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Abstract Distance metric learning (DML) is an important task that has found applications in

many domains. The high computational cost of DML arises from the large number of variables

to be determined and the constraint that a distance metric has to be a positive semi-definite

(PSD) matrix. Although stochastic gradient descent (SGD) has been successfully applied to

improve the efficiency of DML, it can still be computationally expensive in order to ensure

that the solution is a PSD matrix. It has to, at every iteration, project the updated distance

metric onto the PSD cone, an expensive operation. We address this challenge by developing

two strategies within SGD, i.e. mini-batch and adaptive sampling, to effectively reduce the

number of updates (i.e. projections onto the PSD cone) in SGD. We also develop hybrid

approaches that combine the strength of adaptive sampling with that of mini-batch online

learning techniques to further improve the computational efficiency of SGD for DML. We

prove the theoretical guarantees for both adaptive sampling and mini-batch based approaches

for DML. We also conduct an extensive empirical study to verify the effectiveness of the

proposed algorithms for DML.
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1 Introduction

Distance metric learning (DML) is an important subject in machine learning, and has found

applications in many domains, including information retrieval (He et al. 2004), supervised

classification (Weinberger and Saul 2009), clustering (Xing et al. 2002), and semi-supervised

clustering (Chang and Yeung 2004). The objective of DML is to learn a distance metric

consistent with a given set of constraints, namely minimizing the distances between pairs of

data points from the same class and maximizing the distances between pairs of data points

from different classes. The constraints are often specified in the form of must-links, where

data points belong to the same class, and cannot-links, where data points belong to different

classes. The constraints can also be specified in the form of triplets (xi , x j , xk) (Weinberger

and Saul 2009), in which xi and x j belong to a class different from that of xk and therefore xi

and x j should be separated by a distance smaller than that between xi and xk . In this work,

we focus on DML using triplet constraints due to its encouraging performance (Weinberger

and Saul 2009; Chechik et al. 2010; Shaw et al. 2011).

The main computational challenge in DML arises from the restriction that the learned dis-

tance metric must be a positive semi-definite (PSD) matrix, which is often referred as the PSD

constraint. Early approach (Xing et al. 2002) addressed the PSD constraint by exploring the

technique of semi-definite programming (SDP) (Boyd and Vandenberghe 2004), which unfor-

tunately does not scale to large and high dimensional datasets. More recent approaches (Jain

et al. 2008; Shaw et al. 2011) addressed this challenge by exploiting the techniques of online

learning and stochastic optimization, particularly stochastic gradient descent (SGD), that

only needs to deal with one constraint at each iteration. Although these approaches are sig-

nificantly more efficient than the early approach, they share one common drawback: in order

to ensure that the learned distance metric is PSD, these approaches require, at each itera-

tion, projecting the updated distance metric onto the PSD cone. The projection step requires

performing the eigen-decomposition for a given matrix, and therefore is computationally

expensive 1. As a result, the key challenge in developing efficient SGD algorithms for DML

is how to reduce the number of projections without affecting the performance of DML.

A common approach for reducing the number of updates and projections in DML is to

use the non-smooth loss function. A popular choice of the non-smooth loss function is the

hinge loss, whose derivative becomes zero when the input value exceeds a certain threshold.

Many online learning algorithms for DML (Davis et al. 2007; Jain et al. 2008; Chechik et

al. 2010) take advantage of the non-smooth loss function to reduce the number of updates

and projections. In Shaw et al. (2011), the authors proposed a structure preserving metric

learning algorithm (SPML) that combines a mini-batch strategy with the hinge loss to further

reduce the number of updates for DML. It groups multiple constraints into a mini-batch and

performs only one update of the distance metric for each mini-batch. But, according to our

empirical study, although SPML reduces the running time of the standard SGD algorithm,

it results in a significantly worse performance for several datasets, due to the deployment of

the mini-batch strategy.

In this work, we first develop a new mini-batch based SGD algorithm for DML, termed

Mini-SGD. Unlike SPML that relies on the hinge loss, the proposed Mini-SGD algorithm

exploits a smooth loss function for DML. By using a smooth loss function, the proposed

algorithm is able to effectively take advantage of the reduction in the variance of gradients

1 The computational cost is O(d2) if we only need to compute the top eigenvectors of the distance metric and

becomes O(d3) if all the eigenvalues and eigenvectors have to be computed for the projection step, where d

is the dimensionality of the data.
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achieved by the mini-batch, which in return leads to a better regret bound for online learn-

ing (Cotter 2011) and consequentially a more accurate prediction for the learned distance

metric. We show theoretically that by using a smooth loss function, Mini-SGD is able to

achieve similar convergence rate as the standard SGD algorithm but with significantly less

number of updates. The second contribution of this work is to develop a new strategy, termed

adaptive sampling, for reducing the number of projections in DML. The key idea of adaptive

sampling is to first measure the “difficulty” in classifying a constraint using the learned dis-

tance metric, and then perform stochastic updating based on the difficulty measure. Finally,

we develop two hybrid approaches that combine adaptive sampling with mini-batch to

further improve the computational efficiency of SGD for DML. We conduct an extensive

empirical study to verify the effectiveness and efficiency of the proposed algorithms for

DML. We summarize the main contribution of this work as follows:

– To the best of our knowledge, this is the first work that exploits the combination of the

mini-batch strategy with smooth loss function for DML. We verify, both theoretically

and empirically, the efficiency and effectiveness of the mini-batch strategy with smooth

loss for DML.

– We propose an adaptive sampling approach for efficient DML. We verify, both theoreti-

cally and empirically, the efficiency and effectiveness of the adaptive sampling approach

for DML.

– We present two hybrid approaches that exploit the combination of the mini-batch strategy

with adaptive sampling for DML. Our extensive empirical study verifies that the hybrid

approaches are significantly more efficient than both the mini-batch strategy and the

adaptive sampling approach.

The rest of the paper is organized as follows: Sect. 2 reviews the related work on distance

metric learning and stochastic gradient descent with reduced number of projection steps. Sec-

tion 3 describes the proposed SGD algorithms for DML based on mini-batch and adaptive

sampling. Two hybrid approaches are presented that combine mini-batch and adaptive sam-

pling for DML. The theoretical guarantees for both mini-batch based and adaptive sampling

based SGD are also presented in Sect. 3. Section 4 summarizes the results of the empirical

study, and Sect. 5 concludes this work with future directions.

2 Related work

Many algorithms have been developed to learn a linear distance metric from pairwise con-

straints, where must-links include pairs of data points from the same class and cannot-links

include pairs of data points from different classes ((Yang and Jin 2006) and references therein).

Besides pairwise constraints, an alternative strategy is to learn a distance metric from a set

of triplet constraints (xt
i , xt

j , xt
k), t = 1, . . . , N , where xt

i is expected to be closer to xt
j than

to xt
k . Previous studies (Weinberger and Saul 2009; Chechik et al. 2010; Shaw et al. 2011)

showed that triplet constraints could be more effective for DML than pairwise constraints.

Several online algorithms have been developed to reduce the computational cost of

DML (Globerson and Roweis 2005; Davis et al. 2007; Jain et al. 2008). Most of these

methods are based on stochastic gradient descent. At each iteration, they randomly sample

one constraint, and update the distance metric based on the sampled constraint. The updated

distance metric is further projected onto the PSD cone to ensure that it is PSD. Although these

approaches are significantly more scalable than the batch learning algorithms for DML (Wein-

berger and Saul 2009), they suffer from the high computational cost in the projection step
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that has to be performed at every iteration. One way to improve the efficiency of SGD for

DML is to reduce the dimensionality d of the data as the computational cost of projection is

at least O(d2) (Weinberger and Saul 2009). The main problem with these approaches is that

they often result in a significantly worse performance than using the original data (Davis and

Dhillon 2008).

An alternative approach for improving the efficiency of SGD for DML is to reduce the

number of projections. A common approach for reducing the number of projections is to use

a non-smooth loss function, such as the hinge loss. In addition, in Shaw et al. (2011), the

authors proposed a structure preserving metric learning (SPML) that combines mini-batch

with the hinge loss to further reduce the number of projections. The main problem with

SPML is its relatively poor performance compared to the standard SGD algorithm. This is

because in theory, the mini-batch strategy only works well with a smooth loss (Cotter 2011).

Since the hinge loss is a non-smooth loss function, combining mini-batch with the hinge loss

may result in a suboptimal performance. This is verified by our empirical study in which

we observed that the distance metric learned by SPML performs significantly worse than

that learned by the standard stochastic gradient descent method. We resolve this problem by

presenting a new SGD algorithm for DML that combines mini-batch with a smooth loss,

instead of the hinge loss.

Finally, it is worthwhile mentioning several recent studies proposed to avoid projections

in SGD. In Hazan and Kale (2012), the authors developed a projection free SGD algorithm

that replaces the projection step with a constrained linear programming problem. In Mah-

davi et al. (2012), the authors proposed a SGD algorithm with only one projection that is

performed at the end of the iterations. Unfortunately, the improvement of the two algorithms

in computational efficiency is limited, because they require computing, at each iteration,

the minimum eigenvalue and eigenvector of the updated distance metric, an operation with

O(d2) cost, where d is the dimensionality of the data.

3 Improved SGD for DML by mini-batch and adaptive sampling

We first review the basic framework of DML with triplet constraints. We then present two

strategies to improve the computational efficiency of SGD for DML, one by mini-batch and

the other by adaptive sampling. We present the theoretical guarantees for both strategies,

and defer more detailed analysis to the appendix. At the end of this section, we present two

hybrid approaches that combine mini-batch with adaptive sampling for more efficient DML.

3.1 DML with triplet constraints

Let X ⊂ R
d be the domain for input patterns, where d is the dimensionality. For the conve-

nience of analysis, we assume all the input patterns with bounded norm, i.e. ∀x ∈ X , |x|2 ≤ r .

Given a distance metric M ∈ R
d×d , the distance square between xa and xb, denoted by

|xa − xb|2M , is measured by

|xa − xb|2M = (xa − xb)
⊤M(xa − xb)

Let Ω = {M : M � 0, ‖M‖F ≤ R} be the domain for distance metric M , where R specifies

the domain size. Let D = {(x1
i , x1

j , x1
k), . . . , (x

N
i , xN

j , xN
k )} be the set of triplet constraints

used for DML, where xt
i is expected to be closer to xt

j than to xt
k . Let ℓ(z) be the convex loss
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function. Define Δ(xt
i , xt

j , xt
k; M) as

Δ(xt
i , xt

j , xt
k; M) = |xt

i − xt
k |

2
M − |xt

i − xt
j |

2
M

=
〈
M, (xt

i − xt
k)(x

t
i − xt

k)
⊤ − (xt

i − xt
j )(x

t
i − xt

j )
⊤
〉
= 〈M, At 〉

where

At = (xt
i − xt

k)(x
t
i − xt

k)
⊤ − (xt

i − xt
j )(x

t
i − xt

j )
⊤

Given the triplet constraints in D and the domain in Ω , we learn an optimal distance metric

M ∈ R
d×d by solving the following optimization problem

min
M∈Ω

L̂(M) = 1
N

∑N
t=1 ℓ

(
Δ(xt

i , xt
j , xt

k; M)

)
(1)

We also define the expectation of the loss function as

L(M) = E
[
ℓ(Δ(xi , x j , xk; M))

]
, (2)

where the expectation is taken over xi , x j and xk .

The key idea of online DML is to minimize the empirical loss L̂(M) by updating the dis-

tance metric based on one sampled constraint at each iteration. More specifically, at iteration

t , it samples a triplet constraint (xt
i , xt

j , xt
k), and updates the distance metric Mt to Mt+1 by

Mt+1 = ΠΩ

(
Mt − ηℓ′(Δ(xt

i , xt
j , xt

k; Mt ))At

)
,

where η > 0 is the step size, ℓ′(·) is the derivative and ΠΩ (M) projects a matrix M onto the

domain Ω . The following proposition shows ΠΩ (M) can be computed in two steps, i.e. first

projecting M onto the PSD cone, and then scaling the projected M to fit in with the constraint

‖M‖F ≤ R.

Proposition 1 Boyd and Vandenberghe (2004) We have

ΠΩ (M) =
1

max(‖M ′‖F/R, 1)
P(M).

Here P(M) projects matrix M onto the PSD cone and is computed as

P(M) =
d∑

i=1

max(λi , 0)vi v
⊤
i ,

where (λi , vi ), i = 1, . . . , d are the eigenvalues and corresponding eigenvectors of M.

As indicated by Proposition 1, ΠΩ (M) requires projecting distance metric M onto the

PSD cone, an expensive operation that requires eigen-decomposition of M .

Finally, we approximate the hinge loss by a smooth loss in our study

ℓ(z) =
1

L
log(1 + exp (−L(z − 1))) (3)

where L > 0 is a parameter that controls the approximation error: the larger the L , the closer

ℓ(z) is to the hinge loss. Note that the smooth approximation of the hinge loss was first

suggested in Zhang and Oles (2001) for classification and was later verified by an empirical

study in Zhang et al. (2003). The key properties of the loss function ℓ(z) in (3) are given in

the following proposition.
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Algorithm 1 Mini-batch Stochastic Gradient Descent (Mini-SGD) for DML

1: Input: triplet constraints {(xt
i
, xt

j
, xt

k
)}N

t=1, step size η, mini-batch size b, and domain size R

2: Initialize M1 = I and T = N/b

3: for t = 1, . . . , T do

4: Sample b triplet constraints {(xt,s
i

, x
t,s
j

, x
t,s
k

)}b
s=1

5: Update the distance metric by

Mt+1 = ΠΩ (Mt − η∇ℓt (Mt ))

6: end for

7: return M̄ = 1
T

∑T
t=1 Mt

Proposition 2 For the loss function defined in (3), we have

∀z ∈ R, |ℓ′(z)| ≤ 1, |ℓ′(z)| ≤ Lℓ(z)

Compared to the hinge loss function, the main advantage of the loss function in (3) is that

it is a smooth loss function. As will be revealed by our analysis, it is the smoothness of the

loss function that allows us to effectively explore both the mini-batch and adaptive sampling

strategies for more efficient DML without having to sacrifice the prediction performance.

3.2 Mini-batch SGD for DML (Mini-SGD)

Mini-batch SGD improves the computational efficiency of online DML by grouping multiple

constraints into a mini-batch and only updating the distance metric once for each mini-batch.

For brevity, we will refer to this algorithm as Mini-SGD for the rest of the paper.

Let b be the batch size. At iteration t , it samples b triplet constraints, denoted by

(x
t,s
i , x

t,s
j , x

t,s
k ), s = 1, . . . , b,

and defines the mini-batch loss at iteration t as

ℓt (Mt ) =
1

b

b∑

s=1

ℓ

(
Δ(x

t,s
i , x

t,s
j , x

t,s
k ; Mt )

)

Mini-batch DML updates the distance metric Mt to Mt+1 using the gradient of the mini-bach

loss function ℓt (M), i.e.,

Mt+1 = ΠΩ (Mt − η∇ℓt (Mt ))

Algorithm 1 gives the detailed steps of Mini-SGD for DML, where in step 5 Proposition 1

is used to efficiently compute the projection ΠΩ (·).
The theorem below provides the theoretical guarantee for the Mini-SGD algorithm for

DML using the smooth loss function defined in (3).

Theorem 1 Let M̄ be the solution output by Algorithm 1 that uses the loss function defined

in (3). Let M∗ be the optimal solution that minimizes L(M). Assuming ‖At‖F ≤ A for any

triplet constraint and η < 1/(3L A2), we have

E[L(M̄)] ≤
L(M∗)

1 − 3ηL A2
+

bR2

2(1 − 3ηL A2)ηN
(4)

where the expectation is taken over the sequence of triplet constraints.
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Remark 1 First, we observe that the second term in the upper bound in (4), i.e., bR2/[2(1 −
3ηL A2)ηN ], has a linear dependence on mini-batch size b, implying that the larger the b, the

less accurate the distance metric learned by Algorithm 1. Hence, by adjusting parameter b, the

size of mini-batch, we are able to make appropriate tradeoff between the prediction accuracy

and the computational efficiency: the smaller the b, the more accurate the distance metric but

with more updates and consequentially higher computational cost. When L(M∗) = 0, we

have E[L(M̄)] = O(1/N ), i.e. the expected prediction error will be reduced at the rate of

b/N , significantly faster than that of the mini-batch SGD algorithm (i.e. O(1/
√

N )) given

in Cotter (2011). Second, if we set η as:

η =
ρ

3L A2(1 + 2ρ)
where ρ =

3bL R2 A2

NL(M∗)
(5)

we have

E[L(M̄)] ≤ 2L(M∗) +
6bL A2 R2

N
(6)

Although the step size in (5) requires the knowledge of L(M∗) that is usually unavailable, as

suggested in Jin (2013), L(M∗) can be estimated empirically using part of training examples.

Third, the bound in (4) reveals the importance of using a smooth loss function as the last

term in (4) is proportional to L that measures the smoothness of the loss function. As a result,

using a non-smooth loss function (e.g. hinge loss) in DML will not be able to benefit the

advantage of the mini-batch strategy. Finally, unlike the analysis in Shaw et al. (2011) (i.e.

Theorem 2) that only consider the case when b = 1, Theorem 1 provide a general result for

any mini-batch size b.

3.3 Adaptive sampling based SGD for DML (AS-SGD)

We now develop a new approach for reducing the number of updates in SGD in order to

improve the computational efficiency of DML. Instead of updating the distance metric at

each iteration, the proposed strategy introduces a random binary variable to decide if the

distance metric Mt will be updated given a triplet constraint (xt
i , xt

j , xt
k). More specifically,

it computes the derivative ℓ′(Δ(xt
i , xt

j , xt
k; Mt )), and samples a random variable Z t with

probability

Pr(Z t = 1) = |ℓ′(Δ(xt
i , xt

j , xt
k; Mt ))|

The distance metric will be updated only when Z t = 1. According to Proposition 2, we have

|ℓ′(Δ(xt
i , xt

j , xt
k; Mt ))| ≤ Lℓ(Δ(xt

i , xt
j , xt

k; Mt )) for the smooth loss function given in (3),

implying that a triplet constraint has a high chance to be used for updating the distance

metric if it has a large loss. Therefore, the essential idea of the proposed adaptive sampling

strategy is to give a large chance to update the distance metric when the triplet is difficult to

be classified and a low chance when the triplet can be classified correctly with large margin.

We note that an alternative strategy is to sample a triplet constraint (xt
i , xt

j , xt
k) base on its

loss ℓ(Δ(xt
i , xt

j , xt
k; Mt )). We did not choose the loss as the basis for updating because it is

the derivative, not the loss, that will be used by SGD for updating the distance metric. The

detailed steps of adaptive sampling based SGD for DML is given in Algorithm 2. We refer

to this algorithm as AS-SGD for short in the rest of this paper.

The theorem below provides the performance guarantee for AS-SGD. It also bounds the

number of updates
∑T

t=1 Z t for AS-SGD.
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Algorithm 2 Adaptive Sampling Stochastic Gradient Descent (AS-SGD) for DML

1: Input: triplet constraints {(xt
i
, xt

j
, xt

k
)}N

t=1, step size η, and domain size R

2: Initialize M1 = I

3: for t = 1, . . . , N do

4: Sample a binary random variable Zt with

Pr(Zt = 1) = |ℓ′(Δ(xt
i , xt

j , xt
k ; Mt )|

5: if Zt = 1 then

6: Update the distance metric by

τt = sign(ℓ′((xt
i , xt

j , xt
k; Mt)), Mt+1 = ˙ (Mt − ητtAt)

7: end if

8: end for

9: return M̄ = 1
N

∑N
t=1 Mt

Theorem 2 Let M̄ be the solution output by Algorithm 2 that uses the loss function defined

in (3). Let M∗ be the optimal solution that minimizes L(M). Assuming ‖At‖F ≤ A for any

triplet constraint and η < 2/L A2, we have

E
[
L(M̄)

]
≤

L(M∗)

1 − ηL A2/2
+

R2

2ηN (1 − ηL A2/2)
(7)

and the number of updates bounded by

E

[
N∑

t=1

Z t

]
≤

N LL(M∗)

1 − ηL A2/2
+

L R2

2η(1 − ηL A2/2)
, (8)

where the expectation is taken over both the binary random variables {Z t }N
t=1 and the

sequence of triplet constraints.

Remark 2 If we set η as

η =
2ρ

L A2(1 + 2ρ)
where ρ =

L A2 R2

4NL(M∗)

we have

E[L(M̄)] ≤ 2L(M∗) +
L R2 A2

N
(9)

and

E

[
N∑

t=1

Z t

]
≤ 2N LL(M∗) + L2 A2 R2 (10)

The bounds given in (7) and (9) share similar structures as those given in (4) and (6) except

that they do not have mini-batch size b that can be used to make tradeoff between the number

of updates and the classification accuracy. The number of updates performed by Algorithm 2

is bounded by (10). The dominate term in (10) is O(L(M∗)N ), implying that Algorithm 2 will

have a small number of updates if the optimal distance metric only makes a small number

of mistakes for the given set of training triplets. In the extreme case when L(M∗) → 0,
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Algorithm 3 A Framework of Hybrid Stochastic Gradient Descent (Hybrid-SGD) for DML

1: Input: triplet constraints {(xt
i
, xt

j
, xt

k
)}N

t=1, step size η, mini-batch size b, and domain size R

2: Initialize M1 = I and T = N/b

3: for t = 1, . . . , T do

4: Sample b triplets {xt,s
i

, x
t,s
j

, x
t,s
k

}b
s=1

5: Compute sampling probability γt ({xt,s
i

, x
t,s
j

, x
t,s
k

}b
s=1; Mt ) as in Eqn. 11 or 12

6: Sample a binary random variable Zt with

Pr(Zt = 1) = γt

7: if Zt = 1 then

8: Update the distance metric by

τt = 1/γt

Mt+1 = ΠΩ (Mt − ητt ∇ℓt (Mt ))

9: end if

10: end for

11: return M̄ = 1
T

∑T
t=1 Mt

the expected number of updates will be bounded by a constant L2 A2 R2. We note that this

is consistent with our intuition: it will be easy to learn a good distance metric when the

optimal one only makes a few mistakes, and as a result, only a few updates are needed to

find a distance metric that are consistent with most of the training triplets. Compared with

the result of perceptron method (Shalev-Shwartz and Singer 2004), we do not assume that

the dataset is separable, which makes our bound for the number of updates more practically

useful.

3.4 Hybrid Approaches: combining mini-batch with adaptive sampling for DML

Since mini-batch and adaptive sampling improve the computational efficiency of SGD

from different aspects, it is natural to combine them together for more efficient DML. Similar

to the Mini-SGD algorithm, the hybrid approaches will group multiple triplet constraints into

a mini-batch. But, unlike Mini-SGD that updates the distance metric for every mini-batch

of constraints, the hybrid approaches follow the idea of adaptive sampling, and introduce a

binary random variable to decide if the distance metric will be updated for every mini-batch

of constraints. By combining the strength of mini-batch and adaptive sampling for SGD, the

hybrid approaches are able to make further improvement in the computational efficiency of

DML. Algorithm 3 highlights the key steps of the hybrid approaches.

One of the key steps in the hybrid approaches (step 5 in Algorithm 3) is to choose appro-

priate sampling probability γt for every mini-batch constraints (x
t,s
i , x

t,s
j , x

t,s
k ), s = 1, . . . , b.

In this work, we study two different choices for sampling probability γt :

– The first approach chooses γt based on a triplet constraint randomly sampled from a mini-

batch. More specifically, given a mini-batch of triplet constraints {xt,s
i , x

t,s
j , x

t,s
k }b

s=1, it

randomly samples an index s′ in the range [1, b]. It then sets the sampling probability γt

to be the derivative for the randomly sampled triplet, i.e.,

γt = |ℓ′(Δ(x
t,s′

i , x
t,s′

j , x
t,s′

k ; Mt ))| (11)
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Table 1 Statistics for the ten

datasets used in our empirical

study

# class # feature # train # test

semeion 10 256 1,115 478

dna 3 180 2,000 1,186

isolet 26 617 6,238 1,559

tdt30 30 200 6,575 2,819

letter 26 16 15,000 5,000

protein 3 357 17,766 6,621

connect4 3 42 47,289 20,268

sensit 3 100 78,823 19,705

rcv20 20 200 477,141 14,185

poker 10 10 1,000,000 25,010

We refer to this approach as HR-SGD.

– The second approach is based on the average case analysis. It sets the sampling probability

as the average derivative measured by the norm of the gradient ∇ℓt (Mt ), i.e.

γt =
1

W
‖∇ℓt (Mt )‖F , (12)

where W = maxt ‖∇ℓt (Mt )‖F and is estimated by sampling. We refer to this approach

as HA-SGD.

4 Experiments

Ten datasets are used to validate the effectiveness of the proposed algorithms. Table 1 sum-

marizes the information of these datasets. Datasets dna, letter (Hsu and Lin 2002), protein

and sensit (Duarte and Hu 2004) are downloaded from LIBSVM (Chang and Lin 2011).

Datasets tdt30 and rcv20 are document corpora: tdt30 is the subset of tdt2 data (Cai et al.

2009) comprised of the documents from the 30 most popular categories and rcv20 is the

subset of a large rcv1 dataset (Bekkerman and Scholz 2008) consisted of documents from the

20 most popular categories. Following Chechik et al. (2010), we reduce the dimensionality

of these document datasets to 200 by principle components analysis (PCA). All the other

datasets are downloaded directly from the UCI repository (Frank and Asuncion 2010). For

all the datasets used in this study, we use the standard training/testing split provided by the

original dataset, except for datasets semeion, connect4 and tdt30 where 70 % of data is ran-

domly selected for training and the remaining 30 % is used for testing. All the experiments

are repeated five times, and both the average results and their standard deviation are reported.

All the experiments are run on a laptop with 8 GB memory and two 2.50 GHz Intel Core

i5-2520M CPUs.

4.1 Parameter setting

The parameter L in the loss function (3) is set to be 3 according to the suggestion in Zhang and

Oles (2001). The number of triplet constraints N is set to be 100, 000 for all the datasets except

for two small datasets semeion and dna where N = 20n. To construct triplet constraints, we

follow the active sampling strategy given in Weinberger and Saul (2009): at each iteration t , we
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Fig. 1 The training and testing

errors over epoches for dataset
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first randomly pick a training example xt
i , and then xt

j from the 3 positive nearest neighbors 2

of xt
i ; we then randomly select a triplet constraint from the set of active constraints 3 involving

xt
i and xt

j . We note that this is different from Chechik et al. (2010), where triplet constraints are

selected completely randomly. Our empirical study shows that the active sampling strategy

is more effective than choosing triplet constraints completely randomly. This is because

the actively sampled constraints are more informative to the learned distance metric than

a completely random choice. Furthermore, to verify that the choice of N does not lead to

the overfitting of training data, particularly for the two small datasets, in Fig. 1, we show

the training and test errors for dataset dna. It is clear that both errors decline over epoches,

suggesting that no overfitting is found even for the small dataset.

For Mini-SGD and the hybrid approaches, we set b = 10 for the size of mini-batch as

in Shaw et al. (2011), leading to a total of T = 10, 000 iterations for these approaches. We

evaluate the learned distance metric by the classification error of a k-NN on the test data,

where the number of nearest neighbors k is set to be 3 based on our experience.

Parameter R in the proposed algorithms determines the domain size for the distance metric

to be learned. We observe that the classification error of k-NN remains almost unchanged

when varying R in the range of {100, 1000, 10000}. We thus set R = 1, 000 for all the

experiments. Another important parameter used by the proposed algorithms is the step size η.

We evaluate the impact of step size η by measuring the classification error of a k-NN algorithm

that uses the distance metric learned by the Mini-SGD algorithm with η = {0.1, 1, 10}. We

observe that η = 1 yields a low classification error for almost all datasets. We thus fix η = 1

for the proposed algorithms in all the experiments.

4.2 Experiment (I): effectiveness of the proposed SGD algorithms for DML

In this experiment, we compare the performance of the proposed SGD algorithms for DML,

i.e. Mini-SGD, AS-SGD and two hybrid approaches (HR-SGD and HA-SGD), to the full

version of SGD for DML (SGD). We also include Euclidean distance as the reference method

in our comparison. Tables 2 shows the classification error of k-NN (k = 3) using the proposed

DML algorithms and the baseline algorithms, respectively. First, it is not surprising to observe

2 x j is a positive nearest neighbor of xi if x j and xi share the same class assignment.

3 A constraint is active if its hinge loss based on the Euclidean distance is non-zero.
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Table 2 Classification error (%) of k-NN (k = 3) using the distance metrics learned by the proposed SGD

methods for DML

Euclid SGD Mini-SGD AS-SGD HR-SGD HA-SGD

semeion 8.79 4.39(0.30) 4.60(0.53) 4.23(0.60) 4.27(0.41) 4.18(0.26)

dna 20.71 6.90(0.16) 6.64(0.33) 7.15(0.42) 6.80(0.21) 6.86(0.15)

isolet 8.98 5.98(0.15) 4.23(0.19) 6.09(0.13) 4.59(0.30) 4.77(0.17)

tdt30 5.96 4.51(0.07) 3.52(0.08) 4.53(0.06) 3.70(0.20) 3.65(0.09)

letter 4.42 2.26(0.09) 2.54(0.06) 2.25(0.10) 2.31(0.08) 2.23(0.07)

protein 49.95 39.46(0.42) 38.16(0.24) 39.49(0.51) 40.76(0.20) 40.03(0.30)

connect4 29.48 20.16(0.08) 20.20(0.08) 20.22(0.12) 21.45(0.71) 20.41(0.14)

sensit 27.28 23.62(0.04) 22.95(0.07) 23.70(0.06) 23.39(0.20) 23.33(0.18)

rcv20 9.13 7.76(0.16) 8.42(0.04) 7.74(0.11) 8.40(0.04) 8.37(0.02)

poker 35.89 35.89(0.06) 35.22(0.18) 35.87(0.08) 35.74(0.41) 35.66(0.16)

Standard deviation computed from five trials is included in the parenthesis

that all the distance metric learning algorithms improve the classification performance of k-

NN compared to the Euclidean distance. Second, for almost all datasets, we observe that

all the proposed DML algorithms (i.e., Mini-SGD, AS-SGD, HR-SGD, and HA-SGD) yield

similar classification performance as SGD, the full version of SGD algorithm for DML.

This result confirms that the proposed SGD algorithms are effective for DML despite the

modifications we made to the SGD algorithm.

4.3 Experiment (II): efficiency of the proposed SGD algorithms for DML

Figure 2 summarizes the running time for the proposed DML algorithms and the baseline

SGD algorithm. We note that the running times in Fig. 2 do not take into account the time

for constructing triplet constraints since it is shared by all the methods in comparison.

It is not surprising to observe that all the proposed SGD algorithms, including Mini-SGD,

AS-SGD, HA-SGD and HR-SGD, significantly reduce the running time of SGD. For instance,

for dataset isolet, it takes SGD more than 35, 000 seconds to learn a distance metric, while

the running time is reduced to less than 4, 000 seconds when applying the proposed SGD

algorithms, roughly a factor of 10 reduction in running time. Comparing the running time of

AS-SGD to that of Mini-SGD, we observe that each method has its own advantage: AS-SGD

is more efficient on dataset semeion while Mini-SGD is more efficient on the other datasets.

This is because different mechanisms are employed by AS-SGD and Mini-SGD to reduce

the computational cost: AS-SGD improves the computational efficiency of DML by skipping

the constraints that are easy to be classified, while Mini-SGD improves the the computational

efficiency of SGD by performing the updating of distance metric once for multiple triplet

constraints. Finally, we observe that the two hybrid approaches that combine the strength of

both adaptive sampling and mini-batch SGD, are computationally most efficient for almost

all datasets. We also observe that HR-SGD appears to be more efficient than HA-SGD on

six datasets and only loses it edge on datasets protein and rcv20. This is because HR-SGD

computes the sampling probability γt based on one randomly sampled triplet while HA-

SGD needs to compute the average derivative for each mini-batch of triplet constraints for

the sampling probability.
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Fig. 2 The comparison of running time (seconds) for various SGD methods. Note that LMNN, a batch DML

algorithm, is mainly implemented in C, which is computationally more efficient than our Matlab implemen-

tation. All the other methods are implemented in Matlab
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To further examine the computational efficiency of proposed SGD algorithms for DML, we

summarize in Fig. 3 the number of updates performed by the proposed SGD algorithms and the

baseline SGD algorithm, respectively. We observe that all the proposed SGD algorithms for

DML are able to reduce the number of updates significantly compared to SGD. Comparing

Mini-SGD to AS-SGD, we observe that for semeion, the number of updates performed

by AS-SGD is significantly less than Mini-SGD, while it is the other way around for the

other datasets. This is again due to the fact that AS-SGD and Mini-SGD deploy different

mechanisms for reducing computational costs. As we expect, the two hybrid approaches are

able to further reduce the number of updates performed by AS-SGD and Mini-SGD, making

them more efficient algorithms for DML.

By comparing the running time in Fig. 2 to the number of updates in Fig. 3, we observe

that a small number of updates does NOT always guarantee a short running time. This is

exhibited by the comparison between the two hybrid approaches: although HA-SGD performs

the similar number of updates as HR-SGD on datasets semeion and dna, it takes HA-SGD

significantly longer time to finish the computation than HR-SGD. This is also exhibited by

comparing the results across different datasets for a fixed method. For example, for the HA-

SGD method, the number of updates for the protein dataset is nearly the same as that for

the poker dataset, but the running time for the protein dataset is about 100 times longer than

that for the poker dataset. This result may sound counter intuitive at the first glance. But, a

more careful analysis reveals that in addition to the number of updates, the running time of

DML is also affected by the computational cost per iteration, which explains the consistency

between Figs. 2 and 3. In the case of comparing the two hybrid approaches, we observe that

HA-SGD is subjected to a higher computational cost per iteration than HR-SGD because

HA-SGD has to compute the norm of the average gradient over each mini-batch while HR-

SGD only needs to compute the derivative of one randomly sampled triplet constraint for

each mini-batch. In the case of comparing the running time across different datasets, the

protein dataset has a significantly higher dimensionality than the poker dataset, and therefore

is subjected to a higher computational cost per iteration because the computational cost of

projecting an updated distance metric onto the PSD cone increases at least quadratically in

the dimensionality.

4.4 Experiment (III): comparison with state-of-the-art online DML methods

We compare the proposed SGD algorithms to three state-of-the-art online algorithms and

one bath method for DML:

– SPML (Shaw et al. 2011): an online learning algorithm for DML that is based on mini-

batch SGD and the hinge loss,

– OASIS (Chechik et al. 2010): a state-of-the-art online DML algorithm and symmetric

version with only one projection is applied,

– LEGO (Jain et al. 2008): an online version of the information theoretic based DML

algorithm Davis et al. (2007).

– POLA (Shalev-Shwartz and Singer 2004): a Perception based online DML algorithm.

Finally, for sanity checking, we also compare the proposed SGD algorithms to

LMNN (Weinberger and Saul 2009), a state-of-the-art batch learning algorithm for DML.

Both SPML and OASIS use the same set of triplet constraints to learn a distance metric as

the proposed SGD algorithms. Since LEGO and POLA are designed for pairwise constraints,

for fair comparison, we generate pairwise constraints for LEGO and POLA by splitting each

triplet constraint (xt
i , xt

j , xt
k) into two pairwise constraints: a must-link constraint (xt

i , xt
j )
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Fig. 3 The comparison of number of updates for various SGD methods. Note that since POLA and LEGO

optimize pairwise constraints, we decompose each triplet constraint into two pairwise constraints for these

two methods. As a result, the number of constraints is doubled for these two methods
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Table 3 Classification error (%) of k-NN (k = 3) using the distance metrics learned by baseline SGD method,

online learning algorithms and batch learning approach for DML

Baseline Batch Online Learning

SGD* LMNN POLA LEGO OASIS SPML

semeion 4.18 7.11(0.39) 19.25(1.95) 12.89(1.84) 6.74(0.34) 4.81(0.59)

dna 6.64 4.89(0.29) 7.32(0.55) 7.39(0.55) 11.75(0.43) 6.78(0.58)

isolet 4.23 4.11(0.08) 5.18(0.38) 18.08(6.98) 4.37(0.26) 4.36(0.18)

tdt30 3.52 2.80(0.0) 5.93(0.38) 21.11(3.68) 3.92(0.08) 3.47(0.13)

letter 2.23 3.20(0.00) 3.10(0.22) 5.24(0.45) 3.92(0.05) 3.98(0.53)

protein 38.16 39.86(0.16) 38.38(0.56) 42.60(1.13) 37.83(0.23) 40.12(0.53)

connect4 20.16 21.60(0.26) 25.67(0.85) 26.06(1.30) 22.37(0.63) 24.60(0.70)

sensit 22.95 24.45(0.02) 27.51(0.39) 26.50(1.37) 22.12(0.24) 23.48(0.25)

rcv20 7.74 N/A 7.96(0.08) 8.49(0.18) 8.08(0.06) 8.61(0.12)

poker 35.22 N/A 41.26(1.70) 40.58(1.23) 45.12(2.14) 39.42(0.71)

Standard deviation computed from five trials is included in the parenthesis

and a cannot-link constraint (xt
i , xt

k). This splitting operation results in a total of 2N pairwise

constraints for LEGO and POLA. Finally, we note that since LMNN is a batch learning

method, it is allowed to utilize any triplet constraint derived from the data, and is not restricted

to the set of triplet constraints we generate for the SGD methods. All the baseline DML

algorithms are implemented by using the codes from the original authors except for SPML,

for which we made appropriate changes to the original code in order to avoid large matrix

multiplication and improve the computational efficiency. SPML, OASIS LEGO and POLA

are implemented in Matlab, while the core parts of LMNN are implemented by C that is

usually deemed to be more efficient than Matlab. The default parameters suggested by the

original authors are used in the baseline algorithms. The step size of LEGO is set to be 1,

as it was observed in Chechik et al. (2010) that the prediction performance of LEGO is in

general insensitive to the step size. In all experiments, all the baseline methods set the initial

solution for distance metric to be an identity matrix.

Tables 3 summarizes the classification results of k-NN (k = 3) using the distance metrics

learned by the proposed method and by baseline algorithms, respectively. SGD* denotes the

best result of propose methods in Table 2. First, we observe that LEGO and POLA perform

significantly worse than the proposed DML algorithms for four datasets, including semeion,

connect4, sensit and poker. LEGO also performs poorly on isolet and tdt30. This can be

explained by the fact that LEGO and POLA use pairwise constraints for DML while the

other methods in comparison use triplet constraints for DML. According to Chechik et al.

(2010); Shaw et al. (2011); Weinberger and Saul (2009), triplet constraints are in general

more effective than pairwise constraints. Second, although both SPML and Mini-SGD are

based on the mini-batch strategy, SPML performs significantly worse than Mini-SGD on

three datasets, i.e. protein, connect4, and poker. The performance difference between SPML

and Mini-SGD can be explained by the fact that Mini-SGD uses a smooth loss function while

a hinge loss is used by SPML. According to our analysis and the analysis in Cotter (2011),

using a smooth loss function is critical for the success of the mini-batch strategy. Third,

OASIS yields similar performance as the proposed algorithms for almost all datasets except

for datasets semeion, dna and poker, for which OASIS performs significantly worse. Overall,
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Table 4 The comparison of

running time (seconds) for

OASIS and the hybrid methods.

Average results over five trials

are reported

Methods semeion dna isolet tdt30 letter

OASIS 4.4 5.5 156.6 10.4 2.3

HR-SGD 3.6 5.1 363.2 21.7 1.4

HA-SGD 7.6 8.1 597.9 28.4 1.1

Methods protein connect4 sensit rcv20 poker

OASIS 161.4 4.5 19.0 46.5 1.5

HR-SGD 275.7 3.0 23.5 139.2 0.9

HA-SGD 164.6 2.5 15.3 65.6 1.2

we conclude that the proposed DML algorithms yield similar, if not better, performance as

the state-of-the-art online learning algorithms for DML.

Compared to LMNN, a state-of-the-art batch learning algorithm for DML, we observe

that the proposed SGD algorithms yield similar performance on four datasets. They however

perform significantly better than LMNN on datasets semeion and letter, and significantly

worse on datasets dna and tdt30. We attribute the difference in classification error to the

fact that the proposed DML algorithms are restricted to 100, 000 randomly sampled triplet

constraints while LMNN is allowed to use all the triplet constraints that can be derived

from the data. The restriction in triplet constraints could sometimes limit the classification

performance but at the other time help avoid the overfitting problem. We also observe that

LMNN is unable to run on the two large datasets rcv20 and poker, indicating that LMNN

does not scale well to the size of datasets.

The running times for the proposed algorithms and the baseline algorithms are summarized

in Fig. 2. The number of updates for both groups of algorithms are provided in Fig. 3. It is

not surprising to observe that two online DML algorithms (SPML, OASIS) are significantly

more efficient than SGD in terms of both running time and the number of updates. We also

observe that Mini-SGD and SPML share the same number of updates and similar running

time for all datasets because they use the same mini-batch strategy. Furthermore, compared

to three online DML algorithms (SPML, LEGO and POLA), the two hybrid approaches

are significantly more efficient in both running time and the number of updates. Table 4

compares the detailed running time of OASIS and the hybrid methods. We also observe that

the hybrid methods are more efficient than OASIS on six datasets (i.e. semeion, dna, letter,

connect4, sensit and poker), even though OASIS only performs projection once at the end of

the program. We attribute the efficiency of the hybrid approaches to the reduced number of

updates they have to perform on the learned metric. Finally, since LMNN is implemented by

C, it is not surprising to observe that LMNN shares similar running time as the other online

DML algorithms for relatively small datasets. It is however significantly less efficient than

the online learning algorithms for datasets of modest size (e.g. letter, connect4 and sensit),

and becomes computationally infeasible for the two large datasets rcv20 and poker. Overall,

we observe that the two hybrid approaches are significantly more efficient than the other

DML algorithms in comparison.

5 Conclusion

In this paper, we propose two strategies to improve the computational efficiency of SGD

for DML, i.e. mini-batch and adaptive sampling. The key idea of mini-batch is to group
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multiple triplet constraints into a mini-batch, and only update the distance metric once for

each mini-batch; the key idea of adaptive sampling is to perform stochastic updating by

giving a difficult triplet constraint more chance to be used for updating the distance metric

than an easy triplet constraint. We develop theoretical guarantees for both strategies. We also

develop two variants of hybrid approaches that combine mini-batch with adaptive sampling

for more efficient DML. Our empirical study confirms that the proposed algorithms yield

similar, if not better, prediction performance as the state-of-the-art online learning algorithms

for DML but with significantly less amount of running time. Since our empirical study is

currently limited to datasets with relatively small number of features, we plan to examine the

effectiveness of the proposed algorithms for DML with high dimensional data.
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Appendix 1: Proof of Theorem 1

Using the standard analysis for online learning (Chapter 12, Cesa-Bianchi and Lugosi 2006),

we have

ℓt (Mt ) − ℓt (M∗) ≤ 〈Mt − M∗,∇ℓt (Mt )〉

≤
‖Mt − M∗‖2

F

2η
−

‖Mt+1 − M∗‖2
F

2η
−

‖Mt − Mt+1‖2
F

2η
+ 〈Mt − Mt+1,∇ℓt (Mt )〉

≤
‖Mt − M∗‖2

F

2η
−

‖Mt+1 − M∗‖2
F

2η
−

‖Mt − Mt+1‖2
F

2η
+

1

b

b∑

s=1

〈Mt − Mt+1,∇ℓt,s(Mt )〉

≤
‖Mt − M∗‖2

F

2η
−

‖Mt+1 − M∗‖2
F

2η
+

η

2b

b∑

s=1

‖∇ℓt,s(Mt )‖2
F

By taking the expectation with respect to the t-th mini-batch of triplet constraint, we have

L(Mt ) − L(M∗) ≤
‖Mt − M∗‖2

F

2η
−

Et [‖Mt+1 − M∗‖2
F ]

2η
+

η

2b

b∑

s=1

Et,s[‖∇ℓt,s(Mt )‖2
F ]

By adding the inequalities of all iterations and taking expectation over the sequence of triplet

constraints, we have

T∑

t=1

E[L(Mt )] − L(M∗) ≤
1

2η
‖M1 − M∗‖2

F +
η

2b

T∑

t=1

b∑

s=1

E[‖∇ℓt,s(Mt )‖2
F ]

︸ ︷︷ ︸
:=CT

According to Proposition 2, we have ℓ′(z)2 ≤ |ℓ′(z)| ≤ Lℓ(z). Using A = max
1≤t≤N

‖At‖F ,

we have

CT =
T∑

t=1

b∑

s=1

Et,s[‖∇ℓt,s(Mt )‖2
F ] ≤ L A2b

T∑

t=1

E[L(Mt )]
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Using the result for CT , we have

(
1 − 3ηL A2

)
L(M̄) ≤ L(M∗) +

R2

2ηT

We complete the proof by dividing both sides with 1 − 3ηL A2 and replacing T with N/b.

Appendix 2: Proof of Theorem 2

To bound the number of updates, we have

E

[
N∑

t=1

Z t

]
= E

[
N∑

t=1

|ℓ′
t (Mt )|

]
≤ LE

[
N∑

t=1

L(Mt )

]
,

where the last step follows from |ℓ′
t (M)| ≤ Lℓt (M).

Using the standard analysis for online learning (Chapter 12, Cesa-Bianchi and Lugosi

2006), we have:

ℓ(Mt ) − ℓ(M∗) ≤ 〈ℓ′(Mt )At , Mt − M∗〉
= τt Z t 〈At , Mt − M∗〉 + (ℓ′(Mt ) − τt Z t )〈At , Mt − M∗〉

≤
‖Mt − M∗‖2

F − ‖Mt+1 − M∗‖2
F

2η
+

ηA2 Z t

2
+ τt (|ℓ′(Mt )| − Z t )〈At , Mt − M∗〉

Taking the sum from t = 1 to N and expectation over both binary variables {Z t }N
t=1 and the

sequence of triplet constraints, we have:

N∑

t=1

E[L(Mt )] − L(M∗) ≤
‖M1 − M∗‖2

F

2η
+

ηA2

2
E

[
N∑

t=1

Z t

]

We complete the proof by reorganizing the above inequality.
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