two-dimensional AFM surface profile of an 80 nm pitch grating with

a trench depth of 30.6 nm. The grating was milled by focused ion beam on a 50 nm

thick silicon nitride membrane. The average membrane thickness h̄, groove depth ∆h,

groove spacing, or pitch, d, and relative groove width w are labeled for reference.

(bottom) One-dimensional AFM profiles of several 100 nm pitch gratings. The error

bars represent variation in the measured groove depth over the area of the grating.

The solid lines represent a best fit Gaussian-shaped groove used in our model of phase

gratings.

The far field diffracted wave can be computed analytically with the Fraunhofer

approximation as shown in the Appendix (C.13). While the diffracted wave could also

be computed numerically using an FFT, our analytical approximation can be evaluated

much more quickly by a computer. This becomes a major consideration when evaluating
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Figure 5. TEM diffraction images for gratings A - F. The diffracted beams are

intentionally defocused in order to examine the uniform phase and amplitude in each

beam. The grooves for each grating in the figure are successively deeper from top

to bottom (associated AFM profiles are in Figure 4). (A-D) The 0th order can be

suppressed by deepening the grooves; here, η
(1)
0 can increase well beyond unity, and in

fact reaches η
(1)
0 = 14 here. (F) 0th order intensity will increase again if the grooves are

too deep. (G) Asymmetric grooves forming a blazed grating result in an asymmetric

diffraction pattern, and a first-order diffracted beam with η
(t)
1 > 80 %.

diffraction efficiency over a parameter space of grating groove geometries such as in

Figure 6, which requires such a calculation for every pixel in the background.

In the case of simple linear phase gratings with uniform periodicity in only one

direction, x, the modulated thickness of the material can be described as an array of

grooves,

h(x, y) = h̄+
∞
∑

n=−∞

g(x− nd, y)− b (11)

where h̄ is the average thickness of the material grating, d is the pitch, or center-to-center

groove spacing, and g(x, y) describes the profile of the grooves. The offset b cancels any

residual constant from the infinite sum. These parameters, as well as the groove depth

∆h and width w, are shown in Figure 4. If the incoming wave ψi is a normally-incident

plane wave (C.8), the diffracted wave amplitude from this linear grating may be written

as

|ψ(r′)| = (2π)2

λz′
√
V
e−αh̄

∞
∑

n=−∞

|cn|δ
(

kx′

z′
− 2πn

d

)

δ

(

ky′

z′

)

(12)

where λ is the de Broglie wavelength and V is a plane wave normalization factor. The

relative amplitude of the nth diffraction order, cn, depends upon the specific groove

profile g(x, y). A general form for computing cn from any arbitrary periodic structure

is described in detail in (C.22-C.24). The transmitted diffraction efficiency η
(t)
n defined

in (4) is calculated as

η(t)n = |cn|2. (13)
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Note that the absolute diffraction efficiency η
(i)
n , defined in (3) as a fraction of the

incident beam, is less than (13) due to high-angle scattering

η(i)n = e−2αh̄|cn|2. (14)

where h̄ is the average thickness of the grating over the back surface, as illustrated in

Figure 4.

Cross sections (Figure 2) and AFM profiles (Figure 4) of the surface of our gratings

indicate that individual grooves have a somewhat Gaussian shape. Earlier findings

suggest that single-pixel-wide FIB-milled trenches have a remarkably Gaussian profile

[24], so we model our gratings as a periodic sum of Gaussian grooves. The profile of an

individual groove is

g(x) =
A√
2πσ

e−
x2

2σ2 (15)

with amplitude A, characteristic width σ; the profile of the entire grating is described

by the periodic sum in (11) with this grating shape g(x). The groove depth ∆h and

groove width w are related to the parameters A, σ, and b in (C.35-C.36) and (C.39).

Groove width is defined as the full width of the groove at half the maximum depth as

a fraction of the pitch d.

With structure parameters describing the groove shape (depth ∆h and width w)

and material properties (absorption coefficient α and mean inner potential V0), we

can calculate the expected relative diffraction amplitudes cn for a grating according

to (C.22). We can thus reliably model the diffraction efficiency with a small number of

measured parameters.

We paramaterized the average groove shape of every grating in all of our fabrication

arrays using the Gaussian groove model to determine the width w and depth ∆h. In

Figure 6, we used these average groove dimensions to categorize each grating (location

in figure) and express the measured electron diffraction efficiency as a color value. These

measured values compare well to the theoretical diffraction efficiency calculated using

our model (background color).

The variations in efficiency between gratings with nearly identical trench depth and

width, seen most clearly in Figure 7, are primarily due to gallium implantation from

the FIB. We have observed up to 10 atomic % gallium concentrations in milled areas of

our diffraction gratings with energy-dispersive X-ray spectroscopy (EDX) composition

analysis. We do not account for any modification of the mean inner potential V0 of

the material in the mill process. We expect that the lower-than-expected first-order

transmitted efficiency η
(t)
±1 and higher-than-expected zeroth-order transmitted efficiency

η
(t)
0 observed for gratings with a trench depth ∆h = 20± 5 nm are also due to gallium

implantation. However, as gallium concentration is not easy to measure, and as this

variation in efficiency is specific to only small range of gratings fabricated with FIB

and does not affect our prediction for peak efficiency, we have chosen not to include
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Predicted Measured

η
(i)
1 ≡ I1/Iinc 0.136± 0.005 0.17± 0.04

η
(t)
1 ≡ I1/Itran 0.33± 0.01 0.34± 0.07

η
(0)
1 ≡ I1/I0 5± 3 3.8± 0.8

Table 1. Comparison of predicted and measured efficiencies for a grating with a

width w = 0.411± 0.003, trench depth ∆h = 35.7± 0.5 nm, and an average thickness

h̄ = 57.2± 0.3 nm.

extra parameters in our model to characterize this additional variation. We can use this

simple model, which we have shown to predict efficiency with reasonable accuracy, to

make prescriptions for the fabrication of highly efficient gratings.

The analysis summarized by Figure 6 provides a map that we used to explore a

space of many interdependent parameters used for the nanofabrication process. We see

in Figure 6 that any grating fabricated with a depth ∆h between 27 nm and 40 nm

and a full width at half max w > 0.40 will produce first-order diffracted beams with

transmitted efficiency η
(t)
1 > 30 %. The most efficient grating we fabricated indeed lies

within this range. Table 1 offers a comparision of predicted and measured efficiencies

for this grating. The predictions of the Gaussian groove model compare well with the

diffraction efficiencies we measured from actual gratings.

This model provides a useful tool in the future design and fabrication of nanoscale

electron phase gratings. For example, Figure 3 shows how the diffraction efficiency of

the holograms can be manipulated to produce several different types of electron beams

with engineered phase and intensity.

5. Conclusion

Here we described our studying and optimizing the efficiency of electron diffractive

phase optics for use in high resolution electron microscopy. We described a process

for fabricating spatially coherent nanoscale material phase gratings, and characterized

the performance of simple prototypical phase gratings in a TEM. We developed a

theoretical model for optimizing the design of the gratings for particular uses. We

demonstrated diffractive phase gratings with 80 nm periodic feature sizes covering areas

50 µm in diameter, and demonstrated grating periods down to 20 nm. We demonstrated

phase gratings that produce equally intense -1st, 0th, and +1st diffraction order beams

with 25 % of the initial beam current each, gratings with suppressed 0th order beams

(intensities in the 1st order up to 16 times greater) and blazed gratings that place up to

80 % of the incident beam current into the +1st diffraction order. When installed in a

TEM operated at 300 keV, these gratings are capable of providing multiple Ångstrom-

scale electron probes with precisely manufactured phase dislocations. We demonstrate

example nano fabricated holograms in which this diffraction efficiency is controlled in

order to efficiently convert an incident electron beam into various engineered electron
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beams. This technology now makes possible shaped STEM probe techniques designed to

produce more information about magnetically ordered, superconductor, semiconductor

and biomolecular materials.
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[13] J. Verbeeck, H. Tian, and A. Béché. A new way of producing electron vortex probes for stem.

Ultramicroscopy, 113:83–87, 2012.

[14] A. M. Blackburn and J. C. Loudon. Vortex beam production and contrast enhancement from a

magnetic spiral phase plate. Ultramicroscopy, 136:127–143, 2013.

[15] A. Béché, R van Boxem, G. van Tendeloo, and J. Verbeeck. Magnetic monopole field exposed by

electrons. Nature Physics, 10:26–29, 2013.

[16] Robert Collier. Optical Holography. Elsevier, June 2013.

[17] P. Schattschneider, S. Rubino, C. Hebert, J. Rusz, J. Kunes, P. Novak, E. Carlino, M. Fabrizioli,

G. Panaccione, and G. Rossi. Detection of magnetic circular dichroism using a transmission

electron microscope. Nature, 441:486–488, 2006.

[18] Benjamin J. McMorran. Electron Diffraction and Interferometry Using Nanostructures. Ph. d.

dissertation, University of Arizona, University of Arizona, Tucson, AZ, January 2009.

[19] J.S. Pierce, T.R. Harvey, T.S. Yahn, and B.J. McMorran. High efficiency electron diffractive

optics. Microscopy and Microanalysis, 19(Supplement S2):1188–1189, 2013.

[20] Vincenzo Grillo, Gian Carlo Gazzadi, Ebrahim Karimi, Erfan Mafakheri, Robert W. Boyd, and

Stefano Frabboni. Highly efficient electron vortex beams generated by nanofabricated phase

holograms. Applied Physics Letters, 104(4):043109, 2014.

[21] R. Magnusson and T. K. Gaylord. Diffraction efficiencies of thin phase gratings with arbitrary

grating shape. Journal of the Optical Society of America, 68(6):806–809, 1978.

[22] Tyler R. Harvey, Gii Brougher, Kurt Langworthy, and Benjamin J. McMorran. Small-pitch

electron diffraction holograms patterned on inorganic resist with electron beam lithography.

Poster presented at EIPBN 2013, May 2013.

[23] Edgar Völkl, Lawrence F. Allard, and David C. Joy. Introduction to Electron Holography. Springer,

1999.

[24] Ampere A. Tseng. Recent developments in micromilling using focused ion beam technology.

Journal of Micromechanics and Microengineering, 14(4):R15, 2004.

[25] S. Cruz-Arreola and O. Mata-Mendez. Diffraction of beams by infinite or finite amplitude-phase

gratings. Revista mexicana de fsica, 57(1):6–16, February 2011.

[26] P. W. Hawkes and E. Kasper. Principles of Electron Optics: Wave Optics, volume 3. Academic

Press, London, 1994.

[27] NIST digital library of mathematical functions. http://dlmf.nist.gov/20. Release 1.0.8 of

2014-04-24.

Appendix A. Diffraction Intensity Measurement

To determine the intensity of one diffraction order, we first measured noise in the image;

we calculated the average background intensity Ib in a part of the micrograph where

no signal intensity was present. We then subtracted this background intensity from the

entire image, then set to zero all pixels which had an intensity less than this. Finally, to

measure the intensity of the nth diffraction order, we centered a circular measurement

region with a diameter equal to the spacing between orders over the nth diffraction spot.

We then measured the total integrated intensity inside the circle.

We performed this measurement on an FEI 80-300 Titan TEM at 300 keV in Low-

Angle Diffraction at a camera length of 104 m. We used a gun lens strength of 6

http://dlmf.nist.gov/20
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and a spot size of 8, a 150 um C2 aperture to limit the extent of the incoming wave,

and an illuminated area of 104 µm. We then limited the outgoing wave with a 10 um

objective aperture. The incident, transmitted and relative diffraction efficiencies of the

beams formed by the grating are independent of aperture size and shape when incident

efficiency is measured as a function of incident intensity after the aperture [25]. We used

a defocus of −21.37 · 10−6 so that the spots did not saturate the detector but were still

well spaced.

Appendix B. Nanofabrication Considerations

To meet our stated design goals for efficient electron diffractive optics, we explored

a large number of nanofabrication techniques for imprinting the phase grating onto

electron-transparent materials. We have found a combination of grating material, charge

alleviation layer, and patterning technique that provides good results, and discuss each

of these separately in the following sections.

Appendix B.1. Grating Material

While there are many electron-transparent materials that can be used for this purpose,

we choose to use silicon nitride membranes because of its mechanical robustness,

thermal stability under electron illumination, and availability. We used silicon nitride

membranes from several manufacturers, ranging in thicknesses from 15 nm to 100 nm

thick, suspended over windows from 80 um across to 2 mm. Low-stress 30 nm to

100 nm-thick silicon nitride membranes purchased from SPI Supplies, Inc. performed

best under long-term mill processing. We note that in general, a membrane thickness on

the order of twice the final mill depth minimizes beam amplitude loss due to high-angle

inelastic scattering while maintaining mechanical stability. In particular, we found that

while 30 nm and 50 nm thick membranes block roughly 20 % and 50 % of the incident

beam intensity, respectively, these standard thickness membranes routinely provide the

greatest absolute diffraction efficiency for a 300 keV beam.

Appendix B.2. Nanofabrication Optimization

We have applied several nanofabrication techniques for patterning electron diffractive

optics, including high-resolution focused ion beam (FIB) milling, electron beam-induced

deposition (EBID), and electron beam lithography (EBL). We will concentrate our

description here on the FIB-milling technique, since FIBs are present in many TEM labs

and this maskless fabrication technique provides a quick method for making electron

gratings. In particular, we used an FEI Helios NanoLab FIB to mill all gratings described

in this work.

Modern FIB instruments offer many different parameters that can be used for

milling the electron diffraction hologram pattern. The ion beam dwell time, number of

passes, milling scan direction, beam current, ion beam convergence angle, addressable
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pixel spacing, total ion dose, and pattern complexity all play a large and interconnected

role in the quality of the final grating. An in-depth discussion and review of these effects

is provided in [24]. We performed a systematic exploration of this complex parameter

space in order to find the best combination for manufacturing efficient gratings for

electrons.

We created a series of arrays of linear diffraction gratings in which we systematically

varied total ion dose, dwell time, number of passes, patterning order, and beginning

membrane thickness. These dose-arrays were placed in a field emission TEM operated

at 300 keV. Low angle electron diffraction patterns were recorded under identical

illumination conditions for each grating. Examples of these diffraction patterns are

shown in Figure 5. The diffraction spots were defocused in order to examine the

uniformity of the intensity of each beam – darker areas indicate an unwanted variation

in groove width and depth across the grating area. We then measured the surface

topology of each grating using an atomic force microscope (AFM) with a small diameter

tip (Figure 4).

Many FIBs provide the ability to mill a pattern using a bitmap image or by direct

programmable control of the beam path. We find that when using the bitmap patterning

method, the pixel spacing of the magnified bitmap image should be an integer multiple

of the minimum pixels spacing [24] of the FIB in order to avoid artifacts in the final

structure due to nonuniform ion dosing. The scan direction of the beam should be chosen

such that the slow scan axis is perpendicular to the grooves. While we have made decent

gratings using both raster and serpentine scans during milling, we find best results when

using a “vector scan” technique [24]; taking full programmable control of the beam path

such that one complete groove can be milled before moving on to the next element. For

most purposes, we found that 10 passes, reversing the milling order each time, resulted

in the highest quality gratings. However, when milling patterns covering large areas,

settling and movement of the silicon nitride membrane reduces the quality of the pattern

– in these cases it is best to reduce the number of passes. We find that ion beam currents

below 10 pA produce the finest features, but larger currents on the order of 20 pA to

50 pA are necessary to complete a pattern larger than 20 µm diameter without major

thermal drift over the course of the mill. For the pattern milled in Figure 2, the ion

beam current was set to 10 pA and the number of passes was 80 with a pixel size of

3.3 nm.

Appendix B.3. Charge Alleviation Layer

The nitride gratings must be coated with a thin conductive layer to alleviate charge.

We have experimented with using sputtered Ni, Ti, Cr, and Au, thermally evaporated

C, and Pt from ion beam induced deposition (IBID). We find that 15 nm of amorphous

carbon sufficiently minimizes charging and causes little absorption in the transmitted

beam. However, when the carbon-coated grating is placed in an upper condenser lens

of a TEM and exposed to a beam over the course of several weeks, the carbon can
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migrate into the grating trenches and decrease the absolute diffraction efficiency. A 5

nm to 10 nm layer of Au deposited on a 1 nm Cr adhesion layer leads to a slightly lower

absolute diffraction efficiency η
(i)
1 , due to absorption and scattering, but the diffraction

efficiency of such gratings remain stable for weeks under exposed conditions in the beam

path of the TEM. We find that Pt deposited by IBID contains significant amounts of

carbon which can migrate under electron beam exposure, but the grating diffraction

efficiency can be renewed by regular plasma cleaning. In all cases where a metal film

is used, enhanced electron scattering decreases the absolute diffraction efficiency η
(i)
1

and contributes to an unwanted background signal. However, a diffractive structure

composed of silicon nitride grooves capped with a metal layer, produced either with

FIB or IBID, modulates both the amplitude and phase of transmitted electrons. Such a

mixed amplitude-phase grating can almost entirely suppress the 0th (undiffracted) order

(see Figure 5(d) and Figure 5(e)).

Appendix B.4. Hologram Uniformity, Spatial Coherence and Quality of Imprinted

Phase

Spatial variations in the width and depth of grooves across the grating affect the

amplitude uniformity inside each diffracted beam. These spatially dependent errors

of FIB-milled gratings are primarily due to secondary dynamic processes such as

redeposition, charging, heating, and membrane relaxation associated with the incidence

of ions on the substrate surface. Large-area patterns with very fine pitch typically take

several hours to mill, and changes in substrate tension or temperature can cause the

substrate to drift at speeds on the order of nanometers per minute, which noticeably

impacts the spatial coherence of the resulting structure. However, with an appropriate

choice of a moderate ion beam current, a fewer number of patterning passes, and the

application of a conductive layer to the membrane to prevent local charging, we have

successfully produced spatially coherent gratings with 103 grooves over areas several

tens of microns in diameter. We are in the process of developing a quantitative measure

of spatial coherence.

Appendix C. Theoretical Diffraction Efficiency from a General Mixed

Amplitude/Phase grating

The diffractive electron optical elements described in this work are thin membranes

with a modulated thickness h(x, y). As the both the de Broglie wavelength of electrons

and the maximum thickness of an electron-transparent membrane in a transmission

electron microscope are necessarily small relative to the grating period, the thin grating

condition under which wave interference due to propagation inside the grating material

is negligible [21]

λh << d2 (C.1)
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is necessarily satisfied. Therefore, if an electron diffractive grating is illuminated by

an incident electron wave ψi, then the transmitted electron wavefunction immediately

behind the grating is

ψt(x, y) = ψi(x, y)t(x, y). (C.2)

where t(x, y) is the transmission function describing the effects of a thin grating structure

on transmitted electron wavefunctions. We note that if ψi(x, y, z) is a normally plane

wave, then ψt(x, y) ∝ t(x, y). We can express the transmission function as

t(x, y) = e−αh(x,y) · eiCV0h(x,y) = eik̃h(x,y) (C.3)

where k̃ = CV0 + iα is the effective complex wavenumber of the electron within the

material. The amplitude decay coefficient α describes the effects of inelastic and high

angle scattering, and V0 is the mean inner potential of the grating material. C depends

only on the energy of the beam [23]:

C =
2π

λVa

eVa +mec
2

eVa + 2mec2
(C.4)

where Va is the accelerating voltage for the electron.

We can describe any surface h(x, y) periodic in the x-direction as a Fourier series

with period d:

h(x, y) =
a0
2

+
∞
∑

m=1

[am cos(kmx) + bm sin(kmx)] (C.5)

where km = 2πm
d

and the coefficients are defined by

am =
2

d

∫ x0+d

x0

h(x, y) cos(kmx)dx (C.6)

bm =
2

d

∫ x0+d

x0

h(x, y) sin(k)mx)dx (C.7)

If an electron plane wave normalized in a finite-size box with volume V ,

ψk =
1√
V
eikz (C.8)

is normally incident on a grating with a surface described by h(x, y), so that ψi(x, y) =

ψk, we see from (C.2) that if we place the back of the grating at z = 0, as shown in

Figure 1, the wavefunction ψt(x, y) at z = 0 is proportional to the transmission function

t(x, y) of the grating,

ψt(x, y) =
1√
V
t(x, y) (C.9)

Let’s examine how this wave propagates.

Far from the grating, the outgoing electron wavefunction behind a grating can be

described by the Fraunhofer formula [26],

ψ(r′) =
1

iλz′
eikz

′

∫

ψt(x, y)e
−i(xqx′+yqy′ )dx dy (C.10)
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If we define the two-dimensional Fourier transform of a function f(x, y) as

f̃(qx′ , qy′) =
1

(2π)2

∫

f(x, y)e−i(xqx′+yqy′ )dx dy (C.11)

we can then rewrite ψ(r′) simply in terms of the Fourier transformation of the

transmission function

ψ(r′) =
(2π)2

iλz′
eikz

′

ψ̃t(qx′ , qy′) (C.12)

ψ(r′) =
(2π)2

iλz′
√
V
eikz

′

t̃(qx′ , qy′) (C.13)

at coordinates (x′, y′, z′), where the spatial frequencies qx′ and qy′ are given by

qx′ =
kx′

z′
qy′ =

ky′

z′
(C.14)

Equation (C.13) can be easily modified to take into account the shape of a finite-size

aperture which limits the incident intensity; the diffraction efficiencies we will calculate,

however, are unaffected by aperture shape and size [25].

Let’s then rewrite t(x, y) so that we can compute the Fourier transform easily. In

terms of the Fourier series expansion of h(x, y), we have

t(x, y) = exp

(

ik̃

[

a0
2

+
∞
∑

m=1

am cos(kmx) + bm sin(kmx)

])

(C.15)

= eik̃a0/2
∞
∏

m=1

eik̃am cos(kmx)eik̃bm sin(kmx) (C.16)

Using the Jacobi-Anger expansion,

eiz cos θ =
∞
∑

ℓ=−∞

iℓJℓ(z)e
iℓθ eiz sin θ =

∞
∑

ℓ=−∞

Jℓ(z)e
iℓθ (C.17)

we can rewrite t(x, y) simply in the plane wave basis.

t(x, y) = eik̃a0/2
∞
∏

m=1

∞
∑

ℓ=−∞,ℓ′=−∞

iℓJℓ(k̃am)Jℓ′(k̃bm)e
i(ℓ+ℓ′)kmx (C.18)

If we now change the variables in our double sum, defining j = ℓ+ ℓ′ so that our plane

wave term depends only on one index, j, we have

t(x, y) = eik̃a0/2
∞
∏

m=1

∞
∑

j=−∞

∞
∑

ℓ=−∞

iℓJℓ(k̃am)Jj−ℓ(k̃bm)e
ijm 2πx

d (C.19)

t(x, y) = eik̃a0/2
∞
∏

m=1

∞
∑

j=−∞

γj(k̃, am, bm)e
ijm 2πx

d (C.20)

where we’ve defined a coefficient

γj(k̃, am, bm) =
∞
∑

ℓ=−∞

iℓJℓ(k̃am)Jj−ℓ(k̃bm) (C.21)
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We now have t(x, y) written in terms of plane waves, but not as a linear superposition

of plane waves. We can write the transmission function more simply if we perform the

product. As the product of two plane waves with wave vectors k1 and k2 is another

plane wave whose wave vector is the sum of the first two, we can rewrite a product of

a sum of plane waves as a sum of plane waves whose coefficients are products over all

terms whose total wave vector is constant.

t(x, y) = eik̃a0/2
∞
∑

n=−∞

cne
iknx (C.22)

cn =
∑

sn

∞
∏

m=1

γjm(k̃, am, bm) (C.23)

sn =

{

jm :
∞
∑

m=1

jmm = n

}

(C.24)

The calculation of cn can be considered as a discrete path integral in momentum j and

a time m to a final position

qf =
∞
∑

m=1

jmm = n

Each set sn describes one path which terminates at qf ; cn is calculated as the sum of

products of the coefficient γjm,m over all such paths.

We see that only those paths which include a finite number of steps at non-zero

jm or rapidly oscillate in j as m approaches infinity can possibly terminate at finite

qf . Fortunately, the contribution of oscillatory paths to the integral is negligible, as,

for any physically realistic grating surface h(x, y), am, bm << 1 and thus γjm,m < 1 for

m >> 1 and |jm| > 0. Thus, we can approximate cn by choosing a cutoff mc based on

parameters of the model h(x, y) for the product.

Now that we have written t(x, y) in the plane wave basis, we can quickly calculate

the diffracted wavefunction far behind the grating. Plugging t(x, y) from (C.22) into

our calculation of the diffracted wavefunction, (C.13), we have

ψ(r′) =
1

iλz′
√
V
eikz

′

∫

eik̃a0/2
∞
∑

n=−∞

cne
iknxe−i(xqx′+yqy′ )dx dy (C.25)

ψ(r′) =
(2π)2

iλz′
√
V
ei(kz

′+k̃a0/2)

∞
∑

n=−∞

cnδ (qx′ − kn) δ (qy′) (C.26)

at coordinates (x′, y′, z′), where the spatial frequencies qx′ and qy′ are given by

qx′ =
kx′

z′
qy′ =

ky′

z′
(C.27)

The amplitude of ψ(r′) in (C.26) produces (12):

|ψ(r′)| = (2π)2

λz′
√
V
e−αh̄

∞
∑

n=−∞

|cn|δ
(

kx′

z′
− 2πn

d

)

δ

(

ky′

z′

)

(C.28)
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As noted in (11) and (15), we model our nanofabricated gratings as an array of

Gaussian-shaped trenches. In general, for a grating with pitch d and characteristic

width σ, the surface thickness h(x, y) of a FIB-milled grating can be described as the

periodic sum of Gaussians,

h(x, y) = h̄+
∞
∑

n=−∞

(

A√
2πσ

e−
(x/d−n)2

2σ2

)

− b (C.29)

where h̄ is the average grating height. The normalization A and offset b depend only on

trench depth ∆h and characteristic width σ. The Fourier coefficients of this model for

h(x, y) are

a0 = h̄+ A− b (C.30)

am = 2Ae−
1
2
(2πσm)2 (C.31)

Therefore, written as a Fourier series, the height profile is

h(x, y) = A

(

1 + 2
∞
∑

m=1

e−
1
2
(2πσm)2 cos (kmx)

)

+ h̄− b (C.32)

where km = 2πm/d as usual.

We note that as the coefficients am in our model are Gaussian in m, they fall off

quickly and the diffraction from such a model can be calculated with good precision by

cutting off cn at mc =
β
σ
, where β is an O(1) number.

In order to quickly numerically compute h(x, y), we note that the Fourier series can

be written in terms of the third Jacobi Theta function, ϑ3 [27]. This function is defined

as

ϑ3(z, τ) = 1 + 2
∞
∑

m=1

(

eiπτ
)m2

cos (2πmz) (C.33)

Thus, we see that we can rewrite h(x, y) as

h(x, y) = Aϑ3

(x

d
, 2πiσ2

)

+ h̄− b (C.34)

Now, we can easily set the normalization and offset A and b in terms of ∆h and h̄. We

choose ∆h to be positive always by convention; A and b may change sign depending on

groove shape. Profiles with narrow trenches have A < 0; FIB-milled gratings have a

narrow-trench profile. Profiles with wide trenches, or, equivalently, narrow peaks have

A > 0; deposited structures on a flat substrate have a narrow-peak profile. Let’s define

A and b for the case that A < 0.

A = − ∆h

ϑl − ϑr

(C.35)

b = A (C.36)

where we’ve used the shorthand

ϑl = ϑ3

(

0, 2πiσ2
)

(C.37)

ϑr = ϑ3

(

1

2
, 2πiσ2

)

(C.38)
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As the scaled full-width at half-maximum of a groove w is more intuitively meaningful,

we use w in the main paper. In terms of the characteristic width σ, we see that

w ≈ 2
√
2 ln 2σ (C.39)

This approximately linear relationship breaks down as w approaches 0.5; at this point,

the surface is only better-approximated as a single sinusoid with w = 0.5 as the

characterstic width σ increases. To represent the very wide trenches of a low-density

line array produced by electron beam lithography or ion beam induced-deposition, we

need only to flip the physical interpretation of the model: we actually want very narrow

peaks, so we may flip the sign of ∆h and fit the peaks with a small value of σ.

If we furthermore want to calculate h̄ from a known maximum grating thickness

hmax, trench depth ∆h and characteristic width σ, we see that

h̄ = hmax −∆h
1− ϑr

ϑl − ϑr

(C.40)

To calculate diffraction coefficicents cn in this model, we choose a cutoff

mc =
0.5

σ
(C.41)

With this cutoff, we can calculate cn to 10−5 precision for any physically reasonable

width or height.
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Figure 6. Parameter space map showing the predicted (background color) and

measured (squares) first-order (top) and zeroth-order (bottom) transmitted diffraction

efficiencies for electron phase gratings as a function of the depth ∆h and width w of

grooves. Each square data point represents a phase grating fabricated in a silicon

nitride membrane using a unique combination of FIB milling parameters. Each

square’s position describes the associated grating’s groove depth (horizontal axis) and

width (vertical axis) measured by AFM scans, and the square color is the diffraction

efficiency of the respective order measured by TEM diffraction. The labeled data

points correspond to the gratings that produced the diffraction patterns in Figure

5. The background color map represents a model that assumes symmetric grooves

with uniform Gaussian-shaped depth cross sections and plane wave illumination. Both

measured and predicted efficiencies in each plot share the same scale denoted by the

right-hand bar.
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Figure 7. Measured transmitted diffraction efficiency of electron phase gratings as a

function of groove depth ∆h. The grooves of each grating plotted here all have the

same width w = 0.375 ± 0.025 relative to the center-to-center groove spacing. The

solid line is a theoretical model that assumes Gaussian-shaped grooves, using only

previously measured parameters.
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