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Abstract—Sensing/monitoring of spectrum-availability has been identified as a key requirement for dynamic spectrum allocation in

cognitive radio networks (CRNs). An important issue associated with MAC-layer sensing in CRNs is how often to sense the availability

of licensed channels and in which order to sense those channels. To resolve this issue, we address 1) how to maximize the discovery

of spectrum opportunities by sensing-period adaptation and 2) how to minimize the delay in finding an available channel. Specifically,

we develop a sensing-period optimization mechanism and an optimal channel-sequencing algorithm, as well as an environment-

adaptive channel-usage pattern estimation method. Our simulation results demonstrate the efficacy of the proposed schemes and its

significant performance improvement over nonoptimal schemes. The sensing-period optimization discovers more than 98 percent of

the analytical maximum of discoverable spectrum-opportunities, regardless of the number of channels sensed. For the scenarios

tested, the proposed scheme is shown to discover up to 22 percent more opportunities than nonoptimal schemes, which may become

even greater with a proper choice of initial sensing periods. The idle-channel discovery delay with the optimal channel-sequencing

technique ranges from 0.08 to 0.35 seconds under the tested scenarios, which is much faster than nonoptimal schemes. Moreover, our

estimation method is shown to track time-varying channel-parameters accurately.

Index Terms—Cognitive radios, spectrum agility, spectrum opportunity, spectrum sensing, channel-usage patterns.
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1 INTRODUCTION

THERE have been numerous protocol standards on the
wireless spectrum that rely on a static spectrum

allocation policy under which each licensed spectrum band
is statically assigned to the specific licensed service and its
users. Once a spectrum band is assigned to a certain service,
its allocation is not allowed to change. However, a new
concept of dynamic spectrum allocation has become neces-
sary to overcome critical limitations of the traditional static-
allocation scheme. Recent studies have shown that the use
of static spectrum allocation has degraded spectral effi-
ciency significantly [1]. Moreover, current standards cannot
guarantee the prevention of unexpected interruptions by
wireless network users [2].

To alleviate these problems, FCC has recently suggested
a new concept of cognitive radio networks (CRNs) that
serves as a framework in realizing dynamic spectrum
allocation. It requires the enhancement of current PHY and
MAC protocols to adopt spectrum-agile features. The basic
idea of spectrum agility is to allow secondary users (SUs) or
unlicensed users to access licensed spectrum bands1 as far
as they do not incur any harmful interference with the

primary users (PUs) or licensed users of the bands. To

achieve this goal, SUs must monitor each channel’s usage

pattern by its PUs to identify spectrum holes or opportunities

[3] to exploit. Whenever SUs find a channel that can be

utilized without interfering with its PUs, it can be assigned

to and will be shared by the SUs. The SUs are also

responsible for monitoring returning PUs on the channel

they are currently using so as to promptly vacate the

channel in such a case.
This new framework of spectrum access has been given

different names, such as the Dynamic Spectrum Access (DSA)

[4] or neXt Generation (XG) [5], [6] protocol. Sensing the

status/availability of a channel is commonly recognized as

one of the most fundamental elements of a CR (and, hence,

this framework) due to its crucial role of discovering

spectrum opportunities and detecting the existence/return

of PUs [5], [6], [7]. Spectrum sensing can be realized as a

two-layer mechanism. The PHY-layer sensing focuses on

efficiently detecting PU signals to identify opportunities by

adapting its modulation/encoding schemes and para-

meters. Several well-known PHY-layer detection methods

such as energy detection, matched filter, and feature detection

[8], [9], [10] have been proposed as candidates for the PHY-

layer sensing. On the other hand, the MAC-layer sensing

determines when SUs have to sense which channels. This

type of sensing, despite its importance, has received far less

attention than other related topics. Recently, many MAC-

layer researchers have considered fair channel allocation

and SUs coordination under the assumption of the

availability of sensing results. However, they have not

considered how the MAC-layer sensing works and how to
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schedule sensing for efficient discovery of spectrum
opportunities.

In this paper, we focus on two important issues of the
MAC-layer sensing: 1) how to maximize the overall
discovery of opportunities in the licensed channels and
2) how to minimize the delay in locating an idle channel in
case a secondary network (SN; a group of SUs) has to
actively search for an idle channel. We propose two novel
schemes. The first is the sensing-period optimization that
maximizes the discovery of opportunities from licensed
channels. The second is the optimal channel-sequencing
algorithm that minimizes delay in searching for an idle
channel. To support the two proposed schemes, we also
introduce an estimation method for characterizing a
channel’s usage pattern by its PUs.

The rest of the paper is organized as follows: Section 2
presents the network/channel models and our assump-
tions. Section 3 describes the motivations of our work.
Section 4 presents the sensing-period optimization techni-
que to achieve maximum discovery of opportunities and
Section 5 describes how to determine the optimal sensing
sequence of channels so as to minimize the delay in locating
an idle channel. Section 6 introduces the channel-usage
pattern estimation method. The Matlab-based simulation
results are presented and analyzed in Section 7. Example
deployment scenarios of the proposed schemes are dis-
cussed in Section 8. Section 9 discusses other related work.
Finally, we conclude the paper and suggest future direc-
tions in Section 10.

2 PRELIMINARIES

2.1 Network Topology

A group of SUs is assumed to form a single-hop wireless SN
within the transmission range of which there are no other
SNs interfering or cooperating with that SN. In a practical
CRN, however, such as an IEEE 802.22 network [11], the
interference among adjacent SNs should be dealt with in the
context of internetwork coordination of channel sensing
and allocation. Although the coordination issue is not the
main focus of this paper, our proposed scheme can coexist
with any coordination scheme by dynamically adapting the
pool of available channels for an SN in such a way that
those channels are not used simultaneously by other SNs.

Every SU in the SN is assumed to be equipped with a
single identical antenna that can be tuned to any combina-
tion of N consecutive licensed channels. This can be done
by the Orthogonal Frequency Division Multiplexing
(OFDM) technique with adaptive and selective allocation
of OFDM subcarriers to utilize any subset of N licensed
channels at the same time [12], [13], [14]. Note that
equipping each SU with more than one antenna might
cause severe interference among its antennas, thus degrad-
ing the SU’s performance [15]. We therefore focus on SUs,
each equipped with a single antenna. Each SU works as a
transceiver, as well as a sensor in its SN.

An important role of sensing is incumbent detection, that
is, determining the presence/absence of PUs on a channel.
Energy and feature detections are two prominent PHY-
sensing schemes for incumbent detection. Energy detection,
however, cannot differentiate PU signals from SU signals
since it only measures the energy of a signal. Although

feature detection can be used to overcome this difficulty, it
may be harder to detect PU signals if SU signals interfere
with them during sensing. Hence, IEEE 802.22 introduced
the concept of a quiet period [11], [16] during which all SUs
should suspend their transmission so that any sensor
monitoring the channel may observe the presence/absence
of PU signals without interference. It is assumed that a
channel will be sensed within a quiet period whose
schedule should be negotiated/reserved among SUs.

It is also assumed that all SUs in an SN should
participate in sensing a channel at the same time for each
scheduled measurement period to enhance the detection of
PU signals even in a fading/shadowing environment.
Fading/shadowing is known to become a serious problem
in achieving the desirable sensing quality in terms of
incumbent detection and false alarm probabilities [17], [18],
[19]. To overcome these difficulties, collaborative sensing has
been proposed, which requires multiple sensors to
cooperate. Note, however, that this is not our focus, and
hence, we will use a basic collaboration policy of letting all
SUs participate in simultaneously sensing a channel.

2.2 Channel-Usage Model

Spectrum sensing mainly aims to check a channel’s avail-
ability. Depending on its PUs’ usage pattern, a channel
could be modeled as an ON-OFF source alternating between
ON (busy) and OFF (idle) periods. Such a model captures
the time period in which the channel can be utilized by SUs
without causing any harmful interference to PUs. Once an
OFF period is discovered, SUs can utilize any portion of the
remaining OFF period for their own transmission.

For channel i ði ¼ 1; 2; . . . ; NÞ,2 we model the sojourn

time of an ON period as a random variable T i
ON with the

probability density function (p.d.f.) fT i
ON
ðyÞ, y > 0. Similarly,

the p.d.f. of the sojourn time in an OFF period is given as

fT i
OFF

ðxÞ, x > 0.3 ON periods are assumed to be independent

and identically distributed (i.i.d.) and so are OFF periods.

We also assume that ON and OFF periods are independent

of each other.
Let ZiðtÞ denote the state (ON/OFF) of channel i at

time t. Then, ZiðtÞ; t � 0f g becomes a semi-Markov
process in that whenever the process enters ON/OFF
state, the time until the next state transition is governed by
p.d.f. fT i

ON
ðyÞ=fT i

OFF
ðxÞ. Since there are only two possible

states, the behavior of this process can be analyzed by
using the theory of alternating renewal processes [20], [21].
Fig. 1 shows the state transition model of this semi-
Markov process.

Sensing is nothing but a sampling procedure of the given

channel process ZiðtÞ; t � 0f g to discover its state at each

sensing instant. Let a sample from an ON/OFF period

correspond to the value 1/0. Then, sensing produces a

binary random sequence for each channel. Fig. 2 illustrates

periodic sensing with sensing period T i
P and sensing

time T i
I . Here, T i

I is a predefined amount of time for a

single measurement in order to achieve the desirable level
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of detection quality by PHY-layer sensing. For example, it

has been proposed in the IEEE 802.22 standard [16] that less

than 1 ms should be spent for fast sensing with energy

detection. We assume that T i
I is predetermined by PHY-

layer sensing, and it is small relative to E½T i
OFF � and E½T i

ON �.
On the other hand, channel utilization ui, which is defined

as the fraction of time in which channel i is in ON state, is

given as ui ¼ E½T i
ON �=ðE½T i

ON � þ E½T i
OFF �Þ.

2.3 Opportunity-Usage Model

Opportunity represents a spectrum hole (that is, an OFF
period) in a licensed channel. An opportunity in a channel
can only be discovered by sensing the channel. As
discussed earlier, it is necessary to perform collaborative
sensing to overcome uncertainties in a wireless spectrum
such as fading/shadowing. In collaborative sensing, the
sample of a channel collected by an SU must be shared/
synchronized with other SUs so that each SU can decide on
the channel’s availability. Ghasemi and Sousa [17] intro-
duced a simple rule (OR rule) in which a channel is
considered ON if at least one SU reports that the channel is
busy. Since the cooperation among SUs is not a focus of this
paper, we assume that the sensing time T i

I includes both
PHY-layer detection time (for example, 1 ms) and data
synchronization time in collaborative sensing.

Whenever sensing is performed on a channel and an
opportunity on the channel is discovered, the channel is
merged into a pool of available channels where the pool is
called a logical channel. Therefore, a logical channel can
include 0 � N licensed channels depending on their
availability at that instant. The logical channel is treated
as if it were a single channel whose capacity is equal to the
sum of all licensed channels merged into it. This can be
done by using the OFDM technique with selective alloca-
tion of subcarriers to the channels to be utilized [12], [13],
[14]. In this way, more than one (possibly nonadjacent)
channel in the logical channel can be simultaneously
utilized by a single SU. The term home channel will be used
to represent a licensed channel which is merged into the
logical channel and being utilized by SUs. In contrast, a
channel that does not belong to the logical channel is called
a foreign channel.

For SUs to share the logical channel, we assume the
following medium-access model: 1) SUs with packets to
transmit compete with each other to gain exclusive access to
the logical channel, 2) while an SU is transmitting, other
SUs keep silent, and 3) the SU who has gained exclusive
access to the channel should listen to the medium before
transmission to detect returning PUs (Listen-Before-Talk
policy [12]).

The return of PUs on a home channel should be detected
promptly to minimize interference on them. This can be
done by the Listen-before-Talk policy where every SU has
to listen to the medium before commencing any packet
transmission. Hence, we can assume that returning PUs can
be detected within a reasonably small amount of time so
that the channel can be vacated by SUs promptly. To vacate
the channel due to returning PUs, OFDM should reconfi-
gure subcarriers to exclude the channel band from usage.
As a special case, if the home channel to be vacated is the
only member of the logical channel, there will be no more
channels to utilize. We call this situation channel switching in
that the SUs should switch from the current channel (where
its PUs just returned) to a new idle channel (which should
be discovered). It is important to find the new idle channel
as soon as possible so that SUs can resume their data
transmission with the least interruption.

3 MOTIVATIONS

3.1 Maximal Discovery of Opportunities

When the bandwidth requirement by an SN can be met
with a single home channel, it would suffice to discover one
idle channel and stay on the channel without searching for
others until the channel is reclaimed by its PUs. Hence,
sensing is performed on demand only when the SN must
switch to another channel, and this type of sensing is called
reactive sensing. An example of reactive sensing is illustrated
in Fig. 3.

In this paper, we are interested in the case of SUs seeking
more bandwidth than just a single home channel. With more
home channels in a logical channel, an SU may transmit
packets at a higher data rate. To discover more idle channels,
foreign channels must be proactively sensed. That is, each
channel should be sensed periodically with its own sensing
period T i

P . Any idle channel discovered by the periodic
sampling becomes a new member of the logical channel,
which can then provide more bandwidth. Although the
periodic sensing is performed on every channel indepen-
dently, the concurrent sensing of N channels must be
scheduled in such a way that there would be no other
scheduled sensing while a measurement on channel i is
being performed for T i

I seconds. This type of sensing is
called proactive sensing, an example of which is shown in
Fig. 4. The proactive sensing is formed by periodic sensing,
as well as on-demand sensing. Note that on-demand sensing
is the common part for both reactive and proactive sensing
since channel switching occurs in either case. Another
benefit of proactive sensing is that it finds an idle channel (at
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Fig. 1. The state-transition diagram of the semi-Markov process.
Fig. 2. The illustration of sensing of an ON-OFF alternating channel.
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the time of channel switching) faster than reactive sensing
because the former has more information (that is, periodic
samples) on channels.

In general, more frequent sensing discovers more
opportunities. However, one has to account for the fact
that each sensing costs an SU T i

I time units without any
packet transmission on the discovered opportunities since
there is only a single antenna for both sensing and
transmission. Hence, there is a trade-off between sensing-
time overhead and discovery of opportunities. In Section 4, we
propose a sensing-period optimization for the proactive
sensing by making the trade-off between the discovered
opportunities and the sensing overhead.

3.2 Minimum Channel-Switching Latency

When an SN needs to switch channels, it must discover a
new opportunity with minimum delay so that SUs in the
network can resume their communication quickly. Channel
switching occurs in both reactive and proactive sensing,
although the switching frequency may be different. Hence,
it is important for CRNs to minimize the delay in finding an
idle channel at the time of channel switching.

Upon triggering a channel switch (due to the return of
PUs), the SN starts to search for a new home channel.
Since we have assumed a simple collaborative sensing
scheme, which makes all SUs to participate in sensing a
channel simultaneously, ðN � 1Þ foreign channels cannot
be searched at the same time, and hence, they must be
sensed sequentially. It is therefore important to know the
optimal sensing sequence to minimize the searching delay.
In Section 5, we propose the optimal sensing-sequencing
algorithm to achieve the minimum channel-switching latency
(CSL) by estimating the ON-OFF pattern of foreign

channels. Here, the CSL is defined as the time elapsed
since triggering of a channel switch until the discovery of
the first idle channel.

3.3 Estimation of Channel-Usage Pattern

The motivations discussed so far depend on the underlying
channel-usage patterns, which we model as ON-OFF
alternating processes. Hence, the key is to estimate
distribution parameters of ON/OFF periods to formulate
our objective functions. Section 6 introduces an estimation
procedure that can track time-varying parameters.

4 MAXIMAL DISCOVERY OF OPPORTUNITIES BY

OPTIMIZING SENSING PERIOD

When proactive sensing is employed by an SN and each
channel is sensed periodically with its own sensing period,
we would like to optimize the set of N sensing periods
(T i

P s) to maximize the discovery of opportunities.

Since sensing is nothing but a sampling process, it is not

possible to exactly identify each state transition between ON

and OFF periods. Hence, the time portion of a discovered

OFF period between the start time and the discovery time of

the OFF period cannot be utilized. In addition, some OFF

periods may remain undiscovered at all if sensing is

infrequent. However, blindly increasing the sensing fre-

quency is not desirable, as it will increase the sensing

overhead, which is proportional to the sum of ðT i
I=T

i
P Þ. Note

that the sensing overhead is the time overhead during which

all data traffic among SUs must be suspended to measure a

channel’s availability. This trade-off must be captured in the

construction of an equation to find the optimal sensing

frequencies/periods. Therefore, for each channel i, we
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Fig. 3. An example of reactive sensing.

Fig. 4. An example of proactive sensing.
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define two mathematical terms, UOPP iðT i
P Þ (Unexplored

Opportunity) and SSOHiðTP Þ (Sensing Overhead), where

TP ¼ ðT 1
P ; T

2
P ; . . . ; T

N
P Þ. UOPP iðT i

P Þ is defined as the average

fraction of time during which channel i’s opportunities are

not discovered in case channel i is being periodically sensed

with its sensing period T i
P . On the other hand, SSOHiðTP Þ is

defined as the average fraction of time during which

channel i’s discovered opportunities are interrupted and

not utilized due to sensing of one ofN channels. An already-

discovered opportunity within a channel will be interrupted

by sensing because we assumed that 1) an SU is equipped

with a single antenna and 2) all SUs in the SN must

participate in sensing a channel. That is, the SUs must

suspend the use of a discovered channel when it senses

other channels since data transmission and sensing cannot

take place at the same time with one antenna. This situation

is depicted in Fig. 5.
Since ui is defined as the average fraction of time

channel i is busy, the average sum of opportunities per unit
time is given as ð1� uiÞ. Our objective function is then to
find optimal sensing periods of N channels such that

TP
� ¼ argmax

TP

P

N

i¼1

ð1� uiÞ � SSOHiðTP Þ
�

�UOPP iðT i
P Þ
�

8

>

<

>

:

9

>

=

>

;

;

¼ argmin
TP

P

N

i¼1

SSOHiðTP Þ
�

þUOPP iðT i
P Þ
�

8

>

<

>

:

9

>

=

>

;

;

ð1Þ

where TP
� ¼ ðT 1

P
�
; . . . ; TN

P
�Þ is a vector of optimal sensing

periods. As a boundary condition of T i
P ,
PN

i¼1

T i
I

T i
P

< 1 should

be satisfied, providing a lower bound of T i
P .

4.1 Analysis of UOPP iðT i
P Þ

We define T i
dðtÞ ðd ¼ 0; 1Þ as the average of opportunities

(measured in time units) on channel i during ðts; ts þ tÞ,
provided a sample d is collected at time ts. In case the state

transition (ON ! OFF or OFF ! ON) occurs at ts, ~T i
dðtÞ

(instead of T i
dðtÞ) is used to denote the same metric. Possible

scenarios of those four functions T i
0ðtÞ, T i

1ðtÞ, ~T i
0ðtÞ, and ~T i

1ðtÞ
are illustrated in Fig. 6. Note that T i

dðTP
iÞ implies the

average amount of channel availability between two

consecutive samples in case the first sample is d.

According to the renewal theory, for an alternating

renewal process that has been started a long time ago, the

remaining time ~x in the current state (say, OFF state) from

the sampling time ts has its p.d.f. of IFT i
OFF

ð~xÞ=E½T i
OFF �, ~x > 0

[20], [21], where IFT i
OFF

ð~xÞ ¼ 1� FT i
OFF

ð~xÞ and FT i
OFF

ð~xÞ is the
c.d.f. of the OFF period. This is illustrated in Fig. 7, where

~T i
OFF is a random variable of the remaining time in the OFF

period. Similarly, the p.d.f. of the remaining time in the ON

state from ts is given as IFT i
ON
ð~yÞ=E½T i

ON �, ~y > 0. Using the

above facts, we can derive the following equations:

T i
0ðtÞ ¼ t

Z 1

t

IFT i
OFF

ðxÞ
E½T i

OFF �dx

þ
Z t

0

IFT i
OFF

ðxÞ
E½T i

OFF �
xþ ~T i

1ðt� xÞ
� �

dx;

T i
1ðtÞ ¼

Z t

0

IFT i
ON
ðyÞ

EðT i
ONÞ

~T i
0ðt� yÞdy;

~T i
0ðtÞ ¼ t

Z 1

t

fT i
OFF

ðxÞdx

þ
Z t

0

fT i
OFF

ðxÞ xþ ~T i
1ðt� xÞ

� �

dx;

~T i
1ðtÞ ¼

Z t

0

fT i
ON
ðyÞ ~T i

0ðt� yÞdy:
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Fig. 5. Concept of SSOHi: Channel 1’s discovered opportunity cannot
be utilized during sensing of channel 2.

Fig. 6. Illustration of T i
0ðtÞ, T i

1ðtÞ, ~T i
0ðtÞ, and ~T i

1ðtÞ: For each function, two
possible cases 1 and 2 are shown. ~x=~y denotes the remaining time in the
current OFF/ON period starting from ts. In case the state transition
occurs at ts, x=y is used instead of ~x=~y.

Fig. 7. The density function of the remaining time in the current OFF
period.
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By performing the Laplace transform, we get

T i
0

�ðsÞ ¼ IFXi
�ð0Þ � IFXi

�ðsÞf g=
n

E½T i
OFF � � s2

o

þ IFXi
�ðsÞ ~T i�

1 ðsÞ=E½T i
OFF �;

T i
1

�ðsÞ ¼ IFT i
ON

�ðsÞ ~T i�
0 ðsÞ=E½T i

ON �;
~T i�
1 ðsÞ ¼ fT i

ON

�ðsÞ ~T i�
0 ðsÞ;

~T i�
0 ðsÞ ¼ fT i

OFF

�ð0Þ � fT i
OFF

�ðsÞ
n o

=s2

þ fT i
OFF

�ðsÞ ~T i�
1 ðsÞ:

Hence, it leads to

T i�
0 ðsÞ ¼ 1

E½T i
OFF � � s2

�
"

IF�
T i
OFF

ð0Þ � IF�
T i
OFF

ðsÞ�

1� f�
T i
OFF

ð0Þf�
T i
ON

ðsÞ
1� f�

T i
OFF

ðsÞf�
T i
ON

ðsÞ

#

;

T i�
1 ðsÞ ¼

IF�
T i
ON
ðsÞ

EðT i
ONÞ � s2

�
f�
T i
OFF

ð0Þ � f�
T i
OFF

ðsÞ
1� f�

T i
OFF

ðsÞf�
T i
ON

ðsÞ :

Now, we develop an expression of UOPP iðT i
P Þ in terms

of T i
0ðtÞ and T i

1ðtÞ.4 A new term UOPP i
ðdÞðT i

P Þ is defined as

the average fraction of time during which usable oppor-

tunities are not discovered between two consecutive

samples in case the first sample is d. Then, UOPP iðT i
P Þ ¼

ð1� uiÞ � UOPP i
ð0ÞðT i

P Þ þ ui � UOPP i
ð1ÞðT i

P Þ.5
In case d ¼ 1 is collected at time ts, opportunities

existing in ðts; ts þ T i
P Þ cannot be discovered since there is

no more sensing between two sampling times ts and
ts þ T i

P . Since the amount of opportunities in ðts; ts þ T i
P Þ is

given as T i
1ðTP

iÞ, we get

UOPP i
ð1ÞðT i

P Þ ¼
T1ðT i

P Þ
T i
P

� �

:

In case d ¼ 0 is collected at time ts, the opportunity
discovered at ts starts to be utilized until PUs’ return. If the
OFF period lasts more than T i

P after ts, there will not be
any unexplored portion of opportunities in ðts; ts þ T i

P Þ. On
the contrary, if PUs emerge at te ðts < te < ts þ T i

P Þ, any
opportunities in ðte; ts þ T i

P Þ could not be explored since
the next sampling time is ts þ T i

P . Hence,

UOPP i
ð0ÞðT i

P Þ ¼
1

T i
P

Z T i
P

0

IFT i
OFF

ðxÞ
E½T i

OFF �
~T i
1ðT i

P � xÞdx;

which completes the derivation of UOPP iðT i
P Þ.

Two examples of UOPP iðT i
P Þ are introduced here. In

case channel i’s ON/OFF periods are Erlang-distributed,
we have

fT i
OFF

ðxÞ ¼ xe�x; fT i
ON
ðyÞ ¼ ye�yðx; y > 0Þ;

UOPP iðT i
P Þ ¼

1

2
� 3

4T i
P

þ e�T i
P

4

3

T i
P

þ 1

� 	

:
ð2Þ

On the other hand, for exponentially distributed ON/OFF
periods, we have

fT i
OFF

ðxÞ ¼ �T i
OFF

e
��

Ti
OFF

xðx > 0Þ

fT i
ON
ðyÞ ¼ �T i

ON
e
��

Ti
ON

yðy > 0Þ;

8

<

:

UOPP iðT i
P Þ ¼ ð1� uiÞ � 1� 1� e

��
Ti
OFF

TP
i

�T i
OFF

TP
i

8

<

:

9

=

;

:

ð3Þ

These results are reasonable in the sense that
limTP

i!1 UOPP iðT i
P Þ ¼ 1� ui. As TP

i ! 1, no opportunity
is discovered since no sensing will be performed. Therefore,
UOPP iðT i

P Þ becomes ð1� uiÞ.

4.2 Analysis of SSOHiðTP Þ
As defined earlier, SSOHiðTP Þ is the average fraction of time
duringwhich channel i’s discovered opportunities cannot be
utilized due to sensing N channels. To express SSOHiðTP Þ
mathematically, we introduce a concept of observed channel-
usage pattern. Since a channel’s ON-OFF usage pattern is
partially observed by SUs via sensing at discrete-time points,
the exact renewal times (that is, state transition times such as
ON ! OFF or OFF ! ON) cannot be observed by SUs.
Instead, we use an observed ON-OFF pattern of channel i to
derive SSOHiðTP Þ. In the observed ON-OFF model, a
channel’s OFF period starts when the OFF period is
discovered. Once an OFF period is discovered, however,
the next state transition to the following ON period is
assumed to be recognized via the Listen-before-Talk policy.
Fig. 8 illustrates the concept of the new model. This model’s
channel utilization is called modified channel utilization,
denoted by ~ui, which is given as ~ui ¼ ui þ UOPP iðT i

P Þ.
Using the new model, SSOHiðTP Þ can be derived as

SSOHiðTP Þ ¼ ð1� ~uiÞ
X

N

j¼1

T j
I

T j
P

 !

:

In the above equation of SSOHiðTP Þ, ð1� ~uiÞ implies the
time fraction in which channel i’s opportunities are
discovered. The reason for using ~ui instead of ui is that
SSOHi is only concerned with the discovered portion of OFF
periods by its definition. The second term

X

N

j¼1

T j
I

T j
P

 !

means the cumulative sensing overhead due to sensing on
N channels.

4.3 Sensing-Period Optimization Algorithm

Based on the derived expressions of UOPP iðT i
P Þ and

SSOHiðTP Þ, the optimal sensing periods can be determined
by solving (1).
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4. Note that ~T i
dðtÞ can be derived from T i

dðtÞ.
5. Note that a channel is assumed to be in its equilibrium state, and in

such a case, ui is the probability that a sample 1 is collected from channel i
at a random time point [20], [21].

Fig. 8. The observed channel-usage pattern model.
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5 MINIMUM CHANNEL-SWITCHING LATENCY VIA

OPTIMUM CHANNEL-SEQUENCE OF SENSING

We would now like to minimize the time for an SN to find
an idle channel when it has to switch channels so that SUs
can resume their communication as soon as possible.

5.1 Analysis

According to our assumption, SUs must sense ðN � 1Þ
foreign channels one by one until they can find an idle one.

As a simple search-sequence, the channels may be arranged

in an ascending order of channel utilizations ðuiÞ, which is

not an optimal solution. Instead, we must consider P i
idleðtÞ,

the probability that channel i would be idle at a certain

time t based on the previous samples. By setting t to the

channel-switching triggering time, we can build the optimal

sensing sequence as follows:

P i
idleðtÞ ¼ PrðZiðtÞ ¼ 0 j all previous samplesÞ; 8i

Search channels in descending order of P i
idleðtÞ:




Again, we consider ON-OFF alternating channels.

According to the renewal theory, we only need the most

recent sample from each channel to derive P i
idleðtÞ. Hence,

P i
idleðtÞ becomes the transition probability between the

most recent sample and its following sample at t. Then,

P i
idleðtÞ ¼ PrðZiðtÞ ¼ 0jZiðsiÞ ¼ diÞ ¼ P i

di0ðt� siÞ, where si is

the most recent sensing time on channel i and P i
di0ðt� siÞ is

the transition probability between two samples di (at si)

and 0 (at t). Since di ¼ 0 or 1, P i
00 and P i

10 are considered.

The renewal theory suggests that P i
11ð�iÞ, �i ¼ t� si, is

expressed as

P i
11ð�iÞ ¼

Z 1

�i

IFT i
ON
ðuÞ

E½T i
ON �

du

þ
Z �i

0

hi
10ðuÞIFT i

ON
ð�i � uÞdu;

where hi
10ðuÞ is the renewal density of the OFF state given

that the renewal process started from the ON state. It is
proven in [20] that hi�

10ðsÞ is expressed as

hi�
10ðsÞ ¼

f�
T i
OFF

ðsÞ 1� f�
T i
ON

ðsÞ
n o

E½T i
ON � � s 1� f�

T i
ON

ðsÞf�
T i
OFF

ðsÞ
n o :

By applying the Laplace transform, we get

P i�
11ðsÞ ¼

1

s
�

1� f�
T i
ON

ðsÞ
n o

1� f�
T i
OFF

ðsÞ
n o

E½T i
ON � � s2 1� f�

T i
ON

ðsÞf�
T i
OFF

ðsÞ
n o :

P i
10ð�iÞ can be derived by the inverse Laplace transform

alongwith the following relationship: P i
10ð�iÞ ¼ 1� P i

11ð�iÞ.
By switching the role of state ON and OFF, P i

00ð�iÞ can be

easily derived by the inverse Laplace transform of the

following term:

P i�
00ðsÞ ¼

1

s
�

1� f�
T i
OFF

ðsÞ
n o

1� f�
T i
ON

ðsÞ
n o

E½T i
OFF � � s2 1� f�

T i
OFF

ðsÞf�
T i
ON

ðsÞ
n o :

For example, for a channel with Erlang-distributed ON/

OFF periods, as shown in (2), we have

P i
00ð�iÞ ¼ 1

2
þ 1

2
e��i

cosð�iÞ;

P i
10ð�iÞ ¼ 1

2
� 1

2
e��i

cosð�iÞ:

On the other hand, for a channel with exponentially

distributed ON/OFF periods as shown in (3), we get

P i
00ð�iÞ ¼ ð1� uiÞ þ ui � e�ð�

Ti
OFF

þ�
Ti
ON

Þ�i

;

P i
10ð�iÞ ¼ ð1� uiÞ � ð1� uiÞ � e�ð�

Ti
OFF

þ�
Ti
ON

Þ�i

:

5.2 Optimal Channel-Sequencing Algorithm

The complete optimal channel-sequencing algorithm is

given below.

1. 8i, except that the channel to switch from

calculate P i
idleð�iÞ ¼ P i

00ð�iÞ ; if di ¼ 0

P i
10ð�iÞ ; if di ¼ 1;

(

where

di : most recent sample of channel i

�i : elapsed amount of time since

the most recent sensing until

channel-switching:

8

>

>

>

<

>

>

>

:

2. Optimal sensing order. Sense ðN � 1Þ channels in
descending order of P i

idleð�iÞ.
In case one round of channel search for all ðN � 1Þ

channels cannot find any idle channel, an instant replay of
the optimal channel searching is unlikely to find an idle
channel because two consecutive samples collected within a
short time window on one channel have non-negligible
correlation, as will be shown in (4) in Section 6. Therefore,
we recommend ðN � 1Þ channels to be searched again after
Tretry seconds, which is a design parameter of the algorithm.
In such a case, a new idle channel will be found by the re-
search of the channels or by regular periodic sensing. In
either case, once an idle channel is found, the channel-
switching procedure completes and SUs resume their
communication on the new channel.

5.3 Discussion

Sometimes it is necessary to classify sensing time T i
I into

two categories: 1) a longer sensing time before SUs resume
their communication on a new channel and 2) a shorter
sensing time to detect PUs’ return on the channel currently
being utilized by SUs. In IEEE 802.22, for example, Channel
Availability Check Time is defined as the time during which a
TV channel shall be checked for the presence of licensed
incumbent signals prior to the commencement of WRAN
operation in that channel [22], [23]. This parameter
corresponds to the first category. On the other hand, a
channel which is being utilized by SUs in 802.22 is
monitored by sensors by scheduling fast and fine sensing,
which requires a much shorter time (less than a few dozen
milliseconds) and, hence, corresponds to the second
category.
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The proposed analysis can be extended to have two

types of sensing time: T i
I;long and T i

I;short. T
i
I;long can be used

at channel switching in which each foreign channel should

be monitored for a longer time to protect licensed users’

operation on the channel. On the other hand, T i
I;short can be

used for collecting binary samples to estimate ON/OFF

usage patterns.

6 CHANNEL-PARAMETER ESTIMATION

As discussed in Section 3, the estimation of the underlying

channel-usage patterns is important to the proposed

approach. With an ON-OFF alternating renewal channel,

the distribution parameters of ON/OFF periods are to be

estimated.

6.1 Maximum Likelihood (ML) Estimators

Suppose we have a vector of ri samples from channel i,

Zi ¼ ðZi
t1
; Zi

t2
; . . . ; Zi

tri
Þ, where tj ðj ¼ 1; . . . ; riÞ denotes the

time stamp of sample Zi
tj
. Suppose the density functions

of ON and OFF periods are m-variate, then a total of

2m parameters should be estimated. On the other hand,

the joint probability mass function of ri samples can

be expressed with four types of transition probabilities

(0 ! 0, 0 ! 1, 1 ! 0, and 1 ! 1) as follows:

�i ¼ð�i1; . . . ; �i2mÞ;
Lð�iÞ ¼P ðZi; �iÞ

¼ PrðZi
t1
¼ z1; �

iÞ�
Y

ri

k¼2

PrðZi
tk
¼ zkjZi

tk�1
¼ zk�1; �

iÞ

¼ PrðZi
t1
¼ z1; �

iÞ
Y

ri

k¼2

P i
zk�1zk

ðtk � tk�1; �
iÞ;

where the Markovian property has been applied. P i
zk�1zk

ðtk �
tk�1Þ denotes the probability that a sample zk�1 is followed

by a sample zk and the intersample collection time is

tk � tk�1. Then, the estimates of parameters of ON/OFF

density functions can be found by ML estimation, such as

@lnLð�iÞ
@�il

¼ 0; l ¼ 1; . . . ; 2m:

Now, the remaining task is to express the likelihood

function in a mathematical form. The first component of

the likelihood function is given as PrðZi
t1
¼ z1; �

iÞ ¼
ðuiÞz1ð1� uiÞ1�z1 since ui is the probability that channel i

is busy (that is, ON) at a random time (t1 in this case).

Note that the estimator of ui is simply given as the sample

mean of ri samples. Another part of the likelihood function

is P i
zk�1zk

ðtk � tk�1; �
iÞ, which is one of four transition

probabilities: P i
00ðtk � tk�1Þ, P i

01ðtk � tk�1Þ, P i
10ðtk � tk�1Þ,

and P i
11ðtk � tk�1Þ. The derivation of those four functions

has already been introduced in Section 5.
For example, for a channel with exponentially distrib-

uted ON/OFF periods as shown in (3), transition prob-

abilities are given as

P i
00ðtÞ ¼ ð1� uiÞ þ ui � e�ð�

Ti
OFF

þ�
Ti
ON

Þt
;

P i
01ðtÞ ¼ui � ui � e�ð�

Ti
OFF

þ�
Ti
ON

Þt
;

P i
11ðtÞ ¼ui þ ð1� uiÞ � e�ð�

Ti
OFF

þ�
Ti
ON

Þt
;

P i
10ðtÞ ¼ ð1� uiÞ � ð1� uiÞ � e�ð�

Ti
OFF

þ�
Ti
ON

Þt
:

Then, there are two parameters to be estimated: �T i
OFF

and

�T i
ON
. Since

ui ¼ E½T i
ON �

E½T i
ON � þ E½T i

OFF �
¼

�T i
OFF

�T i
ON

þ �T i
OFF

;

we can estimate �T i
OFF

and ui instead of �T i
OFF

and �T i
ON
.

As already discussed, the estimator of ui is given as

ûi ¼ 1

ri

X

ri

k¼1

Zi
tk
:

On the other hand, the estimator of �T i
OFF

can be derived

by solving the equation @lnLð�Þ=@�T i
OFF

¼ 0, yielding

�̂T i
OFF

¼ � ui

T i
P

ln
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4AC
p

2A

" #

;

where

A ¼ ðui � ðuiÞ2Þðri � 1Þ;
B ¼ �2Aþ ðri � 1Þ � ð1� uiÞn0 � ui � n3;

C ¼ A� ui � n0 � ð1� uiÞn3:

8

>

<

>

:

Note that n0=n1=n2=n3 indicates the number of ð0 !
0Þ=ð0 ! 1Þ=ð1 ! 0Þ=ð1 ! 1Þ transitions from the total of

ðri � 1Þ transitions among ri samples. For instance, in case a

sequence of samples is given as (0, 1, 1, 1, 0, 1, 1, 0), ri ¼ 8,

we have n0 ¼ 0, n1 ¼ 2, n2 ¼ 2, and n3 ¼ 3.

6.2 Confidence Interval of Estimators

It is also important to understand how much one can have

confidence in the derived estimators. The confidence

interval is an efficient measure to determine the level of

confidence. In most cases, however, it is not easy or

sometimes impossible to derive the confidence interval in

a closed form with generally formed density functions of

ON/OFF periods. Here, we show the derivation of

confidence intervals with exponentially distributed ON/

OFF periods.

6.2.1 Confidence Interval of ûi

When channel i is periodically sensed at an interval T i
P ,

the difference between any two time stamps Ztk1
and Ztk2

ðk1; k2 2 1; 2; . . . ; rif gÞ is an integer multiple of T i
P . In such a

case, the correlation coefficient of any two samples Ztk1
and

Ztk2
ðk1 > k2Þ is found to be

E½Ztk1
Ztk2

� ¼ PrðZtk1
¼ 1jZtk2

¼ 1ÞPrðZtk2
¼ 1Þ

¼P i
11ðjk1 � k2j � T i

P Þ � ui;

) �k1k2 ¼
E½Ztk1

Ztk2
� � ðuiÞ2

ui � ðuiÞ2

¼ e
�ð�

Ti
OFF

=uiÞ�jk1�k2jT i
P :

ð4Þ
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This shows that the correlation is decaying fast (ex-

ponentially) as the separation of two sampling times

becomes large. Since the rate of decrease is proportional

to ð�T i
OFF

=uiÞT i
P , r

i samples can be assumed to be weakly

correlated, as ri are large unless ð�T i
OFF

=uiÞT i
P is close to 0.

Using this fact, we can derive the confidence interval. When

ð�T i
OFF

=uiÞT i
P is not close to 0, Zi�E½Zi�

ffiffiffiffiffi

var
p ½Zi�

! Nð0; 1Þ as ri ! 1
by the Central Limit Theorem.6 Hence, 100ð1� �Þ percent

confidence interval is given as

Zi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½Zi�
q

�N�1ð1� �=2Þ;
�

Zi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

var½Zi

q

� �N�1ð1� �=2Þ
�

:

where var½Zi� is a function of ri. If � � ffiffiffiffiffiffiffi

var
p ½Zi� �

N�1ð1� �=2Þ, ri can be related to the level � of confidence

with the interval length of 2�. In general, we need more

samples (that is, bigger ri) to achieve a higher level of

confidence (that is, smaller � or �).

6.2.2 Confidence Interval of �̂T i
OFF

The ML estimator of �T i
OFF

has already been shown.

Unfortunately, the high nonlinearity of �̂T i
OFF

makes it

difficult to find its exact confidence interval. Instead, an

upper bound of T i
P could be derived to ensure a reasonable

level of confidence. Note that each of four transition

probabilities tends to converge to a constant (ui or 1� ui),

as T i
P goes to infinity. Since lnLð�iÞ is expressed with

transition probabilities, an ML estimator cannot guarantee

accurate estimation with a large T i
P with which the

likelihood function tends to be a constant. Hence, we will

bound the value of P i
01ðT i

P Þ below a certain threshold ð1�
�Þui to ensure that the probability would not be too close to

its limit. This concept is shown in Fig. 9. Then, an upper

bound of T i
P can be derived as

jui � P i
01ðT i

P Þj � � 	 ui ) T i
P 
 ui

�T i
OFF

ln
1

�

� 	

:

Hence, the optimal sensing period in Section 4 should be
determined subject to the constraint of the upper bound of
T i
P given here.

6.2.3 Discussion

We can apply the same intuition derived from the case of
exponentially distributed ON/OFF periods to general
distributions. First, upon the estimation of channel
utilization ui, the more samples are given, the more
accurate the estimates. On the other hand, if we want to
estimate E½T i

OFF � and E½T i
ON �, it is important to upper

bound T i
P so that a sufficient number of samples would be

collected within each OFF/ON period. If T i
P increases,

both E½T i
OFF � and E½T i

ON � will be overestimated, as many
OFF/ON periods would be missed by the sensing.
Therefore, the number of samples and sensing frequency
are two important factors that control the confidence level
of estimation.

6.3 Estimation on Time-Varying Channel

The ON-OFF patterns of licensed channels are often time
varying, implying that the parameter estimation must be
adaptive in time. Here, we assume that the channel
parameters of ON/OFF periods are slowly time varying
so that the SUs can track their variations by using a moving
time window in collecting samples and making estimations.
That is, channel i’s sensing results (binary samples) are
preserved for those whose sampling time stamps are no
older than T i

window, where T i
window indicates the time-window

size of channel i. The estimation procedure must be
executed frequently enough to track the variation of
parameters. As an extreme case, new estimates might be
produced every time when a new sample is collected from a
channel, although it may incur high processing cost.
Therefore, in Section 7, we compute estimates once every
Testimation seconds, which is much smaller than T i

window.
Whenever new estimates are computed, the optimal sensing
periods derived in Section 4 must be recalculated and
adapted accordingly. The optimal sensing sequence at
channel switching, however, can be reactively derived at
every channel switch.

7 EVALUATION

7.1 Simulation Setup

To measure the effectiveness of the proposed schemes, we
define two performance metrics: Achieved Opportunity Ratio
(AOR) and Channel Switching Latency (CSL).

AOR measures the ratio of the total discovered spectrum
availability to the total existing availability. This metric will
show the efficiency of the proposed sensing period
optimization in terms of the percentage of total opportu-
nities it can discover. Ideally, if all estimates are perfect,
AOR will be as high as

AORmax ¼

P

N

i¼1

ð1� uiÞ � SSOHiðT �
P Þ

� UOPP iðT i
P
�Þ


 �

P

N

i¼1

ð1� uiÞ
;

KIM AND SHIN: EFFICIENT DISCOVERY OF SPECTRUM OPPORTUNITIES WITH MAC-LAYER SENSING IN COGNITIVE RADIO NETWORKS 9

6. Zi is the sample mean of Zi ¼ ðZi
t1
; Zi

t2
; . . . ; Zi

tri
Þ.

Fig. 9. The graph of P i
01ðT i

P Þ and upper bound of T i
P .
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where the numerator comes from (1). In practice, however,

AORmax cannot be achieved since estimates are not perfect.

We will show how much the actual simulation results

deviate from AORmax.
CSL is defined as the average time (in seconds) taken to

find an idle channel upon triggering a channel switch. It

will be used to assess the efficiency of the proposed optimal

sensing-sequencing algorithm.

In addition to the above two metrics, we also study how

close the estimation results would be to the actual channel

parameters and how well estimates track time-varying

channels.

We conducted simulation using Matlab, and all N chan-

nels are assumed to have exponentially distributed ON/

OFF periods. A total of nine heterogeneous channels have

been used ði ¼ 1; 2; . . . ; 9Þ, where ð�i
TOFF

; �i
TON

Þ are indepen-

dently chosen. We tested different channel conditions by

changing the number of channels to be sensed such as

1) three channels (channel 1,2,3), 2) six channels (channel

1; 2; . . . ; 6), and 3) nine channels (channel 1; 2; . . . ; 9). For

each case, a simulation ran for 5,000 seconds and AOR/CSL

were measured. To observe the average behavior, the

simulation under the same condition was repeated 10 times.

To emulate time-varying channel conditions, the chan-

nel parameter �i
TOFF

=�i
TON

decreases/increases its value by

10 percent once every 1,000 seconds. This allows us to

show the efficiency of parameter tracking of our estimation

with a moving time window.

The proposed scheme is comparatively evaluated against

other schemes. For the AOR test, our scheme with sensing-

period optimization is compared to the reference scheme

without sensing-period optimization. For both schemes,

optimal sensing sequencing is turned off. Since there is no

sensing-period adaptation in the reference scheme, it starts

with a randomly chosen initial sensing period, which will

not be adapted. The reference scheme is tested with four

different initial T i
P : 0.05, 0.1, 0.5, and 1.0 seconds ð8iÞ. For

the proposed scheme, the algorithm starts with the initial

T i
P of 0.5 (seconds) and is then adapted and optimized

gradually. This comparison will clearly show the impor-

tance of sensing-period optimization to efficient collection

of more opportunities.

On the other hand, for the CSL test, the proposed
scheme with sensing-period optimization and optimal
channel-sequencing will be compared with another scheme
with sensing-period optimization but without optimal
channel sequencing. The latter scheme is called the
compared scheme. In the compared scheme, a new channel
is discovered only by periodic sensing and there is no on-
demand sensing to discover an idle channel when the
channel needs to be switched. In both cases, CSL is
measured and compared. This helps us evaluate the benefit
of optimal channel sequencing in minimizing the delay of
regaining an idle channel when the channel needs to be
switched. We also study the effect of Tretry on CSL by
trying three different values of the design parameter Tretry:
0.05, 0.1, and 0.5 seconds.

The parameters used for the simulation are shown in
Tables 1, 2 and 3, where E½T i

OFF � and E½T i
ON � are in seconds.

7.2 The Simulation Results

7.2.1 Achieved Opportunity Ratio (AOR)

Fig. 10 plots the AOR of the proposed and reference
schemes. The x-axis represents the number N of licensed
channels and y-axis presents AOR in percent. One hundred
percent indicates that a scheme can discover/utilize all
existing opportunities of

PN
i¼1ð1� uiÞ, which is impossible

to achieve in practice due to the sensing overhead ðSSOHiÞ
and the missed portion of opportunities ðUOPP iÞ. Thus, it
is more meaningful to consider the analytical maximum of
utilizable opportunities ðAORmaxÞ.

The results in the figure show the superiority of the
proposed algorithm. The sensing-period optimization
offers more than 98 percent of the analytical maximum
of discovered spectrum availability regardless of the tested
conditions (N ¼ 3, 6, or 9). The small deviation of the
performance from AORmax comes from three factors:
1) the time for estimates to converge to the time-varying
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TABLE 1
General Evaluation Parameters

TABLE 2
Test-Specific Evaluation Parameters

TABLE 3
Channel-Usage Pattern Parameters

Fig. 10. AOR.
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parameters, 2) the time for sensing periods to be adapted

to optimal ones, and 3) small deviation of estimates from

the actual parameters. It also discovers up to 22 percent

more opportunities than the reference schemes, which do

not offer sensing-period optimization. This improvement

may become greater as the initial T i
P is chosen smaller

than 0.05 seconds or larger than 1.0 seconds. In fact, no

reference scheme can outperform the proposed scheme. As

the initial T i
P is chosen farther away from the optimal one,

the performance of the reference scheme degrades greatly

for two reasons: First, if T i
P grows, SSOHi gets smaller but

UOPP i becomes larger and dominant, resulting in many

missed OFF periods. In contrast, if T i
P decreases, UOPP i

gets smaller and more OFF periods are discovered, but

SSOHi becomes larger, resulting in frequent interrupts in

utilizing discovered opportunities on a channel due to

sensing channels. Hence, in either case, the reference

scheme cannot reach AORmax. One may claim that, in

some cases (for example, initial T i
P ¼ 0:1 at N ¼ 3), the

reference scheme nearly achieved AORmax. The reference

scheme, however, chooses an initial T i
P randomly and

does not optimize it. Therefore, it would be just pure luck

if the reference scheme chooses its initial T i
P close to the

optimal one. In addition, nonadaptive T i
P cannot track

time-varying channel environments and will eventually

yield poor performance if the simulation was run long

enough. On the other hand, the sensing periods in the

proposed scheme are adapted to the optimal values in a

few cycles, and they also track changing optimal values, as

shown in Fig. 11, where adaptation is performed every

Testimation (sec). Dashed lines indicate analytically derived
target optimal sensing periods.

7.2.2 Channel-Switching Latency (CSL)

With respect to CSL, our scheme also outperforms the
compared scheme, which does not perform optimal channel
sequencing, as shown in Fig. 12. The delay spans from 0.08
to 0.35 second in our proposed scheme and becomes smaller
as the number of channels ðNÞ grows (with fixed Tretry),
mainly because there is a higher chance to find an idle
channel with more channels.

For different Tretry values (with fixed N), the compared
scheme’s performance shows no significant difference since
it does not perform any on-demand search at channel
switching nor any re-search with Tretry. In contrast, the
proposed scheme’s CSL increases slightly with Tretry since
ðN � 1Þ channels would be re-searched less frequently.
Although decreasing Tretry could result in a smaller delay in
locating a new idle channel, frequent retries may not
improve CSL significantly because the channels being
rechecked might still be in their ON periods. Therefore,
for an SN with energy constraints, finding a proper Tretry

would be an important factor to consider.

7.2.3 Channel-Parameter Estimation Accuracy

Figs. 13 and 14 show the accuracy of our channel-usage
pattern estimation. Each point in the figure indicates the
estimate produced within an estimation cycle, Testimation.
Dashed lines represent the actual target channel para-
meters. The plot of ûi, as well as �̂T i

OFF
, follows the actual

channel parameters very closely even when they are time
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Fig. 11. Adaptation of sensing periods (N ¼ 3 case: channel 1).

Fig. 12. Channel-switching latency.

Fig. 13. Estimation of ui: N ¼ 3 case.

Fig. 14. Estimation of �i
OFF : N ¼ 3 case.
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varying. The difference between estimates and target values
can be controlled by adapting � and T i

window, which are
related to the number of samples and confidence intervals
of estimators.

8 DEPLOYMENT SCENARIOS

This section discusses how our proposed schemes can be
applied to IEEE 802.11 systems, as well as other licensed
bands.

8.1 Application to IEEE 802.11

First, due to limitations in CSMA, 802.11 cannot be directly
used as a platform of the proposed schemes. The Clear
Channel Assessment (CCA) in CSMA uses energy detection
to determine if there is any signal activity in each time slot
and, hence, cannot differentiate SU signals from PU signals.
As a result, all SUs could be backed off in case there is a PU
signal within a contention period since every SU may think
the channel is occupied by another SU, not by PUs. It is,
however, not desirable because all SUs have to vacate the
channel if there exists any PU.

Hence, the current CCA of 802.11 should be modified in
such a way that, during a quiet period, no random back-off
or data transmission is performed. In addition, the
measurement result (busy or idle) of every slot during the
quiet period must be reported to the MAC layer and the
MAC should also be modified so that the sensing results
can be distributed to and shared by SUs.

To support periodic sensing scheduling on home and
foreign channels, 802.11 MAC should introduce a new
feature to reserve quiet periods. It can be done by using
beacons or regular packets exchanged among SUs.

One example of using the 802.11 platform/protocol to
implement sensing functionalities is described in our recent
paper [15], where we have implemented an incumbent
detection mechanism using a commercial WLAN device
(Atheros) and its open source device driver, MadWiFi. In
terms of sensing periods, a home channel is regularly
monitored once every frame (100 ms) to detect returning
PUs (emulated by a signal generator emitting signals on one
of the WiFi bands). The sensing-period adaptation, how-
ever, can also be implemented by reserving a quiet period
(at MAC level) every n frames and adapting n accordingly.

8.2 Application to Licensed Bands

The proposed sensing-period optimization scheme is
designed to be adaptive to time-varying channel environ-
ments in order to track diverse channel-usage behavior of
heterogeneous applications (for example, voice, video
streaming, Web browsing, etc.). For example, if there exists
a long ON period on a TV band, the proposed adaptive
estimation technique with a moving time-window will
accumulate 1 (ON) samples and its estimates of mean ON/
OFF periods will eventually converge to the maximum/
minimum values. As a result, the channel’s sensing period
is adapted to a larger value since the channel is not likely to
be available.

In case a licensed band has very short ON/OFF periods,
spectrum agility may not bring much benefit due to high
sensing overhead to track the fast ON/OFF state transitions.

Our goal in this paper, however, is to provide a general
sensing framework that can be applied to any application
on any band by providing an adaptive sensing method and
estimation technique.

9 RELATED WORK

There have been a limited number of publications on MAC-
layer sensing. Chou [12] proposed a proactive sensing
algorithm with nonadaptive and randomly chosen sensing
periods in which he did not consider how to maximize the
discovery of opportunities. Zhao et al. [24] proposed a
Decentralized Cognitive MAC (DC-MAC) with reactive
sensing focusingon slotted-timeCSMA-based channel access
with synchronized slot information. Sankaranarayanan et al.
[25] proposed anAd-hoc Secondary systemMAC(AS-MAC),
which is a proactive schemewith slotted-time-based channel
access. However, [24] and [25] did not consider the inherent
trade-off between sensing overhead and discovery of
opportunities. Although Liu and Shankar N. [26] pointed
out the impact of number of samples on confidence of
estimation, they did not recognize the importance of the
upper bound approach in adapting sensing periods, as
discussed in Section 6.

10 CONCLUSION AND FUTURE WORK

We studied two optimization problems: sensing-period
adaptation and optimal sensing-sequencing at channel
switching. Both solutions are used to discover spectrum
opportunities more efficiently by considering the under-
lying ON-OFF channel-usage patterns. The proposed
scheme strives to discover as many utilizable spectrum
opportunities as possible. A channel-usage pattern estima-
tion technique was also proposed by deriving ML estima-
tors and their confidence intervals. The simulation results
demonstrated the advantages of the proposed algorithms
such as robustness of parameter estimation, a larger amount
of discovered channel availability, and a smaller channel-
switching delay.

In the future, we would like to develop a more practical
algorithm that can recognize higher layers’ bandwidth
requirements so that the sensing periods can be intelligently
adapted to meet the requirements. This would be done with
a cross-layer design approach, and it will make the
proposed sensing scheme more effective in real CRNs.
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