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ABSTRACT This paper proposes an efficient neural-network-based digital predistortion (DPD), named as

envelope time-delay neural network (ETDNN) DPD. The method complies with the physical characteristics

of radio-frequency (RF) power amplifiers (PAs) and uses a more compact DPD model than the conventional

neural-network-based DPD. Additionally, a structured pruning technique is presented and used to reduce the

computational complexity. It is shown that the resulting ETDNN obtained after applying pruning becomes

so sparse that its complexity is comparable to that of conventional DPDs such as memory polynomial(MP)

and generalized memory polynomial (GMP), while the degradation in performance due to the pruning is

negligible. In an experiment on a 3.5-GHzGaNDoherty power amplifier (PA), our method with the proposed

pruning had only one-thirtieth the computational complexity of the conventional neural-network-based DPD

for the same adjacent channel leakage ratio (ACLR). Moreover, compared with memory-polynomial-based

digital predistortion, our method with the proposed pruning achieved a 7-dB improvement in ACLR, despite

it having lower computational complexity.

INDEX TERMS Digital predistortion, generalized memory polynomial, memory polynomial, neural

network, pruning technique.

I. INTRODUCTION

To cope with dramatic increases in data traffic, wireless

systems are becoming complex and power hungry. In partic-

ular, power amplifiers (PAs) that should be placed in each

transmitter for 5G massive MIMO consume a lot power.

As is well known, there is a trade-off between power effi-

ciency and linearity in a PA. Basically a PA, which is operated

at an efficient point, causes non-linear distortion. The dis-

tortion not only decreases the signal quality, but also causes

spectrum regrowth, which poses a danger of disturbing adja-

cent channels. Thus, the PA output must be linear enough to

meet the 3GPP specification of the adjacent channel leakage

ratio (ACLR).

A digital predistortion (DPD) technique is indispensable

for operating the PA at an efficient point while meeting the

specification. DPD cancels the PA distortion by applying

the inverse of the PA distortion in advance of amplification.

Volterra-based DPDs, such as memory polynomial (MP) [1],

generalized memory polynomial (GMP) [2] and dynamic

deviation reduction (DDR) [3], are commonly used because

of their ease of implementation. However, it is reported that
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recent efficient PA architectures, such as Doherty, envelope

tracking and outphasing, are so complex that Volterra-based

DPDs are unable to compensate their PA distortions suffi-

ciently due to their limited structures [11].

Recently, a number of neural network-based DPDs have

been presented [4], [5], [8], [9]. Their accurate modeling

capability of neural networks enables them to outperform

Volterra-based DPDs but at the expense of computational

complexity.

Neural-network-based DPDs can be roughly divided into

two network types. One type is a neural network in which

input and output signals are split into I and Q signals.

This separation simplifies the optimization by avoiding the

complex-valued calculations. Real-valued time-delay neu-

ral network (RVTDNN) [4] is a well-known model of the

I/Q separation type. In particular, the augmented real-valued

time-delay neural network (ARVTDNN) [5] works by adding

envelope signals to the input signals. Moreover, reference [6]

and [7] present methods for MIMO transmitters that compen-

sate not only PA distortion but also cross talk. Although the

separated I/Q structures compensate for complex distortion

not limited to PA distortion, these structures do not satisfy

the constraints of the physical modeling imposed by the

bandpass nature of PA distortion [20], [21]. Thus, because the
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constraints of the physical modeling are violated, the com-

pensation performances of PAs are limited [9].

The other type of neural network is one in which the

input signals are not I/Q signals but rather envelopes of the

input signals, while the phase information is recovered by

the phase filter. In this case, the output signals from the

neural network, which only depends on the envelopes of the

input signals, are the coefficients of the phase filter, and

the phase filter performs a phase rotation by multiplying

the coefficients and the phase information, which results

in pre-distorted I and Q signals. Two methods [8], [9] in

this framework have recently been proposed. Although both

use the envelopes of the input signals, they differ in the

phase filter. [9] uses only the phase information in the

phase filter, while [8] uses the complex-valued input sig-

nals (including not only the phase but also the envelopes’

information) and complex-valued multiplication is used to

recover the phase information. Both methods have the good

characteristic of satisfying the constraints of the physical

modeling, which could make for a more compact structure

than the I/Q separation type. Indeed, it was reported in [9] that

the vector-decomposition-based time-delay neural network

(VDTDNN) [9] outperforms RVTDNN [4].

However, even though [8] and [9] are compact and poten-

tially have practical uses, due to the complex calculations of

the neural networks, their computational complexity is larger

than that of Volterra-based DPDs, which prevents them from

being implemented on commercially available equipment.

To solve this problem, we propose a compact neural-

network-based DPD, which satisfies the constraints of physi-

cal modeling, and its pruning method. The paper is organized

as follows. In Section II, we describe our compact neural

network model, called as envelope time-delay neural network

(ETDNN). In Section III, we present an efficient pruning

technique based on the essence of GMP that enables the

structure of ETDNN-DPD to be sparse. An experimental val-

idation and analysis are presented in Section IV. Conclusions

are given in Section V.

II. PROPOSED NEURAL-NETWORK DIGITAL

PREDISTORTION MODEL

A. ENVELOPE TIME-DELAY NEURAL NETWORK

Fig. 1 shows the block diagram of the proposed digital

predistortion based on a neural network, which contains

an artificial neural network and a phase filter. In terms of

the general description of neural networks, the pre-distorted

signal z(k) can be formulated as follows:

z(k) =

M
∑

m=0







Ntotal
∑

j=1

w
(2)
j,mφ

(

M
∑

l=0

w
(1)
l,j |x(k − l)| + b

(1)
j

)

+ b(2)m

}

x(k − m) (1)

where w
(1)
l,j and b

(1)
j are real-valued weights and biases

between the input layer and the hidden layer, andw
(2)
j,m and b

(2)
m

FIGURE 1. Block diagram of proposed digital predistortion based on the
neural network.

are complex-valued weights and biases between the hidden

layer and output layer in an artificial neural network (ANN).

The input layer is composed of delayed amplitudes |x(k− l)|.

Thus, the output signals from the ANN only depend on the

amplitudes of the input signals and are fed to the phase

filter as coefficients. The phase filter performs the phase

rotation by multiplying the complex-valued coefficients and

the complex-valued input signals x(k − m).

Hereafter, we call the proposed model as envelope

time-delay neural network (abbreviated as ETDNN).

It should be noted that the structure of ETDNN is similar

to [8] as follows:

z(k) =

M
∑

m=0







G
∑

j=1

w
(2)
j,mφ

(

M
∑

l=0

w
(1)
l,j,m|x(k − l)| + b

(1)
j,m

)

+ b(2)m

}

x(k − m) (2)

Compared with the formulation of ETDNN (1), although

almost all of structures are common, there is a big difference

in that [8] does not share the weights w
(1)
l,j,m and biases b

(1)
j,m

with each node of the output layer, which is shown in the

dependency of m, while our proposed ETDNN does. From

this difference, it can be considered that [8] is the special case

of ETDNN. To distinguish [8] from our proposed ETDNN,

we call [8] as the special case of ETDNN (abbreviated as

scETDNN) in this paper.

ETDNN complies with the constraints of the phys-

ical modeling of RF PAs [20], [21] similarly to the

vector-decomposition-based time-delay neural network

(VDTDNN) [9]. Indeed, ETDNN formulated as (1) satisfies

the two constraints ((i) odd party (ii) phase unity) of the

physical modeling [21], as follows.

(I) ODD PARITY

The activation function φ is even parity with the respect to

x(k − m) because |x(k − m)|, which is the argument of φ,
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is even parity. Therefore z(k), which is calculated by summing

the products of x(k − m)(odd) and φ(even), is odd parity.

(II) PHASE UNITY

x(k − m) and z(k) can be decomposed to their amplitudes

and phases as |x(k −m)|ejθ and |z(k)|ejψ , respectively. Thus,

the phase difference ψ − θ does not depend on θ because

ψ − θ is estimated as the phase of the φ summation, which

only depends on |x(k−m)|, not θ . This means that phase unity

is preserved.

This characteristic ensures that our proposed ETDNN is

a compact model by avoiding nonphysical fitting. However,

due to the complex-valued calculation, ETDNN requires a

complex-valued back propagation for optimization, which

dramatically increases the computational complexity. The

next session explains a decomposition of ETDNN, which

enables real-valued optimization.

B. DECOMPOSITION OF ENVELOPE TIME-DELAY NEURAL

NETWORK FOR REAL-VALUED CALCULATION

ETDNN (1) has complex-valued parameters w
(2)
j,m, b

(2)
m and

x(k − m) which are densely located around the phase filter.

Thus, if the operation of the phase filter is converted to a

real-valued one, the parameters in (1) can be unified into real

values.

Fig. 2 shows the decomposition of one multiplication,

which is the case of m = 0 in (1), in the phase filter.

According to (1), the complex-valued coefficient o, which is

the signal output from the ANN, is formulated as

o =

Ntotal
∑

j=1

w
(2)
j,0φ(·) + b

(2)
0 (3)

FIGURE 2. The decomposition of one multiplication in the phase
filter.

Then, the complex-valued input signal x(k) is decomposed

into real and imaginary parts, Real(x(k)) and Imag(x(k)),

respectively. Additionally, the complex-valued coefficient o

in (3) is decomposed as follows:

Real(o) =

Ntotal
∑

j=1

Real(w
(2)
j,0)φ(·) + Real(b

(2)
0 )

Imag(o) =

Ntotal
∑

j=1

Imag(w
(2)
j,0)φ(·) + Imag(b

(2)
0 ) (4)

Using these four real-valued parameters, i.e., Real(o),

Imag(o), Real(x(k)) and Imag(x(k)), a real-valued operation

that is mathematically equivalent to the complex-valued mul-

tiplication is conducted that outputs I/Q signals (Iout (k) and

Qout (k)). The other multiplications for m = 1, 2, . . . ,M in

the phase filter are decomposed in the same way. Thus, all

parameters in (2) can be treated as real values, which in turn

enables real-valued optimization.

C. RELATIONSHIP WITH VECTOR-DECOMPOSITION-

BASED TIME-DELAY NEURAL NETWORK MODEL

The decomposition shown in Fig. 2 also clarifies the rela-

tionship between ETDNN and VDTDNN [9]. Fig. 3 shows

the first hidden neuron group of VDTDNN (corresponding to

Fig. 8 in [9]). Comparing it with ETDNN (Fig. 1 and Fig. 2),

although the ANN part is almost the same, we can distinguish

two differences in the phase filter as follows: (i) Real(x(k))

and Imag(x(k)), which are reformulated as |x(k)|cosθ and

|x(k)|sinθ , in Fig. 2 correspond to cosθ and sinθ in Fig. 3,

respectively. (ii) In Fig. 3, the fourmultiplications in the phase

filter have four individually different input signals from the

ANN, whereas those in Fig. 2 have only two input signals

(Real(o) and Imag(o)) which are shared.

FIGURE 3. The first hidden neuron group of VDTDNN.

These differences are not essential to the physical mod-

eling. Indeed, both methods satisfy the constraints of the

physical modeling of RF PAs [20], [21]. However, when we

consider the details of their computational complexity, the

choice of method should be made carefully since the vector

decomposition in Fig. 3 is performed by a pipelined CORDIC

algorithm, which increases the computational complexity.

For a simple implementation, we focused on reducing the

computational complexity of ETDNN by using the structured

pruning described in the next section.
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III. PROPOSED PRUNING

Fig. 4 shows the model after it has been pruned. As we

can see, the number of connections has decreased, which

lowers the computational complexity. What is better is that

the pruning does not violate the constraints of the physical

modeling [20], [21] for ETDNN because from the mathe-

matical viewpoint, it only changes the coefficients (forces

the pruned weights to be 0) in (1), which does not affect the

constraints.

FIGURE 4. Block diagram of our model after pruning.

First, we will explain the conventional weight pruning

method [10]. Then, we will analyze the structure of ETDNN,

which leads to an advanced pruning for ETDNN.

To simplify the information of the connections on

ETDNN, we define σ
(1)
j as the indices of the nodes used as

the input of the j-th nodes in the hidden layer. σ
(2)
m is defined

as the indices of the nodes used as the inputs of the m-th

nodes in the output layer. Furthermore, we use the phrase

‘‘input weights/biases’’ to refer to weights/biases between the

input layer and the hidden layer. In the same manner, ‘‘out-

put weights/biases’’ will be used to refer to weights/biases

between the hidden layer and the output layer.

A. CONVENTIONAL WEIGHT PRUNING

Fig. 5 shows a flowchart of the conventional weight pruning

algorithm [10]. Step 1 obtains trained weights w
(1),Nep
l,j and

w
(2),Nep
j,m after the Nep-th iteration, where Nep is the number

of epochs. Step 2 checks the absolute values of the current

weights w
(1),Nep
l,j and w

(2),Nep
j,m to obtain the pruned groups

σ
(1),fixed
j and σ

(2),fixed
m as follows:

σ
(1),fixed
j = {l | |w

(1),Nep
l,j | > Th(1), l = 0, 1, . . . ,M},

σ (2),fixed
m = {j | |w

(2),Nep
j,m | > Th(2), j = 1, . . . ,Ntotal}, (5)

where Th(1) and Th(2) are the thresholds for the input and

output weights, respectively. The pruned groups σ
(1),fixed
j

and σ
(2),fixed
m contain the indices of the input and output

weights whose absolute values are larger than Th(1) and Th(2),

respectively.

FIGURE 5. Flowchart of weight pruning algorithm.

In step 3, the lower weights are discarded using σ
(1),fixed
j

and σ
(2),fixed
m , as follows:

w
(1),prn
l,j =

{

w
(1),Nep
l,j (if l ∈ σ

(1),fixed
j )

0 (otherwise)

w
(2),prn
j,m =

{

w
(2),Nep
j,m (if j ∈ σ

(2),fixed
m )

0 (otherwise)
(6)

where w
(1),prn
l,j and w

(2),prn
j,m are the input and output weights

after pruning, respectively. A value of 0 means no connection

(discarded).

Finally in step 4, all of the weights and biases are

obtained by re-training, which keeps the pruned connections

σ
(1),fixed
j , σ

(2),fixed
m in (6).

This technique is generally used for reducing the compu-

tational complexity of neural networks. However, to make

further reductions, we need to understand the structure of

ETDNN itself.

In the next section, we propose a new structured pruning

technique for ETDNN by referring to generalized memory

polynomial (GMP) [2], which is one of the most efficient

models in Volterra based DPDs [19].

B. STRUCTURAL INTERPRETATION OF ENVELOPE

TIME-DELAY NEURAL NETWORK

Here, we examine the relationship between ETDNN and

GMP. GMP [2] is defined as follows:

z(k) =

MGMP
∑

m=0

D
∑

d=−D

fd,m(|x(k − m− d)|)x(k − m) (7)
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where fd,m is a non-linear function composed of polynomial

functions, D is the number of cross-terms and MGMP is the

number of memory taps in GMP. Noted that to avoid using

the future signals, fd,m with m+ d < 0 is skipped according

to [2].

For ease of understanding, (7) for specific m and d is

visualized in Fig. 6. In this figure, the phase filter, which

multiplies the output of the function fd,m(|x(k − m− d)|) by

x(k−m), is also used by ETDNN (Fig. 1) for specificm and j

in (1). Thus, we can see that the only difference betweenGMP

and ETDNN is the function before the phase filter.

FIGURE 6. Fundamental block of GMP for specific d and m.

Thanks to the universal approximation theorem of neu-

ral networks [13], the fd,m in (7) can be approximated

individually as

fd,m(x) ≈

N
∑

j=1

w̌
(2)
j,d,mφ

(

w̌
(1)
j,d,mx + b̌

(1)
j,d,m

)

+ b̌
(2)
d,m (8)

where N is the number of nodes in the hidden layer. We will

assume that N is so large that the approximation error in (8)

is negligible.

The approximation (8) is illustrated in Fig. 7. As we

can see, fd,m(|x(k − m − d)|), which has one variable,

i.e., |x(k − m − d)|, is decomposed as a sum neurons that

each have one input connection.

FIGURE 7. Applying the universal approximation theorem of neural
networks to individual functions in GMP.

|σ
(1)
j | is defined as the number of indices σ

(1)
j . Accordingly,

the condition of one input connection of the node shown

in Fig. 7 can be rephrased as |σ
(1)
j | = 1 for all j.

Combining Fig. 6 with Fig. 7 under the condition of M =

MGMP + D in (1) and (7), we find that the approximated

GMP shares the neurons and the filter structure with ETDNN,

except for the restriction of |σ
(1)
j | = 1 on the neurons, which

results in the following relationship:

XGMP ⊂ X
ETDNN ||σ

(1)
j |=1

(9)

where XGMP and XETDNN are the solution spaces of GMP

and ETDNN, respectively. This relationship ensures that if

the number of nodes Ntotal for ETDNN is large enough and

all the parameters for DPDs are optimized, ETDNN-DPD

with |σ
(1)
j | = 1 will outperform GMP-DPD in spite of the

strict condition |σ
(1)
j | = 1, which means ‘‘|σ

(1)
j | = 1’’ is

potentially efficient when we re-consider |σ
(1)
j | = 1 as the

pruning strategy. To embody the pruning strategy, in the next

section, we extend the relationship (9) to an efficient pruning

method.

Noted that in the previous works, scETDNN-DPD [8] and

DPD based on canonical piecewise linear functions [12] are

derived fromGMP-DPD [2]. Thus, we already have the inclu-

sion property XGMP ⊂ XscETDNN . Nevertheless, |σ
(1)
j | = 1

in (9) remains unclear.

C. STRUCTURAL RESTRICTION OF THE INPUT

CONNECTION WHILE KEEPING THE GENERALIZED

MEMORY POLYNOMIAL AS A LOWER BOUND

The inclusion property (9) may be able to be extended to an

advanced inclusion property if we can loosen the restriction

for |σ
(1)
j | on ETDNN. In particular, setting |σ

(1)
j | uniformly

larger for all j leads to a spatial extension:

XGMP ⊂ X
ETDNN ||σ

(1)
j |=1

⊂ X
ETDNN ||σ

(1)
j |=2

. . .

⊂ X
ETDNN ||σ

(1)
j |=M+1

= XETDNN (10)

where |σ
(1)
j | = M + 1 means no restriction (full connection).

(10) indicates that the trade-off between accuracy and com-

putational complexity (increased by setting a larger |σ
(1)
j |) on

ETDNN can be controlled by changing |σ
(1)
j | while preserv-

ing a lower bound of XGMP.

The utility of (10) was confirmed by conducting a simula-

tion based on measurements made on a gallium nitride (GaN)

Doherty PA. We used a supervised learning error as an esti-

mator of the linearity of PA output. The measurement setting

to obtain supervised data is the same as the measurement

in Section IV and explained later. Algorithm 1 in the next

subsection was used to calculate the supervised learning error

for each |σ
(1)
j |.

Fig. 8 shows the relationship between the number of

input connections (|σ
(1)
j |) and the normalized mean square

error (NMSE) for training. We varied |σ
(1)
j | from 1 to 10

uniformly for all j. The accuracy against the supervised

data was evaluated by NMSE [15] and hereinafter we

call the NMSE against the supervised data as the training

NMSE. The figure also plots the training NMSE of GMP,
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FIGURE 8. Relationship between |σ
(1)
j

| and training NMSE.

where parameters (MGMP, P and D) were set to be large

enough so that the training NMSE is minimized.

As can be seen in the figure, the calculated training NMSEs

are strongly linked to (10). In short, the DPD model, which

belongs to a wider space, has a better NMSE. In particular,

the training NMSEs of ETDNN with the restriction of each

|σ
(1)
j | are lower than that of GMP, while XGMP is the lowest

bound in the relation (10). Moreover, Fig. 8 shows that a

small |σ
(1)
j | is enough from the viewpoint of training NMSE

(2 is sufficient in this case), which means that changing |σ
(1)
j |

uniformly for all j is an efficient pruning strategy.

Considering the physical meaning of |σ
(1)
j | while referring

to Fig. 6 and 7, |σ
(1)
j | = smeans that s fromM+1 connections

to the delayed amplitudes (x(k), x(k − 1), . . . , x(k −M )) are

chosen for each neuron. Moreover, Fig. 6 and 7 also indicate

that the activation function φ corresponds to the gain function

fd,m in GMP. Then, the selected s connections automatically

correspond to the s cross-terms in the gain function, which

implies that ETDNN model has a capacity of adapting the

Volterra models that include the cross-terms in their gain

functions. We will discuss this point in more detail later in

Section IV C.

From these results, we find that the interpretation of the

solution space (10) is useful for controlling the trade-off

between accuracy and computational cost. Noted that to con-

trol the trade-off in (10) appropriately, conventional weight

pruning, which can not control |σ
(1)
j |, is not suitable and a

carefully designed pruning algorithm, which optimizes σ
(1)
j

and other parameters with a fixed |σ
(1)
j |, is needed. Next,

we describe our new pruning algorithm with a fixed |σ
(1)
j |

D. PROPOSED PRUNING ALGORITHM WITH FIXED |σ
(1)
j

|

Fig. 9 shows the flowchart of the pruning algorithm.

Steps 2 and 3 in Fig. 9 are the same as steps 3 and 4 in

Fig. 5, but there are two big differences compared with the

conventional method, as follows: (i) our pruning procedure

is divided into two parts. The first part is from step 1 to

step 3, where we calculate the connections of the input layer

σ
(1)
j and their corresponding weights w

(1)
l,j and biases b

(1)
j .

In particular, in step 1, the training contains the structural

FIGURE 9. Flowchart of proposed pruning algorithm.

restriction of |σ
(1)
j | = s in group lasso regularization [14].

The second part is step 4, where we calculate the connections

of the output layer σ
(2)
m and their corresponding weights w

(2)
j,m

and biases b
(2)
m . (ii) We explain each step below.

STEP 1: TRAINING WITH THE STRUCTURED GROUP

LASSO FOR FIXED |σ
(1)
j

|

Algorithm 1 Training With the Structured Group Lasso for

Fixed |σ
(1)
j |(= s)

Input: w
(1),0
l,j , b

(1),0
j ,w

(2),0
j,m , b

(2),0
m , f0, λ0, α, Nep, s

1: for i = 0 to Nep − 1 do

2: w
(1),i+1
l,j , b

(1),i+1
j ,w

(2),i+1
j,m , b

(2),i+1
m

= OnestepGD(fi,w
(1),i
l,j , b

(1),i
j ,w

(2),i
j,m , b

(2),i
m )

3: σ
(1),i+1
j = argmax : s

l∈∀{l}

{|w
(1),i+1
l,j |}

4: λi+1 = αλi

5: fi+1 = E +

Ntotal
∑

j=1

(
∑

l∈σ
(1),i+1
j

λi+1|w
(1),i+1
l,j | +

∑

l′ 6∈σ
(1),i+1
j

λ0|w
(1),i+1
l′,j

|)

6: end for

7: σ
(1),fixed
j = σ

(1),Nep
j

8: return w
(1),Nep
l,j , b

(1),Nep
j ,w

(2),Nep
j,m , b

(2),Nep
m , σ

(1),fixed
j

The training algorithm (Algorithm 1) is run in step 1. The

initial weights and biases w
(1),0
l,j , b

(1),0
j ,w

(2),0
j,m , b

(2),0
m and the

initial regulation coefficient λ0, damping coefficient α, initial

objective function f0, and epoch number Nep are input.
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The parameters of the weights w
(1)
l,j ,w

(2)
j,m, the biases

b
(1)
j , b

(2)
m , and the temporary connection σ

(1)
j are iteratively

updated Nep times by repeating lines 2 to 5. Here, to distin-

guish the parameters in each iteration, the weight w
(1)
l,j after

the i-th iteration is described as w
(1),i
l,j . The same applies to

other parameters.

On line 2, using the current objective function fi,

the weights w
(1),i
l,j ,w

(2),i
j,m , and the biases b

(1),i
j , b

(2),i
m , a gradient

descent method (described as a function of OnestepGD) is

applied at one step to update the weights and biases. Note

that we can use various gradient descent methods, such as

stochastic gradient descent or Adam [18].

On line 3, using the weights w
(1),i+1
l,j updated by

OnestepGD, temporary connections σ
(1),i+1
l,j for the i + 1-th

iteration are chosen for all j by the operation argmax : swhich

is defined as the indices of the top s (especially, argmax : 1 =

argmax). Thus, argmax : s{|w
(1),i+1
l,j |} determines the indices

of the updated input weights whose absolute values |w
(1),i+1
l,j |

are the top s of the j-th node in the hidden layer.

On line 4, the regularization parameter λi is updated to

λi+1 by multiplying the damping coefficient α. To decrease

λi+1 gradually, α should be set as a little smaller than 1 (such

as 0.999).

On line 5, the current objective function fi is updated to

fi+1, which contains the typical mean square error E and

the group lasso regularization. The regularization coefficients

λi+1 are only applied to the weights |w
(1),i+1
l,j | whose indices

l belong to σ
(1),i+1
j . The other regularization coefficients are

set to λ0, which is larger than λi+1.

This iterative update of the group lasso regularization is

simultaneously used for training and pruning of σ
(1),fixed
j

since the gradual decrease in λi+1 from one iteration to the

next gradually reduces w
(1),i+1
l,j | l 6∈ σ

(1),i+1
j , where σ

(1),i+1
j

is the pruned group at the i+1-th iteration, while the training

gradually improves the accuracy of σ
(1),i+1
j .

Once the Nep-th iteration is reached, the training stops and

the group of σ
(1),Nep
j is output as σ

(1),fixed
j (line 7). Addition-

ally, the trained input weight w
(1),Nep
l,j is output and used in

step 2.

STEP 2: PRUNING INPUT WEIGHTS

In step 2, the input weights are pruned by using σ
(1),fixed
j :

w
(1),prn
l,j =

{

w
(1),Nep
l,j (if l ∈ σ

(1),fixed
j )

0 (otherwise)
(11)

where w
(1),prn
l,j is the input weight after pruning and a value

of 0 means no connection (discarded).

The important point is that the pruned group σ
(1),fixed
j

in (11) equals the temporary pruned group of σ
(1),Nep
j at the

end of training, which means the weights w
(1),Nep
l,j | l 6∈

σ
(1),fixed
j are already suppressed through the training with the

group lasso regularization. This leads to a lower pruning error,

which increases modeling accuracy.

STEP 3: RE-TRAINING

To reduce the error caused by the pruning in step 2, re-training

using the objective function fNep is performed while keeping

the pruned connections (11) to obtain re-trained weights (w
(1)
l,j

and w
(2)
j,m) and biases (b

(1)
j and b

(2)
m ). The re-trained input

weights w
(1)
l,j and the biases b

(1)
j are then fixed, i.e., renamed

w
(1),fixed
l,j and b

(1),fixed
j , respectively.

STEP 4: PRUNING THE OUTPUT WEIGHTS AND BIASES

BY COMPRESSED SENSING

The connections of the input layer and their correspond-

ing weights and biases are fixed, i.e., renamed as σ
(1),fixed
j ,

w
(1),fixed
l,j and b

(1),fixed
j , respectively. Then, ETDNN (1) is

reformulated by moving x(k −m) inside the summations as:

M
∑

m=0











Ntotal
∑

j=1

w
(2)
j,mφ







∑

l∈σ
(1),fixed
j

w
(1),fixed
l,j |x(k − l)|

+ b
(1),fixed
j

)

x(k − m) + b(2)m x(k − m)

}

(12)

where the free parameters are only w
(2)
j,m and b

(2)
m . The other

parameters are fixed. Thus, the pruning output weights and

biases can be interpreted as a linear problem with a restricted

number of non-zero parameters ofw
(2)
j,m and b

(2)
m . This problem

is the same as in compressed sensing. Thus, least squares

orthogonal matching pursuit (LS-OMP) [16] is used to cal-

culate σ
(2)
m , w

(2)
j,m, and b

(2)
m and these are output as σ

(2),fixed
m ,

w
(2),fixed
j,m , and b

(2),fixed
m .

Finally, we obtain all of the weights and biases and

their pruned connections under the condition |σ
(1)
j | = s.

We expected that the proposed pruning would produce amore

compact structure on ETDNN than conventional weight prun-

ing because the condition |σ
(1)
j | = s is efficiently included in

the training as the group lasso regularization.

IV. MEASURED RESULTS

Fig. 10 shows the experimental setup. We used a 15-MHz

LTE signal with 96 MSa/s and peak-to-average power

ratio (PAPR) of 7.3 dB. The signal was up-converted to

3.5 GHz and output from the signal generator (E8267D,

Keysight). The 3.5-GHz signal was fed to a 3.5-GHz-band

GaN PA, which consisted of a driver amplifier and Doherty

PA with a 63 dB total gain and 50 W average output power.

The PA output was fed to a down converter (M9362A,

Keysight) with a 3.27-GHz local frequency. The PA output

was then down-converted from 3.5 GHz to 230 MHz, and

this down converted signal was digitalized with an ADC

(M9202A, Keysight). Finally, the I and Q signals were

acquired by the PC and used in the DPD calculation.
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FIGURE 10. Measurement set up of 15MHz LTE in 3.5 GHz band.

To obtain supervised data for the DPD training, we applied

iterative learning control (ILC) [7], [17], which can perfectly

compensate for the non-modeled distortion for the limited

signal length (256,000 samples in this measurement) by

updating the input sampling iteratively. The average PA out-

put power was 52.5W in each iteration of ILC. The validation

used test data (256,000 samples) that was different from the

training data.

We used two indicators of computational complexity. One

was floating point operations (FLOPs) [19]. The other was

the number of real-valued free parameters, which means

that one complex-valued free parameter was counted as

two real-valued free parameters. Additionally, we used

NMSE [15] and ACLR as indicators of remaining distortion.

Noted that the NMSE in this measurement is referring to the

error between PA output and DPD input, which is different

from the (previously defined) training NMSE which is the

error between the supervised data and DPD input. ACLR was

evaluated as the average of the lower ACLR and upper ACLR

with a 15 MHz offset.

Our proposed ETDNN-DPD was compared with

scETDNN-DPD [8], RVTDNN [4] and ARVTDNN [5].

ReLUwas used as the activation function φ for all. Moreover,

the number of memory taps M was fixed to 20, the optimal

value. Ntotal in ETDNN (1) was varied from 12 to 200. G in

(2) was varied from 3 to 40. In RVTDNN, we set two layers

whose numbers of the neurons were varied from 40 to 240

and the best combinations of parameters were chosen from

the viewpoint of the trade-off between FLOPs and training

NMSE. In ARVTDNN, we set one layer whose number of the

neurons was varied from 20 to 160 and |x(k−m)|, |x(k−m)|2

and |x(k−m)|3 were added as the amplitude terms to the input

layer. For optimizations of the neural networks based DPDs,

we used Adam [18]; the epoch number Nep was 6000, and the

batch size was 320.

The proposed structured pruning (Algorithm 1) was evalu-

ated for ETDNN-DPD with the number of input connections

|σ
(1)
j |(= s) = 1 and 2. The trade-off between FLOPs and

ACLR was controlled by varying the number of non-zero

values in LS-OMP [16]. In this case, we found that the train-

ing NMSEs were saturated at 70 and 100 non-zero values for

s = 1 and s = 2 in LS-OMP, respectively. Thus, we stopped

LS-OMP at 70 and 100 times iteration for s = 1 and s = 2,

respectively. Then to control the trade-off between FLOPs

and ACLR, the number of non-zero weights and biases in

step 4 of Fig. 9 was varied from 10 to 70 for s = 1 and from

30 to 100 for s = 2. We set the initial value of λ0 and the

damping coefficient α in Algorithm 1 to 1.6×10−2 and 0.999,

respectively. Noted that Algorithm 1 was not sensitive to the

initialization. In fact, the maximum difference of the training

NMSEs in 10 trials with random initial values was only

0.3 dB. After pruning, nodes having no input connections or

output connections were automatically discarded.

We also compared Volterra based DPDs (MP-DPD and

GMP-DPD). The coefficients of MP and GMP were opti-

mized by using the least squares method. For a fair compari-

son, the parameters of the memory tapsM , cross termsD, and

the order of the polynomial P in MP and GMP were varied

and the best combinations of parameters were chosen from

the viewpoint of the trade-off between FLOPs and ACLR in

the same manner as [19]. Moreover, we used the same FLOPs

estimation as [19] for MP and GMP.

A. COMPARISON OF DIGITAL PREDISTORTIONS

W/WWWWW/AND W/O PROPOSED PRUNING

Fig. 11 and 12 show the relationship between FLOPs and

ACLR and the relationship between the number of free

parameters and ACLR.

FIGURE 11. Relationship between FLOPs and ACLR for MP, GMP, RVTDNN,
ARVTDNN, scETDNN, ETDNN w/o pruning and ETDNN w/ proposed
pruning (s = 1, 2).

Comparing conventional scETDNN-DPD (light blue line)

with proposed ETDNN-DPD w/o pruning (magenta line), we

can see that ETDNN-DPD required the fewer FLOPs and

free parameters than scETDNN-DPD did for the sameACLR.

This means that ETDNN-DPD, which shares the connections
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TABLE 1. Summary of measurements for the best of each DPD.

of the output layer while scETDNN-DPD does not, enabled

a compact DPD modeling.

Additionally, compared with conventional RVTDNN-DPD

(gray line) and ARVTDNN-DPD (orange line), we can also

see that ETDNN-DPD required the fewer FLOPs and free

parameters than they did for the same ACLR. That is because

the distortion was caused by only PA in this measurement

setting (there was no I/Q imbalance and dc offset). Thus,

the constraints of the physical modeling of RF PAs [20], [21],

which ETDNN satisfies but RVTDNN and ARVTDNN

do not, is of considerable importance in a compact DPD

modeling.

Moreover, comparing ETDNN-DPD w/o pruning

(magenta line) and w/ proposed pruning (red dashed line for

s = 1, red solid line for s = 2) reveals that the proposed

pruning achieved a further reduction in FLOPs and number of

free parameters while maintaining ACLR. Especially in the

best cases of pruned ETDNN-DPD (s = 2 and the number

of non-zero values in step 4 of Fig. 9 was set to 100), the

degradation in performance due to the pruning was negligible

despite the much fewer FLOPs.

Table 1 summarizes the results of DPD methods in

Fig. 12 and 13. In the estimation of the computational com-

plexity of Table 1, we chose the plots that achieved the lowest

ACLR in the measurements measured ACLR, not training

NMSE in order to avoid the over-fitting problem. The output

spectrum corresponding to Table 1 is also shown in Fig. 13.

As we can see from the table, ETDNN-DPD with the pro-

posed pruning (s = 1 and 2) achieved a lower ACLR than

that of GMP-DPD, while the required FLOPs and number

of free parameters were much lower than that of GMP-DPD.

This result is linked to the relationship of the solution spaces

in (10) and ensures the correctness of the analysis.

Table 1 also reveals the total reduction in computa-

tional complexity had by combining proposed ETDNN-DPD

with the proposed pruning. Compared with conventional

scETDNN, ETDNN-DPD with the proposed pruning (s = 2)

required about one thirtieth the FLOPs and free parameters

FIGURE 12. Relationship between the number of real-valued free
parameters and ACLR for MP, GMP, RVTDNN, ARVTDNN, scETDNN, ETDNN
w/o and ETDNN w/ proposed pruning (s = 1, 2).

(29156 versus 758 and 15162 versus 426) for almost the same

NMSE and ACLR.

We can also verify that thanks to the dramatic reduction in

computational complexity (required FLOPs (758) and num-

ber of free parameters (426)), the computational complexity

became low enough relative to the Volterra based DPDs such

as MP-DPD and GMP-DPD, which are widely implemented

on commercially available hardware because of the ease of

their implementation. ETDNN-DPD with proposed pruning

(s = 2) achieved a 7-dB lower ACLR (6-dB better NMSE)

than that of MP-DPD while requiring lower FLOPs and only

a few more free parameters. This shows that ETDNN-DPD

with the proposed pruning is a promising candidate for 5G

and beyond 5G wireless transmitters
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FIGURE 13. Output spectrum with MP, GMP, ARVTDNN, scETDNN, ETDNN
w/o pruning, ETDNN with proposed pruning (s = 1, 2).

FIGURE 14. (a) AM-AM and (b) AM-PM characteristics of PA (blue dots) /
PA+ETDNN-DPD with proposed pruning (s=2) (red dots).

Fig. 14 shows the AM-AM and AM-PM characteristics of

the PA (red dots) and the PA+ETDNN-DPD (blue dots) with

s = 2. We can see that ETDNN with the proposed pruning

(s = 2) can efficiently compensate for the PA distortion

which has strongly bent AM-AM curve and widely dispersed

AM-PM plots. As shown in Fig. 14, we operated the GaN

Doherty PA near the saturated point, where the PA causes

strong distortion including memory effects, which results in

the required FLOPs in this measurement being larger than in

the previous experiments on MP, GMP [19], scETDNN [8],

RVTDNN [4] and ARVTDNN [5].

B. COMPARISON OF PRUNING TECHNIQUES FOR

ENVELOPE TIME-DELAY NEURAL NETWORK

To focus on the pruning performance, we compared the

proposed pruning with weight pruning [10] in the same

ETDNN-DPD. In weight pruning, to control the trade-off

between FLOPs and ACLR, the thresholds Th(1) and Th(2)

in (5) were set by multiplying the threshold rate, which was

varied from 0.6 to 1.8, by the the standard deviations of

the weights w
(1),Nep
l,j and w

(2),Nep
j,m , respectively. Additionally,

to maximize the performance of weight pruning, parameter

optimized L1 regularization was applied, which corresponds

to setting the objective function fi shown on line 5 of

Algorithm 1 as λi+1 = λ0 = 8×10−4 in each iteration. On the

other hand, the setting and the results of the proposed pruning

were the same as in the previous measurements (Fig. 12 and

Fig. 13). Other settings such as the number of epochs and

batches for both pruning were also the same as in the previous

measurements for a fair comparison.

Fig. 15 and 16 show the relationship between FLOPs

and ACLR and the relationship between the number of free

parameters and ACLR, respectively. They show that the pro-

posed pruning with s = 2 has about one-third the FLOPs and

number of free parameters compared with weight pruning for

the same ACLR. These results verify that our pruning is more

efficient than weight pruning for ETDNN-DPD.

FIGURE 15. Relationship between FLOPs and ACLR for ETDNN with
weight pruning [10] and proposed pruning (s = 1, 2).

FIGURE 16. Relationship between the number of free parameters and
ACLR for ETDNN with weight pruning [10] and proposed pruning (s = 1, 2).

There are mainly two reasons why our pruning performs

better. One is that the training with group lasso regularization

extracts more appropriate connections on ETDNN, whereas

the training of the weight pruning uses simple L1 regulariza-

tion. The other is derived from the structural characteristic.

The inclusion property of the solution space (10) ensures the

lower bound of our proposed pruning, whereas weight prun-

ing does not have such a lower bound, which have degraded

its performance. We will discuss the structure of ETDNN

from the viewpoint of device modeling in the next section.

C. DISCUSSION OF ENVELOPE TIME-DELAY NEURAL

NETWORK WITH PROPOSED PRUNING

Let us consider why ETDNN-DPDwith the proposed pruning

especially with s = 2 performed better than other DPDs from

the physical viewpoint.

Recently a power-dependent Volterra (PDV) model [22],

which was derived from the circuit-level analysis [23],
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was proposed as the extension of GMP. The formulation of

PDV is as follows:

z(k) =

MPDV
∑

m=0

ĥ1(m)x(k − m)

+

MPDV
∑

m=0

Q2
∑

q2=0

ĥ3(m, q2)|x(k − m− q2)|
2x(k − m)

+

MPDV
∑

m=0

Q2
∑

q2=0

Q3
∑

q3=0

ĥ5(m, q2, q3)|x(k − m− q2)|
2

× |x(k − m− q3)|
2x(k − m) + . . . (13)

where Q2 and Q3 are the numbers of cross-terms and MPDV

is the number of memory taps in PDV. We can see that the

even-order envelope powers are also present in the GMP

model. To simplify the formulation, (13) is combined with

x(k − m) as follows:

z(k)=

MPDV
∑

m=0

Q2
∑

q2=0

Q3
∑

q3=0

fq2,q3,m(|x(k−m−q2)|,

|x(k−m−q3)|)x(k−m) (14)

where fq2,q3,m(|x(k −m− q2)|, |x(k −m− q3)|) is a function

of two variables, including ĥ1(m), ĥ3(m, q2)|x(k −m− q2)|
2

and ĥ5(m, q2, q3)|x(k − m− q2)|
2|x(k − m− q3)|

2.

As can be easily understood, (14) for specific q2, q3, and

m can be visualized as in Fig. 17. Here, the phase filter,

which multiplies the output of the function fq2,q3,m(|x(k−m−

q2)|, |x(k − m − q3)|) by x(k − m), is in common with that

of ETDNN (Fig. 1) for specific m and j in (1). Thus, we can

see that an only difference between PDV and ETDNN is the

function before the phase filter.

FIGURE 17. Fundamental block of PDV for specific q2, q3 and m.

Here, in the same manner as (8), the universal approxi-

mation theorem of neural networks [13] can be applied to

fq2,q3,m(|x(k − m− q2)|, |x(k − m− q3)|):

fq2,q3,m(x, y)

≈

N
∑

j=1

w̌
(2)
j,q2,q3,m

φ

(

w̌
(1)
j,q2,q3,m

x + w̃
(1)
j,q2,q3,m

y+ b̌
(1)
j,q2,q3,m

)

+ b̌(2)q2,q3,m (15)

The approximation (15) is visualized in Fig. 18. As we can

see, the function fq2,q3,m(|x(k − m − q2)|, |x(k − m − q3)|),

which has two variables |x(k −m− q2)| and |x(k −m− q3)|,

is decomposed into a summation of neurons whose number

of input connections are all two, which can be rephrased as

|σ
(1)
j | = 2 for all j.

In light of Fig. 17 and Fig. 18 under the condition of

M = MPDV +Q2+Q3 in (1) and (14), we can summarize that

the approximate PDV shares the structures of the neurons and

the filter with ETDNN except for the restriction of |σ
(1)
j | = 2

on the neurons, which results in the relationship:

XPDV ⊂ X
ETDNN ||σ

(1)
j |=2

(16)

FIGURE 18. Applying the universal approximation theorem of neural
networks to individual functions in PDV.

This relationship ensures that ETDNN with |σ
(1)
j | = 2

includes PDV as a lower bound. Moreover, considering that

PDV includes GMP, we can conclude that the PDV relation-

ship (16) gives a stricter bound than that of GMP (10). This

means that the PDV model is much close to the ETDNN

model with |σ
(1)
j | = 2. Therefore, we expect that the analysis

of the PDVmodel directly corresponds to that of the ETDNN

model with |σ
(1)
j | = 2, which gives the meaning of ETDNN

with |σ
(1)
j | = 2 from the viewpoint of device modeling.

V. CONCLUSION

An envelope time-delay neural network (ETDNN)-DPD and

a pruning technique for it were proposed. ETDNN-DPD

complies with the physical characteristics of RF PAs and

uses a more compact DPD model compared with the con-

ventional neural-network-based DPD. A detailed analysis of

ETDNN based on the essence of GMP led to an efficient

pruning, which enables the neural network for ETDNN-DPD

to have a sparse structure. In a measurement of a 3.5-GHz

GaN Doherty PA, ETDNN-DPD with the proposed pruning

had one-thirtieth the computational complexity of the con-

ventional neural-network-based DPD for the same ACLR.

Moreover, ETDNN-DPDwith the proposed pruning achieved

a 7-dB improvement in ACLR compared with the conven-

tional MP-DPD, even though it has a lower computational

complexity. This ensures that ETDNN-DPD with the pro-

posed pruning can be implemented in commercially available

hardware and will contribute to development of future mobile

communication systems through its high compensation

performance.
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In the future work, for the purpose of practical use, we

will check the stability of ETDNN-DPD together with the

proposed pruning under various PA conditions. In addition,

we will analyze the PAmodel corresponding to ETDNN from

the viewpoint of device modeling, which will also contribute

to the analysis of its stability. Moreover, since our proposed

pruning was limited to perform on the off-line processing

by using the specific supervised data, we also need to check

whether our proposed pruning is still optimal or not even if

the input signal changes its characteristics.
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