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Efficient Discretization of Movement Kernels
for Spatiotemporal Capture–Recapture

M. G. Efford

Spatially explicit capture–recapture (SECR) models treat detection probability as a
function of the distance between each animal and its notional activity centre. Open-
population variants of these models (open SECR) are increasingly used to estimate the
vital rates (survival and recruitment) of spatial populations subject to turnover between
sampling times. If activity centres also move between sampling times then modelling
the movement can reduce bias in estimates of vital rates. The usual movement model in
open SECR is a random walk with step length governed by a probability kernel. Space
is discretized in open SECR for computational convenience, and in some implementa-
tions this includes truncation of the probability kernel. Computations for the movement
submodel are nevertheless very time-consuming owing to the repeated convolution steps
and the need to manage boundary effects. A novel ‘sparse’ discretized kernel is proposed
that greatly reduces fitting time. The sparse kernel was tested by simulation and applied
to two datasets. Differences between models fitted using the sparse and full kernels were
minor and unlikely to matter in practice. The sparse kernel extends the practical limits of
the movement modelling in open SECR to greater dispersal distances and greater spatial
resolution.

Supplementary materials accompanying this paper appear online.

Key Words: Survival estimation; Activity centres; Open population; Random walk;
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1. INTRODUCTION

Open population spatially explicit capture–recapture modelling (open SECR) is used to
estimate the vital rates (survival and recruitment) of populations subject to turnover between
sampling times. In SECR models, the probability of detecting an individual is a function
of the distance from its activity centre to a detector (Borchers and Efford 2008; Royle and
Young 2008).

Movement of activity centres between sampling times has been treated as a randomwalk
with step length governed by a probability kernel (Ergon and Gardner 2014; Schaub and
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Royle 2014). The kernel is assumed to be radially symmetrical, with circular contours of
probability, so the probability density is a function of radial distance g(r). Parameters of the
kernel may be estimated from the truncated sample of movements observed as recaptures on
the study area. Open SECRmodels that include movement have been found to fit better than
static models and to show increased survival (Schaub and Royle 2014; Glennie et al. 2019;
Efford and Schofield 2020). The latter has been attributed to the separation of emigration
and mortality (Ergon and Gardner 2014; Schaub and Royle 2014).

Space is commonly discretized in open SECR for computational convenience. Activity
centres are located at points on a finite square mesh, conceptually the centroids of grid
cells. The movement kernel is then a discrete distribution, the probability of moving from a
point of origin to each point on the mesh. Probabilities may be approximated by evaluating
the centred continuous two-dimensional probability density at each point on the kernel and
dividing by their sum. The maximum likelihood implementation of Efford and Schofield
(2020) truncates the movement kernel to reduce the number of computations. The radius of
truncation is chosen so that the probability of movement approaches zero for points on the
edge and increasing the radius has negligible effect on parameter estimates. Computations
for the movement submodel are nevertheless very time-consuming owing to the repeated
convolution steps and the need to manage boundary effects.

I suggest that a thinned array of kernel points may be sufficient to capture the essence of
dispersal in open SECR. A design using only radial ‘spokes’ greatly reduces fitting time and
extends the practical limits of the method to greater dispersal distances and greater spatial
resolution. Careful weighting of cell probabilities is needed to avoid artefacts. I apply the
sparse kernel to two datasets and simulate other scenarios. Differences between the sparse
and full kernels were minor and unlikely to matter in practice.

2. BACKGROUND

2.1. MODEL FOR MOVEMENT IN OPEN SECR

The state model in open SECR comprises the activity centres of individuals in a spatially
distributed population; the population may change over time as animals are born or die,
and centres may shift. Population processes (recruitment, mortality, and movement between
sampling times) are observed imperfectly andmust be estimated bymodelling the detections
of marked individuals at known locations (detectors). The set of observations of individual
i is denoted ωi , where ωi > 0 indicates an individual detected at least once. Detection is
assumed to be a function of distance between each activity centre xi and a detector. Activity
centres are not observed directly, and our approach is to marginalize over xi . If each xi is
static then the probability of observing ωi for an animal hypothetically present from time b
to time d is

Pr(ωi |b, d,ωi > 0) =
∫

Pr(ωi |b, d,ωi > 0, xi ) f (xi |b, d,ωi > 0) dxi . (1)

Efford and Schofield (2020) may be consulted for detail on Pr(ωi ) and f (xi ). In order to
allow formovement in (1), the animal-specific distribution of location at sampling time j−1
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is projected forwards to time j by convolving the initial distribution with the continuous
2-dimensional kernel κ:

f (x j |x j−1) = f (x j−1) ∗ κ =
∫ ∫

κ(u, v) f (x j−1 − u, y j−1 − v) du dv,

omitting the subscript i on x for clarity.
A model with movement entails multiple integration over the unknown location of the

animal at each sampling occasion. For computational reasons (Efford and Schofield 2020),
we replace integration by summation over points on a square mesh S with spacing �. Then,
for a population of uniform initial density,

Pr(ωi |b, d) =
∑
xb∈S

Pr(ωi |b, d, xb) =
∑
xd∈S

· · ·
∑
xb∈S

Pr(ωi,b|xb)
d∏

j=b+1

Pr(ωi, j |x j ) f (x j |x j−1).

The discretized kernel k(x, y) is defined at an array of points with spacing�, centred on the
origin andwith limits−w and+w on each axis. The limits are chosen so that further increase
has negligible effect on the estimates (Efford and Schofield 2020). Then for x j = (x j , y j ),

f (x j |x j−1) =
+w∑

x=−w

+w∑
y=−w

k(x, y) f (x j−1 − x, y j−1 − y). (2)

This note concerns the effect of applying zero weight to some values of k(), while upweight-
ing other values.

2.2. CONSTRUCTION OF FULL DISCRETIZED KERNEL

The movement probability for each cell of the full discretized kernel might be obtained
by integrating the continuous kernel over the origin and destination cells, but it is sufficient
in most respects to use the function of radial distance evaluated at the cell centre and scaled
by cell area: k(x, y) ≈ g(r)�2, where r = √

x2 + y2. This breaks down at the origin for
some movement kernels (Efford and Schofield 2022); then it is suggested to approximate
the integral of g(r) over the origin cell by F(r0), where F is the cumulative distribution
function corresponding to g(r) and r0 = �/

√
π is the radius of a circle with the same area.

The approximate probabilities are normalized across the kernel.
Table 1 lists the continuous kernel functions used in this paper (see also Cousens et al.

2008Table 5.2; Efford andSchofield 2022). The parameterα controls the scale ofmovement;
β of the bivariate t distribution (BVT) is a shape parameter (half the degrees of freedom).
BVT approaches bivariate normal (BVN) for large β. The bivariate t and bivariate Laplace
(BVE) distributions in Table 1 are not the only bivariate generalizations of these distributions
(Kotz et al. 2001; Kotz and Nadarajah, 2004), but they are the ones used widely in ecology
(Cousens et al. 2008; Nathan et al. 2012).
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Table 1. Circular bivariate movement kernels as a function of radial distance

Kernel Abbreviation Probability density g(r)

Bivariate normal BVN 1
2πα2

exp
(−r2

2α2

)
Bivariate Laplace BVE 1

2πα2
exp

(−r
α

)

Bivariate t BVT β

πα2

(
1 + r2

α2

)−(β+1)

Figure 1. Weighting of cells in sparse kernel. Each point represents an annular sector of the full kernel that has
greater area away from the centre and in the intercardinal directions (filled circles) than in the cardinal directions
(open circles) .

3. SPARSE KERNEL

3.1. CONSTRUCTION OF SPARSE KERNEL

The proposed ‘sparse’ kernel kS(x, y) comprises points on eight ‘spokes’ at increments
of θ = π/4 radians (the cardinal and intercardinal directions) (Fig. 1). Other values of
kS(x, y) are set to zero. Each point in the sparse kernel is weighted by the approximate area
of the annular sector that it represents in the full kernel (Fig. 1). The width of an annular
sector�a is greater along the intercardinal axes by a factor of

√
2, and accordingly�a takes

value � or
√
2� depending on the axis type a. Discarding a �2

a term in the area of each
annular sector, the weighted sparse kernel values are:

kS(r) = θ�arg(r). (3)
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a b

Figure 2. Truncated and discretized bivariate normal kernels. a Full. b Sparse. Relative probability is indicated
by shading (black maximum) .

Table 2. Number of cells in ‘full’ and ‘sparse’ discretized kernels of various sizes (clipped to radius)

Radius (cells)
5 10 15 20 30 40 50 60

Full 97 349 749 1313 2933 5169 8021 11513
Sparse 33 69 101 137 205 273 341 409

The distribution along each radius is related to f (r) = 2πrg(r), the univariate probability
density of distance moved for the bivariate kernel g(r) (e.g. Cousens et al. 2008; Efford and
Schofield 2022). In consequence, the maximumweight lies part way along each radius even
if the full kernel has a maximum at the origin (Fig. 2).

3.2. PROPERTIES OF SPARSE KERNEL

The number of points in the sparse kernel increases linearly with the truncation radius,
rather than with its square, so quite large-diameter kernels become computationally feasible
(Table 2).

The kernel describes a single movement step. When movement is compounded over
multiple steps, location relative to the starting point becomes increasingly uncertain, blur-
ring initial structure. Each step is a convolution of the kernel with the current distribution,
starting at a point. Repeated convolution of the sparse kernel with itself quite soon leads to
a distribution that approaches the full kernel (Fig. 3).

4. SIMULATIONS

Simulations were conducted to compare the performance of full and sparse kernels.
We focus on the Pradel–Link–Barker (PLB) formulation of the open population capture–
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Figure 3. Convolutions of full and sparse bivariate Laplace movement kernels over 1–4 steps. Line is approximate
probability contour of post-dispersal location (P = 0.0002 per cell) of an animal initially at the centre.

recapturemodel that conditions on the number caught to give estimates of per capita survival
φ and recruitment f , but does not directly estimate population size or density (Efford and
Schofield 2020). As the goal was to assess the movement models, the simulated population
was not subject to turnover (φ = 1.0, f = 0.0) and turnover parameters were fixed in
the fitted model. Movement scenarios were bivariate normal (BVN) and bivariate Laplace
(BVE) with median dispersal distance 30 m or 60 m. A notional 8 × 8 trapping grid with
30-m spacing was operated for 5 primary sessions, each comprising 5 secondary sessions.
Spatial detection was governed by a half-normal hazard function with baseline detection
λ0 = 0.1 and spatial scale σ = 30 m. Activity centres (N = 200) were initially distributed
uniformly within an arena that extended the width of the trapping grid (210 m) beyond
the grid in each direction, and the same arena, discretized as 10-m cells, was used as the
habitat mask for model fitting. Models were fitted by maximizing the likelihood in the R
(R Core Team 2021) package ‘openCR’ 2.1.0 (Efford 2021b) using both full and sparse
kernels, each with a radius of 15 or 30 cells (150 m or 300 m) (Supplementary Mate-
rial, Appendix A). The experiment therefore comprised 16 scenarios, each simulated 100
times.

The performance of sparse kernels closely matched that of the full discretized kernels
across all scenarios (Fig. 4). Median CPU time for model fitting with the full kernel was
4.5 to 12.7 times that for the sparse kernel. Sparse kernels showed a faint tendency for
negative bias in the estimate of distance moved, and slightly greater sampling variance
than the full kernel. The only significant aberration was the failure of the BVE model with
both sparse and full kernels of inadequate radius: the same model performed well when
the kernel radius was increased (Fig. 4). Coverage of 95% confidence intervals for the
movement parameter slightly exceeded the nominal level in scenarios with both full and
sparse kernels (coverage 96–98%) except for the two failed BVE scenarios (coverage 81%,
83%).
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Figure 4. Median movement distance estimated from simulated data using full (shaded) and sparse (open) dis-
cretized kernels. Scenarios differed in movement model (bivariate normal BVN, bivariate Laplace BVE) and
median distance (30 or 60 m; horizontal lines). Kernels were truncated at radius of 15 or 30 cells (10-m side). Box
shows upper and lower quartiles .

5. CASE STUDIES

5.1. DATA

We compared the full and sparse kernels using contrasting publicly available robust-
design datasets on a small forest bird and an arboreal marsupial (Efford 2021a).

The ovenbird (Seiurus aurocapilla) is a migratory ground-nesting warbler. The data are
from a multi-species banding study over the 2005–2009 breeding seasons on the Patuxent
Research Refuge, Maryland, USA. Ovenbirds were mistnetted and banded each year for
9 or 10 days at 44 points spaced 30 m apart on a rectangular loop (Dawson and Efford
2009; Efford 2021a). About 20 ovenbirds were caught each year (details in Supplementary
Material, Appendix B). Parameters were constant across years in the fitted model.

The brushtail possum (Trichosurus vulpecula) is invasive in New Zealand forests; adult
possums occupy a stable home range year round. We use the 1996 and 1997 data from a
long-term trapping study in the Orongorongo Valley near Wellington, New Zealand (Efford
and Cowan 2004). Possums were trapped on an array of 167 cage traps at 30-m spacing
and individually ear marked for 5 nights in February, June and September of each year. The
brushtail possum dataset was an order of magnitude larger than the ovenbird dataset (details
in Supplementary Material, Appendix B). Population turnover was strongly seasonal, so
separate levels of survival and recruitment were fitted in each ‘season’ (February–June,
June–September, September–February); other parameters were constant.
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5.2. MODELS

Activity centres were either static between primary sessions or followed a random walk
with step length governed by one of three distributions: BVN, BVE or BVT. We also con-
sidered zero-inflated versions of BVN and BVE (suffix ‘zi’) as described in Efford (2021b).
Discretized kernels were truncated at a radius of 30 cells; for ovenbirds that exceeded the
length of the detector array and for brushtail possums it was more than half its greatest
dimension. Models were fitted by maximizing the likelihood in R package ‘openCR’ ver-
sion 2.1.0 (Supplementary Material, Appendix B).

Spatial PLB models were compared with respect to differences in Akaike’s Information
Criterion,�AIC.The numerically computed rank of theHessianwas sometimes less than the
number of parameters for two-parameter movement models, possibly because parameters
were estimated at or near a boundary of the parameter space (Viallefont et al. 1999).

5.3. RESULTS

Sparse kernels fit consistently faster than full kernels, on average by a factor of 9 for the
ovenbird data and 14 for the brushtail possum data (Table 3). The maximized log likelihood
was nearly identical for sparse and full kernels fitted to the ovenbird dataset and, as a result,
so were the relative AIC values within each kernel type (Table 3a). The maximized log
likelihood for the sparse kernel movement models fitted to the brushtail possum dataset
was consistently lower than the matching full-kernel log likelihood (Table 3b). However,
the relative AIC values within each kernel type were similar, and using the sparse kernel
consistently would lead to nearly the same AIC model weights.

Modelling movement increased estimates of survival for both datasets and there were no
systematic differences between the full and sparse kernels (parameter estimates are tabulated
in the SupplementaryMaterial). Rank deficiency was apparent in three ovenbird models and
one brushtail possum model. The BVT shape parameter was not estimated well in either
case, but BVTwas nevertheless the AIC-best model for brushtail possums. The zero-inflated
BVN and BVE models with each kernel type produced identical estimates for ovenbirds
because the fitted kernels were essentially flat away from the origin.

6. DISCUSSION

The efficiency of the sparse discretization makes feasible the fitting by maximum likeli-
hood of open SECR movement models that use large-radius truncated kernels, measured in
the number of cells. This enables a greater absolute span, potentially including the whole
study area, or smaller cells, for greater spatial resolution. A large span is desirable when
the movement kernel has a long tail, as demonstrated in the simulations with the bivariate
Laplace distribution. Faster model fitting enables the bivariate normal kernel to be more eas-
ily compared with realistic, longer-tailed options, such as the bivariate Laplace and bivariate
t distributions used in the case studies.

It is perhaps surprising that the kernel can be reduced to so few points. In open SECR
we are concerned with estimating population-level demographic parameters, not tracing
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Table 3. Comparative fit of open SECR movement models using full and sparse discretized kernels. np number
of parameters in model (*indicates reduced rank of fitted model). �AIC is the difference in AIC from
the smallest AIC of each kernel type. φ̂ is the estimated survival rate (φ̂1 February–June rate scaled to
full year for brushtail possums). ‘Time’ is the ratio of CPU time for fitting the full and sparse models

Kernel np logLik �AIC φ̂ Time
Full Sparse Full Sparse Full Sparse

(a) Ovenbird
Static 4 −1448.7 36.1 35.7 0.529 –
BVN 5 −1433.7 −1433.7 8.0 7.8 0.652 0.647 8.6
BVE 5 −1431.9 −1432.0 4.4 4.4 0.661 0.655 7.4
BVT 6* −1429.8 −1430.0 2.2 2.2 0.666 0.660 8.8
BVNzi 6* −1428.7 −1428.8 0.0 0.0 0.740 0.735 9.4
BVEzi 6* −1428.7 −1428.8 0.0 0.0 0.740 0.735 8.9
(b) Brushtail possum
Static 8 −12447.0 694.7 657.2 0.698 –
BVN 9 −12341.8 −12347.5 486.3 460.1 0.698 0.698 13.2
BVE 9 −12250.5 −12270.7 303.7 306.5 0.699 0.699 13.2
BVT 10* −12097.6 −12116.4 0.0 0.0 0.712 0.712 15.1
BVNzi 10 −12104.5 −12123.6 13.6 14.2 0.712 0.711 14.2
BVEzi 10 −12101.0 −12120.0 6.7 7.1 0.712 0.711 13.6

the locations and movements of individuals. While movement can be an important factor,
the spatial resolution of data from passive detectors is usually poor. The movement model
typically has only one or two parameters, and even the large brushtail possum dataset
could barely support estimation of a second parameter (Table 3; Supplementary Material,
Appendix B). The location of an animal’s activity centre is uncertain even in the primary
sessions that it is detected, and the probability distribution after a single step is a convolution
that blurs the sharp lines of the sparse kernel. Further, the locations of marked animals
missing for one or more sessions are imputed by convolution as in Fig. 3 (Efford and
Schofield 2020). The empirical results are therefore not in conflict with intuition.

Explicit truncation of themovement kernel is not required for open SECR in somemodes.
These include Markov chain Monte Carlo estimation in which the locations of individuals
are updated from a continuous movement kernel (e.g. Ergon and Gardner 2014), and the
cell-by-cell bivariate normal maximum likelihood method used by Glennie et al. (2019).
Maximum likelihood using an explicitly truncated and discretized kernel has some inherent
advantages: the kernel may take a shape other than bivariate normal, and model fit may be
compared in a straightforward way using the log likelihood and AIC.

The sparse discretization has potential limitations that must be noted. The slight negative
bias of estimated movement suggested by the simulation results is unlikely to have practical
importance. We did not test the sparse kernel in highly structured habitats. The arbitrary
exclusion of some possible destinations from the vicinity of each original location may
interact with habitat structure to result in biased parameter estimates. We do not expect this
to be a problem in practice because of the large uncertainty in the actual location of each
activity centre, and the smoothing effect of convolution over time (Fig. 3). The differences in
maximized log likelihood for the brushtail possumdataset appear to reflect the irregularity of
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the detector array on one edge: the log likelihoods of ‘full’ and ‘sparse’ models fitted to data
simulated on a rectangular grid with the estimated parameters were within one unit (unpubl.
results). Fitting a model with symmetrical (rectangular) habitat mask did not remove the
effect.

Some applications of open SECR have used movement kernels specified in terms of
independent marginal distributions on the x- and y-axes, particularly independent Laplace
and t distributions. For non-normal marginal distributions the resulting bivariate probability
contours are non-circular (Efford and Schofield 2022). These are not strictly compatible
with the sparse kernel specified here, which assumes circularity.
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