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Abstract Uncertain data management, querying and mining have become important
because the majority of real world data is accompanied with uncertainty these days.
Uncertainty in data is often caused by the deficiency in underlying data collecting
equipments or sometimes manually introduced to preserve data privacy. This work
discusses the problem of distance-based outlier detection on uncertain datasets of
Gaussian distribution. The Naive approach of distance-based outlier on uncertain
data is usually infeasible due to expensive distance function. Therefore a cell-based
approach is proposed in this work to quickly identify the outliers. The infinite nature
of Gaussian distribution prevents to devise effective pruning techniques. Therefore
an approximate approach using bounded Gaussian distribution is also proposed.
Approximating Gaussian distribution by bounded Gaussian distribution enables an
approximate but more efficient cell-based outlier detection approach. An extensive
empirical study on synthetic and real datasets show that our proposed approaches
are effective, efficient and scalable.

Keywords Distance-based outlier detection · Cell-based approach · Uncertain data ·

Bounded Gaussian distribution

1 Introduction

Outlier detection is a key problem in data mining. It has applications in many
domains including credit card fraud detection [5], network intrusion detection [17],
environment monitoring [9], medical sciences [2] etc. Several definitions of outlier
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have been given in past, but there exists no universally agreed upon definition.
Hawkins [10] defines an outlier as an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism.
Barnett and Lewis [6] mentioned that an outlying observation, or outlier, is one that
appears to deviate markedly from other members of the sample in which it occurs.

In statistics, one can find over 100 outlier detection techniques. These have been
developed for different data distributions, parameters, desired numbers of outliers
and types of expected outliers [6, 18]. However, most statistical techniques are not
useful due to several reasons. For example, most statistical techniques are univariate,
in some techniques parameters are difficult to determine, and in other techniques
outliers cannot be obtained until the underlying data distribution is known. In order
to overcome these problems, several distance-based outlier detection approaches
have been proposed in data mining [14, 15, 21, 31].

Most of the outlier detection techniques proposed in data mining are suitable only
for deterministic data. However, due to the increasing usage of sensors, RFIDs and
similar devices for data collection these days, data contains certain degree of inherent
uncertainty [8, 11, 25]. The causes of uncertainty may include but are not limited to
limitation of equipments, absence of data, inconsistent supply voltage and delay or
loss of data in transfer [25]. In order to get reliable results from such data, uncertainty
needs to be considered in calculation. Therefore this work presents distance-based
outlier detection technique on uncertain data.

Motivating example—(Identifying malfunctioning sensors): As a result of advance-
ment in technology, wireless sensor networks (WSNs) are often deployed for en-
vironment monitoring, animal tracking, flood detection, and weather forecasting.
Usually a WSN covers an area of interest where each sensor keeps reporting its
measures. Due to calibration errors, short-circuited connections, damaged sensors
and low battery voltage, sensor reported measurements may be different from
true measurements [25]. In other words, such measurements are uncertain values.
Therefore commercial sensor producers always mention accuracy (measurement
error) on their products. Table 1 lists maximum measurement errors of some com-
mercially available sensors. Detecting outliers from such uncertain values is helpful
in identifying malfunctioning or isolated sensors in the WSN. This paper assumes
that uncertainty in the values obtained from a sensor follows Gaussian distribution.

In order to obtain distance-based outliers from uncertain datasets, distance needs
to be calculated between uncertain data objects. However, the computation of dis-
tance between uncertain data objects is very costly. Therefore a cell-based approach
is proposed in this paper to quickly identify the outliers. The proposed cell-based
approach can identify and prune the cells containing only inliers. Similarly it can
also detect the cells containing outliers. Although the cell-based technique is very
effective, yet it may leave some cells undecided, i.e., they are neither identified as
inlier cells nor as outlier cells. For the uncertain data objects in undecided cell,
an object-wise bounds pruning technique is proposed. Finally nested-loop method
is used for the uncertain objects which remain undecided after two prunings. The
infinite nature of Gaussian distribution prevents effective pruning. Therefore an
approximate approach of outlier detection is also proposed. The basic idea is that
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Table 1 Uncertainty in commercial sensor measurements

Company Sensor type Model Parameter Max. measurement

error (%)*

Stevens [27] Weather WXT520 Air temperature 1

Barometric pressure 0.2

Relative humidity 5

Wind speed 5

Wind direction 3

Pyranometer LI200SA Solar radiation 5

Vaisala [30] Weather HMP155 Air temperature 0.1

Barometric pressure 0.05

WMT700 Relative humidity 1.7

Wind speed 2

PTB110 Wind direction 0.55

Pyranometer CM6B Solar radiation 2

Xylem [33] Weather WE100 Air temperature 1

WE550 Barometric pressure 0.2

WE570 Relative humidity 5

WE600 Wind speed 5

WE700 Wind direction 3

Pyranometer WE300 Solar radiation 5

*For some parameters, percentages are calculated from their respective maximum error values

the Gaussian distribution can be appropriately approximated by bounded Gaussian
distribution [22], and the outlier detection computation is less costly for bounded
Gaussian distribution since the degree of uncertainty is bounded. Actually this
bounded distribution allows to introduce strong pruning techniques at a small cost
of accuracy. Hence this work presents two cell-based approaches of distance-based
outlier detection on uncertain data. The exact approach is denoted by Conventional

Gaussian and the approximate approach is denoted by Bounded Gaussian in the
rest of the paper. Since each approach handles different nature of distribution (i.e.,
unbounded and bounded), different pruning techniques are proposed for both. Table
2 lists the pruning techniques proposed for both the approaches.

The rest of the paper is organized as follows. Section 2 surveys the previous
work related to ours. Section 3 discusses the basic concepts and formally defines
distance-based outlier detection on uncertain datasets. The conventional Gaussian
approach is presented in Section 4. In Section 5, the bounded Gaussian approach
of distance-based outlier detection on uncertain data is given. Section 6 contains an
extensive experimental evaluation that demonstrates the effectiveness, efficiency and
scalability of the proposed techniques. Section 7 concludes our paper.

Table 2 Pruning techniques
for distance-based outlier
detection approaches

Pruning techniques Conventional Bounded

Gaussian Gaussian

approach approach

Cell-based pruning
√ √

Simple object-wise distance pruning ×
√

Object-wise bounds pruning
√ √
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2 Related work

Distance-based outlier detection approach was introduced by Knorr et al. [15]. They
defined a point p to be an outlier if at most M points are within D-distance of
p. They also presented a cell-based approach to efficiently compute the distance-
based outliers. Ramaswamy et al. [23] formulated distance-based outliers as the top-t
data points whose distance to their κth nearest neighbour is largest. Angiulli et al.
in [3] gave a slightly different definition of outliers than [23] by considering the
average distance to their k nearest neighbours. Beside these, there are some works
on the detection of distance-based outliers over stream data including [4, 16] and
[13]. These works are based on the definition of distance-based outliers by Knorr
et al. Furthermore, [4] gave an approximate algorithm to reduce the memory space
required by its exact counterpart. Later on [16] extended [4] by adding the concepts
of multi-query and micro-cluster based distance-based outlier detection. However all
these approaches were given for deterministic data and cannot handle uncertain data.

Recently a lot of research has focused on managing, querying and mining of
uncertain datasets [1, 31]. The problem of outlier detection on uncertain datasets
was first studied by Aggarwal et al. [1]. According to [1], an uncertain object o is
a density-based (δ, η) outlier, if the probability of existence of o in some subspace
of a region with density at least η is less than δ. In order to compute (δ, η) outliers,
firstly density of all subspaces needs to be computed and then the η-probability of
each o in the dataset is computed to tell if o is an outlier. Since this computation is
very expensive, a sampling procedure is used to approximate the η-probability. In
contrast to [1], this paper addresses the detection of distance-based outliers in full
space, where the distance between two uncertain objects is computed by Gaussian
difference distribution [32]. Therefore, the problem definition is quite different from
[1]. Moreover, the cell-based approach is used to prune larger portion of dataset
objects. Experiments in Section 6 prove that only fraction of dataset objects require
the evaluation of actual distance function, reducing the overall cost of computation.

Wang et al. [31] also proposed outlier detection on uncertain data. However their
work focus on the uncertainty in the existence of a sensor at a certain location.
In contrast, in this paper, the uncertainty lies in the measurements obtained from
sensors. Each tuple in [31] is associated with the confidence of appearing at a
corresponding location. In this work, each uncertain object is represented by a
Gaussian PDF, with an assumption that sensor measurements may deviate from true
values due to the reasons discussed in Section 1.

This paper is an extended version of our previous paper [24]. In [24], a cell-based
approach of distance-based outlier detection on uncertain data is given. For the
un-pruned objects from the cell-based approach, nested-loop is used. However, in
this work two different cell-based approaches (an accurate and an approximate) are
given. Moreover, pruning techniques are proposed for the un-pruned objects from
respective cell-based pruning techniques. Main contributions of this paper include an
approximate approach of outlier detection using bounded Gaussian distribution (see
Section 5). The extension also includes experiments comparing the effectiveness of
the proposed approach with the approach in Knorr et al. [15] work and an extensive
empirical study on performance using larger real and synthetic datasets. To the best
of our knowledge, distance-based outlier detection on uncertain datasets of Gaussian
distribution has not been studied by other researchers.
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3 Distance-based outliers in uncertain datasets

The distance-based outlier detection approach was introduced by Knorr et al. [15].
They defined distance-based outliers as follows.

Definition 1 An object o in a dataset DB is a distance-based outlier, if at least
fraction p of the objects in DB lies greater than distance D from o.

Definition 1 was given for deterministic datasets. However, the focus of this work
is uncertain datasets whose attribute values are uncertain. This paper assumes that
the uncertainty is given by Gaussian distribution. The Gaussian distribution is chosen
for representing uncertainty, because in statistics the Gaussian distribution (or the

normal distribution) is the most important and the most commonly used.
In this paper, k-dimensional uncertain objects oi are considered, with attribute

= (xi,1, ..., xi,k)
T following Gaussian PDF with mean −→μi = (μi,1, ..., μi,k)

T and

co-variance matrix �i = diag(σ 2
i,1, ..., σ

2
i,k), respectively. Namely, the vector is

a random variable that follows Gaussian distribution ∼ (−→μi , �i). Note that
−→μi denotes the observed coordinates (attribute values) of object oi. The complete
database consists of a set of such objects, DB = {o1, ..., oN}, where N = | DB| is the
number of uncertain objects in DB. Hence Definition 1 can be extended naturally
for uncertain datasets as follows.

Definition 2 An uncertain object o in a database DB is a distance-based outlier, if
the expected number of objects oi ∈ DB (including o itself) lying within D-distance
of o is less than or equal to threshold θ = N(1 − p), where N is the number of
uncertain objects in database DB, and p is the fraction of objects in DB that lies
farther than D-distance of o.

Hence the set of distance-based outliers in DB is defined as follows.

(1)

The objects that lie within the D-distance of an object o are called D-neighbours

of o, and the set of D-neighbours of o is denoted by DN(o). In order to find distance-
based outliers in DB, the distance between uncertain objects needs to be calculated.
Fortunately the distance between two objects which follow the Gaussian distribution
is given by another distribution known as the Gaussian difference distribution [32].

Let and be two independent k-dimensional normal random vectors

with means −→μi = (μi,1, ..., μi,k)
T and −→μ j = (μ j,1, ..., μ j,k)

T and diagonal covari-
ance matrices �i = diag(σ 2

i,1, ..., σ
2
i,k) and � j = diag(σ 2

j,1,..., σ
2
j,k), respectively. Then
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− = (−→μi − −→μ j, �i + � j) [32]. Let Pr(oi, o j, D) denotes the probability that

o j ∈ DN(oi). Then,

(2)

where R is a sphere with centre (−→μi − −→μ j) and radius D. Lemma 1 gives the 2-
dimensional expression for Pr(oi, o j, D). However, Pr(oi, o j, D) expressions for
higher dimensional cases can be derived using (2).

Lemma 1 Let oi and o j be two 2-dimensional uncertain objects with attributes ∼
(−→μi , �i) and ∼ (−→μ j, � j), where −→μi = (μi,1, μi,2)

T , −→μ j = (μ j,1, μ j,2)
T , �i =

diag(σ 2
i,1, σ

2
i,2) and � j = diag(σ 2

j,1, σ
2
j,2). The Pr(oi, o j, D) is given as follows.

Pr(oi, o j, D) =
1

2π
√

(σ 2
i,1 + σ 2

j,1)(σ
2
i,2 + σ 2

j,2)

×
∫ D

0

∫ 2π

0

exp

{

−

(

(r cos θ − α1)
2

2(σ 2
i,1 + σ 2

j,1)
+

(r sin θ − α2)
2

2(σ 2
i,2 + σ 2

j,2)

)}

r dθ dr ,

(3)

where α1 = μi,1 − μ j,1 and α2 = μi,2 − μ j,2.

Proof See Appendix. ⊓⊔

This paper assumes that σi,1 = σ j,1 = σi,2 = σ j,2 = σ , and let α2 = α2
1 + α2

2 . Hence
the (3) is simplified as follows.

Pr(oi, o j, D) =
1

4πσ 2

∫ D

0

∫ 2π

0

exp

{

−1

4σ 2

(

r2 − 2αr cos θ + α2
)

}

r dθ dr. (4)

Note that Pr(oi, o j, D) only depends on α2 and not on the coordinates of oi and o j.
Hence Pr(oi, o j, D) is denoted by Pr(α, D) when there is no confusion. Computing
this probability is usually very costly, and needs to be avoided as much as possible
during the computation of outliers.

In the following part, the discussion focuses on 2-dimensional case. However, the
discussion can be extended to higher dimensional cases without loss of generality. In
addition, this work assumes σi,1 = σ j,1 = σi,2 = σ j,2 = σ to keep discussion simple.

The Naive approach of distance-based outlier detection uses Nested-loop. For
each object oi ∈ DB, it requires computation of the expensive distance function for
every other object in the DB until oi can be decided as an outlier or inlier. In the
worst case, this approach requires O(N2) evaluations of the distance function, which
is very expensive. For the Naive approach algorithm, please refer to our previous
work [24].
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4 Cell-based outlier detection

Due to computationally expensive distance function, the naive approach is infea-
sible. Hence two pruning techniques are proposed in this section. These pruning
techniques are used for detecting distance-based outliers without the need of actual
distance function.

4.1 Cell-based pruning

The cell-based technique is proposed to quickly identify and prune cells containing
only inliers. Similarly, it can also detect cells containing outliers like the cell-based
approach of Knorr et al. [15]. Since the cell-based approach by Knorr et al. deals
with deterministic data only, they considered two cell layers that lie within certain
distances from a target cell for its pruning. However, in this work, objects are
infinitely uncertain, hence all the cell-layers in the Grid need to be considered for
pruning of the target cell.

4.1.1 Grid structure

In order to identify distance-based outliers using cell-based technique, each object
oi ∈ DB is mapped to a k-dimensional space that is partitioned into cells of length
l. (The cell length is discussed in Section 4.1.4). Let Cx,y be any cell in the Grid ,
where positive integers x and y denote the cell indices. The layers (L1, ..., Ln) of
Cx,y ∈ are the neighbouring cells of Cx,y as shown in Figure 1 and are defined as
follows.

L1(Cx,y) = {Cu,v |u = x ± 1, v = y ± 1, Cx,y �= Cu,v}.

L2(Cx,y) = {Cu,v |u = x ± 2, v = y ± 2, Cu,v /∈ L1(Cx,y), Cx,y �= Cu,v}.

L3(Cx,y), ..., Ln(Cx,y) are defined in a similar way. The considerable maximum
number of layers depends on the position of the target cell in the Grid. A cell Cx,y in

can have the maximum number of layers if it exists at the corner of the Grid and

Figure 1 Cell layers.
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the minimum number of layers if it exists at the centre of the Grid. Let n denotes the
maximum number of layers; then the minimum number of layers is given by ⌈n/2⌉.

4.1.2 Cell bounds

Like the cell-based approach by Knorr et al. [15], goal of the proposed cell-based
technique is to identify and prune cells which are guaranteed to contain only inliers
or outliers. A cell Cx,y can be pruned as an “outlier cell” if the expected number of D-
neighbours for any object in Cx,y according to Definition 2 is less than or equal to the
threshold θ . Similarly a cell can be pruned as an “inlier cell” if the expected number
of D-neighbours for any object in cell Cx,y is greater than the θ . Hence bounds on
the expected number of D-neighbours of Cx,y ∈ are defined to prune them. The
upper and lower bounds bind the possible expected number of D-neighbours without
expensive object-wise distance computation.

Upper bound The upper bound of a cell Cx,y, U B(Cx,y), binds the maximum
expected number of D-neighbours in grid for any object in cell Cx,y. Since the
Gaussian distribution is infinite, two objects in the same cell may reside at the same
coordinate. Hence the maximum expected number of D-neighbours in Cx,y for any
object in cell Cx,y itself is equal to the number of objects in Cx,y, denoted by N(Cx,y).

Similarly, the maximum expected number of D-neighbours in cells in layer
Lm(Cx,y) (1 ≤ m ≤ n) for any object in Cx,y can be obtained as follows.

n
∑

m=1

N(Lm(Cx,y)) ∗ Pr((m − 1)l, D),

where N(Lm(Cx,y)) denotes the number of objects in layer Lm(Cx,y). Figure 2 shows
how the α = (m − 1)l values are obtained for the upper bounds. Hence U B(Cx,y) of
Cx,y ∈ is derived as follows.

U B(Cx,y) = N(Cx,y) +
n
∑

m=1

N(Lm(Cx,y)) ∗ Pr((m − 1)l, D).

Lower bound The lower bound of a cell Cx,y, LB(Cx,y), binds the minimum
expected number of D-neighbours in grid for any object in cell Cx,y. When
two objects in the same cell reside at the opposite corners, the probability that
they are D-neighbours takes the minimum value. Hence the minimum expected
number of D-neighbours in Cx,y for any object in cell Cx,y itself is equivalent to

1 + (N(Cx,y) − 1) ∗ Pr(
√

2l, D).
Similarly, the minimum expected number of D-neighbours in cells in layer

Lm(Cx,y) (1 ≤ m ≤ n) for any object in Cx,y can be obtained as follows.

n
∑

m=1

N(Lm(Cx,y)) ∗ Pr((m + 1)
√

2l, D).
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Figure 2 shows how the α = (m + 1)
√

2l values are obtained for the lower bounds.
Hence LB(Cx,y) of Cx,y ∈ is derived as follows.

LB(Cx,y) = 1 + (N(Cx,y) − 1) ∗ Pr(
√

2l, D)

+
n
∑

m=1

N(Lm(Cx,y)) ∗ Pr((m + 1)
√

2l, D).

Lookup table The bounds discussed above are required by each Cx,y ∈ for
pruning. Each bound computation requires evaluation of the costly distance function
Pr(α, D) and the object counts of respective cell Cx,y and its layers Lm(Cx,y).
The number of distance function computations for the bounds calculation can be
reduced by pre-computing Pr(α, D) values for Cx,y bounds. Since the Pr(α, D) values
are decided only by the α-values and are independent from the locations of Cx,y,

Pr(α, D) values need to be computed only for α = m
√

2l (1 ≤ m ≤ n + 1) and α = ml

(0 ≤ m ≤ n − 1). The pre-computed values are stored in a lookup table to be used by
the cell-based pruning technique.

4.1.3 Cell pruning

Having defined bounds and lookup table, a cell Cx,y ∈ can be pruned as an inlier
cell or identified as an outlier cell as follows.

If LB(Cx,y) is greater than θ , Cx,y cannot contain outliers. Hence it can be pruned
as an inlier cell. On the other hand if U B(Cx,y) is less than or equal to θ , Cx,y is
identified as an outlier cell. Lines 1–12 in Algorithm 1 show the cell-based pruning
technique.

4.1.4 Cell length l

Due to complexity of the distance function used in this paper, it is not possible to
derive a single cell length l suitable for all the combinations of D and standard

Figure 2 Cell and layers
bounds
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Algorithm 1 Cell-based outlier detection

Input: DB, D, p, l

Output: Set of distance-based outliers
1: Create cell grid depending upon dataset DB values and cell length l;
2: Initialize Countk of each cell Ck ∈ ;
3: Map each object o in DB to an appropriate Ck, and increment Countk by 1;
4: θ ← | DB|(1 − p), = {}; (θ correspond to the threshold)

/*Bounds computation*/
5: Compute Pr(α, D) values for the computation of bounds as discussed in

Section 4.1.2;
/*Pruning cells using bounds*/

6: for each non-empty Ck in do

7: if LB(Ck) > θ then

8: Ck is an inlier cell, mark Ck green. GOTO Next Ck;
9: else if U B(Ck) ≤ θ then

10: Ck is an outlier cell, add objects of Ck to , mark Ck black. GOTO Next Ck;
11: end if

12: end for

/*Object-wise pruning*/
13: = ∪ ObjectWisePruning( , D, θ);

/*Unpruned objects processing*/
14: for each object oi in non-empty, uncoloured Ck ∈ do

15: if oi is uncoloured then compute ENoi (expected number of D-neighbours of
oi) using objects in Ck and higher layers of Ck ∈ ;

16: if ENoi ≤ θ then oi is outlier. Add oi to ;
17: end for

18: return ;

deviations. Very small cell-length increases the number of cells in the grid expo-
nentially and hence the execution time of the algorithm. On the other hand, larger
cell length reduces the pruning capability of cell-based technique. Therefore a few
cell lengths need to be checked before reaching the appropriate cell length. A
good starting point of l that is found through experiments is the standard deviation,
i.e., l = σ .

4.2 Object-wise bounds pruning

Although the cell-based technique is very effective, yet it may leave some cells
undecided, i.e., they are neither pruned as inlier cells nor are identified as outlier
cells. For the pruning of uncertain data objects in such cells an object-wise bounds
pruning technique is proposed. This technique helps in the computation of expected
D-neighbours for the un-pruned objects from the cell-based approach. Using this
approach, a lot of expensive distance function computations may be avoided.

In this technique, Pr(α, D) is pre-computed for some α values. In this work,
Pr(α, D) is computed for several α values between 0 and D + 3σ . α is chosen in
this range because Pr(α, D) values for α > D + 3σ are negligibly small and are
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usually not effective in pruning. The set of pre-computed Pr(α, D) values is denoted
by ψ and nbounds = |ψ |. These pre-computed values serve as the upper and the
lower bounds of the probability Pr(α, D) for objects oi and o j. These pre-computed
lower and upper bounds are denoted by Pr(α, D)LB and Pr(α, D)U B, respectively.
Procedure 1 shows the object-wise bounds pruning.

Procedure 1 ObjectWisePruning

Input: , D, θ

Output: Set of distance-based outliers
1: = {};
2: for each non-empty uncoloured Ck in do

3: for each oi in Ck do

4: for each o j in D3σ(Ck)

(D3σ(Ck) corresponds to the cells within D + 3σ distance of cells Ck) do

5: if 0 < α ≤ D + 3σ then

6: Update ENoiLB and ENoiU B using precomputed bounds;
(ENoiLB & ENoiU B corresponds the lower and upper bounds of ex-
pected number of D − neighbours of oi respectively.)

7: end if

8: end for

9: if ENoiLB > θ then oi is inlier, mark oi green. GOTO next oi;
10: else if ENoiU B ≤ θ then oi is outlier, mark oi black. Add oi to ;
11: end for

12: end for

13: return ;

For example, let D = 90 and σ = 10, then D + 3σ = 120. Therefore Pr(α, D) val-
ues need to be computed for 0 < α ≤ 120. Assuming that Pr(α, D) is pre-calculated
for α = 20, 40, 60, 80, 100, 120 then ψ = {0.99, 0.9, 0.75, 0.5, 0.2, 0.001}. If α = 70 for
oi and o j then Pr(70, D)U B = 0.75 and Pr(70, D)LB = 0.5.

4.3 Un-pruned objects processing and grid file index

There may be some undecided objects, i.e., they are neither pruned as inliers nor
identified as outliers, even after the cell-based pruning and the object-wise bounds
pruning. For all such uncertain objects, nested-loop computation follows. Usually
the number of such objects is very small, yet it can be expensive due to the costly
distance function. According to the distance function, Pr(oi, o j, D) is higher when
oi and o j are close. Hence for an undecided object oi, if o j ∈ DB nearer to oi are
chosen earlier for the computation of expected D-neighbours of oi, the number of
Pr(oi, o j, D) computations can be reduced. If an un-pruned object oi is inlier, it will
be pruned by considering only nearer objects. Since the objects are already in grid
structure, it can be utilized as grid-file index [20] with no additional indexing cost
to retrieve nearer objects for the undecided objects. This helps in deciding the un-
pruned objects faster than using no index at all. Lines 14–17 of Algorithm 1 shows
the processing of such objects.
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5 Cell-based outlier detection using bounded Gaussian uncertainty

Despite the techniques presented in Section 4, unbounded nature of the Gaussian
distribution prevents from computing outliers very efficiently. Hence in this sec-
tion an approximate distance-based outlier detection approach using the bounded
Gaussian distribution is presented. Approximating the Gaussian distribution by the
bounded Gaussian distribution enables an approximate but more efficient cell-based
pruning technique along with simple object-wise distance and bounds pruning tech-
niques. According to this paper’s assumption, attributes of uncertain objects follow
the Gaussian distribution. Therefore according to the 3-sigma rule there is a 95.45 %
chance that uncertain objects’ attribute values lie within two standard deviations of
the observed values and 99.73 % chance that the values lie within three standard
deviations of the observed values [22]. Hence the conventional unbounded Gaussian
distribution can be normalized within certain boundaries to increase efficiency of
outlier detection at a small cost of accuracy.

Given a conventional Gaussian function (x1, x2) with mean −→μ = (μ1, μ2)
T and

co-variance matrix � = diag(σ 2, σ 2), the bounded Gaussian distribution (x1, x2)

can be defined following the practise of [28], as follows.

(5)

where o.ur denotes the uncertainty region of the bounded Gaussian distribution. This
paper assumes that the uncertainty region is a sphere with centre at (μ1, μ2)

T and
radius rad. Note that,

When two objects oi and o j follow the bounded Gaussian distribution, Pr(oi, o j, D)

is given as follows.

(6)

Hence an uncertain dataset DB = {o1, ..., oN} with the conventional Gaussian
distribution can be approximated by the bounded Gaussian distribution. Namely,

DBb = {o1, ..., oN} denotes a set of objects whose attributes = (xi,1, xi,2)
T follow

the bounded Gaussian distribution with mean −→μi = (μi,1, μi,2)
T and co-variance

matrix �i = diag(σ 2, σ 2) respectively and radius rad.

5.1 Cell-based pruning for bounded Gaussian

Approximating the Gaussian distribution by the bounded Gaussian distribution
enables better cell-based pruning. The proposed technique prunes cells containing
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only inliers and identify outlier cells just like the cell-based approach for conventional
Gaussian distribution. In contrast to computing bounds using many layers in the
conventional Gaussian cell-based approach, cell size is set in such a way that a target
cell can be pruned by just counting objects within the target cell and its neighbouring
layers. Moreover, no pre-computation is required for the cell-based technique using
the bounded Gaussian uncertainty.

5.1.1 Grid structure for bounded Gaussian

In order to identify distance-based outliers using the cell-based technique, each
object oi ∈ DBb is mapped to a k-dimensional space that is partitioned into cells of
length l (The cell length is discussed in Section 4.1.4). Let Cx,y be a cell in the Grid ,
then cells in region R1(Cx,y) are those which completely lie within D − 2rad distance

of the Cx,y, including the Cx,y itself, as shown in Figure 3. Let nR1 =
⌊

D−2rad
l

⌋

− 1,
then the region R1(Cx,y) is derived as follows.

R1(Cx,y) =
{

Cu,v |u = x ± nR1, v = y ± nR1,

√

((|u| + 1)l)2 + ((|v| + 1)l)2 < D − 2rad, Cu,v �= Cx,y

}

.

The number of cells in the region R1(Cx,y) vary depending upon nR1. Note that
the R1(Cx,y) satisfies the following property.

Property 1 If Cu,v ∈ R1(Cx,y), then the objects oi ∈ Cx,y and o j ∈ Cu,v are at most
D − 2rad distance apart.

From Property 1, the oi ∈ Cx,y and the o j ∈ R1(Cx,y) are guaranteed to be D-
neighbours mutually, hence the Pr(oi, o j, D) is always equal to 1. Cells in region

Figure 3 Bounded Gaussian
cell grid
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R2(Cx,y) are those which fall within D + 2rad distance of the Cx,y. Let nR2 =
⌈

D+2rad
l

⌉

, then the region R2(Cx,y) is derived as follows.

R2(Cx,y) =
{

Cu,v |u = x ± nR2, v = y ± nR2,

√

((|u| − 1)l)2 + ((|v| − 1)l)2 < D + 2rad, Cu,v /∈ R1(Cx,y), Cu,v �= Cx,y

}

.

Note that the R1(Cx,y) and the R2(Cx,y) satisfy following property.

Property 2 If Cu,v is neither in R1(Cx,y) nor in R2(Cx,y) and Cu,v �= Cx,y, then the
objects oi ∈ Cx,y and o j ∈ Cu,v are greater than D + 2rad distance apart.

From Property 2, it can be guaranteed that the oi ∈ Cx,y and o j ∈ Cu,v are greater
than D + 2rad distance apart, hence the Pr(oi, o j, D) is always equal to 0. Two more
types of cells help in pruning. These cells are named “red cells” and “pink cells”

and are denoted by Rr(Cx,y) and Rp(Cx,y) respectively. Let nR
diag
1 =

⌊

D−2rad

l
√

2

⌋

− 1

denotes number of diagonals within D − 2rad distance of a cell Cx,y. Then the red
and the pink cells are defined as follows.

Rr(Cx,y) =
{

Cu,v |u = x ± nr, v = y ± nr, Cu,v �= Cx,y

}

;

nr = min

{

n | N(Cx,y) ∪
n
∑

i=1

N(Li(Cx,y)) > θ , 0 < n ≤

⌊

nR
diag
1

2

⌋}

.

where N(Li(Cx,y)) denotes number of objects in Cx,y and its layer Li(Cx,y) (1 ≤ i ≤
n). The nr value which meets above condition may not exist. If it exists, Rp(Cx,y) is
defined as follows.

Rp(Cx,y) =
{

Cu,v |u = x ± np, v = y ± np,

Cu,v /∈ Rr(Cx,y), Cu,v �= Cx,y, nr < np < nR
diag
1

}

.

For a Cx,y, Rr(Cx,y) is chosen in such a way that if the total number of objects in
the Cx,y and the Rr(Cx,y) are greater than threshold θ , then they can prune all objects
in the Cx,y, the Rr(Cx,y) and the Rp(Cx,y) as inliers. nr is smaller the better, since the
smaller nr results in larger np, hence more cells can be pruned as inliers.

For example, in Figure 3, nR
diag
1 = 3, and assume that nr = 1. Moreover, assume

that the total number of objects in Cx,y and L1(Cx,y) are greater than θ . Then,
np = 2, and all the objects in the Cx,y, the L1(Cx,y) and the L2(Cx,y) are inliers.

Note that combined thickness of Cx,y and Rr(Cx,y) is always less than nR
diag
1 , hence

they can prune cells in Rp(Cx,y), just like Cx,y can prune R1(Cx,y) cells according to
Property 3a.

Property 3

(a) If the number of objects in Cx,y are greater than θ , none of the objects in Cx,y

and R1(Cx,y) is an outlier.
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(b) If the number of objects in Cx,y ∪ R1(Cx,y) are greater than θ , none of the
objects in Cx,y is an outlier.

(c) If the number of objects in Cx,y ∪ Rr(Cx,y) are greater than θ , none of the
objects in Cx,y, Rr(Cx,y) and Rp(Cx,y) is an outlier.

(d) If the number of objects in Cx,y ∪ R1(Cx,y) ∪ R2(Cx,y) are less than or equal to
θ , every object in Cx,y is an outlier.

Algorithm 2 shows the cell-based calculation for the bounded Gaussian
distribution.

Algorithm 2 Cell-based outlier detection on bounded Gaussian

Input: DBb , D, p, l, rad, nbounds

Output: Set of distance-based outliers
1: Compute nbounds bounds between D − 2rad and D + 2rad;
2: Create cell Grid depending upon dataset DBb values and cell length l and

initialize the count of each cell Ck ∈ , Countk ← 0;
3: Map each object o ∈ DBb to an appropriate cell Ck, and increment Countk

by 1;
4: θ ← | DBb |(1 − p), = {}; (θ correspond to the threshold)

/* Cell-based Pruning */
5: For each non-empty Ck ∈ , If Countk > θ , Ck is an inlier cell, mark Ck green;
6: For each green cell Ck ∈ , mark R1(Ck) cells blue, provided the neighbour has

not already been marked green;
7: For each non-empty, uncoloured cell Ck ∈ Grid, If Countk +
∑

m∈Rr(Ck) Countm > θ , then mark Ck, Rr(Ck) and Rp(Ck) blue;

8: for each non-empty, uncoloured cell Ck in do

9: Countk2 ← Countk +
∑

m∈R1(Ck) Countm;
10: if Countk2 > θ then

11: Ck is an inlier cell, mark Ck blue. GOTO next Ck;
12: else if Countk2 +

∑

m∈R2(Ck) Countm ≤ θ then

13: Ck is an outlier cell, add objects of Ck to . GOTO next Ck;
14: end if

15: end for

/*Object-wise pruning*/
16: = ∪ Ob jectWisePruning( , D, θ);

/*Unpruned objects processing*/
17: for each object oi in non-empty, uncoloured Ck ∈ do

18: if oi is uncoloured then compute ENoi (expected number of D-neighbours of
oi) using objects in Ck and higher layers of Ck ∈ ;

19: if ENoi ≤ θ then oi is outlier. Add oi to ;
20: end for

21: return ;

5.2 Simple object-wise distance pruning

Although the cell-based technique is very effective, yet it may leave some cells
undecided, i.e., they are neither pruned as the inlier cells nor are identifies as the
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outlier cells. For pruning of uncertain data objects in such cells, an object-wise
distance pruning technique is proposed. A similar technique was used in [19] for
finding distance between an object and a cluster representative.

Since the uncertainty of objects in DBb is bounded, it can be found weather
two objects are within the D-distance only by calculating distance between their ob-
served coordinates. The distance computation in this case is just ordinary Euclidean
and is cheap. Since α denotes an ordinary Euclidean distance between observed
coordinates of two objects. Let the objects be oi, o j ∈ DBb . If α ≤ D − 2rad,
it is guaranteed that object o j lies within the D-distance of oi. In other words,
Pr(oi, o j, D) = 1. On the other hand, if α > D + 2rad, then object o j is guaranteed
to lie outside the D-distance of oi. In this case, Pr(oi, o j, D) = 0. For example, in
Figure 4, α < D − 2rad for oi and op and α > D + 2rad for oi and oq. Therefore
Pr(oi, op, D) = 1 and Pr(oi, oq, D) = 0.

This object-wise distance pruning helps in computing expected D-neighbours of
the un-pruned objects. Using this approach, a lot of expensive distance function
computations may be avoided.

5.3 Object-wise bounds pruning

Using simple object-wise distance pruning of Section 5.2, Pr(oi, o j, D) can be com-
puted only for the objects whose D + 2rad < α ≤ D − 2rad. However in order to
compute expected D-neighbours for an object oi in DBb , the Pr(oi, o j, D) needs to
be computed for all o j ∈ DBb within the regions R1(Cx,y) and R2(Cx,y). Here Cx,y

is the cell containing oi. Hence a technique similar to the object-wise bounds pruning
of Section 4.2 can be used to compute bounds of the Pr(oi, o j, D) for D − 2rad <

α ≤ D + 2rad. The object-wise bounds pruning for the bounded Gaussian is exactly
similar to that of the conventional Gaussian with an exception that in the bounded
Gaussian, the bounds need to be computed for D − 2rad < α ≤ D + 2rad only.

Figure 4 Simple object-wise
distance pruning
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5.4 Un-pruned objects processing for bounded Gaussian

Un-pruned objects processing for the bounded Gaussian distribution is same as the
one presented in Algorithm 1. The only difference between the un-pruned objects
processing of the conventional Gaussian distribution and the bounded Gaussian
distribution is that the later needs to consider objects in only 2 regions, i.e., R1(Cx,y)

and R2(Cx,y) for the computation of expected D-neighbours of an un-pruned object
oi ∈ Cx,y. In contrast, the conventional Gaussian needs to consider objects in the
complete Grid .

6 Experiments

Extensive experiments are conducted on synthetic and real datasets to evaluate
the effectiveness and efficiency of our proposed approaches. All algorithms were
implemented in C#, Microsoft Visual Studio 2008. All experiments were performed
on a system with an Intel Core 2 Duo E8600 3.33 GHz CPU and 2 GB main memory
running Windows 7 Professional OS. All programs run in main memory and no I/O
cost is considered.

6.1 Datasets

In this paper two synthetic and three real datasets are used for experiments. Synthetic
datasets, unimodal Gaussian (UG) and trimodal Gaussian (TG) are 2-dimensional
and are generated using BoxMuller method [29]. This method generates pair of
independent, standard, normally distributed (zero mean, unit variance) random
numbers, given a source of uniformly distributed random numbers. A 3-dimensional
trimodal Gaussian (TG3D) dataset is also generated for the evaluation of our
proposed approaches on 3-dimensional data. Unless specified, 2-dimensional and 3-
dimensional datasets consist of 10,000 and 1,000 tuples respectively.

As for real-world data, three datasets are used: ADAPTE, SDSS and ISPD.
ADAPTE and ISPD are obtained from CISL Research data archive [7] and SDSS
is obtained from Sloan Digital Sky Survey [26]. ADAPTE consists of about 1,851
maximum and minimum temperature values collected from the National Polytechnic
Institute of Mexico and National Meteorological System. SDSS dataset contains
10,136 Right Ascension and Declination coordinates of stars and galaxies. SDSS
dataset used in the experiments is a subset of SDSS Data Release 7 (DR7), which
includes a huge collection of more than 6 million stars, 8 million galaxies, and 4,500
quasars [26]. The International Surface Pressure Databank (ISPD) dataset consists of
108,015 values of sea level pressure and surface pressure, which is the world’s largest
collection of pressure observations [12].

All the datasets are normalized to have a domain of [0, 1,000] on every dimension.
For each point z in any dataset, an uncertain object o is created, whose uncertainty
is given by the Gaussian distribution with mean z and standard deviation σ in all
the dimensions. Pre-computation time is not included in the measurements. Unless
specified, the following parameter values are used in experiments: D = 100, σ = 10,
l = 5(l = 10 for 3D dataset), nbounds = 10, rad = 3σ , and p = 0.995. In figures, the



World Wide Web

Knorr et al. [15] algorithm is denoted by Knorr and the algorithms proposed in this
paper are denoted by Conventional Gaussian and Bounded Gaussian respectively.

6.2 Effectiveness of proposed approaches

Firstly, experiments are performed to evaluate the effectiveness of our proposed
approaches. Since there are no known algorithms for distance-based outlier detection
on uncertain data, the deterministic algorithm for distance-based outlier detection
given by Knorr et al. [15] is used as a baseline. Since the outliers are not known, for
both synthetic and real datasets, baseline algorithm is used to determine the outliers
on the original datasets. The results obtained from the baseline algorithm are used as
the ground truth. In order to judge the effectiveness of the proposed algorithms, the
precision and recall are measured on the perturbed dataset for the baseline algorithm
and the proposed algorithms. The perturbed dataset is obtained by adding normal
random numbers with zero mean and standard deviation σp to each of the tuple
values of the original dataset. The σp was varied from 10 to 30 (with a step of five)
to generate perturbed datasets of five different levels. Experiments will show that
the proposed algorithms are superior than the baseline algorithm, since they do not
degrade quite as much with increasing uncertainty.

The quality of the results are measured in terms of the precision and recall
compared to the ground truth. The precision was defined as the ability of the
algorithm to present only true outliers. The recall was defines as the ability of the
algorithm to present all true outliers.

Unless specified, the following parameter values are used for the experiments in
this subsection: D = 100, σ = 10, σp = 20, l = 10, nbounds = 10, rad = 3σ , and p is
selected in such a way that the baseline algorithm and the proposed algorithms return
approximately 0.5 % outliers.

Firstly the precision-recall trade-off curves are presented for the different datasets.
In all the graphs in Figure 5, the trade-off curves are higher for the proposed
approaches. In Figure 5a, the precision-recall curves are somewhat closer for all three
algorithms due to the sparsity of synthetic dataset TG. Addition of perturbation to
the dataset TG, changed a lot of outliers to inliers and vice versa. Yet the recall, i.e.
the number of true outliers retrieved, of the proposed algorithms is better than the
baseline algorithm. The trade-off curves in Figure 5b and c show very good precision
and recall for all the algorithms. This is due to the obvious outliers in the real datasets
ADAPTE and SDSS. Even then the baseline algorithm cannot obtain high recall.
The number of false positive outliers produced by the baseline algorithm in Figure 5d
is very large. This can be observed from the very low precision of the trade-off curve.
On the other hand, the trade-off curves for the proposed approaches are far better.

The effectiveness of the proposed algorithms is also tested with increasing level
of uncertainty. From Figure 6, it is clear that the precision falls with increasing
uncertainty level. Moreover, the precision results for the proposed approaches are
superior to the results of the baseline approach for all uncertainty levels in Figure 6.
Furthermore, the difference between the baseline approach and the proposed ap-
proaches increases with increasing uncertainty. Please note the sharp decrease in
precision in Figure 6d. Since the dataset of Figure 6d is very large and dense, addition
of even low level of perturbation produced a lot of false positive outliers in case of
the baseline algorithm. On the other hand, the proposed algorithms produced better
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(a) TG (b) ADAPTE

(c) SDSS (d) ISPD

Figure 5 Precision-recall trade-off curves (D = 100, σ = 10, σp = 20, l = 10, nbounds = 10, rad = 3σ ,
and p is selected in such a way that approximately 0.5 % outliers are returned by all the algorithms)

(a) TG (b) ADAPTE

(c) SDSS (d) ISPD

Figure 6 Precision with increasing σp (D = 100, σ = 10, l = 10, nbounds = 10, rad = 3σ , and p is
selected in such a way that approximately 0.5 % outliers are returned by all the algorithms)
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precisions for all the datasets. Similar results are illustrated for recall in Figure 7. In
all four plots of Figure 7, the recall is somewhat consistent with increasing uncertainty
level for the proposed algorithms. Which proves that the proposed algorithms are
capable of retrieving true outliers, even from the noisy data. Although the baseline
algorithm seems to be competitive in Figure 7, but the precision (too many false
positive outliers) of the baseline algorithm hide the real outliers.

6.3 Efficiency

In this subsection, experiments are conducted to evaluate efficiency of the proposed
outlier detection algorithms presented in Sections 4 and 5. The time taken by the
Naive algorithm is too high. It takes several hours even on the smallest sample (of
5,000 tuples) of the synthetic dataset. Hence the results of the Naive algorithm are
not included.

Graphs in Figure 8 show the effect of varying cell lengths on execution times. It
is obvious from the graphs that the smaller cell lengths require the lower execution
times. However very small cell length increases the number of cells exponentially,
increasing the execution time of the algorithms, as can be observed for l = 1.
Therefore we recommend the use of cell length equal to the standard deviation
of uncertain objects in the dataset as discussed in Section 4.1.4. Moreover it can
be observed that the execution time did not increase for the bounded Gaussian
algorithm as sharply as that for the conventional Gaussian for l = 1(l = 5 for

(a) TG (b) ADAPTE

(c) SDSS (d) ISPD

Figure 7 Recall with increasing σp (D = 100, σ = 10, l = 10, nbounds = 10, rad = 3σ , and p is
selected in such a way that approximately 0.5 % outliers are returned by all the algorithms)
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(a) UG (b) TG

(c) TG3D (d) ADAPTE

(e) SDSS (f) ISPD

Figure 8 Varying l (D = 100, σ = 10, nbounds = 10, rad = 3σ , p = 0.995)

3-dimensional dataset). This is due to the expensive bounds computation time in
the conventional Gaussian algorithm for cell-based pruning, which is not required in
the bounded Gaussian algorithm. Furthermore if can be observed from the graphs
in Figure 8 that the bounded Gaussian algorithm is more efficient than the conven-
tional Gaussian algorithm, except in Figure 8d and f. The dataset in Figure 8d is so
small that the difference between the two algorithms is not obvious. In Figure 8f, the
number of un-pruned objects requiring nested-loop computation were large, due to
very large size of dataset. Hence the un-pruned objects processing time dominates in
Figure 8f, which is almost same for both the algorithms.

Next experiments are performed by varying the standard deviation (σ ) of uncer-
tain objects in the datasets. As σ increases, the uncertainty of the dataset objects also
increases. This increase in uncertainty results in smaller Pr(oi, o j, D) values even
if oi and o j are located nearby. Hence the number of distance function evaluations
required increases for un-pruned objects during their nested-loop evaluation, which
results in higher execution times as can be observed from Figure 9. However in
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(a) UG (b) TG

(c) TG3D (d) ADAPTE

(e) SDSS (f) ISPD

Figure 9 Varying σ (D = 100, l = 5(l = 10for 3D dataset), nbounds = 10, rad = 3σ , p = 0.995)

Figure 9d and f, execution times of the algorithms fell sharply for σ = 15. This is
due to the less number of un-pruned objects for σ = 15 than σ = 10 from pruning
algorithms. This phenomenon is discussed in Figure 12a.

Figure 10 shows the effect of varying the distance parameter D. Increase in D

results in an increase in D-neighbours of dataset objects. As a result, objects are
more easily pruned as inliers, bringing down execution time of the overall algorithm
for larger values of D. Unusual behaviour of curves in Figure 10f is again due to
the large number of un-pruned objects for D = 100 and no un-pruned object for
D = 125.

In Figure 11, the number of outliers are varied by varying the parameter p. As
can be observed from the graphs in Figure 11, increase in p results in decrease in
execution times of the algorithms. This is due to the fact that increase in p, results in
decrease of the threshold value θ . Hence the dataset objects are pruned more easily,
bringing down the algorithm execution time.
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(a) UG (b) TG

(c) TG3D (d) ADAPTE

(e) SDSS (f) ISPD

Figure 10 Varying D(σ = 10, l = 5(l = 10for 3D dataset), nbounds = 10, rad = 3σ , p = 0.995)

The abnormal curves in Figure 11d and f are due to the number of un-pruned
objects. In some experiments, the number of un-pruned objects are quite small or
even zero, resulting in dramatic decrease in execution times of the algorithms. In the
proposed algorithms, un-pruned objects effect severely on execution times, as can be
observed from Figure 12a.

Figure 12b compares the pre-computation times of the conventional Gaussian and
the bounded Gaussian algorithms. Since the conventional Gaussian algorithm needs
to compute two types of bounds, i.e., Pr(α, D) values for cell bounds and object-
wise bounds, the pre-computation times of the conventional Gaussian are higher
than the bounded Gaussian algorithm (note the logarithmic scale in Figure 12b).
Furthermore, the pre-computation times for 3-dimensional datasets are far higher
than 2-dimensional datasets. This is due to the fact that the distance function becomes
costlier with the increase in dimensions.

Cell-based approach is capable of pruning majority of objects. This can be
observed from plots in Figure 13. In most of the experiments, more than 90 % of the
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(a) UG (b) TG

(c) TG3D (d) ADAPTE

(e) SDSS (f) ISPD

Figure 11 Varying p (D = 100, σ = 10, l = 5(l = 10 for 3D dataset), nbounds = 10, rad = 3σ )

objects are pruned by the cell-based approach. However, in case of 3D experiments,
small percentages of objects are pruned by the cell-based approach. This is due to the
fact that in higher dimensions, objects are sparse and therefore cell-based pruning

(a) Effect of Un-pruned Objs. on Exec. Time (b) Pre-computation Time

Figure 12 Effect of un-pruned objects on exec. time and pre-computation time
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(a) Conventional Gaussian (b) Bounded Gaussian

Figure 13 Percentage of pruned objects

(a) Conventional Gaussian (b) Bounded Gaussian

Figure 14 Split of execution times

is not very much effective. Here the importance of object-wise pruning becomes
evident as can be observed from Figure 13a and b.

Finally, the split of execution times for different phases of the proposed algorithms
are shown in graphs of Figure 14. The time taken by un-pruned objects (which
makes use of nested loop) is highest due to the costly distance function, although
the percentages of un-pruned objects are very small. On the other hand, the cell-
based pruning and the bounds pruning techniques require only fraction of the overall
algorithm time.

7 Conclusion

In this work, two approaches of distance-based outlier detection on uncertain
datasets are proposed. Firstly a cell-based approach of distance-based outlier detec-
tion on uncertain objects following the Gaussian distribution is proposed. Secondly
an approximate cell-based approach of outlier detection using the bounded Gaussian
distribution is proposed to increase the efficiency of outlier detection. Approxi-
mating the Gaussian distribution with the bounded Gaussian distribution enables
more effective pruning. An extensive empirical study on real and synthetic datasets
demonstrate the effectiveness, efficiency and scalability of the proposed approaches.
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Appendix: Proof of Lemma

Let o be a k-dimensional uncertain object with attributes = (x1, ..., xk), mean −→μ =
(μ1, ..., μk)

T and a diagonal covariance matrix � = diag(σ 2
1 , ..., σ 2

k ). The probability
density function of o can be expressed as follows.

Since � is diagonal, the distribution functions are independent in coordinates.
Hence the k-dimensional normal distribution function is given by the product of k

1-dimensional normal distribution functions.

(7)

Let oi and o j are two k-dimensional uncertain objects with attributes

= (xi,1, ..., xi,k)
T and = (x j,1, ..., x j,k)

T , means −→μi = (μi,1, ..., μi,k)
T and −→μ j =

(μ j,1, ..., μ j,k)
T and diagonal covariance matrices �i = diag(σ 2

i,1, ..., σ
2
i,k) and � j =

diag(σ 2
j,1,..., σ

2
j,k), respectively. Assuming that and are independent random

vectors, then − = (−→μi − −→μ j, �i + � j) [32]. Since �i and � j are diagonal

matrices, the k-dimensional normal difference distribution function can be given by
the product of k 1-dimensional normal distribution functions as follows.

(8)

Since this lemma focus on 2-dimensional Pr(oi, o j, D). The normal difference
distribution of 2-dimensional uncertain objects oi and o j is given by,

(9)

where α1 = μi,1 − μ j,1 and α2 = μi,2 − μ j,2 are the differences between the means of
objects oi and o j respectively. Hence the probability that o j ∈ DN(oi) denoted by
Pr(oi, o j, D), is given as follows.

Pr(oi, o j, D) =
1

2π

√

(

σ 2
i,1 + σ 2

j,1

) (

σ 2
i,2 + σ 2

j,2

)

×
∫ D

0

∫ 2π

0

exp

⎧

⎨

⎩

−

⎛

⎝

(r cos θ − α1)
2

2
(

σ 2
i,1 + σ 2

j,1

) +
(r sin θ − α2)

2

2
(

σ 2
i,2 + σ 2

j,2

)

⎞

⎠

⎫

⎬

⎭

r dθ dr

(10)
⊓⊔
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