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Abstract

Wireless sensor nodes lack hardware support for tamper-
resistance and are often deployed in unattended environ-
ments, thus leaving them vulnerable to capture and com-
promise by an adversary. In anode replication attack, an
adversary uses the credentials of a compromised node to
surreptitiously introduce replicas of that node into the net-
work. These replicas are then used to launch a variety of
attacks that subvert the goal of the sensor application, and
the operation of the underlying protocols. We present a
novel distributed approach calledLocalized Multicast for
detecting node replication attacks. We evaluate the perfor-
mance and security of our approach both theoretically and
via simulation. Our results show that Localized Multicast is
more efficient than previous distributed approaches in terms
of communication and memory costs. Further, in our ap-
proach, the probability of detecting node replicas is much
higher than that achieved in previous distributed protocols.

1 Introduction

A new set of security challenges arises in sensor net-
works due to the fact that current sensor nodes lack hard-
ware support for tamper-resistance and are often deployed
in unattended environments where they are vulnerable to
capture and compromise by an adversary. A serious conse-
quence of node compromise is that once an adversary has
obtained the credentials of a sensor node, it can surrep-
titiously insert replicas of that node at strategic locations
within the network. These replicas can be used to launch a

variety of insidious and hard-to-detect attacks on the sensor
application and the underlying networking protocols.

In a centralized approach for detecting node replication,
when a new node joins the network, it broadcasts a signed
message (referred to as alocation claim) containing its loca-
tion and identity to its neighbors. One or more of its neigh-
bors then forward this location claim to a central trusted
party [3] (e.g., the base station). With location information
for all the nodes in the network, the central party can easily
detect any pair of nodes with the same identity but at differ-
ent locations. Hence, a distributed solution is desirable.

Distributed approaches for detecting node replications
are based on location information for a node being stored
at one or morewitness nodesin the network. When a new
node joins the network, its location claim is forwarded to the
corresponding witness nodes. If any witness receives two
different location claims for the same node identity (ID),
it will have detected the existence of replica and can take
appropriate actions to revoke the node’s credentials.

The basic challenge for any distributed protocol for de-
tecting node replicas is to minimize communication and per
node memory costs while ensuring that the adversary can-
not defeat the protocol. A protocol that deterministically
maps a node’s ID to a unique witness node would minimize
communication costs and memory requirements per node,
but would not offer much security because the adversary
would need to compromise just a single witness node in or-
der to be able to introduce a replica without detection.

Previously, Parno et al [9] presented two distributed al-
gorithms for detecting node replications in which the wit-
ness nodes for a location arerandomlyselected among the
nodes in the network. In the Randomized Multicast algo-
rithm each location has

√
n witness nodes. Thus in a net-

work of n nodes, according to the Birthday Paradox, in the



event of a node replication attack at least one witness node is
likely to receive conflicting location claims for a particular
node. The communication costs of this protocol areO(n2)
(for the entire network) and the memory requirements per
node areO(

√
n). The Line-Selected Multicast exploits the

routing topology of the network to select witnesses for a
node’s location and uses geometric probabilities to detect
replicated nodes. It has a communication cost ofO(n

√
n)

and memory requirements per node ofO(
√

n).
In this paper, we present a novel distributed protocol for

detecting node replication attacks that takes a different ap-
proach for selecting witnesses for a node. In our approach,
which we callLocalized Multicast, the witness nodes for
a node identity are randomly selected from the nodes that
are located within a geographically limited region (referred
to as acell). Our approach first deterministically maps a
node’s ID to one or more cells, and then uses randomiza-
tion within the cell(s) to increase the resilience and security
of the scheme. One major advantage of our approach is that
the probability of detecting node replicas is much higher
than that achieved in Parno et al’s protocols [9].

We describe and analyze two variants of the Localized
Multicast approach:Single Deterministic Cell(SDC) and
Parallel Multiple Probabilistic Cells(P-MPC). Both theo-
retical analysis and simulation results show that the Local-
ized Multicast approach is more efficient than Parno et al’s
algorithms in terms of communication and memory costs,
while providing a high level of compromise-resilience. Fur-
ther, our approach also achieves a higher level of security in
terms of the capability of detecting node replicas.

The rest of the paper is organized as follows. In Sec-
tion 2, the system, network, and adversary model of our
work are presented. Then, we propose two variants of the
Localized Multicast approach in Section 3. Afterwards,
the theoretic analysis on the security and efficiency of the
Single Deterministic Cell scheme and the Parallel Multiple
Probabilistic Cells scheme are presented in Section 4 and
Section 5, respectively. The simulation results are shown in
Section 6. In Section 7, we review previous research work
related to detecting node replication in sensor networks. Fi-
nally, we draw our conclusion in Section 8.

2 Protocol Framework

2.1 System and Network Model

We consider a sensor network with a large number of
low-cost nodes distributed over a wide area. In our ap-
proach, we assume the existence of a trusted base station,
and the sensor network is considered to be a geographic
grid, each unit of which is called a cell. Sensors are dis-
tributed uniformly in the network. New sensors may be
added into the network regularly to replace old ones.

Each node is assigned a unique identity and a pair of
identity-based public and private keys1 by an offlineTrust
Authority (TA ). In identity-based signature schemes like
[5], the private key is generated by signing its public key
(usually a hash on its unique identity) with a master se-
cret held only by the TA. In other words, to generate a
new identity-based key pair, cooperation from the TA is a
must. Therefore, we assume that adversaries cannot easily
create sensors with new identities in the sense that they can-
not generate the private keys corresponding to the identities
claimed and thus fail to prove themselves to the neighbors
during the authentication of the location claims.

We require that, when a node joins into the network, it
needs to generate a signed location claim and broadcast the
claim to its neighbors. Only when the location claim is suc-
cessfully verified, it will then be accepted as a valid network
member.

2.2 Adversary Model

In this paper, we assume that the major goal of adver-
saries is to launch node replication attacks. To achieve this
goal, we assume that adversaries may launch both passive
attacks (e.g., eavesdropping on network traffic) and active
attacks (e.g., modifying and replaying messages or compro-
mising sensors), and the information obtained from the for-
mer can be used to enhance the effectiveness of the latter.
For example, by sniffing the traffic, adversaries may deduce
certain information about the witness nodes, which could
help them evaluate the potential benefit of compromising a
given node and the risk of being detected while launching
the node replication attack at a given location.

We assume the existence of some monitoring mechanism
that can detect a node compromising operation with a cer-
tain probability. We also assume that adversaries are ra-
tional, and thus may try to avoid triggering any automated
protocol (e.g. SWATT [11]) that sweeps the network to re-
move compromised nodes, or drawing human attention or
intervention while launching the attacks.

2.3 Notation

In Table 1, we list notations/symbols used in this paper.

3 The Localized Multicast Approach for De-
tecting Node Replications

We have designed two variants of the Localized Multi-
cast approach, specificallySingle Deterministic Cell(SDC)

1Recent work [6, 4] shows that public key algorithms are practical on
new sensor hardware. In addition, similar to [9], we can use symmetric
key cryptography instead to lower down the computation cost, at the cost
of large communication overhead.



n The number of sensors in the network
s The number of sensors in a cell
L The node sending the location claim

IDi The identity of a sensori
li The location information of a sensori
d The number ofL’s neighbors
pf The probability that any neighbor ofL

decides to forward the location claim
from L

r The number ofL’s neighbors that for-
ward the location claim fromL

w The number of the witness nodes that
store the local claim fromL

ps The probability that a sensor in the cell
stores the location claim

t The number of sensors that have been
compromised by adversaries

x The number of sensors with the same
identity (including the compromised
sensor and its replicas)

PKi, SKi The public key and the private key of a
sensori

H() A collision-free one-way hash function
SIGSK(M) A messageM is signed by a keySK

Table 1. Notation and Symbols

andParallel Multiple Probabilistic Cells(P-MPC).

3.1 Single Deterministic Cell

In the Single Deterministic Cell scheme, a geographic
hash function [10] is used to uniquely and randomly map
nodeL’s identity to one of the cells in the grid. For ex-
ample, given that the geographic grid consists ofa × b
cells, a cell at thea′th row and theb′th column (where
a′ ∈ {1, . . . , a}, b′ ∈ {1, . . . , b}) is uniquely identi-
fied asc (wherec = a′ · b + b′). By using a one-way
hash functionH(), nodeL is mapped to a cellD, where
D = [H(IDL) mod (a · b)] + 1.

The format of the location claim is
[IDL, lL, SIGSKL

(H(IDL||lL))], where || denotes
the concatenation operation andlL is the location infor-
mation of L, which can be expressed using either the
two-dimension or three-dimension coordinate.

WhenL broadcasts its location claim, each neighbor first
verifies the plausibility oflL (e.g., based on its location and
the transmission range of the sensor) and the validity of the
signature in the location claim. In identity-based signatures
schemes [5], only a signature generated with the private key
corresponding to the identity claimed can pass the valida-
tion process. Thus, adversaries cannot generate valid signa-

tures unless they compromise the node with that identity.
Each neighbor independently decides whether to forward

the claim with a probabilitypf . If a neighbor plans to
forward the location claim, it first needs to execute a geo-
graphic hash function [10] to determine the destination cell,
denoted asD. The location claim is then forwarded towards
cell D.

Once the location claim arrives at cellD, the sensor re-
ceiving the claim first verifies the validity of the signature,
and then checks whether cellD is indeed the cell corre-
sponding to the identity listed in the claim message based
on the geographic hash function. If both the verifications
succeed, the location claim is flooded within cellD. Each
node in the cell independently decides whether to store the
claim with a probabilityps. Note that the flooding process
is executed only when the first copy of the location claim
arrives at cellD, and the following copies are ignored. As
a result, we havew = s · ps.

Whenever any witness receives a location claim with the
same identity but a different location compared to a previ-
ously stored claim, it forwards both location claims to the
base station. Then, the base station will broadcast a mes-
sage within the network to revoke the replicas.

Compared to the Random Multicast and Line-Selected
Multicast algorithms, a major advantage of SDC is that it
ensures 100% success rate for detecting any node replica-
tion, as long as the location claim is successfully forwarded
towards cellD and stored by at least one node in the cell.

An important limitation on the Random Multicast and
Line-Selected Multicast algorithms is that both the commu-
nication/memory overhead and the security (in terms of the
success rate of detecting node replications) of the two algo-
rithms are tightly related to the number of witnesses (w). On
the one hand, the largerw is, the higher the communication
and memory overhead. On the other hand, the smallerw is,
the lower the success rate of detecting node replication. To
ensure a high success rate of detecting node replication,w
has to beO(

√
n).

In contrast, in the SDC scheme the communication cost
and memory overhead are related to the number of neigh-
bors that forward a location claim (i.e.,r = d · pf ) and
the number of the witnesses (i.e.,w = s · ps), respectively.
In addition, the success rate of detecting node replication
is independent ofw whenw ≥ 1. Moreover, the random-
ization against potential node compromise and low memory
overhead are achieved through flooding the location claim
within the destination cell while storing it on only a small
number of randomly chosen nodes. Assuming that the capa-
bility of the adversary (in terms of the number of nodes that
can be compromised without being detected) is limited, by
appropriately choosing the cell size (s) andps, the probabil-
ity that adversaries control all the witnesses for an identity
is negligible. Consequently, SDC can achieve lower com-



munication costs by settingr to a small value, and at the
same time ensure low memory overhead and good security
(i.e. a high success rate of detecting node replication and
high level of resilience against potential node compromise),
by choosing an appropriate value forw (s andps actually).
A detailed analysis of the security and efficiency achieved
in SDC is presented in Section 4.

3.2 Parallel Multiple Probabilistic Cells

Figure 1. The Parallel Multiple Probabilistic
Cells Approach

3.2.1 Description of The P-MPC Scheme

Like SDC, in the P-MPC scheme, a geographic hash func-
tion [10] is employed to map nodeL’s identity to the des-
tination cells. However, as shown in Figure 1, instead of
mapping to single deterministic cell, in P-MPC the location
claim is mapped and forwarded to multiple deterministic
cells with various probabilities.

Let C = {C1, C2, . . . , Ci, . . . , Cv} denote the set of
cells to which a location claim (actually, the identity of
the sender) is mapped. Letpci denote the probability that
the location claim is forwarded to cellCi. The follow-
ing two conditions should be satisfied while determining
pci’s: (i)

∑v

i=1
pci = 1; (ii) pci ≥ pcj when i < j, for

i, j ∈ {1, 2, . . . , v}.
WhenL broadcasts its location claim, each neighbor in-

dependently decides whether to forward the claim in the
same way as in the SDC scheme. The neighbors that for-
ward the claim can determine the destination cell based on
a geographic hash function and the predetermined proba-
bilistic distribution ofpci’s. More specifically, the neigh-
bors first calculate the set of cells (C) to which the iden-

tity of the sender are mapped, based on a geographic hash
function with the input ofIDL. Then, each neighbor that
forwards the claim independently generates a random num-
berz ∈ [0, 1). Assume thatj is the smallest number that
satisfiesz <

∑j

i=1
pci (j ∈ {1, 2, . . . , v}), this neighbor

chooses thejth cell (i.e.,Cj) as the destination cell for the
location claim.

Once the location claim arrives at cellCj , the sensor re-
ceiving it first verifies whetherCj is a member ofC which
can be calculated based on the geographic hash function and
the identity listed in the claim message. In addition, this
sensor needs to verify the validity of the signature in the
location claim. If both the verifications succeed, the claim
is flooded within the cell and probabilistically stored atw
nodes in the same manner as in the SDC scheme.

4 The Single Deterministic Cell Scheme

In this section, we theoretically analyze the security and
efficiency of the Single Deterministic Cell scheme.

4.1 Security Analysis

The metrics used to evaluate the security of the SDC
scheme are: 1) the probability of detecting node replica-
tion when adversaries putx replicas (including the compro-
mised node) with the same identity into the network, which
is denoted aspdr; 2) the probability that adversaries control
all the witnesses for a given identity after compromisingt
nodes, which is denoted aspts.

Same as [9], for the theoretical analysis in Section 4 and
Section 5, we assume that there arer (= d · pf ) neighbors
forwardingL’s location claim. Also, we assume that there
arew (= s · ps) witnesses per destination cell storingL’s
location claim. Since1 ≥ pf > 0 and1 ≥ ps > 0, we have
r > 0 andw > 0.

4.1.1 Detecting Replicas

Unlike the Random Multicast and Line-Selected Multicast
algorithms, where the nodes storing the copies of a loca-
tion claim are chosen randomly from the whole network, in
SDC such nodes are chosen randomly from a small subset
of all the nodes in the network, i.e., the nodes in the des-
tination cell determined by the geographic hash function.
In addition, since the location claim will be flooded within
the destination cell, the SDC scheme can always detect any
pair of nodes claiming the same identity. In other words,
pdr = 100% in SDC, whenr > 0 andw > 0.

4.1.2 Resilience against Node Compromise

In SDC, witness nodes are chosen randomly from the nodes
of a given cell instead of the whole network as in the Ran-



domized Multicast algorithm [9]. Therefore, assuming that
the adversary’s capability of compromising nodes is lim-
ited, intuitively in SDC the probability that an adversary can
compromise all the witness nodes storing the location claim
of a given identity, i.e.pts, is higher than that of the Ran-
domized Multicast algorithm. However, we argue that by
appropriately choosing the parameters (i.e.,s andps), we
can limit pts to a very small value, even if the adversaries
can compromise a small fraction of the nodes in cellD.

Assuming that the adversary has compromisedt nodes
in cell D, pts can be calculated as follows:

pts =

(

s−w

t−w

)

(

s
t

) =
(t − w + 1)(t − w + 2) · · · t
(s − w + 1)(s − w + 2) · · · s , (1)

wheret ≥ w.
In Figure 2, we plot the probability that an adversary

controls all the witness nodes of a given identity (i.e.pts)
under different settings, when the cell size is 100 (i.e.s =
100). Figure 2 shows that whenw (in facts andps) is cho-
sen appropriately,pts is negligible, even if the adversary can
compromise a large number of nods in the cell. In partic-
ular, whenw = 20 andt = 60, pts is only 7.82 × 10−6.
Even if w is chosen as a relative small number, e.g.5, the
adversary still needs to compromise around 65 out of 100
nodes in the cell to achieve a success rate of nearly 11%.
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Figure 2. pts under different w and t (s = 100)

4.2 Efficiency Analysis

The metrics used to evaluate the efficiency of the SDC
scheme include:

a) the average number of the packets sent and received
while propagating the location claim, which is denoted
asnf .

b) the average number of the copies of the location claims
stored on a sensor, which is denoted asns.

The former is to measure the communication cost, while
the latter is to estimate the memory overhead. We do not
explicitly consider the computation cost (i.e., verifyingthat
the location claim is generated by an entity which holds the
private key corresponding to the identity listed in the claim),
since every forwarding node needs to execute such a verifi-
cation and thus it is proportional to the communication cost.
In other words, the higher is the communication cost, the
higher is the computation cost.

4.2.1 Communication Cost

The communication cost of the SDC scheme has two com-
ponents: the cost of forwarding the location claim to the
destination cell (denoted asCOfw) and the cost of flood-
ing the location claim within the destination cell (denoted
asCOfl). The communication complexities of these two
operations areO(d · pf · √n) andO(s) respectively.

4.2.2 Memory Overhead

SDC has the memory overhead ofO(w), wherew = s · ps.
As shown in Section 4.1, a relative small value ofw, e.g. be-
tween 10 to 15 whens = 100, is sufficient to ensure secu-
rity against node compromise. Therefore, the memory over-
head of the SDC scheme is much lower than those of the
Random Multicast algorithm and the Line-Selected Multi-
cast algorithm which are of orderO(

√
n) or higher.2.

5 The Parallel Multiple Probabilistic Cells
Scheme

In this section, we theoretically analyze the security and
efficiency of the P-MPC scheme. In addition, a summary of
the communication cost and memory overhead of our ap-
proach and the algorithms proposed in [9] is shown at the
end of this section.

5.1 Security Analysis

For simplicity, in this section we assume that the num-
ber of neighbors (r) forwarding the location claim is a fixed
number. We assume that the adversary createsx − 1 repli-
cas of a given compromised node with idIDL and deploys
them in the network. We assume that adversaries do not
re-position the compromised node,l1, and the replicas are
added in sequence froml2 to lx. We denote the probabil-
ity that the node replication attack is not detected by our
scheme after theith node with the same identity has been
added to the network aspir. For analyzing the security of
the P-MPC scheme, we use the same metrics employed in
Section 4.1, except that we replace the metricpdr with pir.

2Please refer to Section 5.3 for the more detailed comparison.



5.1.1 Detecting Replicas

Let Cs1 denote the set of all the combinations of choosing
1 tov−1 elements fromC, i.e., the set of the cells to which
IDL is mapped. If the node replication attack is not de-
tected when the adversary adds replical2 to the network,
this implies that the location claims forl2 were forwarded
to a set of cells that do not have any nodes that store the
previous location claims ofl1.

Let Ce1 denote a subset of the cells inC that do not store
the location claims ofl1. Letpi,1 denote the probability that
the location claim ofl1 is forwarded to all the cells inC
except the cells inCe1, which is an element ofCs1. Let
pi,2 denote the probability that the location claim ofl2 is
forwarded to any cell(s) inCe1. Therefore, we have:

p2r =

|Cs1|
∑

i=1

pi, 1 · pi, 2 (2)

Now, we consider one step further the case that the ad-
versary addsl3 to the network. LetCs1b denote the set of all
the combinations of choosing 2 tov − 1 elements fromC.
For a givenCe1 ∈ Cs1b, letCs2 denote all the combinations
of choosing 1 to|Ce1| − 1 elements fromCe1. We denote
Ce2 as the set of cells that store the location claim froml2
but not l1, andCe2 ∈ Cs2. Let pi denote the probability
that the location claim ofl1 is forwarded to all the cells in
C except the cells inCe1, which is an element ofCs1b. Let
pij, 1 denote the probability that the location claim ofl2 is
forwarded only to all the cells inCe2. Let pij,2 denote the
probability that the location claim ofl3 is forwarded to any
cell(s) inCe1 except those inCe2. Thus, we have:

p3r =

|Cs1b|
∑

i=1

|Cs2|
∑

j=1

pi · pij, 1 · pij, 2 (3)

Let r = 3 and v = 3. In Table 2, we show the es-
timated successful rate of detecting node replications un-
der different settings ofpci according to Equation (2) and
(3). According to Table 2, where ‘Set.’ is a short notation
for ‘Setting’, the P-MPC scheme can achieve a very high
replica detection rate, even when an identity is mapped to
three destination cells. Moreover, we notice that the larger
the differences between the probabilitiespci’s, the higher is
pir.

pc1 pc2 pc3 p2r p3r

Set. I 80% 15% 5% 99.77% 100%
Set. II 70% 20% 10% 99.38% 100%
Set. III 50% 30% 20% 98.88% 99.98%

Table 2. Successful Rate of Detecting Node
Replications under Different Settings of pci

5.1.2 Resilience against Node Compromise

LetpSDC
ts (t) andpP−MPC

ts (t) denote the functions that out-
put thepts of the SDC scheme and the P-MPC scheme, re-
spectively, when the number of the compromised nodes ist.
Assuming that the adversary’s capability of compromising
nodes is bounded byt∆, we have

∑v

i=1
ti = t∆, whereti

is the number of nodes compromised in cellCi.
Let Ct1 denote the set of all the combinations of choos-

ing 1 tov elements fromC. For any element inCt1 denoted
asCf1, the probability that the adversary controls all the
witnesses of a given identity, when such a set of cells inC
(i.e.,Cf1) are chosen as the destination cell(s), is the prod-
uct of all the individual probabilitiespts’s of the cells. Let
pi denote the probability that exactly the cells inCf1 are
chosen as the destination cells by ther neighbors that for-
ward the location claim. LetpSDC

ts (tj) denote thepts of
thejth cell ofCf1 when the number of nodes compromised
in this cell is tj . Thus,pP−MPC

ts (t) can be calculated as
follows:

pP−MPC
ts (t) =

|Ct1|
∑

i=1

(pi ·
|Cf1|
∏

j=1

pSDC
ts (tj)) (4)

Note that in Equation (4),|Ct1| denotes the number of all
the combinations of choosing 1 tov elements fromC, while
|Cf1| denotes the number of cells contained in a chosen
combination, i.e.Cf1. In additional,pSDC

ts (tj) = 1 when
there is no witness in thejth cell ofCf1.

Let r = 3 andv = 3. In Table 3, we show the estimated
successful rate that adversaries control all the witnessesun-
der different compromising strategies (i.e. various distribu-
tions of ti) and probability distributions of the destination
cells (i.e.pci) in the P-MPC scheme, whens = 100, w = 5,
andt∆ = 30. The settings onti andpci are shown in Ta-
ble 4 and Table 5, respectively.

Set. A Set. B Set. C Set. D Set. E
Set. I 9.69e-04 2.04e-05 1.73e-06 6.39e-06 2.37e-07
Set. II 2.37e-04 5.08e-06 5.36e-07 5.11e-05 1.51e-05
Set. III 7.01e-05 1.60e-06 3.72e-07 7.01e-05 7.01e-05

Table 3. pP−MPC
ts under Different Settings of

pci and ti (s = 100, w = 5, t∆ = 30)

From Table 3, we notice that the best strategy for ad-
versaries is to compromise only nodes in the cell with the
highestpci, i.e. setting A ofti, rather than spreading their
limited capability of compromising nodes among multiple
cells in C. Assuming that the adversary selects this opti-
mal strategy, the larger the differences betweenpci’s, the
larger ispP−MPC

ts and thus the weaker the resilience of the
scheme to node compromise.



t1 t2 t3
Set. A 30 0 0
Set. B 15 10 5
Set. C 10 10 10
Set. D 0 30 0
Set. E 0 0 30

Table 4. Settings
of ti

pc1 pc2 pc3

Set. I 0.8 0.15 0.05
Set. II 0.5 0.3 0.2
Set. III 1

3

1

3

1

3

Table 5. Settings
of pci

Compared to SDC, P-MPC is more robust to node com-
promise. Assuming that adversaries follow the best strategy
just described, i.e. compromising only nodes in the cell with
the highestpci, Equation (4) can be converted into:

pP−MPC
ts (t) = pr

c1 · pSDC
ts (t) (5)

As a result, compared to the SDC approach, the success rate
that adversaries control all the witnesses of a given identity
is reduced by a factor of1 − pr

c1.

5.2 Efficiency Analysis

When analyzing the efficiency of the P-MPC scheme, we
follow the same metrics employed in Section 4.2.

5.2.1 Communication Cost

Similar to the SDC scheme, the communication cost for P-
MPC has two components: the cost for propagating the lo-
cation claim to the cells chosen and the cost for flooding
the claim within these cells, denoted asCOfw andCOfl

respectively.
Assuming that in the P-MPC scheme there are on av-

erager neighbors forwarding a location claim, the com-
munication complexity ofCOfw is O(r · √n) in P-MPC,
if we assume that the neighbors ofL forward the location
claim independently and do not consider further optimiza-
tions, e.g., a node only forwards the location claims with the
same identity and location information once within a certain
time interval.

The communication complexity ofCOfl in the P-MPC
scheme can be estimated as follows. Since there arer neigh-
bors ofL forwarding the location claim, the probability that
any cell inC (i.e., Ci) is chosen by at least one out ofr
neighbors is:

psi = 1 − (1 − pci)
r

Therefore, the complexity ofCOfl in the P-MPC scheme
can be described asO(s ·

∑v

i=1
psi). Table 6 shows the

value of
∑v

i=1
psi in terms of different settings onpci’s,

whenv = 3. According to Table 6, the larger the differences

betweenpci’s, the smaller the extra overhead of flooding the
location claim, when compared to the SDC scheme.

pc1 pc2 pc3

∑v

i=1
psi

0.8 0.15 0.05 1.5205
0.7 0.2 0.1 1.732
0.5 0.3 0.2 2.02
1

3

1

3

1

3
2.1111

Table 6.
∑v

i=1
psi in terms of different settings

on pci’s (v = 3)

5.2.2 Memory Overhead

In a similar fashion, we can see that the the memory over-
head of the P-MPC scheme is given bys · ps ·

∑v

i=1
psi.

5.3 Summary

Before presenting empirical results in Section 6, in Ta-
ble 7, we summarize the average communication cost and
memory overhead per node of the two variants of the Lo-
calized Multicast approach together with the two multicast
algorithms proposed in [9], i.e. Randomized Multicast and
Line-selected Multicast. In Table 73, we denote the number
of lines selected in the Line-Selected Multicast algorithm
and the number of the witness nodes storing the location
claim for a given identity in our approach asf andw, re-
spectively.

According to the analysis in Section 4 and Section 5, we
know thatr can be set to a value smaller thanf while still
ensuring higher success rate of detecting replicas. There-
fore, theCOfw of either SDC or P-MPC is smaller than
the corresponding communication cost of the Line-selected
Multicast algorithm. However, our approach has the extra
overhead of flooding the location claim within one or more
cells, i.e.COfl.

Note that for both SDC and P-MPC, the lower bound
of the cell size is determined by the security requirements.
Once the cell size and the flooding algorithm within the cell
are chosen,COfl is fixed and independent of the network
size. According to Table 7, we know that the extra over-
heads of the Random Multicast and the Line-Selected Mul-
ticast algorithms overCOfw of our approach can be de-
scribed as(

√
n− r) · S and(f − r) · S respectively, where

S denotes the average communication cost of forwarding
a packet between a randomly chosen pair of nodes in the
network. S is tightly related to the network size (i.e., the
complexity ofS is O(

√
n)) and the network topology (i.e.,

3By importing a parameterf , compared to [9], we give a more accu-
rate evaluation on the complexity of the communication costof the two
algorithms proposed in [9].



for the same network size,S under an irregular topology is
higher than that under a regular uniform topology). Conse-
quently, our schemes are more scalable and less sensitive to
irregular topologies, when compared to the two algorithms
proposed in [9].

The analysis in Section 4.1 and Section 5.1 shows that it
is sufficient to choose a small value forw to resist node
compromise, and thus our approaches provide far better
memory efficiency, compared to the Randomized Multicast
and Line-selected Multicast algorithms, especially when the
network size is very large.

Communication Memory
Randomized Multicast O(n) O(

√
n)

Line-Selected Multicast O(f · √n) O(f · √n)
SDC O(r · √n) + O(s) w

P-MPC O(r · √n) + O(s) w

Table 7. Comparisons of Average Communi-
cation Cost and Memory Overhead

6 Evaluation

We evaluated the performance and security of our
schemes and those proposed by Parno et al via extensive
simulations. To enable a fair comparison, we used the same
simulation methodology and simulation code that was used
in Parno et al’s study [9].

6.1 Metrics

We used the following metrics to compare the schemes:

• Communication Overhead: We measured the total
number of packets sent and received for running the
replica detection algorithm whenn nodes are added to
the network. We denote this metric asnf .

• Success rate in detecting replicasWe measured the
probability of detecting a replica, when there are two
sensors with the same identity in the network, i.e.p2r.

6.2 System and Network Models

As in the Parno et al study, we considered both uniform
and irregular network topologies. In the uniform topology,
nodes are randomly distributed within a500 × 500 square.
The network size (n) varies between 1000 to 10000. We
assume a bidirectional communication model, and adjust
the transmission range so that the average number of neigh-
bors of a sensor (d) is 40. We also considered six irregular
topologies, i.e.,‘Thin H’, ‘Thin Cross’, ‘S’, ‘Large Cross’,

‘L’, and ‘Large H’ with the same density, i.e.d = 40. As in
Parno et al’s study [9], these topologies are generated as the
sub-regions of the regular topology (n = 10000).

For the Random Multicast and Line-Selected Multicast
algorithms, we use the same settings as in [9], expect for
pf in the Line-Selected Multicast algorithm. More specif-
ically, for the former, we set the number of sensors storing
a given location claim to

√
n, i.e. w =

√
n; for the latter,

we set the number of lines as 6, i.e.f = 6. As topf in the
Line-Selected Multicast algorithm, it is set to1/d in [9],
and each forwarding node randomly picksf destinations.
In our simulation, we setpf = f/d, and each forward-
ing node randomly picks only one destination. Given the
same density, compared to the former, the latter has a lower
probability that there is no neighbor forwarding the location
claim. As a result, compared to [9], in our simulation the
Line-Selected Multicast algorithm has a higher success rate
of detecting node replication, as shown in Section 6.3.2.

For both SDC and P-MPC, we setpf = 3/d. Besides
that, for P-MPC, we use Setting I in Table 5 as the setting
of pci’s in the simulation. Namely,v = 3, andpc1, pc2, and
pc3 are 80%, 15%, and 5%, respectively.
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Figure 3. Communication Overhead of SDC,
P-MPC, Random Multicast, and Line-Selected
Multicast for Uniform Topologies.

6.3 Simulation Results

6.3.1 Communication Overhead

The figures below show the 95% confidence intervals of the
reported metric. In Figure 3, we compare the communica-
tion costs of our two schemes with the two algorithms pro-
posed in [9] for uniform topologies. As shown in Figure 3,
the Random Multicast algorithm has the highest commu-
nication costs under all the settings. Among the remain-
ing schemes, SDC has the lowest communication overhead,
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SDC, P-MPC, and Line-Selected Multicast

though the differences between SDC, P-MPC, and Line-
selected Multicast are relatively small. As the network size
increases, P-MPC and SDC have lower overhead than Line-
selected Multicast. Figure 3 shows that SDC and P-MPC
have lower communication overheads than Line-Selected
Multicast whenn ≥ 2000 andn ≥ 4000 respectively.

In Figure 4, we compare the communication costs of our
two schemes with the two algorithms proposed in [9] for
irregular topologies. In comparison to Line-selected Mul-
ticast, both SDC and P-MPC show much stronger adapt-
ability for irregular network topologies. Under all the ir-
regular topologies, thenf ’s of our two schemes are smaller
than that of the Line-selected Multicast algorithm. In par-
ticular, under the ‘Thin H’, ‘Thin Cross’, ‘S’, and ‘Large
H’ topologies, the advantage of our two schemes over the
Line-selected Multicast algorithm is much higher than that
under the regular topology (n = 10000). More specifically,
under these four topologies, SDC’s and P-MPC’s advan-
tage over the Line-selected Multicast algorithm (in terms
of the communication cost) is 149% to 181% and 238% to
296%, respectively, higher than that under the regular topol-
ogy (n = 10000).

6.3.2 Replica Detection Success Rate

Due to the high cost of the Random Multicast algorithm, we
only consider SDC, P-MPC, and the Line-Selected Multi-
cast algorithm while comparing the success rates of detect-
ing node replication (i.e.p2r).

Figure 5 shows that, compared to the Line-Selected Mul-
ticast algorithm, both of our algorithms have much higher
success rates of detecting node replication. More specifi-
cally, on average, the success rates of SDC and P-MPC in
detecting node replication are 25.64% and 21.77% higher
than that of the Line-Selected Multicast algorithm, respec-

tively.
We notice that, however, the success rates of SDC range

from 89.4% to 94.5%, which are lower than the expected
value (i.e., 100%) according to the theoretical analysis in
Section 4.1. It is due to two reasons. The main reason is
that, each neighbor decides whether to forward the location
claim independently, and thus there exists a probability that
no neighbor forwards the location claim. As a result, SDC
fails to detect a node replication attack, if for any of the
two replicas no neighbor forwards its location claim. In
addition, whenps is too small, there exists a probability that
no node within cellD stores the location claim, which may
also result in SDC’s failure in detecting node replication.In
the simulation, we setps = 0.2, and thus the second reason
only has a negligible effect.

Due to the same reason, the simulation results about P-
MPC’s success rates of detecting node replication are lower
than the expected value according to the theoretical analysis
in Section 5.1.

7 Related Work

As discussed in previous sections, Parno et al. [9] were
the first to propose distributed algorithms for detecting node
replication attacks in sensor networks. In Sections 6, we
have compared the performance and effectiveness of our ap-
proaches to their schemes.

Once a compromised node is detected in a sensor net-
work, its credentials need to be revoked. The revocation
process can be initiated by a central party, e.g., a base sta-
tion [3], which broadcast a revocation message containing
all the information (e.g. identity and pre-distributed keys
held) about the revoked node. Alternatively, a group of sen-
sors in the vicinity of the compromised node can cooper-
ate to revoke it. In [1], Chan et al. proposed a distributed



quorum-based revocation mechanism that does not involve
a base station. There has also been extensive work on key
revocation for broadcast encryption [7] and multicast con-
tent distribution [12].

An attack that is superficially similar to node replication
is the Sybil attack [2]. In this attack, single physical adver-
sary can generate a number of virtual identities and falsely
claim to be a set of non-existent nodes. Douceur [2] pro-
posed the use of a few schemes in which the potential Sybil
users are challenged to solve some resource-intensive task
that can only be accomplished by multiple real-world users
but will be impractical for a Sybil source. In contrast, in
node replication attacks, single adversary can generate a
number of physical nodes with the same identity and put
them at different locations in the network. In other words,
each replica is a real physical node, instead of a virtual one.
As a result, the detection mechanism proposed in [2] fails
to detect node replication. In [8], Newsome et al proposed
a few mechanisms for detecting Sybil attacks in sensor net-
works, among which only the centralized node registration
mechanism can be used to detect node replication.

8 Conclusion

We have discussed two variants of the Localized Multi-
cast approach for distributed detection of node replication
attacks in wireless sensor networks. Our approach com-
bines deterministic mapping (to reduce communication and
storage costs) with randomization to increase the level of re-
silience to node compromise. Our theoretical analysis and
empirical results show that our schemes are more efficient
than previous distributed approaches in terms of communi-
cation and memory costs. Moreover, in our approach, the
probability of detecting node replicas is much higher than
that achieved in previous distributed protocols.
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