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Acute or chronic (nonresolving) inflammation is a well- 
established mediator of major diseases including vascular dis-
ease (such as atherosclerosis and stroke), chronic obstructive 

pulmonary disease, cancer, diabetes, obesity, rheumatoid arthritis, 
psoriasis and inflammatory bowel disease1,2. In each of these condi-
tions, the affected individual shows elevated expression of the potent 
and pleiotropic proinflammatory cytokine interleukin-1β (IL-1β)2,3. 
Pharmacological therapies targeted against IL-1β are largely focused 
on biologics that are only likely to act extracellularly4 (for example, 
anakinra; an IL-1 receptor antagonist), which have shortcomings 
such as poor central nervous system penetration. Small-molecule 
modulation of IL-1β may offer benefits in certain conditions, such 
as in cerebrovascular injury where IL-1β mediates considerable 
cerebral damage during acute ischemia and excitotoxic insult5.

The lipopolysaccharide (LPS)-induced Toll-like receptor 4 
(TLR4) stimulation of macrophages is a widely used experimental 
model that mimics key aspects of inflammation including IL-1β 
expression6. Signal transduction induced by TLR4 stimulation 
proceeds through the activation of a complex array of multipro-
tein signaling networks (for example, MyD88, TRAF6, p38 MAPK 
and NF-κB), ultimately resulting in the expression of the IL1B 
gene. Possibly on the basis of the ‘one gene, one drug, one disease’ 
paradigm7, a plethora of reagents has been developed to modulate 
individual proteins within these signaling networks. However, it is 
well known that multiple steps must be modulated simultaneously 
to have meaningful effects on biochemical fluxes8. Thus, a single-
target approach is unlikely to be optimal in inhibiting the expres-
sion of a proinflammatory cytokine such as IL-1β, which has both 
inherent degeneracy and considerable complexity within the signal 

transduction network9. More generally, there is an increasing recog-
nition of the need to target multiple steps within signaling networks 
for their effective pharmacological modulation7.

Combinatorial chemical genetics10 uses combinations of small 
molecules that allow dissection of cellular phenomena via their 
selective modulation of individual biological targets. Despite pro
gress made in high-throughput screening technologies11, the analysis  
of even modestly sized chemical libraries is prohibitive because of 
the combinatorial explosion that occurs in pharmacological space12 
(233 or ~9 billion combinations for all possible combinations of the 
chemical library explored here). Thus we sought heuristic solu-
tions (that is, reagent combinations) that are good but not provably  
globally optimal.

The terms ‘evolutionary computing’ and ‘evolutionary algo-
rithms’ describe a set of computational approaches based loosely 
on Darwinian evolution by the natural selection of individuals 
and populations. In this case the population consists of individuals 
that each encode a candidate solution to the problem at hand. The 
‘fitness’ of each solution is reflected in the objective function (or 
functions) designed by the experimenter, but it normally includes 
the concept that fitter individuals provide more accurate solutions. 
There may be multiple fitness functions. For instance, a simpler 
solution may be deemed a fitter solution, and algorithms with 
multiple objectives (multiple fitnesses), like those in this work, are 
known as multiobjective evolutionary algorithms. Multiobjective 
evolutionary algorithms allow for the specification and simultane-
ous handling of multiple and distinct optimization objectives13–15. 
Based on the fitness (or fitnesses) of each solution, a selection step 
determines which individuals will be allowed to remain under  
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The control of biochemical fluxes is distributed, and to perturb complex intracellular networks effectively it is often necessary 
to modulate several steps simultaneously. However, the number of possible permutations leads to a combinatorial explosion in 
the number of experiments that would have to be performed in a complete analysis. We used a multiobjective evolutionary algo-
rithm to optimize reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets 
in the regulatory network controlling IL-1b expression. The evolutionary algorithm converged on excellent solutions within 11 
generations, during which we studied just 550 combinations out of the potential search space of ~9 billion. The top five reagents 
with the greatest contribution to combinatorial effects throughout the evolutionary algorithm were then optimized pairwise. 
A p38 MAPK inhibitor together with either an inhibitor of IkB kinase or a chelator of poorly liganded iron yielded synergistic 
inhibition of macrophage IL-1b expression. Evolutionary searches provide a powerful and general approach to the discovery of 
new combinations of pharmacological agents with therapeutic indices potentially greater than those of single drugs. 
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consideration for the next generation. Some of these individuals are 
retained because they are simply copied, unchanged, into the subse-
quent generation(s), but new diversity based on the parents selected 
is produced by processes analogous to mutation and recombina-
tion. The fitnesses of these new individuals are then evaluated as 
above, and the algorithm continues to cycle through the steps of 
selection, breeding and fitness evaluation until an acceptable solu-
tion is found. Decades of research within the field of evolutionary 
computing (for example, refs. 16 and 17) have revealed that optimi-
zation of multivariate problems can be highly effective using small 
numbers of experimental tests. Although the present study used an 
evolutionary algorithm and an adaptive dose-matrix search strat-
egy, we recognize that other kinds of combinatorial optimization 
approaches might also prove effective.

Using a ‘reverse’ combination chemical-genetic approach10, our 
aim was to optimize combinations of reagents that minimize LPS-
induced IL-1β expression in macrophages and simultaneously mini-
mize the number of component reagents in the combination and their 
propensity to induce macrophage cell death. Subsequently, we sought 
to optimize reagents to inhibit IL-1β expression at concentrations 
lower than those of the component reagents used in isolation. This 
was achieved by application of an evolutionary algorithm–directed, 
semiautomated robotic assay of IL-1β expression to a dynamic chem-
ical library of a total of 33 reagents (as described in Methods and  
refs. 18–20). The specific algorithm used here was the indicator-based 
evolutionary algorithm (IBEA)21 as in preliminary simulations22, 
it proved superior to a variety of other multiobjective optimization 

algorithms. This was followed by a dose-matrix search of top-ranked 
reagents resulting from the evolutionary algorithm–directed search. 
We demonstrate that the evolutionary algorithm converges efficiently 
on good solutions and that p38 MAPK inhibition along with either 
IκB kinase inhibition or iron chelation yields synergistic and biologi-
cally relevant inhibition of macrophage IL-1β expression.

RESULTS
Rapid convergence of IBEA to near-optimal solutions
Concentration-effect curves for a selection of reagents with known 
or predicted targets in the IL-1β expression network were deter-
mined to identify the most appropriate concentration for use in the 
evolutionary algorithm (Supplementary Results, Supplementary 
Fig. 2). On the basis of these data, we selected a suboptimal dose  
(3 μM) that would provide scope for observing combinatorial synergy.

The IBEA21, which directed a semiautomated robotic assay using 
chemical combinations to inhibit IL-1β expression, was initialized 
(Fig. 1, loop 1; described further in Methods), the IBEA generates 
subsets of combinations from the library and then assesses the per-
formance of these subsets with respect to inhibition of IL-1β expres-
sion, decreases in LDH (a marker for cell death) release and the 
number of member reagents within the combination. In the present 
case, we confined the number of experiments in each of the first 
and subsequent generations to 50, and those for generation 1 were 
selected randomly by the evolutionary algorithm from the first-
generation library of chemicals. Superior combinations were retained 
and recombined with other library components in successive subsets 
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Figure 1 | Combinatorial evolutionary inhibition of IL-1b expression. Known drugs were tested alone before being used at a single concentration (3 μM) 
in a chemical library (loop 1, clockwise). Initialization of IBEA creates a random selection of combinations that are incubated with stimulated cells before 
measurement of cell death (LDH release) and IL-1β expression. Evaluation of these data against the number of compounds in the combination (n = 3 for all 
data) is performed by IBEA before a new generation of combinations is computed and tested. After 11 generations, concentration-dependent optimization (loop 
2) of five top-ranked reagents was undertaken. Synergy was detected in new dual combinations. L, low; M, medium; H, high; PBS, phosphate-buffered saline; 
TMB, 3,3′,5,5′-tetramethyl benzidine; HRP, horseradish peroxidase.
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and assessed iteratively until satisfactory combinations were found. 
Assays of successive generations of chemical combinations from a 
dynamic chemical library (a total of 33 reagents, each at a concen-
tration of 3 μM; described in Supplementary Methods) revealed 
their convergence toward a set of highly effective cocktails (Fig. 2; 
Supplementary Fig. 3 and top rows of Supplementary Tables 3 
and 4 describe data on the individual generations). Supplementary 
Spreadsheet 1 gives all of the data on both reagent combinations 
and experimental measurements in tabular form.

Convergence of solutions derived from the IBEA’s search of the 
chemical library was assessed by measuring the population average 
rank of the IBEA hypervolume (Supplementary Methods) and the 
three objective functions (IL-1β expression, number of component 
reagents within combinations and LDH release) (Fig. 3). Both the 
observed plateau in IL-1β expression between generations 9 and 10 
and very marginal decreases in LDH decrease (Fig. 3, top and bot-
tom left, respectively) led us to halt the IBEA-directed search. By 
this stage, almost all IL-1β expression had been ablated by some 
combinations with negligible toxicity, although these solutions were 
not provably globally optimal.

A particular strength of this algorithm is the ability to add and 
remove reagents to and from the library during the evolution of 
the combinations23 (Reagent Removal/Addition and Data Analysis 
in Supplementary Methods), and generations 10 and 11 explored 
these a little further. We also noted that many of the more successful 
reagent combinations contained the p38 MAPK inhibitor SB203580.

Post hoc analysis of combinatorial chemical space
The search of combinatorial chemical space yielded 51 and 188 
reagent combinations that showed inhibition of IL-1β expression 
greater than or equal to either 95% or 70% of the control response, 
respectively (Supplementary Tables 3 and 4, top rows) across 
all generations. We chose to explore the inhibitory activities of 
other reagents independently of SB203580 because these effects 
might have been ‘masked’ in the evolutionary algorithm by the 
dominance of SB203580 (70%, or 35/50, of sampled combinations 

at generation 10 contained SB203580). Thus, a ‘post hoc’ analysis of 
all data was conducted to assess the fitness contributions of single 
reagents (their overall score against our defined objectives) alone 
and in two- and three- component combinations (in the presence 
and absence of SB203580) for all reagents (Fig. 4, described further  
in Methods). Top-ranked component reagents included the 
p38 MAPK inhibitor (SB203580), a sphingosine kinase inhibi-
tor (SKI-II), a statin (simvastatin), an iron chelator (SIH) and 
an inhibitor (BMS-345541) of the inhibitory κB kinase (IKKi). 
Inhibitors of p38 MAPK and IKK are well established as inhibitors 
of IL-1β expression, and (in addition to its effects on HMG-CoA 
reductase) simvastatin is a known anti-inflammatory24. An abun-
dance of evidence also implicates poorly liganded iron in inflam-
matory processes24,25. However, the appearance of SKI-II may have 
been unexpected, although there is evidence for the involvement 
of at least one sphingosine kinase in inflammation26. Despite the 
appearance of both wortmannin and the mitochondrial uncouplers 
in the post hoc analysis, these compounds were not pursued further 
because of their lack of specificity and potential toxicity, respec-
tively. Our observation of substantial inhibition of IL-1β expression 
with only pairs of inhibitors (Supplementary Tables 3 and 4, bot-
tom) led us to study the concentration-dependent, pair-wise opti-
mization of the top-ranked reagents.

Pairwise search reveals combinatorial synergism
The search over defined concentration ranges of all pairs of five top-
ranked reagents was assessed using an adaptive dose-matrix search 
protocol (Fig. 1, loop 2; Supplementary Fig. 4). Briefly, this pro-
tocol adaptively changes the concentrations of chosen reagents, as 
described in Methods (SB203580 and SIH in Supplementary Fig. 4 
versus the same combination in Fig. 5). Reagents were assessed 
alone and in pairs (Fig. 5). Modes of pharmacological effect driven 
by reagent combinations have their own nomenclature27–29. Hence, 
additivity is the linear superposition of two different reagent effects, 
and synergy is nonlinear (excess) inhibition from a reagent combi-
nation beyond that expected for simple additivity27. Evidence of syn-
ergy (Fig. 5c and f show IKKi and SIH, respectively) was determined 
by subtracting the predicted additive effects (Fig. 5b and e show IKKi 
and SIH, respectively) of each combination (based on single-reagent 
efficacy) from the actual experimental data (Fig. 5a and d show 
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Figure 2 | Combinatorial multiobjective optimization of reagents 
inhibiting IL-1b production. Analysis of successive generations 
(generations 1 (initialization), 5 and 10) of reagent combinations reveals 
their convergence to a subset of highly effective combinations reflecting 
the inhibition of IL-1β expression with concomitant decreases in LDH 
release and the number of member reagents. All data presented are the 
means of three determinations. Data points appearing as zero on the axis 
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IKKi and SIH, respectively). Synergy was observed for most combi-
nations; however, we noted in some instances that this could in fact 
be attributed to the loss of a potentiating effect on IL-1β expression 
that occurred when either of the reagents were used alone. In these 
cases, the net (that is, resulting) magnitude of IL-1β inhibition was 
minimal, and therefore we focus here on examples of combinatorial 
synergy generating biologically relevant levels of IL-1β inhibition. 
SB203580 (0.1 μM) and IKKi (1 μM) individually inhibited IL-1β 
expression by 28 ± 7% and 12 ± 9%, respectively (mean ± s.e.m.,  
n = 7), and in combination they achieved significantly greater inhibi-
tion than either of the individual drugs (59 ± 5%, n = 7; P < 0.02 and 
P < 0.0005, one-way ANOVA with Tukey’s multiple test correction 
versus SB203580 or IKKi alone, respectively). The inhibitory effect 
of this combination was 19% greater than that predicted for a purely 
additive effect, thus demonstrating a marked synergistic interaction 
at these concentrations (Fig. 5c). Similarly, SB203580 (0.1 μM) and 
SIH (3 μM) individually inhibited IL-1β expression by 31 ± 10% and 
19 ± 8%, respectively, (n = 7 plates) and combinatorially inhibited 
IL-1β expression by a significantly greater magnitude (59 ± 4%, n = 7  
plates, P < 0.04 and P < 0.004, one-way ANOVA with Tukey’s  
multiple test correction compared to SB203580 and SIH alone, respec-
tively). This combinatorial inhibitory effect was 9% greater than 
that predicted for pure additivity, therefore indicating a synergistic 
interaction (Fig. 5f). We also observed marked synergistic effects for 
combinations of IKKi and SKI-II, IKKi and SIH, and SB203580 and 
SIH (Supplementary Fig. 4). To assess whether a triple combination 
of SB203580, IKKi and SIH could inhibit IL-1β expression beyond 
the synergy already observed for both paired combinations (that is, 
SB203580 with either IKKi or SIH), we superimposed increasing 
concentrations of SIH (0 μM, 0.1 μM, 0.3 μM, 1 μM and 3 μM) onto 
SB203580 and IKKi dose matrices (Supplementary Fig. 5). We did 
not observe any further synergy with the triple combination.

DISCUSSION
There is a growing recognition that for drugs to be effective, 
whether singly or in combination, multiple steps must be affected 
simultaneously7,10,30,31. This, however, immediately leads to a com-
binatorial explosion of experimental possibilities that limits the 
number of drugs that can reasonably be tested exhaustively. We 
have applied a multiobjective evolutionary algorithm to the optimi-
zation of reagent combinations using a panel of candidate reagents, 
selected from our own studies and the literature32, that target the 
pro-inflammatory IL-1β expression network. The objective assess-
ment of reagent combinations arising from the IBEA-directed search 
using post hoc analysis of reagent fitness contributions is useful as 
it removes a layer of decision making20, reducing bias and poten-
tially enhancing ‘hidden’ phenomena (for example, off-target effects 
of reagents) that may have beneficial effects on the system output 
(that is, IL-1β expression). In this regard, it is worth mentioning 
the increasingly effective use of adaptive dosing regimes in clinical 
trials of pharmaceutical drugs, both singly and in combination with 
each other33.

Combination therapy is now returning to the fore with a greater 
understanding of pharmacological mechanism being uncovered 
by advances in parallel measurements of biological endpoints11,34,35 
The Gur-game stochastic search algorithm has been reported to be 
useful36,37 in elucidating the antiviral and NF-κB activating efficacy 
of drug and cytokine combinations, respectively. Briefly, this algo-
rithm functions by generating a random number (for example, one 
representing a specified antiviral activity) and switching the concen-
tration of component drugs if their efficacy is below this value. In 
contrast, stochastic and deterministic elements of our search were 
based on experimental data output and recombination of reagents 
in new cocktails that had not yet been evaluated. The multiobjective 
nature of the evolutionary algorithm–driven search presented here 
allows assessment of a number of biological endpoints. Following 
this approach with an adaptive dose-matrix–driven search enabled 
us to search pharmacological space using only the top-ranked ‘hits’. 
Applications of search algorithms and the use of machine learning 
in the optimization of combinatorial therapies have recently been 
reviewed38, and within the categorization used by the authors, our 
method falls under ‘E – Model-free Biological Search’.

Recently, two papers have cited the pairing of reagent combina-
tions as either indicative or predictive of higher-order effects39,40. 
The latter paper40 used a series of chemotherapeutic reagents to 
monitor for additivity, antagonism or synergy of combinations on 
yellow fluorescent protein–tagged protein dynamics in the H1299 
cell line. The authors propose that a linear superposition of weighted 
sums from the effect single drugs have on protein dynamics can pre-
dict higher-order (that is, combinatorial) effects for these reagents, 
although they were unable to demonstrate this for wortmannin  
(an inhibitor of phosphoinositide 3-kinase (PI3K)).

The former paper39 looked for an enhancement in the intra
cellular concentration of Ca2+ in platelets using a pairwise agonist 
scanning approach of six reagents at three different concentrations. 
Using these data, the authors trained a neural network model to pre-
dict higher-order effects and were successful in doing so. However, 
the rapid and nontranscriptional signal transduction required for 
Ca2+ mobilization may not entirely reflect multiprotein signaling 
networks, which involve extensive cross-talk and feedback loops 
that modulate responses on time scales ranging from minutes to 
hours and beyond.

In the present case, we observed substantial inhibition of 
IL-1β production by the p38 MAPK inhibitor SB203580 that was 
enhanced synergistically by either the IKK inhibitor BMS 345541 or 
the iron chelator SIH41. Perhaps surprisingly, the triple combination 
of SB203580, IKKi and SIH did not reveal additional effects beyond 
those observed for pairwise combinations of SB203580 and either 
of the other two reagents. The effects of iron chelation are of special 
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interest here as there is abundant but widespread evidence for the 
role of unliganded iron in a variety of inflammatory disorders24,25,42.

p38 inhibitors have been disappointing in clinical trials, not so 
much because they are not active in vivo but because (at the doses 
used) they lose specificity for the α isoform of p38 and are toxic43. 
A particular benefit of the synergy achieved when a p38 inhibitor 
such as SB203580 is combined with BMS345541 or SIH, as observed 
here, is that lower concentrations of inhibitor can be used than when 
they are used individually (Fig. 5). We also note that such inhibitors 
seem to have not been designed to exploit the specificity of pharma-
ceutical drug transporters44. The efficacy of combinations that did 
not involve the p38 inhibitor was also noted.

In conclusion, the application of an evolutionary algorithm in 
conjunction with a semiautomated assay of a dynamic chemical 
library enables rapid scanning of reagent combinations without the 
need for initial hypotheses45 about likely higher-order effects. Our 
results show that synergistic combinations can be revealed quickly 
and can survive further experimental scrutiny, leading to pairwise 
combinations that seem promising to use in practice. The syner-
gism shown by the combination of SB203580 and either IKKi or 
SIH presented here, in contrast to the comparatively marginal effect 
of the individual reagents at the same concentrations, shows that  
pharmacological modification of biological targets and processes 
may be effected at concentrations that are less likely to be toxic. This 
has particular relevance to the treatment of chronic inflammatory 
conditions such as irritable bowel syndrome46 and chronic obstruc-
tive pulmonary disease47, which involve treatment that is maintained 

for extensive periods. Our approach is essentially generic, and the 
time required per generation is determined by the time needed for 
setting up and running the assays (typically 3 d, one each for cell 
preparation, combination preparation and ELISA analyses), as the 
time needed for the algorithm to analyze the results and then choose 
the cocktails for the next generation was negligible in comparison. 
Overall, our new method substantially decreases the time taken to 
triage pharmacologically useful chemical diversity within chemi-
cal libraries48. Additionally, we demonstrate how combinations of 
known drugs or reagents could allow them to be repurposed49 and 
could provide an elegant adjunct to existing therapeutic strategies in 
chronic inflammatory conditions.

METHODS
All procedures, protocols and methods were carried out under aseptic conditions 
where deemed necessary.

Construction and composition of the chemical library. The choice of reagents 
with which to populate the chemical library searched here was guided in part by 
Oda and Kitano’s TLR signaling network32 and via identification of suitable ligands 
from single-reagent studies in peritoneal macrophages. The following pharmaco-
logical classes of reagents were used: iron chelators, the zinc chelator TPEN, anti- 
and pro-oxidants, NADPH oxidase inhibitors, PI3K inhibitors, MAPK pathway  
inhibitors, NF-κB pathway inhibitors, the tyrosine kinase inhibitor genistein, 
mitochondrial uncouplers (removed after generation 3), statins and small-GTPase 
inhibitors. In the evolutionary optimization process, each of these reagents  
corresponds to a single binary variable indicating whether or not the reagent is 
included in a combination; the combination itself represents a candidate solution 
to the problem. Detailed information regarding the construction, storage, 
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Figure 5 | Concentration-dependent adaptive dose-matrix optimization of paired reagent combinations. Concentration-dependent adaptive dose matrix 
optimization of paired reagent combinations was achieved by adaptively changing the concentrations of reagents after assessing the inhibition of IL-1β 
expression. (a) A p38 MAPK inhibitor (SB203580) and an Iκ kinase inhibitor (IKKi) were assessed alone and as a paired combination. (b) Simple additive 
effects of the SB203580-IKKi combination. (c) Potential synergy of the SB203580-IKKi combination (as in a) revealed by subtraction of simple additive 
effects of the experimental data in b, calculated from single-reagent data in the absence of the other reagent. (d) A p38 MAPK inhibitor (SB203580) 
and an iron chelator (SIH) were assessed alone and as a paired combination. (e) Simple additive effects of the SB203580-SIH combination. (f) Potential 
synergy of the SB203580-SIH combination (as in d) revealed by subtraction of simple additive effects of the experimental data in e, calculated from 
single-reagent data in the absence of the other reagent. Synergistic inhibition of IL-1β expression was revealed with the combinations of SB203580 with 
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maintenance, and removal and replacement of reagents within the chemical 
library can be found in Supplementary Methods.

Implementation of the IBEA. In order to select a suitable multiobjective evolution-
ary algorithm for addressing the search of the fitness landscape of the chemical 
library, a comparison of four evolutionary algorithms—IBEA, SPEA2, NSGA2 with 
binary tournament and NSGA2 with probabilistic selection50—was undertaken23. 
All evolutionary algorithms were assessed on a family of test problems used to  
simulate the reagent-combination problem. The test problems model a scenario 
where pharmacological interactions among reagents can be described by single, 
binary and ternary effects only. A reagent combination can effect minimal IL-1β 
expression by killing cells; cell death is measured as a large release of LDH. To 
improve the detection of lethal versus effective or benign combinations, the  
possibilities of positive, negative and no correlation were considered for these two 
objectives. The different levels of correlation were realized by assigning certain 
probabilities to effect values; a probability was first assigned for IL-1β expression, 
and, dependent on this value, a probability determining an effect value for the 
LDH release was assigned. Depending on the correlation level, the effect values 
were drawn uniformly from the interval [−1,0) and/or (0,1].

All evolutionary algorithms tested were capable of locating combinations of 
compounds of similar quality in the presence of 80% and 10% variability in IL-1β 
expression and LDH release measurements, respectively. However, IBEA was  
best at finding effective compound combinations that contained only a few com-
pounds (although its search was unrestricted and could have used any number of 
compounds). IBEA was the only evolutionary algorithm tested that was not based  
on Pareto ranking; rather, it searches for those solutions that maximize their hyper
volume within objective space. Initialization of the first generation of reagent 
compounds in IBEA was conducted by fixing the probability of compound selec-
tion to 3/33 to ensure a random selection of compounds from across the library, 
with, on average, three compounds in a cocktail. Supplementary Methods and 
Supplementary Table 2 describe other details of the algorithm and its parameters.

Production and assay of reagent combinations. A Sciclone ALH3000 labora-
tory robot (Caliper Life Sciences) under the indirect control of an IBEA enabled 
the semiautomated assay of chemical combinations (Supplementary Methods) 
in LPS-stimulated J774.A1 macrophages. The iterative searching and analysis of 
incremented generations of combinations was conducted via measurements of 
an IL-1β expression ELISA (R&D Systems; DY401) and LDH release (Promega) 
(Supplementary Methods).

Treatment of peritoneal and J774.A1 macrophages with single reagents and 
combinations. Peritoneal and J774.A1 macrophages were prepared and cultured 
(Supplementary Methods) for either single-reagent or combinatorial and  
dose-matrix studies, respectively. Peritoneal macrophages were exposed to either 
single reagents (0.01 μM–100 μM) or DMSO (0.5% v/v) for 0.5 h before stimulation 
with LPS (1 μg ml−1). Similarly, J774.A1 macrophages were treated with chemical  
combinations (3 μM or varying concentrations) or DMSO (0.5% v/v or 0.1% v/v)  
during the evolutionary algorithm–directed and adaptive dose-matrix search, 
respectively, for 10 min before stimulation with LPS (1 μg ml−1). After 4 h 
(peritoneal) or 2 h (J774.A1), aliquots of well supernatants were taken for the 
measurement of LDH during single-reagent and evolutionary algorithm–driven 
combinatorial assessment, respectively, (Supplementary Methods) before disposal 
of remaining supernatant, lysis of cells and freezing before measurement of IL-1β 
expression (Supplementary Methods).

Post hoc analysis of IBEA search and calculation of reagent fitness. Calculation 
of the fitness contribution of a single reagent within a combination was assigned as 
follows (1): 

F X Xi n= −1

where Fi is the fitness contribution of any given single reagent (i), and X1 and Xn 
are the mean IL-1β expression values of all combinations where the single reagent 
(i) was present or absent, respectively. Thus, a larger fitness contribution Fi indi-
cates that a reagent is more efficient in decreasing IL-1β expression.

Concentration-dependent optimization of paired reagent combinations using an 
adaptive dose matrix search protocol. Upon completion and post hoc prioritiza-
tion of reagent combinations from the IBEA search, a concentration-dependent 
optimization step was implemented. Briefly, to assess the potentially synergistic 
effects of paired combinations on IL-1β expression, we serially and logarithmi-
cally decreased the test concentrations of reagents from those used during the 
evolutionary algorithm–directed search. Similarly, after this initial optimization 
step, we extended the scanned concentration ranges of promising combinations 
by adding test concentrations of reagents at approximate 0.5 log10 spacings within 
the dose matrix. This allowed effect (that is, IL-1β expression) comparisons at 
multiple doses of paired reagents. Pseudocolor mappings were performed by linear 
interpolation between samples; mappings that move away from the blue end of the 
spectrum within combination response-shape plots indicate synergistic inhibition 
of IL-1β expression between two reagents (Fig. 5, Supplementary Fig. 4). 

(1)
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