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ABSTRACT Software-defined networking (SDN) is the key outcome of extensive research efforts over the

past few decades toward transforming the Internet infrastructure to be more programmable, configurable,

and manageable. However, critical cyber-threats in the SDN-based cloud environment are rising rapidly,

in which distributed denial-of-service (DDoS) attack is one of the most damaging cyber attacks. In this

paper, we propose an efficient solution to tackle DDoS attacks in the SDN-based cloud environment.

We first introduce a new hybrid machine learning model based on support vector machine and self-

organizing map algorithms to improve the traffic classification. Then, we propose an enhanced history-

based IP filtering scheme (eHIPF) to improve the attack detection rate and speed. Finally, we introduce a

novel mechanism that combines both the hybrid machine learning model and the eHIPF scheme to make a

DDoS attack defender for the SDN-based cloud environment. The testbed is implemented in an SDN-based

cloud with service function chaining. Through practical experiments, the proposed DDoS attack defender is

proven to outperform existing mechanisms for DDoS attack classification and detection. The comprehensive

experiments conducted with various DDoS attack levels prove that the proposed mechanism is an effective,

innovative approach to defend DDoS attacks in the SDN-based cloud.

INDEX TERMS Distributed denial-of-service attacks, machine learning, software defined networks, net-

work function virtualization.

I. INTRODUCTION

In recent years, Software Defined Networking (SDN) [1] and

Network Functions Virtualization (NFV) [2] have emerged as

cloud computing technologies. SDN is an innovative network

framework that can monitor and control network traffic by

utilizing the control-data plane detachment.Meanwhile, NFV

has been developed as a novel solution technology to design,

deploy and control network services with much lower costs

by separating the functions from physical network devices.

In addition, Service Function Chaining (SFC) [3] technology,

which is enabled by both SDN andNFV,was proposed to sup-

port a sequence of multiple service functions (e.g., Firewall,

DPI, Load Balancing) to a specific network flow. SDN, NFV,

SFC technologies and cloud platform (OpenStack [4]) assist

and benefit from each other to make a future SDN-based

cloud environment as shown in Figure 1.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ghufran Ahmed.

FIGURE 1. Future SDN-based cloud environment.

A. PROBLEM STATEMENTS

While SDN-based cloud is more advantageous in network

traffic control and elastic resource management for a better

cloud service in the future, it causes the vulnerability to

Distributed Denial-of-Service (DDoS) attacks to both SFC

operation and the cloud provider [5], [6]. Themain purpose of

DDoS attacks is to flood a victim with a massive traffic vol-

ume that is generated from botnets, which deplete computing
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resources and shut down the victim network systems. The

reasons why DDoS attacks are tough challenges for the SDN-

based cloud environment can be listed as follows

• First, every SoftwareDefinedNetworking orOpenFlow-

based network is now vulnerable to DDoS attacks

because an OpenFlow switch is normally able to

maintain from several up to a hundred thousands of

flow-entries. However, when the network is under a

large-scale DDoS attack, the flow number can rocket to

somemillions. This leads to not only the victimmachine

is affected, but also the SDN Controller and OpenFlow

switches stop working due to resource exhaustion.

• Regarding the use of SFC in cloud environment, every

service chain including a determined sequence of vir-

tual network functions (VNFs) is fixed in a specific

network path and may be public to internet users for

commercial purposes. This can result in DDoS attack-

ers flooding unwanted traffic to these SFCs to further

degrade the public service quality or other reasons [7].

For instance, a service function chain consists of three

VNFs such as: a Firewall, a DPI and a public service

(e.g. Web). If this SFC is attacked by DDoS attackers,

prior functions can be overloaded because of the rock-

eted attack traffic volume. In that case, there might be

some actions from the cloud provider such as initiating

more VNFs or randomly dropping incoming traffic to

ensure the next VNFs are able to handle the service

chain traffic. However, every SFC customer has a fixed

resource allocation and provides users an acceptable

quality of service depending on service types (Web,

video and etc.) in terms of delay, packet loss rate, and

so on. Therefore, this DDoS attack will reject legitimate

user requests due to excessive resource consumption and

traffic disruption.

• Moreover, if the small or medium-sized cloud providers

do not provide any security solutions for their cus-

tomers and themselves, some attack target domains in

the cloud may become a traffic bottleneck when the

traffic increases rapidly in a short period of time, and

network devices or servers may go down in the worst

case.

From mentioned issues, we can see that the damaging

effects of DDoS attacks cause great difficulties to every

network system not only in a legacy cloud network, but also

SDN-based cloud environment. In addition, to the best of our

best knowledge and as seen in [7] and [8], not many studies

can effectively solve these grave problems.

B. OUR PROPOSAL

To resolve the serious issues given above and improve the

robustness of the cloud system, we present a concrete pro-

posal with a novel mechanism that monitors, checks and

filters incoming traffic before forwarding to VNFs on the

cloud.

In our proposal, we first introduce a novel combined

machine learning algorithm to enhance the performance of

classification in network traffic. It mainly takes advantages

of two classification algorithms, Support Vector Machine

(SVM) taking little time to produce outputs with a high accu-

racy and Self Organizing Map (SOM) making a reliable pre-

diction based on their neurons, in order to minimize resource

consumption while ensuring a high traffic classification per-

formance. We then present an enhanced History-based IP

Filtering scheme (eHIPF) to enhance the detection time of

an abnormal source accessing the cloud system. Finally,

we propose a novel security mechanism that combines both

the hybrid machine learning model and the eHIPF scheme to

tackle DDoS attacks in the SDN-based cloud, especially for

SFC protection.

C. CONTRIBUTIONS

In summary, the major contributions of our research consist

of the following:

• We introduce a new machine learning hybrid model for

DDoS attack classification [9] based on Support Vector

Machine (SVM ) [10] and Self Organizing Map (SOM )

[11], [12] algorithms to improve the performance of

classification in network traffic.

• We propose an enhanced History-based IP Filtering

scheme (eHIPF) in comparison with prior studies to

improve the detection rate and speed in distinguishing

DDoS attack’s source IP addresses.

• We propose a novel security mechanism that combines

both the hybrid machine learning model and the eHIPF

scheme to produce an efficient DDoS attack defender in

the SDN-based cloud.

The rest of the paper is structured as follows. Section II

presents several related researches to our work. Section III

first gives a brief introduction to a novel hybrid machine

learning model, and describes the concept of Software

Defined Networks and the Network Functions Virtualiza-

tion technologies in cloud environment. Section IV mainly

focuses on system analyses and practical design of the pro-

posed security mechanism. Our experiments are conducted in

Section V. Results and performance evaluation are presented

in Section VI. Finally, conclusion and future researches are

given in Section VII.

II. RELATED WORK

In the integrated SDN network environment, many studies

[13], [14] proposed various solutions for Dos/DDoS attack

detection and prevention recently.

Non-machine learning-based solutions also have been

widely proposed to tackle DoS/DDoS attacks in SDN envi-

ronment. For instance, FLOOD-GUARD [15] provides two

modules: proactive flow rule analyzer and packet migra-

tion to preserve network policy enforcement and protect

the controller from being overloaded. Van Trung et al. [16]

introduce the usage of Fuzzy Interference System into

DDoS attack prevention in the SDN. Reference [17] pro-

poses a combined anomaly detection mechanism comprised

of: (a) reduced data gathering with sampling, implemented
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with the use of the sFlow protocol, (b) anomaly detection,

implemented by entropy-based algorithm and (c) network-

wide anomaly mitigation using OpenFlow, in which DDoS

attacks is one of threats they tested using the proposed

mechanism. Mehdi et al. [18] argue that the advent of Soft-

ware Defined Networking provides a unique opportunity to

effectively detect and contain network security problems in

home and home office networks. Then, they present how

four traffic anomaly detection (e.g. DDoS detection) algo-

rithms can be implemented in an SDN context. A proposal,

namely Fayaz [19], is introduced as a flexible and elas-

tic DDoS defense system which addresses key challenges

with respect to scalability, responsiveness, and adversary-

resilience. Peng et al. [20], Dao et al., and Goldstein [22]

propose and conduct a DDoS detection engine by analyzing

some historic datasets and finding hard thresholds to distin-

guish the attack sources from normal sources. In summary,

non-machine learning-based solutions are effectively evalu-

ated in DDoS detection and prevention in SDN environment.

However, these approaches are quite complex in deploy-

ment and not adaptable to rapidly changes in network status,

especially SDN-based networks. In other words, intelligent

and adaptive detection and mitigation system is required for

dealing with DDoS attacks in SDN-based networks.

Accordingly, several machine learning-based

approaches [23] have been proposed to handle saturation

attacks which can provide artificial intelligence in DDoS

detection and mitigation. For example, Braga et al. [24]

created a DDoS detection scheme using Self-OrganizingMap

(SOM) with 4 and 6 tuples of attributes, while Support Vector

Machine classifier is applied to recognizingDDoS attack traf-

fic in [25]. Phan et al. [26] propose a distributed scheme lever-

aging SOM algorithm to cope with flooding attacks. A deep

learning based multi-vector DDoS detection system [27]

is introduced in SDN-based environment. Meti et al. [28]

proposed to utilize the Support Vector Machine classifier and

the Neural Network classifier to detect the suspicious and

harmful connections in the SDN controller. Overall, these

proposed methods mainly base on one or a combination

of machine learning algorithms in order to make a DDoS

detection system in SDN-based networks. However, they

focus on only intelligently DDoS detection and forget about

the importance of other techniques (e.g. history-based) that

can be applied along with their machine learning proposals

in order to improve further processes such as mitigation and

optimization.

From above analyses, this motivates us to propose a

novel approach compared to previous studies, which is based

on both machine learning and history-based techniques to

efficiently tackle DDoS attacks in the SDN-based cloud

environment.

III. BACKGROUND KNOWLEDGE

A. SDN-BASED CLOUD

The integration of SDN and NFV technologies is referred

to as the SDN/NFV architecture [29], as shown in Figure 2.

It includes NFV Orchestration, Controller platform, forward-

ing devices and servers. The traffic path is determined by the

SDN controller using mainly OpenFlow protocol to commu-

nicate with forwarding devices (OpenFlow switch) to enforce

policies from the control plane to data plane. Meanwhile,

the NFV allows servers or cloud platform (e.g. OpenStack)

to produce high-bandwidth and high-performance Network

Functions without great cost. Hypervisors, which run on

servers, majorly focus on supporting VMs that allow to oper-

ate Network Functions such as IDS, Firewall, Proxies.

FIGURE 2. SDN-based cloud design.

The SDN controller [30]–[33] and the NFV orchestra-

tion are responsible for the logical control functions. The

NFV orchestration system performs VNFs provisioning,

and it is integrated with the SDN controller through inter-

faces or APIs. After considering the policy requirements and

generating network topology from the Topology Manage-

ment in the control platform, the Controller produces optimal

function assignments and assigns the functions to certain

VMs in the optimized path which can be known as a service

chain [3]. The NFV orchestration system conducts a service

function chain, and the controller instructs the traffic through

a determined sequence of VMs by installing flow rules into

forwarding devices.

B. DDOS ATTACKS IN SDN-BASED CLOUD

We briefly discuss DDoS attacks in traditional networks.

In these network models, a wide range of approaches are

used by attackers to attack victim [34], but we can sum-

marize into two main types: bandwidth depletion attacks

and resource depletion attacks. In the bandwidth depletion

attacks, attackers flood a victim with unwanted traffic, which

exhausts the victim network’s bandwidth. This results in

legal traffic not being able to access the victim network. For

instance, UDPflooding, ICMPflooding or Smurf and Fraggle

attacks [13]. With respect to the resource depletion attacks,

attackers aim to send IP packets that are malformed or misuse

the network protocol. Consequently, the victim suffers from

resource exhaustion, and when the volume of connection is

enough, the victim will stop working. TCP SYN flooding

is a good illustration which bases on the three-handshake

protocol between sender and receiver before opening a TCP

connection.
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TABLE 1. DDoS attacks in SDN-Based cloud.

From the perspective of SDN, which is a flow rule-based

network system, we also classify DDoS attacks into two

major types as follows:

Type I : The main idea is to rely on the volume of pack-

ets or data coming from a source address. When the network

system is under this type of DDoS attack, a prominent char-

acteristics is that a source IP address connects to the victim

network by generating one or two flows with a high level

of the volume of packets in each flow. For example, ICMP

flooding attack, Smurf and Fraggle attacks [13].

Type II : The second type bases on the volume of the

number of flow to break down the victim network system.

The basic idea is that a source IP address generates a large

number of flows to a victim address in a short time (e.g.

TCP SYN flooding [13]) and may keep these flows alive

during the attack (e.g. low and slow rate DDoS attack [35]).

This not only makes the victim, but also network devices

such as OpenFlow switches, the SDN controller or VNFs to

be crashed because of resource consumption (e.g. packet_in

process, RAM and so on) [15], [35].

In conclusion, from a new point of view in the SDN-based

environment and our analyses, these common DDoS attacks

can be summarized as shown in Table 1.

C. A NOVEL HYBRID MACHINE LEARNING MODEL

In this section, we provide readers with a briefly discussion

of the combination of Support Vector Machine (SVM) and

Self Organizing Map (SOM). Interested readers can refer to

our previous work [9] for more detailed information.

In [9] , we present a novel hybrid flow-based Distributed

Denial-of-Service defender in Software Defined Networks,

the core idea is to produce a two-algorithm combination that

helps an intelligent security system enhance the accuracy

in differentiating normal flows from abnormal flows during

runtime. The SVM [10] performs as a high-speed classi-

fier based on a hyperplane or set of hyperplanes in a high-

dimensional space. In security problem solving, the SVM is

also evaluated as a resource saving, high accurate classifi-

cation algorithm or application that consumes low compu-

tational resources. However, some data points belong to a

vague region or vague space for multiple dimensions which is

limited by two margin lines or planes in the SVM algorithm.

These vague data points are considered as suspicious points.

In order to find their exact spaces, we take an unsupervised

learning algorithm - SOM into account to recognize these

data points with higher prediction results. By implementing

our system, we proved that the proposed hybrid classification

model outperforms original algorithms, and it can protect

FIGURE 3. Conceptual Architecture.

the OpenFlow switches and the SDN controller from being

overloaded under DDoS attacks.

Although the proposed solution in [9] already improved

the classification performance of the traffic in SDN-based

networks, there are some limitations. For instance, one com-

pany including several LAN networks only with some public

IP addresses can access the Internet or public web services

on the cloud and some PCs in LAN networks are bots of

DDoS attackers. Then, the attackers send commands to their

bots to send traffic to a targeted web server on the cloud.

Unfortunately, many legal officers access to the web server

at the same time, and this leads to one public IP may be used

for both normal and attack request flows to the destination

sever. Hence, the cloud security scheme may quickly detect

attack flows and ban the IP address for a period of time. This

makes normal users unable to access the web server. In addi-

tion, we note that many normal TCP flows behave like attack

flows because of a very little packets at the beginning stage.

As a result, the system may make bad decisions on legal

requests and may apply strict polices (e.g. delete action [36]).

This might also raise a concern in extra resource consumption

due to the new flow installation process.

All things considered, this motivated us to propose new

algorithms and mechanisms to overcome the mentioned limi-

tations of our previous research and efficiently defend against

DDoS attacks in the SDN-based cloud environment.

IV. SYSTEM ANALYSIS AND PRACTICAL DESIGN

To overcome the security problems related to DDoS attacks in

previous sections, we introduce a novel, executable and prac-

tical framework in this section. First, we conduct a thorough

logical analysis of the system, and we then illustrate how the

proposed framework is designed with the main components

in further detail.

A. SYSTEM ANALYSIS AND GOALS

In the SDN-based cloud, we suppose we are given following

groups:
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• Let S = {s1, s2, s3, ..., sx} shows a group of all legiti-

mate source IP addresses that accessed the SDN-based

cloud in a specific period of h hours in nonattack condi-

tion, where |S| = x. This means the group S is updated

after h hours as a loop because our proposed mechanism

always considers every source IP as a potential DDoS

attacker after h hours. Then, if a source IP overcomes

security checkers (SVM -k , SOM and eHIPF) after some

observation times, it will be considered as a legitimate

source. Peng et al. [20], Dao et al., and Goldstein [22]

used a traced dataset and always set the considering

time up to some days, and this not only makes a large

database, but also is useless if there are lots of sources

that only accessed just once or twice. Therefore, it is

reasonable, if we only consider our history database in h

hours.

• Let T =
{

t1, t2, t3, ..., ty
}

presents a group of all trusted

source IP addresses provided by the SDN-based cloud

provider, where |T | = y. This group is updated by

a Trusted Source Database (TSD) if there are some

changes from the cloud administrator.

• Let A = {as1, as2, as3, ..., asz} illustrates a group of all

source IP addresses except trusted IPs that appeared on

the cloud system in DDoS attack time, where |A| = z.

From these above groups, we have the number of source IP

addresses in the SDN-based cloud system srcIPnum as follows

{

srcIPnum = x + y, Nonattack,

srcIPnum = z+ y≫ x + y, DDoS attacks.
(1)

At first, groupA can be seen as group S in the normal condi-

tion when only legal users access the cloud system. However,

when the system is under DDoS attacks, the attackers always

use a vast number of random spoofed source IP addresses

to send attack traffic to a predetermined victim. Under the

SDN perspective, the victim is an SFC (NIDS, Firewall, Web

and etc) that provides a public service, such as Web or FTP

services. Hence, the number of source IP address increases

dramatically, which means that the value of z fires a rocket in

a short time. Therefore, our first goal is to keep the value of

srcIPnum as small as (x+y) possible in both normal and attack

conditions. In other words, our introducedmechanism detects

attack sources as quickly as possible, and distinguishes them

from normal and trusted sources.

In addition, we assume that the incoming traffic follows

Poisson distribution [37] in the normal traffic condition with

a parameter λ, revealing the rate of average packet arriving,

and the SDN-based cloud serves n customers for their SFCs

in the cloud system. For each customer, they always have to

negotiate with the cloud provider for the network resource

(Bandwidth) from the cloud gateway to their SFCs and the

VNF resources (CPU, RAM memory, Disk space, ...) before

launching their services, which depends on the cloud infras-

tructure and the customer’s budget. Let Bm (bps) is the upper

bandwidth bound inside the cloud of the mth customer (m ≤

n). Normally, if there are no DDoS attacks, the actual transfer

bandwidth is always less than Bm (bps) and the VNFs are not

overloaded due to the customer having their own stable users.

However, when a DDoS attack happens, if the cloud provider

forwards all incoming traffic without filtering to SFCs of

their customer, it results in a rocket in bandwidth reaching

Bm (bps). Hence, legitimate and trusted source IP addresses

are unable to access the destination service due to some

overloaded VNFs in their SFC. Accordingly, a demanding

requirement for the SDN-based cloud provider is to provide

a security mechanism for customer traffic before forwarding

the filtered traffic to their SFCs to ensure the SFC quality

of service (QoS) [38]. This leads to our second goal is to

keep the traffic to the mth customer’s SFC always being

less or equal than the Bm (bps) from the border OpenFlow

switches. This means that our proposed solution has to pre-

vent abnormal traffic from accessing customer SFCs as much

as possible inside the cloud.

B. SYSTEM DESIGN

To achieve the two mentioned goals in Section IV-A to face

with saturation attacks while guaranteeing the SFCQuality of

Service, we introduce a novel combined scheme among SVM

classifier, SOM classifier and eHIPF mechanism to defend

against DDoS attacks in the SDN-based cloud environment.

This combined operation includes extension modules that

can be implemented and distributed both in the SDN appli-

cation plane and cloud controller platform (OpenStack [4]).

We suggest that these modules could be placed at a dedicated

security server in real deployment in order to reduce the SDN

controller processing load. For convenience, however, in this

work we design modules including SVM , SOM and eHIPF

and locate these modules in the SDN application layer, just

some modules are placed in the OpenStack controller for

synchronization and further actions as shown in Figure 3.

We build some functional modules: Raw Data Processing,

two databases (Training and Trusted Source), Mitigation

Agent, Statistic Sender and Update Agent, which are placed

in the SDN control plane. Note that, the proposed scheme can

be implemented in a distributed manner of nowadays cloud

computing, in which databases can be shared among dis-

tributed agents to enhance anomaly detection performance.

We next explain in more detail in following sections.

1) RAW DATA PROCESSING

As can be seen in Figure 4, we illustrate how the introduced

modules connect and make a workable defending system.

First, in order to get data from data plane, we run a Statistic

Sender that sends frequently request messages [36] to Open-

Flow switch and wait for response messages. After receiving

the response data, OpenFlow Channel forwards them to the

Raw Data Processing module. These data (raw data) are

processed by Flow Collector, Feature Extractor and Traffic

Classifier modules before going to an appropriate SVM -k

classifier.
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FIGURE 4. Detailed Architecture synchronized OpenStack Controller .

• Flow Collector: This module is a simple module run-

ning in the SDN controller, and it simply receives

StatsResponse messages [36] in a preset period of time.

• Feature Extractor: It extracts flow information from

StatsResponse messages to take out several attributes of

a flow. Two of them are inputs of the SVM -k and the

SOM processes four attributes (shown in Figure 5).

• Traffic Classifier: This module is accountable to transfer

the attributes of a flow to the corresponding SVM -k . For

example, a flow that protocol field is ICMP, flow infor-

mation will be sent to the SVM -ICMP for classification.

FIGURE 5. System Process Logic.

2) MACHINE LEARNING TRAINING AND CLASSIFYING

Once the proposed scheme is activated, and machine learning

training processes will take place at the initialization stage.

In this process, SVM -k and SOM classifiers are trained by the

appropriate ready-made datasets from the Training Database.

Note that, in this scheme, the Training Database is con-

tinuously updated using the flow attributes collected from

the above loop. In a preset time, which may be defined by

a network administrator, the SVM -k and the SOM will be

replaced by a SVM -k and a SOM that are trained by using

the updated database because the SVM and SOM are not an

online learning algorithms [39]. By doing so, the proposed

mechanism can adapt well to various network states.

We already utilized the enhanced workable SVMs-SOM

combination in [9]. Therefore, we briefly summarize our

proposed mechanism as follows

• Each SVM -k classifies an input vector (a tuple of flow’s

attributes) basing on the distance d from their margins

to the hyperplane, and a decision will be given based

on the input’s position that is pointed out in the SVM -k

representation.

• If d <
1
‖w‖

where
→
w is the normal vector to the hyper-

plane, the input vector is believed as a suspicious pat-

tern and located in a vague space (VS) because SVM -k

cannot find any groups (normal or abnormal) for the

considered input vector. Then, the input information will

be forwarded to the Self-Organizing Map to ask for a

high-accurate decision. Otherwise, the SVM -k produces

and forwards an output to the eHIPF for next processes.

• After receiving the input from one of SVM -k , the SOM

map, which is constructed by a training process using

a ready-made dataset and makes decision based on the

weight computation of the neurons, it will compute the

distance from the input vector to every node or neuron

in it’s map to choose the Best Matching Unit. Next,

the SOM gives out and forwards an output to the eHIPF

for next processes.

3) SYSTEM PROCESS LOGIC

To represent our introduced scheme, the system control-flow

logic is shown in Figure 5. At first, an input Fi or an attribute

tuple of flow Fi, which is previously processed by the Raw

Data Processing module, is fed into one of the SVM -k . Then,

if the Fi’s position locates outside the vague space (Fi ∈ G1

or Fi ∈ G2), an output Oi1 will be sent immediately to the

eHIPF module. Otherwise, Fi ∈ VS, the Fi’s information

is forwarded to the next machine learning classifier (SOM

map). The SOM takes more Fi’s attributes in order to make

a more accurate prediction by using the SOM neurons, and

then it produces an output Oi1 for Fi and also forwards to the

eHIPF . The eHIPF scheme is responsible for deeply attack

checking based on the traffic history of the incoming traffic

pattern Fi (discussed in IV-C) and produces an output Oi2.

After gathering outputs Oi1 and Oi2, final decision is made

by following rules:

• If Oi1 is ATTACK and Oi2 is ATTACK, Oi is ATTACK;

• IfOi1 is ATTACKandOi2 is NORMAL,Oi is NORMAL

(Consider at next observation);

• IfOi1 is NORMAL andOi2 is ATTACK,Oi is NORMAL

(Consider at next observation);

• If Oi1 is NORMAL and Oi2 is NORMAL, Oi is

NORMAL.

By doing so, the Fi will be grouped and classified based

on a various adjustment aspects. The last procedure is at the

Mitigation Agent module that formulates policies for specific

types of attacks and sends rules to OpenFlow switches with
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the purpose of reducing attacks. Regarding normal traffic

flows, we do nothing to keep them alive in the flow-tables.

These mentioned processes are summarized in Algorithm 1.

Algorithm 1 Proposed DDoS Defense Scheme

1: N ← A set of flows

2: Fi ← Attribute tuple of flow i

3: Oi ← Final decision of Fi
4: Oi1 ← Output of SVM − k or SOM classifier

5: Oi2 ← Output of eHIPF

6: ri ← A generated rule for an attack flow Fi
7: R ← A set of rules in each loop

8: loop

9: for i = 1 to N do

10: Feed Fi into SVM-k

11: if Fi ∈ VS then

12: Suspicious Flow

13: Pass Fi→ SOM ⇒ Oi1
14: else

15: Produce Oi1
16: end if

17: Forward Fi→ eHIPF ⇒ Oi2
18: Process (Oi1,Oi2)→ Oi
19: if Oi is ATTACK then

20: Forward (Fi,Oi)→ Mitigation Agent ⇒ ri
21: R← (R + ri)

22: else

23: continue

24: end if

25: end for

26: end loop

27: return: R

C. ENHANCED HISTORY-BASED IP FILTERING SCHEME

AND MITIGATION AGENT

1) HISTORY-BASED IP DATABASE

To begin with, we first define a set of parameters (or rules) of

a source IPj (y≤ j≤ x) which is used to differentiate normal

sources from their illegal counterparts.

The first parameter is the active time of a source IPj
denoted as atj (atj ≤ h). This parameter not only denotes

how long time a source has been connecting to a service on

the cloud, but also proves that the source IPj has not sent

any attack traffic to our system under the view of a cloud

provider. Hence, atj is considered to be a key parameter in

making accurate decisions on attack detection (the outputOi2
in Algorithm 1). As mentioned in section IV-A, the value

of atj of the source IPj will be reset to 0 after h hours, and

it will then recount up to h hours. The second parameter

is the number of flows of a source IPj, nconj , which shows

how many incoming flows have been established to a service

on the cloud, where nconj ≥ 1. It is reasonable to consider

only request flows because the NFV and SFC technologies,

in which the return traffic is always another route for a better

service response or for other purposes. The ICMP protocol

is known as a supporting protocol in the Internet protocol

suite, and it is just used to check whether a requested service

is not available or a host or router could not be reached.

Thus, a normal source IPj usually sends few ICMP request

packets to a destination, and each ICMP (generally attack

Type I mentioned in Section III-B) source IPj only gener-

ates one flow in flow-tables of a SDN switch. In contrast,

a TCP or UDP (generally attack Type II traffic mentioned in

Section III-B) source IPj can generate one or more flows in

a SDN switch. From the above analyses, we define the third

parameter, Pfj (the average number of packets per flow of the

source IPj) to differentiate an abnormal source IPj from their

normal counterparts as follows






Pfj = tpktj , Attack Type I ,

Pfj =
tpktj

nconj
, Attack Type II ,

(2)

where nconj is the flow number of the source IPj and tpktj is the

transferred packets of the source IPj to the cloud. The traffic

protocol of the source IPj is a major point to classify traffic

type into two main attack types as described in III-B, Proj.

For example, the ICMP flooding attack belongs to the Type I

(Proj = 1), while TCP SYN flooding is classified as Type II

(Proj = 2). The next judged parameter is the priority of a

source IPj denoted as Prij that distinguishes among trusted

(Prij = 1), normal (Prij = 2) and unidentified (Prij = 3)

sources. The last parameter we introduce is the flag, Flagj,

which shows the status of the source IPj.We have two statuses

for a source IPj: attack and normal which represent Flagj =

−1, 1, respectively. A new source is assigned as a normal

source at the beginning.

Note that at each observation, the Update Agent collects

values of atj, nconj , Pfj, Proj and Prij of each active source

IPj and updates to a database. From the above definitions,

the tuple of parameters of a source IPj is formed as IPj = (atj,

nconj , Pfj, Proj, Prij Flagj) and is an entry in the database. For

each search process, the search engine relies on two matches:

IPj and Proj to distinguish the IP sources.

2) ENHANCED HISTORY-BASED IP FILTERING SCHEME

As shown in [20]–[22], the experiments are conducted by

analyzing some datasets and finding some hard thresholds

to distinguish the attack sources from normal sources. For

example, [20] recommend that a TCP traffic the number of

packets of a normal source IPj is not less than 3 packets for

a normal TCP session. Because these previous researches set

hard threshold and datasets to determine the attack source,

they cannot be adaptive to changes in the real time traffic

characteristics. Furthermore, the use of a long-day dataset

is not an efficient way to make the system be fresh after

a long period of operation. Hence, in this paper, we intro-

duce an enhanced scheme to detect abnormal sources under

DDoS attacks based on the history of network traffic which

is referred eHIPF scheme.

We now investigate how eHIPF scheme efficiently clas-

sifies normal and attack sources using a History-based IP
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Database (HIP Database) described in IV-C.1 at each obser-

vation using the following phases:

Phase 1 (Threshold Initialization): At the begin-

ning, we generate a specific set of thresholds Ini =
{

(atini,w1), (Pfini,w2), (nconini ,w3)
}

for each type of traf-

fic or protocol, where w1,w2,w3 are weights of Ini attributes

that indicate the importance of a specific attribute among

others. To choose appropriate values for these weights, from

our deep discussion in Section III-B. Normally, each spe-

cific attack has one or two prominent characteristics (e.g.

ICMP flooding has a large number of packets in one request

flow). Hence, we clearly know which attributes have the

highest effects on detecting a DDoS source. Therefore, we set

w1,w2,w3 values according to the impact of its attributes

on the detection decision. In order to initiate the Ini sets,

we utilize data from the Training Database of the machine

learning classifiers because we also use this database to

train for SVM and SOM algorithms. However, this is just an

initialization step, the Ini sets will no longer be used if new

sources are added to the HIP Database.

Phase 2 (Real-Time System Processing):When the system

is on running-time, based on the collected statistics at each

observation, we first extract and update all active source IP

addresses by protocol to the HIP Database using the Update

Agent. For some beginning observations, we use the Ini sets

to classify normal and abnormal sources for each type of

traffic protocol and the Ini sets will be maintained separately

until the proposed system detects any of the attack sources.

For the observation t , the HIP Database may add some new

sources. Then, these sources are verified to find their Flag

using ready-made Ini sets. The value of the corresponding Ini

set will replaced for the next observation (t + 1) according to

our proposed Algorithm 2.

We provide an example of the source classification using

our presented eHIPF scheme. Regarding to the ICMP

DDoS attack (Type I ), we assume that B(t+1)ICMP =

{(15.56, 0.3), (50.5, 0.5), (1.0, 0.2)} is already calculated in

t observation, and we get 1000 active IP sources at (t + 1)

observation. Next, we compare these source’s attributes with

B(t+1)ICMP to classify the ICMP attack and normal sources

according to the Algorithm 3. For instance, a new ICMP

source A.B.C .D = {3.6, 1.0, 67.0, 1.0, 1.0, 1}. According to

the Algorithm 3 we can have: XICMP = 30.118 < XA.B.C .D =

34.78. Therefore, we can conclude that the source A.B.C .D

is an ICMP flooding attack source.

To prove the proposed eHIPF scheme as an enhancement

of the original HIPF solutions, we conducted experiments

and comparisons in Section V.

3) MITIGATION AGENT

To meet our two goals discussed in Section IV-A: The pro-

posed scheme has to detect the attack sources as fast as

possible, and to prevent abnormal traffic from accessing

VNFs inside the cloud as much as possible. Accordingly,

we apply various protection techniques for different attack

types or protocols.

Algorithm 2 Boundary Calculation for Next (t+1) Observa-

tion
1: z ← The number of all IP sources in the system

2: B(t+1) ← Boundary set at next (t+1) observation

3: w1,w2,w3 ← Attribute weights of the boundary set

4: Initialize at = Pf = ncon = 0.0

5: B(t+1) = {(at,w1), (Pf ,w2), (ncon,w3)}

6: c← 0

7: for j = 1 to z do

8: if Flagj = −1 (Consider attack sources) then

9: c+ = 1

10: at+ = atj
11: Pf+ = Pfj
12: ncon+ = nconj
13: end if

14: end for

15: B(t+1) =
{

( at
c
,w1), (

Pf
c

,w2), (
ncon
c

,w3)
}

16: return: B(t+1)

Algorithm 3 eHIPF Abnormal Source Detection

1: B(t+1)i =
{

(ati,w1i ), (Pfi,w2i ), (nconi ,w3i )
}

← the

boundary set of the protocol i given at the tth observation

2: (atj, nconj , Pfj, Proj, Prij, Flagj)← A set of attributes of

a source IPj that is collected at the (t + 1) observation

3: Xi = ati ∗ w1i + Pfi ∗ w2i + nconi ∗ w3i

4: Xj = atj ∗ w1i + Pfj ∗ w2i + nconj ∗ w3i

5: if Xi ≤ Xj then

6: Flagj = −1 {Attack source}

7: else

8: Flagj = 1 {Normal source}

9: end if

10: return: Flagj

Regarding attack Type I , in which attack sources intend

to create one or two flows from a client. They always send

a large number of packets, for example ICMP Flooding.

To prevent this attack, the Mitigation Agent sends a flow mod

message [36] with a drop action and a preset hard − timeout

value to the edge OpenFlow switch. This means that every

packet of the flooding source will be dropped at the border

switch and cannot reach inside the cloud. This action is

applied as soon as the eHIPF scheme produces an attack

output to theMitigation Agent. Note that these policy-applied

flows will no longer be considered as an input at next obser-

vation. By doing so, the proposed mechanism can reduce

the computational resources of the cloud control plane in the

SDN-based architecture.

Attack Type II generates a massive number of flows to the

victim with a small number of packets, for instance with a

TCP SYN DDoS attack. To tackle this attack, the Mitiga-

tion Agent sends a flow_mod message with a delete action

to the edge OpenFlow switch and informs the forwarding

engine of the SDN controller to drop packet_in messages
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of attacking sources which require for new flow installation

at the OpenFlow switch. This policy removes all abnormal

flows and prevents new attack flows in case an DDoS attack is

happening. Hence, it makes VNFs not getting overloaded and

ensures the smooth cloud operation. In addition, at the next

observation the number of collected flows will significantly

decrease due to the attack flow deletion from the switch. As a

result, this policy can save as much computational resources

of the cloud control plane as possible.

V. EXPERIMENTS

First, this section gives readers a demonstration of the eHIPF

scheme compared to the HIPF [20], [21] in terms of the

detection speed. Next, we present an elaborate implemen-

tation and a comprehensive result analysis of the proposed

scheme.

A. EHIPF EXPERIMENT

With the purpose of the eHIPF scheme deployment, we set up

a simple topology including a SDN controller, an OpenFlow

switch (HP E3800 [40]), an attacker host, a Web server

and a connection to our laboratory network. In this setup,

the SDN controller connects to the OpenFlow switch via a

secure connection, and two hosts, and the Laboratory net-

work is assigned to three switch ports. We coded and placed

eHIPF and HIPF [20], [21] modules in the SDN controller

respectively, and run these as applications. We perform two

separate scheme experiments by activating the modules, both

accessing from the laboratory network and generating DDoS

attack traffic from the attacker host installed BoNeSi (DDoS

attack tool) [41] to the Web server machine.

Before running the system, we extract and take Ini =
{

(atini,w1), (Pfini,w2), (nconini ,w3)
}

sets for each protocol

from the CAIDA datasets [42], [43]. In addition, we use a

pool of 900 fake source IP addresses in the attacker host and

a set of 100 trusted sources in the laboratory hosts to simulta-

neously generate attack and normal traffic. However, to test

the speed of detection of both approaches, the attack tool

begins with different attack sources corresponding to various

arrival rates λ1 = 100, λ2 = 300, λ3 = 500. We tested

two typical attacks ICMP flooding (Type I ) and TCP SYN

flooding (Type II ) with the observation time, tob = 3 seconds.

The results of the experiment are detailed in Section VI.

B. SDN-BASED CLOUD IMPLEMENTATION AND

TEST PREPARATION

We implement our proposed solution and compare to

other machine learning-based solutions: SVMs-SOM [9],

SVMs [25] and SOM [24]. Figure 6 shows our testing topol-

ogy which consists of a SDN controller, OpenStack platform

(a Controller-Network node and three Compute nodes run-

ning OvS drivers for cloud networking), an OpenFlow switch

HP E3800, a Router, the laboratory’s LAN network, the Inter-

net connection and botnets. In order to emulate real DDoS

attack scenarios, three servers installed the BoNeSi DDoS

attack tool are used to generate different attack volumes and

FIGURE 6. Experimental topology.

rates to the victim. With respect to the service function chain-

ing setup, we configure flows for a service chain including

three applications on three OpenStack Compute nodes: VNF

01 - Snort , VNF 02 - Firewall and VNF 03 - Web server .

In addition, a synchronized connection is established between

the SDN and the OpenStack controllers for the cloud infor-

mation and adjustments that are needed.

Machine learning training experiments are conducted

using both normal and attack datasets from CAIDA Datasets

[42], [43] (Normal traffic - on 21st May, 2015 and DDoS

attack traffic - on 04th August, 2007) to train SVM and a

SOM classifiers. CAIDA is one of the most credible datasets

which collects diverse real network traffic types, including

Web, FTP, Ping and etc at different locations worldwide. In a

legitimate dataset, the TCP protocol packet occupies a mas-

sive 89%, a merely 6% is ICMP packets and other protocols

make up only 5%. Whereas, in the abnormal dataset, a small

proportion of just under 6% are TCP packets and ICMP

packets becomes a main protocol used for DoS attacks with a

vast majority 93%, and there is merely 1% corresponding to

other protocols. From the two aforementioned datasets, both

TCP and ICMP protocols account for the highest proportion.

Thus, in this work, we focus on DoS attacks using TCP and

ICMP protocols.

To generate real DDoS attack traffic to a predefined SFC,

the DDoS attack tool named BoNeSi [41] is installed in three

bots to generate abnormal flows, while normal flows are

made from the laboratory’s network which is considered as a

trusted subnet or every source IP from this network is believed

to be a normal and trusted source. We set the value of the

key parameters to test our introduced mechanism, as shown

in Table 2.

C. TESTING CONDUCTION

The testing procedure is divided into three main periods for

each mechanism and can be summarized as follows:

VOLUME 7, 2019 18709



T. V. Phan, M. Park: Efficient DDoS Attack Defense in SDN-Based Cloud

TABLE 2. Key testing parameters.

• At the beginning of the experiment, we generate traffic

from the trusted sources and BoNeSi tool using only the

ICMP protocol.

• Next, we use the same configuration to send only TCP

traffic.

• Finally, we attack the service chain using both ICMP

and TCP traffic protocols and each protocol has a same

number of fake sources.

VI. RESULT ANALYSIS

This section demonstrates detailed experiments along with

comprehensive analyses to evaluate our proposed mechanism

compared to other solutions.

A. EHIPF ENHANCEMENT COMPARISON

As mentioned in Section V-A, we carried out experiments

for two different solutions, eHIPF and HIPF [20] under

DDoS attacks to evaluate an enhancement in our proposed

scheme in terms of the speed of detection. Figure 7 illustrates

the number of abnormal sources detected by time for two

flooding attack types (ICMP and TCP SYN). It is evident that

both eHIPF schemes totally outperform the normal HIPF

using hard thresholds to detect attack sources. First, we gen-

erate three different arrival rate levels of attack source groups

(λ1 = 100, λ2 = 300, λ3 = 500), then it would result

in various incoming traffic to the victim. The normal HIPF

FIGURE 7. Detection performance of eHIPF and HIPF .

based on a hard threshold to make decision, has to wait

for some parameters being over the threshold. Meanwhile,

eHIPF adapts its self to the volume of traffic, and varies the

threshold according to the Algorithm 2. Hence, the result is

understandable in that the eHIPF always has higher detected

sources at the same time with normal HIPF . In other words,

the eHIPF enhances much the speed of detection when com-

pared to the traditional solution.

B. DETECTION RATE, ACCURACY AND FALSE ALARM

RATE ENHANCEMENTS

Figure 8 shows that regarding Detection rate and Accuracy,

our novel approach always accounts for the highest rate,

99.27% and 99.30% respectively, which is slightly higher

than the SVMs-SOM solution with 98.47% and 97.62%, and

clearly outperforms the original SVMs and SOM algorithms.

With respect to False alarm rate, the proposed scheme domi-

nates the production of wrong warnings when only occupies

0.67%, while the rate of incorrect alarm generated by the

SVMs-SOM is above 3.20%, SOM and SVMs are around

6.40%. To achieve these improvements, the main reason is

that the eHIPF gives out sensible advice to decide which

groups flows belong to (attack or normal group). For exam-

ple, a normal TCP session sends very first packets to a des-

tination. Due to the short observation time, a collected TCP

flow would look like a TCP SYN flooding attack flow with

1 or 2 packets. Consequently, the system without eHIPF will

make a wrong decision. This mistake leads to many thorny

problems in the cloud, such as a packet_in process or service

delay. In conclusion, our new mechanism is more efficient

than other methods for all evaluation criteria.

C. TRAFFIC FLOW OCCUPATION AT DATA PLANE

As demonstrated in Figure 9, it is clear that there are major

differences among the four tested mechanisms. In the first

stage, attackers send only ICMP flooding traffic, and the

number of flow occupations in the switch flow-tables are the

same because each source IP is able to open only one request

FIGURE 8. Detection rate, Accuracy and False alarm rate comparison.
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TABLE 3. Bandwidth occupation in control-data plane secure channel.

flow to the destination. However, we apply the drop action

for attack flows. Therefore, the number of flow is equal to

both the number of abnormal and trusted sources. In case,

the attack tool only generates TCP SYN attack traffic, we can

see the proposed solution and the SVMs-SOM outperform two

original schemes, in which the proposed scheme is the best

flow saver with approximately 3000 flows in the switch all

time. This lower flow occupation of our novel mechanism can

be explained by successfully applying the eHIPF scheme to

produce fewer wrong decisions, and this leads to an abnormal

detection rate that is higher than that of other cases, and more

attack flows are removed from the switch as soon as the final

output from the eHIPF scheme is obtained.

FIGURE 9. Flow rule occupation in flow-tables of the HP 3800 switch.

D. CONTROL PLANE RESOURCE CONSUMPTION

1) SDN CONTROLLER’S CPU UTILIZATION

The SDN controller’s CPU consumption is considered to be

the main criteria to assess the proposed solution performance

when compared to other schemes. First, Figure 10 indicates

the use of the SDN controller’s CPU of three testing sce-

narios. Overall, it is easy to realize a better performance by

our proposed method. In the ICMP traffic period, the SVMs

scheme is the least computational resources because of the

light SVM algorithm and the same flow number level, fol-

lowed by our novel solution just under 30%. However, during

the TCP traffic period, our proposed scheme is the best one in

spite of the lowest flow number and packet_in number in each

observation, the SOM (58.5% on average) and SVMs (42%

on average) are the worst cases with the same reason for the

flow quantity in one observation. The last is the combined

FIGURE 10. SDN controller’s CPU utilization comparison.

period, and the results are the same as those in the second

scenario. It is clear that our proposed solution always keeps

the SDN controller stable at around 30% in consuming its

computational resources.

2) PACKET_IN RATE AND BANDWIDTH OCCUPATION IN

CONTROL-DATA PLANE CHANNEL

We collect the packet_in rate to the SDN controller demon-

strated in Figure 11 and the bandwidth occupation in Control-

Data plane channel is shown in Table 3. At a glance, there

are no significant differences between the solutions in both

measurements. Regarding the packet_in rate, in all three

FIGURE 11. Number of packet_in requests arriving SDN Controller.

VOLUME 7, 2019 18711



T. V. Phan, M. Park: Efficient DDoS Attack Defense in SDN-Based Cloud

attack periods, the proposed scheme and others show a same

trend at each period. This is understandable because the

incoming ICMP traffic opens one flow for one source while

TCP traffic generates random Layer 4 port number. Hence,

after being detected the ICMP traffic will no longer send

packet_inmessages to the SDN controller. However, the TCP

traffic still does. Regarding the bandwidth occupation in the

channel, our proposed scheme is slightly less than others due

to the fact that more precise decision making does not result

in more control messages from the SDN controller.

E. SERVICE CHAIN OPERATION

Previous assessments mainly focus on the OpenFlow switch

and the SDN controller as well as the secure channel. Now,

we evaluate how DDoS attacks affect the service chain on

the SDN-based cloud and which problems can be solved

by the proposed mechanism when compared with other

solutions.

1) VNF 01 - SNORT CPU UTILIZATION

From the demonstration in Figure 12, we can see that our pro-

posed solution always accounts for the smallest percentage of

the Snort CPU usage. This enhancement is quiet reasonable

because the proposed scheme offers faster detection, more

accurate decision making and is the right policy maker. These

things keep the service chain traffic as low as possible for the

Snort process. Hence, it significantly reduces the usage of

the Snort CPU. Regarding the trend of the CPU usage, in the

ICMP traffic case, although at the early stage the Snort is

under high pressure from the high traffic volume, the CPU

usage then goes down steadily because the attack sources

are detected and the Mitigation Agent applies rules to drop

all incoming packets. Therefore, Snort can save much of the

processing resources. Meanwhile, the second case witnesses

different stable uses of the Snort CPU for all solutions. This is

mainly based on the quantity of flows and traffic in each flow

(normally 1 or 2 packets per request flow. Hence, the Snort

FIGURE 12. VNF 01 - Snort CPU utilization comparison.

resource consumption adapts to the flow number of each

mechanism. Finally, in the last case, it is the combined attack

traffic with an equal number of attack sources. The trend still

increases at the beginning of the attack, and it then goes down

and stands at the same level until the attack finishes.

2) QUALITY OF SERVICE

To assess the effects of DDoS attacks on the service chain

customer with the four mentioned solutions, we observe and

score the Quality of Service (QoS) using two criteria: Request

delay time and Packet loss rate.

3) TRAFFIC DELAY

As demonstrated in Figure 13, this provides readers a request

delay of a service chain on the SDN-based cloud environ-

ment under different DDoS attack levels for four mecha-

nisms. To observe this experiment, we simply generate a

Ping command to the VNF 03 - Web server from a trusted

host in the laboratory network, and we use the tool named

Wireshark [44] to measure the service chain traffic delay.

It is evident that the fastest response from the Web server is

provided by the proposed scheme from just under 60 (ms) to

around 120 (ms) on average, which is followed by the SVMs-

SOM , SVMs and SOM , respectively. Once again, our novel

proposal presents a better judgment among others in terms of

the service chain traffic delay.

FIGURE 13. Comparison in service chain traffic delay.

4) LEGAL USER’S PACKET LOSS RATE

The next criterion is chosen to evaluate the proposed scheme

is the packet loss rate of a legitimate user to a service chain.

To measure this experiment, we also do with 100 ICMP ping

packets and the same technique under various DDoS attack

levels for four testing solutions. Due to the traffic congestion

that causes the packet to drop under saturation attacks, this

makes the packet loss rate increase when the attack level goes

up as shown in Figure 14. As we can see, that our proposed
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FIGURE 14. Comparison in packet loss rate.

still achieves the best performance in all testing attack degrees

while others cannot.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel mechanism to handle

DDoS attacks in SDN-based cloud environment. This pro-

posal not only protects cloud infrastructure from being over-

loaded resulted by DDoS attacks in both control and data

planes, but also brings a better quality of service to cloud

customers. We present a new machine learning hybrid model

for classification based on utilizing the advantages of Sup-

port Vector Machine and Self Organizing Map algorithms.

We also propose an enhanced History-based IP Filtering

scheme to improve the detection performance in recognizing

DDoS attack source IP addresses. Finally, we introduce a

novel DDoS attack defender which is based on both machine

learning and history-based techniques. Through experimental

results conducted in various DDoS attacks levels, we prove

that the novel mechanism can be an effective and innova-

tive approach to face DDoS attacks in SDN-based cloud

environment.

As our future work, we expect to design some new func-

tional modules to enhance the packet_in process in the pro-

posed mechanism with the purpose of recognizing malicious

packet_in messages from the data plane and optimizing the

bandwidth occupation in the secure communication channel.

In addition, we plan to compare the proposed scheme to other

machine learning techniques (e.g., deep learning) using more

evaluation criteria.
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