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ABSTRACT
Mining frequent subgraph patterns in graph databases is a challeng-
ing and important problem with applications in several domains.
Recently, there is a growing interest in generalizing the problem to
uncertain graphs, which can model the inherent uncertainty in the
data of many applications. The main difficulty in solving this prob-
lem results from the large number of candidate subgraph patterns to
be examined and the large number of subgraph isomorphism tests
required to find the graphs that contain a given pattern. The lat-
ter becomes even more challenging, when dealing with uncertain
graphs. In this paper, we propose a method that uses an index of
the uncertain graph database to reduce the number of comparisons
needed to find frequent subgraph patterns. The proposed algorithm
relies on the apriori property for enumerating candidate subgraph
patterns efficiently. Then, the index is used to reduce the num-
ber of comparisons required for computing the expected support
of each candidate pattern. It also enables additional optimizations
with respect to scheduling and early termination, that further in-
crease the efficiency of the method. The evaluation of our approach
on three real-world datasets as well as on synthetic uncertain graph
databases demonstrates the significant cost savings with respect to
the state-of-the-art approach.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms
Theory, Algorithms

1. INTRODUCTION
Graphs constitute a generic data model with wide applicability

in numerous domains and applications. Consequently, mining fre-
quent subgraph patterns in graph databases has become an impor-
tant method for obtaining interesting insights and discovering use-
ful knowledge from the data, for example in bioinformatics, where
graphs are used to represent protein interactions. Given a graph
database D, the support of a graph G is defined as the portion of
graphs in D that contain G as a subgraph. A frequent subgraph
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pattern is then a graph with support above a minimum specified
threshold minSup. Discovering frequent subgraph patterns in a
graph database is a challenging task due to two main reasons. First,
any subgraph of a graph in the database constitutes a candidate fre-
quent subgraph pattern. This results in an extremely large number
of candidates that have to be enumerated and examined in an ef-
ficient manner. Existing approaches typically exploit the apriori
property [1] to more efficiently enumerate candidate patterns. Ac-
cording to it, if a subgraph is frequent, then all of its subgraphs are
also frequent. This allows for a systematic way to enumerate sub-
graph patterns. Still, there remains a second challenge, that is, com-
puting the support of a candidate pattern in order to decide whether
it is frequent. This requires testing for subgraph isomorphism with
the graphs contained in the database, which is NP-complete.

Recently, there is an increasing need for the management of un-
certain graphs, necessitated by the inherent uncertainty in the data
of many applications. Uncertain graphs are a generalization of
exact graphs, in which each edge is associated with a probability
that indicates the belief we have that this edge exists. This addi-
tional expressiveness makes uncertain graphs a useful data model
in numerous applications. For instance, uncertain graphs are of-
ten used in bioinformatics to model interactions between proteins,
which are derived by experiments that are inevitably noisy and
error-prone [2]. Edge probabilities are then used to express this un-
certainty. Graphs are also used very often to represent communities
of users in social networks, where probabilities can be assigned to
edges to model the belief in the existence of the link or the degree
of influence between two entities [19, 17]. Furthermore, in com-
munication networks or road networks, edge probabilities are used
to quantify the connectivity between nodes [7], or to take traffic
uncertainty into consideration [12], respectively.

The problem of frequent subgraph pattern mining becomes even
more challenging in the case of uncertain graphs. A k-edge uncer-
tain graph implies a set of 2k exact graphs, which are derived by
sampling the edges of the uncertain graph according to their proba-
bilities. Hence, for each uncertain graph, there are now 2k subgraph
isomorphism tests required. In particular, the significance of a sub-
graph pattern is now measured by its expected support, since its
support is now a random variable over the support values of the
pattern in all the exact graph databases that can be sampled from
the initial uncertain graph database.

Existing approaches [16, 18, 8, 28, 21, 13, 25] solve the frequent
subgraph pattern mining problem for exact graphs by performing
two main operations: (a) generating candidate patterns to be exam-
ined, and (b) testing for subgraph isomorphism to determine which
graphs in the database contain a given candidate pattern. An ex-
tension to the case of uncertain graphs has been recently presented
in [32]. It relies on the same techniques as the previous methods



for enumerating candidate patterns and focuses on the second task,
where the basic idea is to trade off accuracy with efficiency when
computing the expected support of a pattern. In particular, it pro-
poses an approximate algorithm for computing the expected sup-
port of a subgraph pattern by transforming the problem to an in-
stance of the DNF counting problem. However, although this can
reduce the cost of the computation for a single uncertain graph,
the overall cost still remains prohibitively high, even when dealing
with moderate size databases containing a few hundreds of graphs.

In this paper, we propose an efficient algorithm called UGRAP
to address this problem. UGRAP relies on an index of the uncertain
graph database to significantly reduce the amount of computations
required to determine the support of a candidate pattern. The index
comprises two structures. The first is an inverted index on graph
edges enhanced with edge probabilities, and the second is a struc-
ture providing summarized information regarding connectivity of
graph nodes up to a specified path length. Similar to previous ap-
proaches, the algorithm efficiently enumerates candidate patterns
based on the apriori property. Then, when the support of a candi-
date subgraph pattern needs to be computed, the index is used to
identify a subset of the uncertain graphs in the database that may
contain this pattern, thus avoiding a significant number of unnec-
essary subgraph isomorphism tests. In addition, we also propose
optimizations to further increase the efficiency of the method, al-
lowing for early termination and more effective scheduling of the
graphs to be examined. Our extensive experimental evaluation on
three real-world data sets from the bioinformatics domain, as well
as on a synthetic uncertain graph database, demonstrates the sig-
nificant reduction of the computational cost when compared to the
state-of-the-art method for the same problem.

Summarizing, our main contributions are as follows:

• We introduce an index of an uncertain graph database com-
prising information on graph edges along with their proba-
bilities and a summary of connectivity information between
graph nodes.

• We propose an algorithm that uses the aforementioned in-
dex to efficiently solve the problem of frequent subgraph pat-
tern mining in uncertain graphs, by pruning the search space
when computing the expected support of candidate patterns.

• We further improve the efficiency of the algorithm by propos-
ing additional optimizations for early termination and effec-
tive scheduling of graph comparisons.

• We demonstrate the efficiency of our method by conducting
a comprehensive experimental evaluation on large real-world
and synthetic datasets, showing that it significantly outper-
forms existing state-of-the-art solutions to the problem.

The rest of the paper is organized as follows. The next section
presents related work. The data model and a formal problem defini-
tion are introduced in Section 3. Section 4 introduces the UGRAP
index, while Section 5 explains the frequent subgraph pattern min-
ing algorithm based on this index. Section 6 presents and discusses
the results of our experimental evaluation on real and synthetic
datasets. Finally, Section 7 concludes the paper.

2. RELATED WORK
In this section, we present related work considering both the case

of exact and uncertain graphs.

2.1 Exact Graphs
Given the significance of the problem, a lot of research efforts

have focused on mining frequent subgraph patterns in exact graphs,

with first approaches dating back to the 1990’s [26]. Existing meth-
ods are typically classified in two categories: apriori-based and
pattern growth.

The approaches of the first category follow the main idea be-
hind the Apriori algorithm [1] for mining frequent itemsets. More
specifically, they rely on the apriori property, according to which
all the subpatterns of a frequent subgraph pattern are also frequent.
Thus, to enumerate candidate patterns, they apply breadth-first search
to generate subgraphs of size (k + 1), by joining two subgraphs of
the previous level.

The main representatives of this category are AGM [16], FSG [18]
and PM [8]. They mainly differ on the basic building block used to
enumerate candidate patterns, which can be nodes [16], edges [18],
or edge-disjoint paths [8]. AGM starts the search by examining
graphs comprising a single vertex, and then it proceeds by gener-
ating larger candidates adding one extra vertex at each subsequent
step. FSG uses edges, instead of vertices, as the primary building
block for candidate generation. It limits the class of the frequent
subgraphs to connected graphs and introduces several heuristics to
increase the efficiency of computing the support of a pattern, us-
ing graph vertex invariants, such as the degree of each vertex in
the graph. It also improves the efficiency of the candidate pat-
tern generation by introducing the transaction ID method. PM also
follows breadth-first enumeration for generating the candidate pat-
terns; however, in contrast to the previous approaches which em-
ploy single vertices or edges as basic building blocks for pattern
generation, it utilizes edge-disjoint paths. This reduces the required
iterations, while it is proved that completeness is maintained.

To avoid the costly breadth-first based candidate pattern genera-
tion, which incurs heavy memory requirements, the methods in the
second category adopt depth-first search, where patterns are grown
directly from a single graph instead of joining two previous sub-
graphs. The main representative of this category is gSpan [28],
which also relies on canonical labeling like previous approaches,
but it uses a tree representation instead of an adjacency matrix as
a coding scheme for the graph. Based on the assigned codes, can-
didate patterns are organized lexicographically in a tree hierarchy,
which is then searched in a depth-first manner. In the same direc-
tion, GASTON [21] splits the discovery process into several phases
to increase efficiency by first searching for frequent paths, then for
frequent free trees, and finally for cyclic graphs. Efficiency is im-
proved since these classes of structures are contained in each other.
The basic idea is to store and reuse the embeddings instead of per-
forming subgraph isomorphism tests. However, this has high space
requirements and does not scale well to large graph databases.

Another approach is FFSM [13], which proposes a vertical search
scheme within an algebraic graph framework. Relying on a graph
canonical form, it introduces two new operations, FFSM-Join and
FFSM-Extension, to improve the efficiency of pattern enumeration.
An embedding set for each frequent subgraph is also maintained
to avoid expensive subgraph isomorphism tests. Furthermore, an
adjacency index structure, called ADI, is proposed in [25] to deal
with the cases in which the graph database is too large to fit in
main memory. It is also shown how the gSpan algorithm [28] can
be adapted to use ADI.

Finally, to reduce the size of the output, more recent works have
focused on mining only subgraph patterns that are closed [29],
maximal [14], significant [27] or representative [31], or on sum-
marizing subgraph patterns [20].

2.2 Uncertain Graphs
Recently, there has been a growing interest in using uncertain

graphs as a data model in applications that need to deal with un-



certainty. Thus, various problems for mining uncertain graphs have
emerged. The problem of finding reliable subgraphs in uncertain
graphs is studied in [11]. Given a graph that is subject to random
edge failures, the goal is to find and remove a number of edges so
that the probability of connecting a set of selected nodes in the re-
maining subgraph is maximized. Three novel types of probabilistic
path queries have been defined in [12] for uncertain graphs repre-
senting road networks, where edge probabilities capture the uncer-
tainty in traffic conditions. Also, both exact and approximation al-
gorithms are introduced to answer such queries. A generalization of
k-Nearest Neighbor queries in uncertain graphs is presented in [22],
where a framework is proposed considering alternative ways to de-
fine the distance between nodes taking edge probabilities into ac-
count. All these works clearly show the increasing need and interest
in mining uncertain graphs.

However, to the best of our knowledge, up to now only one work
has dealt with the problem of frequent subgraph pattern mining in
uncertain graphs [32]. The proposed method is an approximation
algorithm, called MUSE, which allows for a tradeoff between accu-
racy and efficiency when computing the expected support of can-
didate subgraph patterns. In particular, given a support threshold
minSup and a relative error tolerance ε ∈ [0, 1], the algorithm re-
turns all subgraph patterns with expected support at least minSup,
allowing also for some false positives with expected support in the
range [(1 − ε) minSup, minSup]. Similar to corresponding meth-
ods for exact graphs, the solution addresses two main subtasks: (a)
a method for enumerating candidate patterns, and (b) a method to
compute the expected support of a pattern. Regarding the first task,
the method proposed in gSpan [28] is adopted to construct a search
tree of subgraph patterns. For the second task, two algorithms are
proposed, an exact one for small instances of the problem (e.g.,
graphs with up to 30 edges) and an approximate one for larger in-
stances. The main idea in both algorithms is to transform the prob-
lem to an instance of the DNF counting problem [24].

Although this algorithm makes it possible to approximate the ex-
pected support of a candidate pattern for an uncertain graph with a
large number of edges, the computational cost is still quite high,
and therefore the method does not scale well, even for moderate
size databases with up to a few hundreds of uncertain graphs. In our
approach, we remove this limitation, by constructing an index of
the uncertain graph database, which significantly prunes the search
space and enables for additional optimizations based on early ter-
mination and efficient scheduling to avoid the expensive subgraph
isomorphism tests.

3. DATA MODEL & PROBLEM DEFINITION
In this section, we formally define uncertain graphs and the prob-

lem of frequent subgraph pattern mining in uncertain graph databases.
For clarity of the presentation, we first introduce the problem of
frequent subgraph pattern mining in exact graphs, and then we ex-
plain how it is generalized in uncertain graphs. The data model and
definitions used in this paper are in line with previous approaches
for mining frequent subgraph patterns in both exact and uncertain
graphs (e.g., [28, 32]).

Definition 1 (Exact Graph). An exact graph is a tuple G =
(V, E,Σ, L), where V is a set of vertices, E ⊆ V ×V is a set of edges,
Σ is a set of labels, and L : V ∪ E → Σ is a function assigning
labels to vertices and edges.
The vertex set of a graph G is denoted by V(G) and the edge set
by E(G). The size of a graph G, denoted as |G|, is defined by the
number of edges it contains, i.e., |E(G)|. For simplicity, we assume
that the graph is undirected, since this a more typical scenario in
frequent subgraph pattern mining, e.g., in bioinformatics; however,

it is straightforward to extend the proposed method in the case of
directed graphs.

Definition 2 (Subgraph Isomorphism). Given two exact graphs,
G = (V, E,Σ, L) and G′ = (V ′, E′,Σ′, L′), a subgraph isomorphism
from graph G to graph G′ is an injective function f : V → V ′ such
that:

1. ∀ u ∈ V, f (u) ∈ V ′ and L(u) = L′( f (u)), and
2. ∀ (u, v) ∈ E, ( f (u), f (v)) ∈ E′ and L(u, v) = L′( f (u), f (v)).

If such a function f exists, then G is subgraph isomorphic to G′,
denoted as G � G′. We also say that G′ contains G. Moreover, the
subgraph G′′ of G′ with vertex set V ′′ = { f (u) | u ∈ V} and edge set
E′′ = {( f (u), f (v)) | (u, v) ∈ E} is called the embedding of G in G′

under f .

Based on the above, we can define the support or frequency of
a subgraph pattern S in an exact graph database D as the portion
of graphs in D to which S is subgraph isomorphic. Notice that we
only consider connected graphs as subgraph patterns. Furthermore,
a subgraph pattern is considered to be frequent in D, if its support
exceeds a pre-defined threshold minSup. Formally, we define fre-
quent subgraph patterns in exact graph databases as follows.

Definition 3 (Support). Given a subgraph pattern S and an
exact graph database D, the support of S in D is defined by

sup(S ,D) =
|{G ∈ D | S � G}|

|D| (1)

If sup(S ,D) ≥ minSup, where minSup is a given support threshold
within [0, 1], then S is a frequent subgraph pattern in D.

In the following, we show how the above concepts generalize
in the case of uncertain graphs. Uncertain or probabilistic graphs
generalize exact graphs by associating to each edge a probability
that it exists. Formally:

Definition 4 (Uncertain Graph). An uncertain graph is a tu-
ple Gp = (V, E,Σ, L, P), where (V, E,Σ, L) is an exact graph defined
as previously and P : E → (0, 1] is a function assigning to each
edge a probability that it exists.

An uncertain graph Gp implies a set of 2|E| possible exact graphs.
These are sampled from Gp according to the probabilities assigned
by the function P. As in previous approaches, we assume inde-
pendence among edges, which is a realistic assumption in many
real-world applications. The probability of an exact graph G be-
ing implied by Gp, denoted as Gp ⇒ G, is computed based on the
probability of each edge of Gp being included or excluded from G:

P(Gp ⇒ G) =
∏

e ∈ E(G)

P(e)
∏

e ∈ E(Gp) \ E(G)

(1 − P(e)) (2)

Consequently, an uncertain graph database DP implies a set of
|DP |∏

i=1

2|E(Gp
i )| exact graph databases. Assuming also independence

among the uncertain graphs in the database, the probability of an
exact graph database D being implied by DP is:

P(DP ⇒ D) =

|DP |∏

i=1

P(Gp
i ⇒ Gi) (3)

where Gp
i and Gi are the i-th graphs in DP and D, respectively.

In an uncertain graph database DP, the support of a subgraph pat-
tern S is based on its support in the implied exact graph databases,
taking also into consideration the corresponding probabilities of
these databases. In particular, the support in this case is a random
variable with probability distribution defined by:



Figure 1: An illustrative example showing (a) an uncertain graph, (b) its implied exact graphs and (c) a subgraph pattern.

P(si) =
∑

{D | DP⇒D and sup(S ,D) = si}
P(DP ⇒ D) (4)

Therefore, to define frequent subgraph patterns in uncertain graph
databases, we use as measure the expected support, which is de-
fined as follows.

Definition 5 (Expected Support). The expected support of a
subgraph pattern S in an uncertain graph database DP is defined
by:

esup(S ,DP) =
∑

{D | DP⇒D}
P(DP ⇒ D) · sup(S ,D) (5)

We can now formally define the problem of frequent subgraph pat-
tern mining in uncertain graph databases.

Problem Definition. Given an uncertain graph database DP and
a minimum support threshold minSup, return all the subgraph pat-
terns S with expected support greater than or equal to minSup, i.e.,
esup(S ,DP) ≥ minSup.

Example 1. An illustrative example is presented in Figure 1,
comprising an uncertain graph GP and a candidate subgraph pat-
tern S . The labels of the vertices and edges denote their type, e.g.,
category of a protein or type of protein interaction. The figure also
depicts the 8 exact graphs implied by GP, together with their prob-
abilities, computed according to Equation 2. As shown, the sub-
graph pattern S is contained in the implied graphs GP

6
, GP

7 and GP
8 .

Therefore, according to Equation 5, the expected support of S in
GP is 0.276.

A straightforward algorithm for solving this problem works as
follows: (a) enumerate all candidate subgraph patterns; (b) for each
generated candidate pattern, and for each uncertain graph in the
database, generate all the implied exact graphs and compute the
expected support of the pattern. The cost of the first step is the
same as in the case of exact graphs. Hence, one of the existing
strategies, based on the apriori property, can be applied for enu-
merating candidate patterns more efficiently. In our method, we
use the approach of gSpan [28]. However, the cost of the second
step is significantly increased compared to the corresponding one
for the case of exact graph databases. Recall that, each uncertain
graph with k edges implies a set of 2k exact graphs. Therefore, for
each pair of a candidate pattern and a graph, it requires 2k subgraph
isomorphism tests when the graph is uncertain instead of a single
one when the graph is exact. A first approach for dealing with this
problem is proposed in [32], which replaces this computation with

a more efficient but approximate algorithm that can estimate the ex-
pected support of a subgraph pattern in an uncertain graph, when
dealing with large graphs (i.e., above 30 edges). However, even
with this approximation, the cost remains prohibitively high even
for moderate size databases (e.g., above 100 graphs). Therefore,
reducing the uncertain graphs to be considered to only those that
may contribute to making a pattern frequent, and especially avoid-
ing large graphs in the computation, becomes crucial. In the next
sections, we propose a solution to this problem, using an index and
a summary of the uncertain graph database, with additional opti-
mizations for early termination and effective scheduling of graph
comparisons.

4. THE UGRAP INDEX
As explained above, our goal is to prune the search space when

computing the expected support of candidate subgraph patterns, by
limiting the number of uncertain graphs that need to be examined
for containment. For this purpose, we construct an index of the
uncertain graph database, containing graph edges and their prob-
abilities. Furthermore, to achieve better pruning, taking into con-
sideration the structure of each candidate pattern and each exam-
ined graph, we also construct a structure containing connectivity
information between graph nodes. This information is summarized
in order to reduce memory requirements when dealing with large
databases and large graphs, especially in the case of dense graphs.
In this section, we present how the UGRAP index is constructed
and maintained.

4.1 Edge Index
The first component of the UGRAP index, denoted with IE , is

an inverted index on graph edges extended with information on
edge probabilities in order to take uncertainty of edges into account.
More specifically, the structure IE is a map where:

• each key is a label triple of the form t = (Lu, Lv, Le), repre-
senting graph edges, and

• the value of each key is a list containing the identifiers of
the graphs in which these edges appear, as well as the corre-
sponding occurrence probability.

An edge (u, v) contained in an uncertain graph in the database is
mapped to the key T (u, v) = (L(u), L(v), L(u, v)). The value of a

key t is then a list of pairs of the form (GP, pGP

t ), where pGP

t is the
probability that the graph GP contains at least one edge e mapped
to the key t. Only those graphs with non zero probability are stored
in the index. Given the independence assumption between edges,



this probability is computed by:

pGP

t = 1 −
∏

e ∈ GP ∧ T (e)=t

(1 − P(e)) (6)

where the product denotes the probability that no edge mapped to t
exists. Formally, the edge index IE can be defined as follows.

Definition 6 (Edge Index). Given an uncertain graph database
DP, the edge index IE is a structure that returns, for any given triple
t = (Lu, Lv, Le), a list of all the pairs (GP, pGP

t ), where GP is an
uncertain graph in DP containing an edge (u, v) having probability
pGP

t > 0, such that L(u) = Lu, L(v) = Lv, and L(u, v) = Le.
Constructing the IE structure is straightforward. Each uncertain

graph in the database can be processed independently, parsing its
edges to identify the list of keys and their probabilities, using Equa-
tion 6. The results are then merged to create the map described
above. The process is detailed in Algorithm 1.

Updating the index when an uncertain graph is added or removed
from the database can be performed incrementally. The keys for
this graph are computed and the corresponding entries in the in-
dex are updated accordingly, by appending or removing the cor-
responding item from the list of each of these keys. If the key is
not already contained in the index, a new entry is created (or the
entry is removed if the list of the key becomes empty). Finally, if
an existing uncertain graph is updated, then the probabilities of all
the affected keys need to be updated accordingly (which may also
result in removing or adding keys).

Notice that, although more complex index structures have been
proposed for querying graph databases, which aim at avoiding ex-
pensive subgraph isomorphism tests [5, 9, 30], these structures are
not suitable for our problem for two reasons. First, they target ex-
act graphs; hence, their adaptation to uncertain graph databases is
an open issue. Second, and most importantly, more advanced in-
dex structures, such as the ones proposed in [5, 30], require first
to compute the frequent subgraphs in the database, which are then
used as features for the index. Instead, since our goal is to find
such frequent subgraph patterns, the index can only rely on sim-
pler features. As shown in Section 6, our index requires negligible
memory and computational resources to be built, even for large un-
certain graph databases.

Example 2. The edge index IE for a database containing only
the uncertain graph illustrated in Figure 1 would contain two keys,
(A, B, p) and (A, B, q), pointing to the lists {(GP, 0.92)} and {(GP, 0.3)},
respectively.

4.2 Connectivity Index
The second component of the UGRAP index, denoted by IC , is

a structure containing summarized information regarding connec-
tivity of graph nodes. This additional structural information is use-
ful when deciding which uncertain graphs may contain a candidate
subgraph pattern with non-zero probability.

Intuitively, the purpose of this structure is to extend the edge in-
dex allowing paths of length � > 1. In particular, IC provides infor-
mation on whether there exists a path of length � (for values of � up
to a maximum length �max) between two vertices u and v of a graph
GP with labels L(u) and L(v), respectively. Notice that, unlike the
case of single edges, the independence assumption does not hold
between paths, since two paths may contain common edges. There-
fore, the probability that an uncertain graph GP contains a path of
length � between two vertices with labels L(u) and L(v) cannot be
computed in a straightforward way, i.e., similar to Equation 6 for
edges. Instead, it requires applying the inclusion-exclusion princi-
ple, which involves finding all the possible paths between all pairs

Algorithm 1 Construction of the Edge Index IE

Input : An uncertain graph database DP

Output : The edge index IE

1: Initialize IE to an empty map
2: for all GP ∈ DP do
3: Initialize K to an empty map
4: for all (u, v) ∈ E(GP) do
5: t ← (L(u), L(v), L(u, v))
6: K(t) ← K(t) ∪ {(u, v)}
7: end for
8: for all t ∈ K do
9: pt ← 1 −

∏

e ∈ K(t)

(1 − P(e))

10: IE(t) ← IE(t) ∪ {(GP, pt)}
11: end for
12: end for
13: return IE

of vertices with labels L(u) and L(v) and identifying all the over-
laps between any subset of these paths. Since this would make the
construction and maintenance of the index an expensive and com-
plex operation, we do not compute and store these probabilities;
instead, we only store whether such a path exists with probability
higher than zero or not.

Another issue that arises by allowing for paths of length � > 1
is that the size of the index is significantly increased, due to the
exponential increase of the number of possible paths. To deal with
this problem, we only maintain a summary of this information us-
ing Bloom filters [3]. A Bloom filter consists of an array of m bits
and k independent hash functions F = { f1, f2, . . . , fk}, which hash
elements of a universe U to an integer in the range of [1,m]. The
m bits are initially set to 0 in an empty Bloom filter. An element
x ∈ U is inserted into the Bloom filter by setting all positions fi(x)
of the bit array to 1, for all fi ∈ F. Thus, an element x is con-
tained in the original set only if all the positions fi(x) of the Bloom
filter are set to 1. If at least one of these positions is set to 0, we
can safely conclude that x is not present in the original set. How-
ever, due to hash collisions, there is also a small probability of false
positives, Prf p ≈ (1 − e−kn/m)k, where n denotes the number of el-
ements hashed in the Bloom filter. In our case, a high probability
of false positives decreases the pruning power of the connectivity
index, since we use Bloom filters to summarize all the paths of a
given length contained in each graph. Each path inserted in the
Bloom filter is represented by the labels of its start node and end
node, sorted lexicographically. Formally, the connectivity index IC

is defined as follows.
Definition 7 (Connectivity Index). Given an uncertain graph

GP, an integer � ≤ �max and two labels Lu and Lv, the connectivity
index IC is a structure such that:

• if the uncertain graph GP contains a path of length � between
two vertices u and v with labels L(u) = Lu and L(v) = Lv,
then IC(GP, Lu, Lv, �) = 1,

• otherwise, IC(GP, Lu, Lv, �) = 0 with probability at least 1−ε,
and IC(GP, Lu, Lv, �) = 1 with probability at most ε, for a
fixed error probability threshold ε.

The process of constructing the connectivity index IC is described
in detail in Algorithm 2. As with the edge index, IC can also be
built progressively, or maintained to reflect changes in the underly-
ing graph database.

Note that there is no need to construct the index for � = 1, since
the graphs containing single-edge paths can be efficiently retrieved
from the edge index IE . Therefore, we only consider � ∈ [2, �max]
when constructing the connectivity index, as well as for deciding
whether an uncertain graph contains a candidate subgraph pattern.



Algorithm 2 Construction of the Connectivity Index IC

Input : An uncertain graph database DP; the maximum path length �max
Output : The connectivity index IC

1: Initialize IC to an empty map which maps graphs to arrays of Bloom
filters

2: for all GP ∈ DP do
3: for all u ∈ V(GP) do
4: Start depth-first search from u to maximum depth �max
5: for all visited node v do
6: � ← the current depth
7: if � ≥ 2 then
8: IC(GP, �, L(u), L(v)) ← 1
9: end if

10: end for
11: end for
12: end for
13: return IC

The value of the maximum path length �max provides a trade-off be-
tween pruning effectiveness and space requirements, and its value
can be selected empirically. In our experiments, we set �max to 3.

Example 3. The graph GP illustrated in Figure 1 would con-
tribute to the connectivity index only the entry IC(GP, A, A, 2) = 1,
since all the paths of length 2 are between vertices with label A and
there are no paths with length more than 2.

5. FREQUENT SUBGRAPH PATTERN MIN-
ING ALGORITHM

Similar to existing approaches for frequent subgraph pattern min-
ing in either exact or uncertain graph databases, our method com-
prises two main parts. The first part is a process to generate candi-
date subgraph patterns for examination. For this purpose, we adopt
the method proposed in gSpan [28], which is also followed in [32]
for the same purpose. We briefly explain this process in Section 5.1.
The second involves the process of evaluating whether a candidate
pattern is frequent. This is performed efficiently using the UGRAP
index structure described in Section 4 to prune candidate patterns
with support lower than the required threshold. This process is ex-
plained in Sections 5.2 and 5.3.

5.1 Enumerating Candidate Patterns
The first part for finding frequent subgraph patterns is a process

that generates candidate patterns to be examined. Every subgraph
of a graph in the database constitutes a candidate pattern. There-
fore, this process should enumerate all possible subgraph patterns
in a systematic and efficient manner. The typical solution adopted
by existing methods for mining both exact and uncertain graphs
exploits the apriori property [1] as described below.

Let S and S ′ be two subgraph patterns. If S � S ′, then S is
called a subpattern of S ′ (and S ′ is called a superpattern of S ). If,
in addition, |E(S ′)| = |E(S )| + 1, then S is called a direct subpat-
tern of S ′. It is easy to show that, if S is a subpattern of S ′, then
sup(S ,D) ≥ sup(S ′,D). This is referred to as the apriori property,
and it can be easily seen that it also holds for the expected support
of subgraph patterns in uncertain graph databases. Using this prop-
erty, it is possible to avoid unnecessary tests when searching for
frequent subgraph patterns in a database, since:

1. if S is a frequent subgraph pattern, then every subpattern of
S is also frequent, and

2. if S is not a frequent subgraph pattern, then no superpattern
of S can be frequent.

Consequently, the subgraph patterns occurring in the database DP

can be organized in a rooted directed acyclic graph (DAG), where

Figure 2: Search tree of candidate subgraph patterns.

the nodes represent candidate patterns (with the root being an empty
pattern) and an edge from a pattern S i to a pattern S j denoting that
S i is a direct subpattern of S j. This structure enumerates all the
possible subgraph patterns by starting from patterns comprising a
single edge and then expanding them by adding additional edges,
so that all the patterns consisting of n edges can be found at level n,
i.e., having a path from the root of length n. Each subgraph pattern
typically has more than one direct superpatterns (since there are
many possible edges that can be added to it). To avoid enumerating
each subgraph pattern multiple times, a spanning tree of this DAG
needs to be selected. The method proposed in gSpan [28] achieves
this by imposing a lexicographic order among the patterns. Each
pattern is assigned a unique canonical label, which is derived by a
depth-first traversal of the pattern nodes combined with a lexico-
graphic order. Then, by convention, patterns are allowed to “grow”
by adding an edge only to vertices on the right-most path accord-
ing to the considered ordering. This transforms the above graph to
a tree hierarchy of patterns. The subgraph patterns are enumerated
applying a depth-first search of this tree structure.

Example 4. Figure 2 depicts the tree hierarchy of candidate
subgraph patterns for a database containing only the uncertain
graph shown in Figure 1.

5.2 Computing Expected Support
In the following, we introduce an algorithm that employs the

constructed UGRAP index to efficiently evaluate candidate sub-
graph patterns for deciding whether the support of a pattern S ex-
ceeds the requested minimum support threshold minSup. The al-
gorithm uses the information stored in the index to compute upper
bounds of the expected support of a pattern, so that infrequent sub-
graph patterns can be identified and pruned early, without perform-
ing the computationally expensive subgraph isomorphism tests and
calculations of the expected supports.

According to Definition 5, the expected support of a candidate
pattern S in an uncertain graph GP is above zero only if S is sub-
graph isomorphic to at least one of the exact graphs implied by GP.
Consequently, this may hold only if all the edges contained in S
can be mapped to some edge in GP. For each edge e ∈ E(S ), corre-
sponding to a key t = T (e), the index IE returns a list IE(t) of those
uncertain graphs in the database containing edges that e could be
mapped to. Hence, the intersection of these lists, i.e.,

IS =
⋂

e ∈ E(S )

IE(T (e))



returns the set of uncertain graphs in the database to which S is po-
tentially subgraph isomorphic. S can not be subgraph isomorphic
to any of the remaining graphs, since there will be at least one edge
of S that can not be mapped to some edge in those graphs. Conse-
quently, assuming trivially that the expected support of S in each
of the graphs in IS is at most 1, the expected support of S in the
database is at most as high as the size of this list, i.e.,

esup(S ,DP) ≤ |IS |
|DP| (7)

This already provides a first upper bound of the expected sup-
port of S in DP. Subgraph patterns that do not satisfy the above
condition can be immediately pruned and need not be involved in
any subgraph isomorphism tests. Moreover, tighter bounds can be
obtained by taking the uncertainty of edges into consideration. In
particular, the expected support of S in an uncertain graph GP ∈ IS

is bounded by the probability that GP implies an exact graph that
contains all the edges to which the edges of S are mapped. This
can be derived from the probabilities stored in the index for each
pair of a key and a graph. Specifically,

esup(S ,GP) ≤
∏

e ∈ E(S )

pGP

T (e) (8)

where pGP

T (e)
is the probability provided by the index for the key T (e)

and the list entry of GP, calculated according to Equation 6. There-
fore, the following upper bound can be obtained for the expected
support of the candidate pattern S in the database DP:

esup(S ,DP) ≤ 1

|DP|
∑

GP ∈ IS

∏

e ∈ E(S )

pGP

T (e) = esup(S ,DP) (9)

If the upper bound calculated by Equation 9 is lower than the
required support threshold minSup, i.e.,

esup(S ,DP) < minSup (10)

then the subgraph pattern S can be safely pruned. Notice that this
pruning process of candidate patterns is very efficient for two rea-
sons. First, it examines only a relatively small subset of the graphs
in the database, i.e., those graphs contained in the list IS . Second,
it only uses the probabilities stored in the index, i.e., it does not
involve any subgraph isomorphism tests.

Clearly, an important factor determining the cost savings is the
size of the list IS . This list contains each graph GP in the database
such that, for each edge e ∈ E(S ) there exists an edge in GP to
which e can be mapped. Although this is a necessary condition
for S being subgraph isomorphic to at least one exact graph im-
plied by GP, it allows for many false positives, since it does not
consider any structural information regarding how these edges are
connected. For this purpose, we exploit the connectivity index IC

to perform an additional filtering step before computing the upper
bound of the expected support in Equation 9 and testing the condi-
tion in Equation 10. In particular, we compute all the pairs (Lu, Lv)
such that there exists two vertices u and v in S with labels Lu and
Lv, respectively, and a path between them with length � ≤ �max.
Then, for each graph GP ∈ IS , we test whether IC(GP, �, Lu, Lv) = 1
for each one of these pairs (Lu, Lv) with path length �. If this does
not hold, then GP is removed from IS , since S can not be subgraph-
isomorphic to it. This reduces the size of the list IS , allowing for a
tighter bound to be computed in Equation 9. The above process is
detailed in Algorithm 3.

Algorithm 3 UGRAP

Input : The UGRAP index of the uncertain graph database DP; the mini-
mum support threshold minSup

Output : The set of frequent subgraph patterns Freq
1: Initialize Freq ← ∅
2: Start enumerating candidate subgraph patterns
3: while there are more subgraph patterns do
4: S ← the next subgraph pattern to be examined

5: TS ←
⋃

e∈E(S )

T (e)

6: // Graph pruning using IE

7: IS ← {GP | GP ∈
⋂

t ∈ TS

IE(t)}

8: if IS = ∅ or |IS |/|DP | < minSup then
9: skip S

10: end if
11: for all GP ∈ IS do
12: LS ← label pairs of vertices in S connected with path of length

� ∈ (1, �max]
13: // Graph pruning using IC

14: for all (Lu, Lv, �) ∈ LS do
15: if IC(GP, Lu, Lv, �) = 0 then
16: IS ← IS \ {GP}
17: end if
18: end for
19: end for
20: esup(S ,DP) ←

∑

GP ∈ IS

∏

e ∈ E(S )

pGP

T (e)

21: if esup(S ,DP) / |DP | < minSup then
22: skip S
23: end if
24: // Compute the actual expected support for the remaining graphs
25: esup(S ,DP) ←

∑

GP ∈ IS

esup(S ,GP)

26: if esup(S ,DP) / |DP | ≥ minSup then
27: Freq ← Freq ∪ S
28: end if
29: end while
30: return Freq

Finally, if the pruning condition in Equation 10 is not satisfied,
then the expected support of S needs to be calculated, or at least
approximated to an extent that the pattern can be either identified
as frequent or discarded as infrequent. This requires calculating
the expected support of S in each of the uncertain graphs GP ∈ IS .
We distinguish two cases. If GP is relatively small, we compute
the exact value of the expected support, as defined in Equation 5.
Otherwise, we apply the approximation algorithm proposed in [32].
This algorithm transforms the problem to an instance of the DNF
counting problem, by constructing a DNF formula based on the em-
beddings of S in GP. Then, it approximates the satisfaction prob-
ability of this formula, which corresponds to the expected support
of S in GP, in an interval of width at most ε · minSup with a prob-
ability 1 − δ, where ε and δ are two error tolerance parameters that
determine the trade-off between the accuracy and the efficiency of
the approximation.

For choosing between the exact and the approximate algorithm,
the computation cost of each approach is calculated, and the ap-
proach with the smallest cost is selected. For a pattern S and graph
GP with X embeddings, the cost Cost(GP, S ) is computed as fol-
lows (based on the theoretical results of [32]):

Cost(GP, S ) =

⎧⎪⎪⎨⎪⎪⎩
ln(2/δ)/(ε · minS up)2 for approximation

2X−5/X for exact
(11)



5.3 Scheduling and Early Termination
Reducing the graphs to be examined only to the subset contained

in the list IS for a candidate pattern S , avoids a large number of
subgraph isomorphism tests and therefore yields significant cost
savings. However, as we explain in Section 6, depending on the
characteristics of the dataset, the remaining cost may still be high
for two reasons. First, if the number of distinct labels assigned to
the vertices and edges of the graphs in the database is low, then the
selectivity of the index is also low, since this means that a large
number of edges is mapped to the same key. Consequently, the size
of the list IS is high, i.e., not many graphs are skipped. Second, as
explained above, if the pruning condition in Equation 10 fails, then
the expected support of S for the graphs in IS needs to be computed,
which is an expensive operation.

To address this issue, we introduce further optimizations in the
algorithm which enable early termination in combination with effi-
cient scheduling of the graphs to be examined. The purpose of these
optimizations is to reach the situation where the pattern S can ei-
ther be confirmed as frequent, or discarded as infrequent, with the
minimal computation cost.

Observe that, when computing the expected support of a candi-
date pattern, the computational cost for each graph to be examined
varies based on the characteristics of the graph (see Equation 11).
Thus, one possible optimization strategy is to examine graphs in
increasing order of cost, since it might often occur that a candi-
date pattern can be identified as frequent or infrequent before all
the graphs are examined, hence saving the time for the most costly
operations. However, the computation cost per graph is not a suffi-
cient feature for scheduling the graphs. Indeed, some graphs may
have a relatively low computation cost, but also provide a very
small expected support, thereby not contributing much toward de-
ciding whether the candidate pattern is frequent or not. Instead, we
consider as a scheduling criterion the cost per benefit ratio (CBR)
for the given graph and pattern. Clearly, to exactly compute CBR,
we need the exact value of the expected support, which is unknown.
Thus, we use instead as an approximation the upper bound of the
expected support, computed according to Equation 8 and the in-
formation contained in the UGRAP index. More specifically, we
approximate the cost per benefit ratio as follows:

CBR(GP, S ) =
Cost(GP, S )∏

e ∈ E(S )

pGP

T (e)

(12)

where Cost(GP, S ) is computed according to Equation 11. Note
that the upper bound of the expected support per graph is already
computed for all graphs contained in IS , during the previous steps
of the algorithm. Therefore, the additional cost for enabling graph
scheduling is negligible.

Following, UGRAP considers the graphs in IS in an increasing
order based on their cost per benefit ratio, maintaining two values:
(a) the actual expected support esup, which is the sum of the ex-
pected supports for all the graphs examined so far, initialized with
0, and, (b) the upper bound of the expected support for the remain-
ing graphs remSup, initialized with remSup = esup(S , IS ), as per
Equation 9. At each subsequent step, remSup is updated, calcu-
lating the value over the remaining graphs in IS . The algorithm
terminates when either (a) esup ≥ minSup, i.e., the pattern is con-
firmed to be frequent, or (b) esup + remSup ≤ minSup, in which
case the pattern is discarded as infrequent. The above process is
detailed in Algorithm 4.

As shown in the next section, this combination of the UGRAP
index with the scheduling and early termination drastically reduces

Algorithm 4 Scheduling and Early Termination

Input : A candidate subgraph pattern S ; a list of uncertain graphs IS ;
Output : True, if the pattern has expected support higher than minSup
1: esup ← 0

2: remSup ← esup(S ,DP) (Equation 9)
3: for all GP ∈ IS do
4: Compute CBR(GP, S ) using Equation 12
5: end for
6: Sort graphs in IS in increasing order of CBR
7: while esup < minSup and esup + remSup > minSup do
8: GP ← remove first graph from IS
9: s ← compute the expected support of S in GP, using either approx-

imation or exact approach
10: esup ← esup + s
11: remSup ← remSup − esup(S ,GP)
12: end while
13: return true if (esup ≥ minSup); false otherwise

the number of required subgraph isomorphisms, as well as the num-
ber of required esup computations, thereby significantly reducing
the execution time compared to the current state of the art approach.

6. EXPERIMENTAL EVALUATION
We have conducted an extensive experimental evaluation of the

performance of the UGRAP algorithm for mining frequent sub-
graph patterns in uncertain graph databases. We have used three
real-world datasets from the bioinformatics domain, as well as a
set of synthetic datasets for examining in more detail the impact of
different parameters in the performance of UGRAP. For compari-
son, we also implemented MUSE [32], which is currently the state-
of-the-art approach for discovering frequent subgraph patterns in
uncertain graphs, and we used it in the experiments to evaluate the
performance of UGRAP.

All experiments were executed on a single core of an AMD
Opteron 2.7 Ghz machine running CentOS Linux, kernel 2.6. Re-
garding the approximation method for computing expected support
in MUSE, both parameters δ and ε were set to 0.4. Note that the
same method is used by UGRAP, for approximating the expected
support of patterns that are not pruned using the index, as explained
in Section 5.2. Therefore, both UGRAP and MUSE have the same
performance regarding precision and recall of the discovered pat-
terns; hence, we do not present precision/recall results in this eval-
uation (quality results for MUSE can be found in [32]). Regarding
the UGRAP index, unless otherwise noted, it was configured to
construct 2 Bloom filters per graph, covering paths of length 2 and
3. For enumerating the candidate patterns, we have used a C imple-
mentation of the gSpan algorithm [28], which is available online1.
For subgraph isomorphism testing, we have used the C++ imple-
mentation of VF2 [6], the state-of-the-art subgraph isomorphism
algorithm, available from the VFLIB library2. The experiments
were also repeated with the subgraph isomorphism algorithm from
Ullmann [23], which is also very frequently used in the literature.
The results with Ullmann’s algorithm were almost identical with
the ones obtained using VF2. Therefore, in the following we only
show the results corresponding to VF2. All C/C++ code was com-
piled with gcc/g++ 4.1.2, using the second level of optimization.

In the next section we describe in detail the different datasets
used in the experiments. Following, in Section 6.2 we present and
discuss the results of our evaluation.

1http://wwwkramer.in.tum.de/research/data_mining/pattern_mining/
graph_mining
2http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
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Figure 3: Distribution of edge probabilities and label triples.

6.1 Datasets
We have evaluated the performance of our approach on three

real-world datasets from the bioinformatics domain, as well as on
synthetic datasets. We describe these datasets below.

Protein-Protein Interactions (PPI). This is an uncertain graph
database representing protein interactions for different organisms
obtained from the STRING database3. Each graph represents protein-
to-protein interactions for a specific organism. The labels repre-
sent COG functions, while edge probabilities represent confidence
scores for each particular interaction.

Developmental Therapeutics Program (DTP). This is an AIDS
antiviral screening dataset4, containing chemical compounds that
have been tested for evidence of anti-HIV activity. Node and edge
labels correspond to types of atoms and bonds, respectively. We
converted these graphs to uncertain graphs by assigning probabil-
ities to the edges as follows. First, to each vertex or edge label
L, we assigned randomly a probability pL ∈ (0, 1]. Then, to each
edge e=(u, v) with label Le, we assigned randomly a probability in
the interval [μ − δ, μ + δ], where μ was set to the average value of
the probabilities assigned to the labels L(u), L(v), and L(e), and δ
was set to 0.1. This process was followed so that the probability
assigned to an edge was related to the type of the edge.

National Toxicology Program (NTP). This dataset was con-
structed from the National Toxicology Program and includes a set
of chemical compounds that have been experimentally examined
for carcinogenic effects in rodents [15]. The dataset is frequently
used for evaluating pattern mining in graphs. In this work, we used
the version provided as part of the Predictive Toxicology Evalua-
tion Challenge [10], which includes 340 chemical compounds. To
assign a probability to each edge e = (u, v), we used the average of
the probabilities of the vertices u and v as given in the dataset.

The characteristics of the aforementioned datasets are presented
in Table 1. This table provides statistics regarding the number of
graphs in each dataset, the total and average number of nodes and

3http://string-db.org/
4http://dtp.nci.nih.gov/docs/aids/aids_data.html

PPI DTP NTP

number of graphs 587 1,572 340
number of nodes 61,764 54,485 9,189

with distinct labels 5,350 30 66
number of edges 214,314 58,184 9,317

with distinct labels 7 3 4
number of distinct label triples 54,134 90 207

average nodes per graph 105 35 27
with minimum 3 7 2
with maximum 818 259 214

average edges per graph 365 37 27
with minimum 3 5 1
with maximum 3,910 273 214

Table 1: Statistics of the real-world datasets.

edges, and the number of distinct labels. In addition, Figure 3 plots
the distribution of the frequencies of edge probabilities and of the
occurrences of label triples. Recall that the latter correspond to
the keys used in the IE index. As can be observed, each dataset
has different characteristics. In particular, they differ in 3 main
factors: the number of graphs contained in the dataset, the size
of the graphs contained in the dataset, and the number of distinct
labels. For instance, DTP contains the larger number of graphs
among the three datasets; however, the graphs contained in PPI
are, on average, much larger than those contained in the other two
datasets. Moreover, PPI contains a large number of distinct label
triples, namely 54,134 distinct label triples for a total of 214,314
edges (avg. ratio 0.25), whereas DTP contains only 90 distinct
label triples for a total of 58,184 edges (avg. ratio 0.0015) and
NTP has 207 distinct label triples for a total of 9,317 edges (avg.
ratio 0.022). Finally, in NTP, edge probabilities are relatively more
uniformly distributed, whereas DTP has higher frequencies on edge
probabilities around 0.5, and PPI has higher frequencies on lower
probabilities, e.g. around 0.2 and 0.3. In Section 6.2, we discuss
the effect of these different characteristics on the performance of
the frequent subgraph pattern mining algorithms.

Synthetic Datasets. For evaluating UGRAP with a significantly
larger dataset, and for examining the effect of specific factors on
the algorithm’s performance, we have also created a set of synthetic
datasets, using the graph generator from [4]. More details about the
resulted synthetic datasets are provided in Section 6.2.2 along with
the corresponding evaluation results.

6.2 Results
We now report the results of the performance evaluation of

UGRAP and MUSE on the real-world and the synthetic datasets.
Recall that UGRAP does not affect the quality of the retrieved re-
sults (i.e., precision in terms of patterns falsely identified as fre-
quent, and recall); it derives exactly the same results as MUSE,
whose quality is thoroughly evaluated in [32]. Therefore, we focus
on the efficiency of the two approaches.

6.2.1 Real Datasets
We first examined the cost for constructing the UGRAP index

for each dataset. This is an offline operation, performed only once.
Regarding the memory cost, we measured the memory required for
storing the edge index and the Bloom filters; the memory for storing
the graphs is not included, since it is the same in both UGRAP and
MUSE. Figure 4 shows the memory and time required for indexing
the three real-world datasets. As shown, index construction is very
efficient, requiring less than 15 seconds for the PPI dataset, and
less than 4 seconds for the other two datasets. The memory cost
is also negligible, reaching a maximum of 1.6 Mbytes for the PPI
dataset, and less than 60 Kbytes for the other two datasets. Both the
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Figure 4: Index construction time and memory for UGRAP.

minSup # frequent # SG Isomorphisms Percent
(%) patterns MUSE UGRAP SG Isom.

PPI

4 97 3.53E7 30,027 0.085%
6 50 3.38E7 16,954 0.050%
8 30 3.29E7 6,124 0.019%

10 11 3.22E7 1,603 0.005%
12 2 3.19E7 150 0.000%
14 0 3.18E7 0 0.000%

DTP

4 105 2,562,360 381,695 14.896%
6 68 1,942,992 278,998 14.359%
8 57 1,757,496 250,338 14.244%

10 41 1,413,228 183,135 12.959%
12 33 1,026,516 118,698 11.563%
14 27 902,328 101,606 11.260%

NTP

4 27 150,620 4,476 2.972%
6 17 132,600 3,679 2.775%
8 10 101,660 2,538 2.497%

10 9 100,300 2,262 2.255%
12 7 99,280 1,884 1.898%
14 5 93,840 1,579 1.683%

Table 2: Number of discovered frequent subgraph patterns
and subgraph isomorphism tests performed by UGRAP and
MUSE.

memory and indexing time are affected by the number and the size
of the graphs in the database, as well as by the number of distinct
label triples, which explains the higher cost for the PPI dataset.
However, as will be shown later, this process scales easily to very
large and complex datasets and does not constitute a bottleneck.

We then investigated the effect of the minimum support threshold
minSup on the performance of UGRAP, comparing it to MUSE.
For this purpose, we executed UGRAP and MUSE on the three
real-world datasets described above, varying the value of minSup
in the range of [0.04 − 0.14], and we measured the execution time
for each case. Figure 5 plots the results for the three datasets. We
see that the execution time of both UGRAP and MUSE decreases
for higher minSup values. This is due to the fact that by increas-
ing minSup, fewer subgraph patterns qualify as frequent (see Ta-
ble 2), resulting to a faster termination of the traversal of the search
tree. Notice however that the performance improvement in UGRAP
is substantially higher compared to MUSE. This additional gain
in performance is due to the prioritization with early termination,
which becomes more effective in eliminating candidate graphs for
higher minSup thresholds. More specifically, for higher minSup
values, the information obtained from the index is sufficient for
discarding patterns in most of the cases, without requiring expen-
sive isomorphisms or probability approximations. The results are
consistent for all datasets.

Moreover, UGRAP outperforms MUSE by one to three orders

D1 D2 D3 D4 D5 D6

value of λ 0.02 0.04 0.08 0.12 0.16 0.20
label triples 1,770 3,723 7,451 10,665 14,861 18,426

Table 3: Number of distinct label triples for the synthetic
datasets generated with varying λ.

of magnitude. This difference is due to two factors. First, the edge
index substantially reduces the number of graphs that need to be
examined for isomorphism for each candidate pattern. This large
difference in the number of subgraph isomorphism tests performed
by the two methods can be clearly seen in Table 2. The highest
cost savings are observed for the PPI dataset, which has the highest
number of distinct vertex and edge labels, and therefore the edge
index IE has the highest selectivity. In this case, the number of
subgraph isomorphism tests performed by UGRAP is always less
than 0.01% of the ones required by MUSE. This reduction becomes
less in the case of the DTP dataset, which has the lowest number
of distinct label triples. However, UGRAP still avoids up to 85%
of the subgraph isomorphism tests. The second factor contributing
to the performance difference of the two algorithms is the priori-
tization scheme with early termination. This substantially reduces
the time required for computing expected supports, by prioritizing
the graphs with a low cost per benefit ratio, and postponing the
most costly graphs for the end, anticipating that they will not be
processed due to the early termination condition. As explained,
the effectiveness of both the index and the prioritization strategy
grows with the minSup values, and therefore the performance gain
of UGRAP compared to MUSE also grows.

6.2.2 Synthetic Datasets
The second series of experiments was conducted using a set of

synthetic datasets, which were created in order to study the effect
of specific factors in the performance of UGRAP and MUSE.

Varying the number of distinct label triples. As explained in
Section 4, the keys used in our index are label triples of the form
ti = (Lu, Lv, Le). As such, both the size and the selectivity of
the index are expected to grow with the number of distinct label
triples in the database. To examine the effect of this parameter on
the performance of UGRAP, we constructed six different synthetic
datasets, each with a different number of distinct label triples. The
datasets were constructed using as basis the 1572 graphs contained
in DTP, the largest of the real datasets, and adding 428 graphs gen-
erated using the graph generator from [4]. These additional graphs
for each of the six datasets were generated with a different number
of label triples, controlled through the configuration parameters of
the graph generator. All the resulting datasets had a total of 2000
graphs, with 64,413 nodes and 927,510 edges. For each dataset, the
number of distinct label triples was equal to λ·τ, for λ ∈ [0.02−0.2],
and τ set to the number of total edges, i.e., 927,510. In other words,
each dataset was created with a predetermined ratio λ of the num-
ber of distinct label triples to the total number of edges, as shown
in Table 3. In all other aspects, the datasets were generated with
the same characteristics (i.e., the same frequent patterns and the
same complexity of the contained graphs); hence, the differences
in execution time can only be attributed to the parameter λ.

Figure 6(a) shows the execution time of both algorithms for dif-
ferent values of λ. The results are shown in different plots for clar-
ity, because of the large difference in the values of the y axis. Sim-
ilar to the results for the real-world datasets, UGRAP outperforms
MUSE by two to three orders of magnitude. Furthermore, we ob-
serve that increasing λ has a clear negative effect on the perfor-
mance of MUSE, since it results to a larger number of potentially
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Figure 5: Execution time vs. support threshold minSup for the real-world datasets (a) PPI, (b) DTP, and (c) NPT.
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Figure 6: Execution time for synthetic datasets in milliseconds, when varying: (a) the ratio λ of distinct label triples to the total
number of edges, (b) the number of uncertain graphs, by cloning, and (c) the number of uncertain graphs, by adding new graphs.

frequent patterns that need to be examined. On the contrary, in the
case of UGRAP, this negative effect is canceled by the fact that
the selectivity of the index is also increased with a higher λ, mak-
ing the algorithm more effective in pruning infrequent patterns and
in skipping graphs that do not contain the pattern in question. As
such, UGRAP has approximately the same execution time on all
datasets, independent of the value of λ.

We also measured the additional memory and time requirements
of UGRAP for constructing the edge index and the Bloom filters.
As shown in Figure 4, the additional requirements are negligible
for all datasets (i.e., D1-D6). As expected, the required memory
slightly increases with an increase of λ, since more label triples
need to be indexed. However, this memory increase is very small,
due to the compactness of both the index and especially the Bloom
filters. Furthermore, the total memory required by the UGRAP in-
dex is in the range of a few hundreds of kilobytes. The time re-
quired for constructing the index and the Bloom filters is also very
small, not exceeding two seconds for all scenarios.

Scalability. The next set of experiments evaluated the perfor-
mance of UGRAP in terms of scalability. Similar to the scalability
evaluation methodology of [32], we created larger datasets by du-
plicating the graphs of a single uncertain database. As a basis, we
used the previously described synthetic collection of 2000 graphs
with λ=0.12, replicated up to 5 times, to produce datasets of up to
10000 graphs. We denote these datasets by xR, where R ∈ [1, 5]
indicates the number of replications.

Figure 6(b) plots the execution time of the two algorithms with
respect to the number of graphs. As expected, the execution time
increases with the number of graphs. The increase is linear for
both algorithms, and therefore UGRAP maintains the three orders
of magnitude difference in performance, compared to MUSE. The
cost for creating the index and Bloom filters for this experiment is
also shown in Figure 4 (series x1 to x5). Both the time for the index
construction and the memory requirements scale linearly with the
number of graphs in the database.

As a second scalability test, we progressively increased the size

of the uncertain graph database by adding new graphs, instead of
replicating it as previously. The difference from the previous con-
figuration is that by adding new graphs, the number of distinct label
triples increases. As a basis, we used again the synthetic collection
with λ=0.12, and we incremented it in steps of 500 graphs, to a
maximum of 4000 graphs. The additional graphs were generated
using the standard graph generator [4], which also allowed us to
keep the value of λ constant. Note that the newly added graphs
did not introduce any additional frequent patterns; the frequent pat-
terns were all part of the initial set of 2000 graphs. To make the
results across the datasets comparable, we fixed the set of frequent
subgraphs of all databases by adjusting the value of minSup at each
run accordingly. For example, having as a reference set the frequent
patterns resulting from 2000 graphs with minSup=0.08, the same
frequent patterns were retrieved for the database of 4000 graphs by
adjusting minSup to 0.04. Due to this configuration, the resulting
differences are attributed only to the database size, and not to the
number of frequent subgraphs or other factors.

Figure 6(c) plots the execution time with respect to the number of
graphs. Increasing the number of graphs causes a very small, sub-
linear increase on the execution time of UGRAP. The execution
time difference between the datasets with 2000 and 4000 graphs
is below 10%. This good scalability is attributed to the combina-
tion of the UGRAP index with the scheduling and early termination
strategy, which minimize the effect of the additional graphs and
patterns. In contrast, the execution time of MUSE grows superlin-
early with the number of graphs, from 4 × 106 for 2000 graphs, to
1.6×107 for 4000 graphs. Two factors are responsible for this dras-
tic increase: the additional graphs that need to be examined, and
the additional candidate patterns, introduced by these new graphs.
Since MUSE does not prune any infrequent patterns without exam-
ination, these additional patterns and graphs increase its execution
time substantially. Finally, regarding the UGRAP index, the con-
struction time and memory were again very small, not exceeding 3
seconds and 1.3 Mbytes respectively, for the largest dataset.



6.3 Evaluation Summary
Concluding, the experimental evaluation with three real-world

databases and with an extensive set of synthetic databases shows
that UGRAP outperforms MUSE, the current state-of-the-art ap-
proach for frequent subgraph pattern mining in uncertain graph
databases, by two orders of magnitude for most configurations, and
at least by one order of magnitude for all configurations. This sig-
nificant performance increase does not have a negative influence
on the precision or the recall of the detected frequent patterns. The
scalability of the algorithm is also verified with databases of up to
10000 graphs. The additional time and memory requirements of
UGRAP for constructing and maintaining the index are negligible,
making the algorithm suitable for execution in any typical PC.

7. CONCLUSIONS
In this paper, we have presented UGRAP, an efficient algorithm

for mining frequent subgraph patterns in uncertain graph databases.
The algorithm relies on a compact probability-aware index on graph
edges and paths, which allows for a drastic pruning of the search
space when computing the expected support of candidate patterns.
The index also enables an efficient scheduling and early termi-
nation strategy, which further improves the performance of our
approach. A thorough experimental evaluation using three real-
world datasets from the bioinformatics domain, as well as a set of
synthetic datasets, demonstrated that UGRAP significantly outper-
forms the state-of-the-art solution to this problem. In particular, our
results showed a performance gain between one and three orders of
magnitude, depending on the dataset characteristics. Moreover, the
additional time and memory requirements for constructing the in-
dex were shown to be negligible.

Our future work focuses on two main directions. The first in-
volves an extension of the scheduling and early termination strat-
egy, using probabilistic pruning to filter out candidate patterns more
aggressively. The second aims at extending UGRAP to use the in-
dex for finding only the maximal or closed frequent subgraphs in
the uncertain graph database.
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