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Abstract

Wireless sensor nodes lack hardware support for tamper-

resistance and are often deployed in unattended environ-
ments, thus leaving them vulnerable to capture and com-

promise by an adversary. In@ode replication attaclkan
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variety of insidious and hard-to-detect attacks on the@ens
application and the underlying networking protocols.

In a centralized approach for detecting node replication,
when a new node joins the network, it broadcasts a signed
message (referred to atogation clain) containing its loca-
tion and identity to its neighbors. One or more of its neigh-

adversary uses the credentials of a compromised node tobors then forward this location claim to a central trusted

surreptitiously introduce replicas of that node into thé-ne
work. These replicas are then used to launch a variety of
attacks that subvert the goal of the sensor application, and
the operation of the underlying protocols. We present a
novel distributed approach calleldocalized Multicast for
detecting node replication attacks. We evaluate the perfor
mance and security of our approach both theoretically and
via simulation. Our results show that Localized Multicast i
more efficient than previous distributed approaches in term
of communication and memory costs. Further, in our ap-
proach, the probability of detecting node replicas is much
higher than that achieved in previous distributed protacol

1 Introduction

A new set of security challenges arises in sensor net-

party [3] (e.g., the base station). With location inforroati
for all the nodes in the network, the central party can easily
detect any pair of nodes with the same identity but at differ-
ent locations. Hence, a distributed solution is desirable.

Distributed approaches for detecting node replications
are based on location information for a node being stored
at one or moravitness nodes the network. When a new
node joins the network, its location claim is forwarded t® th
corresponding witness nodes. If any witness receives two
different location claims for the same node identity (ID),
it will have detected the existence of replica and can take
appropriate actions to revoke the node’s credentials.

The basic challenge for any distributed protocol for de-
tecting node replicas is to minimize communication and per
node memory costs while ensuring that the adversary can-
not defeat the protocol. A protocol that deterministically
maps a hode’s ID to a unique witness node would minimize
communication costs and memory requirements per node,
but would not offer much security because the adversary

works due to the fact that current sensor nodes lack hard-would need to compromise just a single witness node in or-
ware support for tamper-resistance and are often deployedier to be able to introduce a replica without detection.

in unattended environments where they are vulnerable to Previously, Parno et al [9] presented two distributed al-
capture and compromise by an adversary. A serious consegorithms for detecting node replications in which the wit-
guence of node compromise is that once an adversary hasess nodes for a location at@domlyselected among the
obtained the credentials of a sensor node, it can surrepnodes in the network. In the Randomized Multicast algo-

titiously insert replicas of that node at strategic locasio

rithm each location hag/n witness nodes. Thus in a net-

within the network. These replicas can be used to launch awork of n nodes, according to the Birthday Paradox, in the



event of a node replication attack at least one witness rodei  Each node is assigned a unique identity and a pair of
likely to receive conflicting location claims for a partienl identity-based public and private kéylsy an offline Trust
node. The communication costs of this protocol @@?) Authority (TA). In identity-based signature schemes like
(for the entire network) and the memory requirements per [5], the private key is generated by signing its public key
node areD(y/n). The Line-Selected Multicast exploits the (usually a hash on its unique identity) with a master se-
routing topology of the network to select withesses for a cret held only by the TA. In other words, to generate a
node’s location and uses geometric probabilities to detectnew identity-based key pair, cooperation from the TA is a
replicated nodes. It has a communication cosDo6#/n) must. Therefore, we assume that adversaries cannot easily
and memory requirements per nodeX(f,/n). create sensors with new identities in the sense that they can
In this paper, we present a novel distributed protocol for not generate the private keys corresponding to the idestiti
detecting node replication attacks that takes a differpnt a claimed and thus fail to prove themselves to the neighbors
proach for selecting witnesses for a node. In our approach during the authentication of the location claims.
which we callLocalized Multicast, the witness nodes for We require that, when a node joins into the network, it
a node identity are randomly selected from the nodes thatneeds to generate a signed location claim and broadcast the
are located within a geographically limited region (reéefr  claim to its neighbors. Only when the location claim is suc-
to as acell). Our approach first deterministically maps a cessfully verified, it will then be accepted as a valid networ
node’s ID to one or more cells, and then uses randomiza-member.
tion within the cell(s) to increase the resilience and siécur
of the scheme. One major advantage of our approachis thaR.2 Adversary Model
the probability of detecting node replicas is much higher
than that achieved in Parno et al’s protocols [9]. In this paper, we assume that the major goal of adver-
We describe and analyze two variants of the Localized saries is to launch node replication attacks. To achiewe thi
Multicast approachSingle Deterministic Cel(SDC) and goal, we assume that adversaries may launch both passive
Parallel Multiple Probabilistic Cell§P-MPC). Both theo- attacks (e.g., eavesdropping on network traffic) and active
retical analysis and simulation results show that the L-ocal attacks (e.g., modifying and replaying messages or compro-
ized Multicast approach is more efficient than Parno et al's mising sensors), and the information obtained from the for-
algorithms in terms of communication and memory costs, mer can be used to enhance the effectiveness of the latter.
while providing a high level of compromise-resilience. Fur For example, by sniffing the traffic, adversaries may deduce
ther, our approach also achieves a higher level of security i certain information about the witness nodes, which could
terms of the capability of detecting node replicas. help them evaluate the potential benefit of compromising a
The rest of the paper is organized as follows. In Sec- given node and the risk of being detected while launching
tion 2, the system, network, and adversary model of our the node replication attack at a given location.
work are presented. Then, we propose two variants of the \We assume the existence of some monitoring mechanism
Localized Multicast approach in Section 3. Afterwards, that can detect a node compromising operation with a cer-
the theoretic analysis on the security and efficiency of the tain probability. We also assume that adversaries are ra-
Single Deterministic Cell scheme and the Parallel Multiple tional, and thus may try to avoid triggering any automated
Probabilistic Cells scheme are presented in Section 4 andorotocol (e.g. SWATT [11]) that sweeps the network to re-
Section 5, respectively. The simulation results are shawn i move compromised nodes, or drawing human attention or
Section 6. In Section 7, we review previous research work intervention while launching the attacks.
related to detecting node replication in sensor networks. F

nally, we draw our conclusion in Section 8. 2.3 Notation
2 Protocol Framework In Table 1, we list notations/symbols used in this paper.
2.1 System and Network Model 3 The Localized Multicast Approach for De-

tecting Node Replications
We consider a sensor network with a large number of
low-cost nodes distributed over a wide area. In our ap-  We have designed two variants of the Localized Multi-
proach, we assume the existence of a trusted base statiorsast approach, specificalingle Deterministic Ce(SDC)
and the sensor network is considered to be a geographic n . _ _
grid, each unit of which is called a cell. Sensors are dis- ___ecent work [6, 4] shows that public key algorithms are peaton
new sensor hardware. In addition, similar to [9], we can ysarsetric

tribUteq uniformly in the network. New sensors may be key cryptography instead to lower down the computation, catsthe cost
added into the network regularly to replace old ones. of large communication overhead.




n The number of sensors in the network
s The number of sensors in a cell
L The node sending the location claim
ID; The identity of a sensar
l; The location information of a sensbr
d The number ofL’s neighbors
Dy The probability that any neighbor df
decides to forward the location claim
from L
r The number ofL’s neighbors that for
ward the location claim fronk
w The number of the witness nodes that
store the local claim fronk
Ds The probability that a sensor in the cell
stores the location claim
t The number of sensors that have been
compromised by adversaries
T The number of sensors with the same
identity (including the compromised
sensor and its replicas)
PK;, SK; | The public key and the private key of |a
sensor
H() A collision-free one-way hash function
SIGsxk (M) | Amessagé/ is signed by a ke K

Table 1. Notation and Symbols

andParallel Multiple Probabilistic Cell{P-MPC).

3.1 Single Deterministic Cell

tures unless they compromise the node with that identity.

Each neighbor independently decides whether to forward
the claim with a probabilityp;. If a neighbor plans to
forward the location claim, it first needs to execute a geo-
graphic hash function [10] to determine the destinatioh cel
denoted a®. The location claim is then forwarded towards
cell D.

Once the location claim arrives at céll, the sensor re-
ceiving the claim first verifies the validity of the signature
and then checks whether cdll is indeed the cell corre-
sponding to the identity listed in the claim message based
on the geographic hash function. If both the verifications
succeed, the location claim is flooded within cBll Each
node in the cell independently decides whether to store the
claim with a probabilityps. Note that the flooding process
is executed only when the first copy of the location claim
arrives at cellD, and the following copies are ignored. As
aresult, we have) = s - p;.

Whenever any witness receives a location claim with the
same identity but a different location compared to a previ-
ously stored claim, it forwards both location claims to the
base station. Then, the base station will broadcast a mes-
sage within the network to revoke the replicas.

Compared to the Random Multicast and Line-Selected
Multicast algorithms, a major advantage of SDC is that it
ensures 100% success rate for detecting any node replica-
tion, as long as the location claim is successfully forwdrde
towards cellD and stored by at least one node in the cell.

An important limitation on the Random Multicast and
Line-Selected Multicast algorithms is that both the commu-
nication/memory overhead and the security (in terms of the
success rate of detecting node replications) of the two-algo

In the Single Deterministic Cell scheme, a geographic rithms are tightly related to the number of withesael On
hash function [10] is used to uniquely and randomly map the one hand, the largeris, the higher the communication

node L’s identity to one of the cells in the grid. For ex-
ample, given that the geographic grid consistsaok b
cells, a cell at thex’'th row and theb'th column (where
a € {1,..., a}, ¥ € {1,..., b}) is uniquely identi-
fied asc (wherec a’ - b+ b). By using a one-way
hash functionH (), nodeL is mapped to a celD, where
D =[H(IDy) mod (a-b)] + 1.

The format of the location claim s
[IDgr, lp, SIGsk,(H(IDg||lL))], where || denotes
the concatenation operation angd is the location infor-
mation of L, which can be expressed using either the
two-dimension or three-dimension coordinate.

and memory overhead. On the other hand, the smalier

the lower the success rate of detecting node replication. To
ensure a high success rate of detecting node replication,
has to beD(\/n).

In contrast, in the SDC scheme the communication cost
and memory overhead are related to the number of neigh-
bors that forward a location claim (i.e:, = d - py) and
the number of the witnesses (i.e:,= s - p;), respectively.

In addition, the success rate of detecting node replication
is independent ofv whenw > 1. Moreover, the random-

ization against potential node compromise and low memory
overhead are achieved through flooding the location claim

WhenL broadcasts its location claim, each neighbor first within the destination cell while storing it on only a small

verifies the plausibility of;, (e.g., based on its location and

number of randomly chosen nodes. Assuming that the capa-

the transmission range of the sensor) and the validity of thebility of the adversary (in terms of the number of nodes that

signature in the location claim. In identity-based signesu

can be compromised without being detected) is limited, by

schemes [5], only a sighature generated with the private keyappropriately choosing the cell siz§ @ndp,, the probabil-
corresponding to the identity claimed can pass the valida-ity that adversaries control all the witnesses for an idgnti

tion process. Thus, adversaries cannot generate valid-sign

is negligible. Consequently, SDC can achieve lower com-



munication costs by settingto a small value, and at the tity of the sender are mapped, based on a geographic hash
same time ensure low memory overhead and good securityfunction with the input offl Dy. Then, each neighbor that
(i.e. a high success rate of detecting node replication andforwards the claim independently generates a random num-
high level of resilience against potential node comprojnise berz € [0, 1). Assume thaj is the smallest number that

by choosing an appropriate value for(s andp, actually).  satisfies: < 37_, p.i (j € {1, 2,..., v}), this neighbor
A detailed analysis of the security and efficiency achieved chooses thgth cell (i.e.,C;) as the destination cell for the
in SDC is presented in Section 4. location claim.

Once the location claim arrives at c€ll, the sensor re-
3.2 Parallel Multiple Probabilistic Cells ceiving it first verifies whethe€; is a member of” which

can be calculated based on the geographic hash function and
the identity listed in the claim message. In addition, this
sensor needs to verify the validity of the signature in the
location claim. If both the verifications succeed, the claim
— Sl B S is flooded within the cell and probabilistically storeduwat
| nodes in the same manner as in the SDC scheme.
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~L7 4 The Single Deterministic Cell Scheme
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/g HHHH In this section, we theoretically analyze the security and
) efficiency of the Single Deterministic Cell scheme.

4.1 Security Analysis

The metrics used to evaluate the security of the SDC

C C.
P scheme are: 1) the probability of detecting node replica-

% C1 (pel) Uﬂm Cz2 (pe2)

A L O i tion when adversaries putreplicas (including the compro-
mised node) with the same identity into the network, which
Figure 1. The Parallel Multiple Probabilistic is denoted agg,; 2) the probability that adversaries control
Cells Approach all the witnesses for a given identity after compromising

nodes, which is denoted asg,.
Same as [9], for the theoretical analysis in Section 4 and
Section 5, we assume that there afe= d - py) neighbors
3.2.1 Description of The P-MPC Scheme forwarding L's location claim. Also, we assume that there
arew (= s - ps) witnesses per destination cell storihs
location claim. Sincé > py > 0 andl > p, > 0, we have
r > 0andw > 0.

Like SDC, in the P-MPC scheme, a geographic hash func-
tion [10] is employed to map nodE’s identity to the des-

tination cells. However, as shown in Figure 1, instead of
mapping to single deterministic cell, in P-MPC the location ) )
claim is mapped and forwarded to multiple deterministic 4-1-1 Detecting Replicas

cells with various probabilities. Unlike the Random Multicast and Line-Selected Multicast
Let C = {Cy, Cs, .,Ci,_. ..,Cy} denote the set of algorithms, where the nodes storing the copies of a loca-

cells to which a location claim (actually, the identity of op claim are chosen randomly from the whole network, in

the sender) is mapped. Lgt; denote the probability that  gpc such nodes are chosen randomly from a small subset

the location claim is forwarded to cell;. The follow- — of g the nodes in the network, i.e., the nodes in the des-

ing two conditions should be satisfied while determining ination cell determined by the geographic hash function.

pei’st () iy pei = 1 (i) pei = pe; wheni < j, for—yp aqdition, since the location claim will be flooded within

i, j€{L,2,..., v} the destination cell, the SDC scheme can always detect any

When L broadcasts its location claim, each neighbor in- yair of nodes claiming the same identity. In other words,
dependently d.eC|des whether to forward the claim in the par = 100% in SDC, when- > 0 andw > 0.
same way as in the SDC scheme. The neighbors that for-
ward the clqlm can determlne the destination cgll based ONy 1 5> Resilience against Node Compromise
a geographic hash function and the predetermined proba-
bilistic distribution ofp.;'s. More specifically, the neigh- In SDC, witness nodes are chosen randomly from the nodes

bors first calculate the set of cell€') to which the iden-  of a given cell instead of the whole network as in the Ran-



domized Multicast algorithm [9]. Therefore, assuming that  The former is to measure the communication cost, while
the adversary’s capability of compromising nodes is lim- the latter is to estimate the memory overhead. We do not
ited, intuitively in SDC the probability that an adversaanc  explicitly consider the computation cost (i.e., verifyitgt
compromise all the witness nodes storing the location claimthe location claim is generated by an entity which holds the
of a given identity, i.ep:, is higher than that of the Ran- private key correspondingto the identity listed in thercipi
domized Multicast algorithm. However, we argue that by since every forwarding node needs to execute such a verifi-
appropriately choosing the parameters (iseandp;), we cation and thus it is proportional to the communication cost
can limit p;s to a very small value, even if the adversaries In other words, the higher is the communication cost, the

can compromise a small fraction of the nodes in éll higher is the computation cost.
Assuming that the adversary has compromiseddes
in cell D, p;s can be calculated as follows: 4.2.1 Communication Cost

s—w The communication cost of the SDC scheme has two com-
re = (t—;w) _(mwtDE-—w+2)---t (1)  Ponents: the cost of forwarding the location claim to the

(‘Z) (s—w+1)(s—w+2)--s’ destination cell (denoted &sO¢,,) and the cost of flood-
ing the location claim within the destination cell (denoted
asCOy;). The communication complexities of these two
operations ar€(d - py - /n) andO(s) respectively.

wheret > w.

In Figure 2, we plot the probability that an adversary
controls all the witness nodes of a given identity (bg.)
under different settings, when the cell size is 100 {.e-
100). Figure 2 shows that when (in facts andp,) is cho- ~ 4.2.2 Memory Overhead

sen appropriatelyy is negligible, evenifthe adversary can  gpc has the memory overhead@fw), wherew = s - p,.

compromise a large number of nods in the cell. In %artic— As shown in Section 4.1, a relative small valuefe.g. be-
ular, whenw = 20 and¢ = 60, pys is only 7.82 x 107°. tween 10 to 15 wher = 100, is sufficient to ensure secu-
Even ifw is chosen as a relative small number, &gthe iy 4 5ainst node compromise. Therefore, the memory over-
adversary still needs to compromise around 65 out of 100head of the SDC scheme is much lower than those of the

nodes in the cell to achieve a success rate of nearly 11%.  pandom Multicast algorithm and the Line-Selected Multi-

~— cast algorithm which are of ordér(,/n) or higher.2.
—
1 s 5 The Parallel Multiple Probabilistic Cells
08 — /// Scheme

In this section, we theoretically analyze the security and
efficiency of the P-MPC scheme. In addition, a summary of
the communication cost and memory overhead of our ap-
proach and the algorithms proposed in [9] is shown at the
end of this section.

5.1 Security Analysis

For simplicity, in this section we assume that the num-
ber of neighborsi() forwarding the location claim is a fixed
number. We assume that the adversary created repli-
cas of a given compromised node with/i®; and deploys
them in the network. We assume that adversaries do not

¢ re-position the compromised node, and the replicas are
added in sequence frofa to [,. We denote the probabil-
ity that the node replication attack is not detected by our
a) the average number of the packets sent and receive@cheme after théth node with the same identity has been
while propagating the location claim, which is denoted added to the network as,.. For analyzing the security of
asny. the P-MPC scheme, we use the same metrics employed in
Section 4.1, except that we replace the meigicwith p;,..

Figure 2. p;s under different w and ¢ (s = 100)

4.2 Efficiency Analysis

The metrics used to evaluate the efficiency of the SD
scheme include:

b) the average number of the copies of the location claims
stored on a sensor, which is denotecdas 2please refer to Section 5.3 for the more detailed comparison




5.1.1 Detecting Replicas

Let C; denote the set of all the combinations of choosing LetpP¢ (t) andp; .

5.1.2 Resilience against Node Compromise

P=MPC 1) denote the functions that out-

1ltov — 1 elements fronC, i.e., the set of the cells to which  put thep;s of the SDC scheme and the P-MPC scheme, re-

1Dy, is mapped.
tected when the adversary adds repligdo the network,
this implies that the location claims fés were forwarded

If the node replication attack is not de- spectively, when the number of the compromised nodes is

Assuming that the adversary’s capability of compromising
nodes is bounded by, we have)",_, t; = ta, wheret;

to a set of cells that do not have any nodes that store thes the number of nodes compromised in &gl

previous location claims df .

Let C.; denote a subset of the cells@hthat do not store
the location claims of;. Letp; ; denote the probability that
the location claim of; is forwarded to all the cells i’
except the cells inC,;, which is an element of’s;. Let
p;,2 denote the probability that the location claim lgfis
forwarded to any cell(s) id’.;. Therefore, we have:

|Csl‘

D2r = Z Di, 1 Di, 2 (2)

Let C;; denote the set of all the combinations of choos-
ing 1 tov elements fronC'. For any element id’;; denoted
asCy1, the probability that the adversary controls all the
witnesses of a given identity, when such a set of cell§'in
(i.e.,Cy1) are chosen as the destination cell(s), is the prod-
uct of all the individual probabilitieg,s’s of the cells. Let
p; denote the probability that exactly the cellsdh; are
chosen as the destination cells by theeighbors that for-
ward the location claim. Lep;P¢(¢;) denote thep;s of
the jth cell of Csy when the number of nodes compromised
in this cell ist;. Thus,pf,”F¢(t) can be calculated as

Now, we consider one step further the case that the ad+q|ows:

versary addg; to the network. Let;;, denote the set of all
the combinations of choosing 2 to— 1 elements fronC.

ForagivenC.; € Cs1p, let Cyso denote all the combinations

of choosing 1 tgdC.:| — 1 elements fromC,;. We denote
C.s as the set of cells that store the location claim frem
but notl;, andC.s € C,. Let p; denote the probability
that the location claim of; is forwarded to all the cells in
C except the cells i1, which is an element af’s;;,. Let
pij, 1 denote the probability that the location claimlgfis
forwarded only to all the cells id.2. Letp;; o denote the
probability that the location claim df is forwarded to any
cell(s) inC,; except those itt’.2. Thus, we have:

[Cial IC1l

Z H pSDC (4)
=1

Note that in Equation (4)|C:| denotes the number of all
the combinations of choosing 1 telements fron, while
|Cs1| denotes the number of cells contained in a chosen
combination, i.eCy;. In additional,pP¢(t;) = 1 when
there is no witness in thgh cell of C;.

Letr = 3 andv = 3. In Table 3, we show the estimated
successful rate that adversaries control all the witnasses
der different compromising strategies (i.e. various tstr
tions of¢;) and probability distributions of the destination

P—MPC
ts (

[Cs1p| |Cs2]
P3r = Z Z Di - Dij. 1 Pij. 2 (3) cells (i.e.p.;) inthe P-MPC scheme, when= 100, w = 5,
im1 =1 andta = 30. The settings om; andp.; are shown in Ta-
Letr = 3 andv = 3. In Table 2, we show the es- Plé 4 and Table 5, respectively.

timated successful rate of detecting node replications un-
der different settings of.; according to Equation (2) and Set. A | SetB | Set. C | SetD | SetE
(3). According to Table 2, where ‘Set.’ is a short notation |t | | 9.69e-04] 2.04e-05| 1.73e-06| 6.39e-06] 2.37e-07
for ‘Settlng’, the P-MPC scheme can achieve a very h|gh Set. Il 2.37e-04| 5.08e-06| 5.36e-07| 5.11e-05| 1.51e-05
replica detection rate, even when an identity is mapped to|_S€t- Il | 7.01e-05| 1.60e-06| 3.72e-07] 7.01e-05) 7.01e-05

three destination cells. Moreover, we notice that the large

P—MPC : :
the differences between the probabilitiess, the higher is Table 3. p;; under Different Settings of

pei and t; (s =100, w = 5, ta = 30)

Pir-
Pc1 Pc2 Pc3 P2r P3r .
Set. 1 | 80% | 15% | 5% | 99.77%| 100% From Table 3, we notice that the best strategy for ad-
Set. 11 | 70% | 20% | 10% | 99.38%| 100% versaries is to compromise only nodes in the cell with the
Set. Il 1 50% | 30% | 20% | 98.88% | 99.98% highestp,;, i.e. setting A oft;, rather than spreading their

limited capability of compromising nodes among multiple
cells in C. Assuming that the adversary selects this opti-
mal strategy, the larger the differences betwegrs, the
larger ispf,~MPC and thus the weaker the resilience of the
scheme to node compromise.

Table 2. Successful Rate of Detecting Node
Replications under Different Settings of p;



b1 | t2 | I3
Set. A| 30 0 0 Dc1 Dc2 Dc3
Set.B| 15| 10| 5 Set.1 | 0.8 | 0.15| 0.05
Set.C| 10| 10| 10 || Set. 1l | 05| 0.3 | 0.2
SetD| 0 [30] 0 |[Setmi| I | T [ 1
Set.E| 0 | O | 30

Table 5. Settings
Table 4. Settings of pe;

of ¢;

Compared to SDC, P-MPC is more robust to node com-
promise. Assuming that adversaries follow the best styateg
just described, i.e. compromising only nodes in the cehwit
the highesp,;, Equation (4) can be converted into:

P—-MPC

Py (t> = pfl ! pstC (t) (5)

As a result, compared to the SDC approach, the success rat

that adversaries control all the witnesses of a given itenti
is reduced by a factor df — p;.

5.2 Efficiency Analysis

When analyzing the efficiency of the P-MPC scheme, we
follow the same metrics employed in Section 4.2.

5.2.1 Communication Cost

Similar to the SDC scheme, the communication cost for P-
MPC has two components: the cost for propagating the lo-
cation claim to the cells chosen and the cost for flooding
the claim within these cells, denoted @), andCOy,
respectively.

Assuming that in the P-MPC scheme there are on av-
erager neighbors forwarding a location claim, the com-
munication complexity o2Oy,, is O(r - \/n) in P-MPC,
if we assume that the neighbors bfforward the location
claim independently and do not consider further optimiza-
tions, e.g., a node only forwards the location claims with th
same identity and location information once within a certai
time interval.

The communication complexity @fOy; in the P-MPC
scheme can be estimated as follows. Since thereregh-
bors of L forwarding the location claim, the probability that
any cell inC (i.e., C;) is chosen by at least one out of
neighbors is:

Dsi =1— (1 _pci)T

Therefore, the complexity of’Oy; in the P-MPC scheme
can be described a3(s - Y ;_, psi). Table 6 shows the
value onle psi in terms of different settings op,;’s,
whenv = 3. According to Table 6, the larger the differences

betweer,.;’s, the smaller the extra overhead of flooding the
location claim, when compared to the SDC scheme.

Pc1 Dc2 Pc3 Zle Psi
0.8| 0.15| 0.05| 1.5205
07| 02 ] 0.1 1.732
05| 0.3 | 0.2 2.02
T I T T 21111

Table 6. >, ps; in terms of different settings
on pe;'s (v =3)

5.2.2 Memory Overhead

In a similar fashion, we can see that the the memory over-
head of the P-MPC scheme is givendyp, - >_._, psi.

5.3 Summary

Before presenting empirical results in Section 6, in Ta-
ble 7, we summarize the average communication cost and
memory overhead per node of the two variants of the Lo-
calized Multicast approach together with the two multicast
algorithms proposed in [9], i.e. Randomized Multicast and
Line-selected Multicast. In Tabl€;7we denote the number
of lines selected in the Line-Selected Multicast algorithm
and the number of the withess nodes storing the location
claim for a given identity in our approach gsandw, re-
spectively.

According to the analysis in Section 4 and Section 5, we
know thatr can be set to a value smaller thanvhile still
ensuring higher success rate of detecting replicas. There-
fore, theCOy,, of either SDC or P-MPC is smaller than
the corresponding communication cost of the Line-selected
Multicast algorithm. However, our approach has the extra
overhead of flooding the location claim within one or more
cells, i.e.COy;,.

Note that for both SDC and P-MPC, the lower bound
of the cell size is determined by the security requirements.
Once the cell size and the flooding algorithm within the cell
are chosen('Oy, is fixed and independent of the network
size. According to Table 7, we know that the extra over-
heads of the Random Multicast and the Line-Selected Mul-
ticast algorithms ove€'Oy,, of our approach can be de-
scribed ag\/n — r) - S and(f — r) - S respectively, where
S denotes the average communication cost of forwarding
a packet between a randomly chosen pair of nodes in the
network. S is tightly related to the network size (i.e., the
complexity ofS is O(y/n)) and the network topology (i.e.,

3By importing a parameteyf, compared to [9], we give a more accu-
rate evaluation on the complexity of the communication afshe two
algorithms proposed in [9].



for the same network sizé&, under an irregular topology is ‘L, and ‘Large H’ with the same density, i.@.= 40. As in
higher than that under a regular uniform topology). Conse- Parno et al's study [9], these topologies are generateckas th
guently, our schemes are more scalable and less sensitive teub-regions of the regular topology & 10000).
irregular topologies, when compared to the two algorithms  For the Random Multicast and Line-Selected Multicast
proposed in [9]. algorithms, we use the same settings as in [9], expect for
The analysis in Section 4.1 and Section 5.1 shows that itp in the Line-Selected Multicast algorithm. More specif-
is sufficient to choose a small value farto resist node ically, for the former, we set the number of sensors storing
compromise, and thus our approaches provide far bettera given location claim ta/n, i.e.w = /n; for the latter,
memory efficiency, compared to the Randomized Multicast we set the number of lines as 6, ife= 6. As top; in the
and Line-selected Multicast algorithms, especially whent  Line-Selected Multicast algorithm, it is set 19d in [9],
network size is very large. and each forwarding node randomly pickslestinations.
In our simulation, we sep; = f/d, and each forward-

Communication | Memory | ing node randomly picks only one destination. Given the
Randomized Multicast O(n) O(y/n) same density, compared to the former, the latter has a lower
Line-Selected Multicas O(f - v/n) O(f-+/n) | probability that there is no neighbor forwarding the looati
SDC O(r - /n) + O(s) w claim. As a result, compared to [9], in our simulation the
P-MPC O(r - /n) + O(s) w Line-Selected Multicast algorithm has a higher success rat
of detecting node replication, as shown in Section 6.3.2.
Table 7. Comparisons of Average Communi- For both SDC and P-MPC, we sg} = 3/d. Besides
cation Cost and Memory Overhead that, for P-MPC, we use Setting | in Table 5 as the setting

of p.;'s in the simulation. Namely; = 3, andp.1, p.2, and
pe3 are 80%, 15%, and 5%, respectively.
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We evaluated the performance and security of our
schemes and those proposed by Parno et al via extensive
simulations. To enable a fair comparison, we used the same
simulation methodology and simulation code that was used
in Parno et al's study [9].

101 T

6.1 Metrics

# of All the Packets Sent and Received

We used the following metrics to compare the schemes:

e Communication Overhead: We measured the total Yoo 700 o0 400 5000 G000 700 Ba00 9000 10000
. . # of Sensors in the Network
number of packets sent and received for running the
replica detection algorithm whennodes are added to

the network. We denote this metric as. Figure 3. Communication Overhead of SDC,

P-MPC, Random Multicast, and Line-Selected
e Success rate in detecting replica¥e measured the Multicast for Uniform Topologies.

probability of detecting a replica, when there are two

sensors with the same identity in the network, p£.

6.2 System and Network Models 6.3 Simulation Results

As in the Parno et al study, we considered both uniform 6.3.1 Communication Overhead

and irregular network topologies. In the uniform topology, The figures below show the 95% confidence intervals of the
nodes are randomly distributed withirb80 x 500 square. reported metric. In Figure 3, we compare the communica-
The network sizert) varies between 1000 to 10000. We tion costs of our two schemes with the two algorithms pro-
assume a bidirectional communication model, and adjustposed in [9] for uniform topologies. As shown in Figure 3,
the transmission range so that the average number of neighthe Random Multicast algorithm has the highest commu-
bors of a sensord is 40. We also considered six irregular nication costs under all the settings. Among the remain-
topologies, i.e.,'Thin H’, ‘Thin Cross’, ‘S’, ‘Large Cro§s ing schemes, SDC has the lowest communication overhead,
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Figure 4. Communication Overhead of SDC, P- Figure 5. Success Rate of Detecting Replicas in
MPC, and Line-selected Multicast for Irregular SDC, P-MPC, and Line-Selected Multicast

Network Topologies

though the differences between SDC, P-MPC, and Line-tively.
selected Multicast are relatively small. As the networlesiz We notice that, however, the success rates of SDC range
increases, P-MPC and SDC have lower overhead than Linefrom 89.4% to 94.5%, which are lower than the expected
selected Multicast. Figure 3 shows that SDC and P-MPC value (i.e., 100%) according to the theoretical analysis in
have lower communication overheads than Line-SelectedSection 4.1. It is due to two reasons. The main reason is
Multicast whenn > 2000 andn > 4000 respectively. that, each neighbor decides whether to forward the location
In Figure 4, we compare the communication costs of our claim independently, and thus there exists a probabildy th
two schemes with the two algorithms proposed in [9] for no neighbor forwards the location claim. As a result, SDC
irregular topologies. In comparison to Line-selected Mul- fails to detect a node replication attack, if for any of the
ticast, both SDC and P-MPC show much stronger adapt-two replicas no neighbor forwards its location claim. In
ability for irregular network topologies. Under all the ir- addition, wherp, is too small, there exists a probability that
regular topologies, the's of our two schemes are smaller no node within cellD stores the location claim, which may
than that of the Line-selected Multicast algorithm. In par- also resultin SDC’s failure in detecting node replicatibm.
ticular, under the ‘Thin H’, ‘Thin Cross’, ‘S’, and ‘Large  the simulation, we sei, = 0.2, and thus the second reason
H’ topologies, the advantage of our two schemes over theonly has a negligible effect.
Line-selected Multicast algorithm is much higher than that  Due to the same reason, the simulation results about P-
under the regular topology:(= 10000). More specifically, MPC'’s success rates of detecting node replication are lower
under these four topologies, SDC’s and P-MPC'’s advan-than the expected value according to the theoretical aisalys
tage over the Line-selected Multicast algorithm (in terms in Section 5.1.
of the communication cost) is 149% to 181% and 238% to
296%, respectively, higher than that under the reguladtopo 7 Related Work
ogy (n = 10000).
As discussed in previous sections, Parno et al. [9] were
6.3.2 Replica Detection Success Rate the first to propose distributed algorithms for detectingeo
replication attacks in sensor networks. In Sections 6, we
Due to the high cost of the Random Multicast algorithm, we have compared the performance and effectiveness of our ap-
only consider SDC, P-MPC, and the Line-Selected Multi- proaches to their schemes.
cast algorithm while comparing the success rates of detect- Once a compromised node is detected in a sensor net-
ing node replication (i.ep2,.). work, its credentials need to be revoked. The revocation
Figure 5 shows that, compared to the Line-Selected Mul- process can be initiated by a central party, e.g., a base sta-
ticast algorithm, both of our algorithms have much higher tion [3], which broadcast a revocation message containing
success rates of detecting node replication. More specifi-all the information (e.g. identity and pre-distributed key
cally, on average, the success rates of SDC and P-MPC irheld) about the revoked node. Alternatively, a group of sen-
detecting node replication are 25.64% and 21.77% highersors in the vicinity of the compromised node can cooper-
than that of the Line-Selected Multicast algorithm, respec ate to revoke it. In [1], Chan et al. proposed a distributed



guorum-based revocation mechanism that does not involve

a base station. There has also been extensive work on key

revocation for broadcast encryption [7] and multicast con-
tent distribution [12].

An attack that is superficially similar to node replication
is the Sybil attack [2]. In this attack, single physical adve
sary can generate a number of virtual identities and falsely
claim to be a set of non-existent nodes. Douceur [2] pro-

posed the use of a few schemes in which the potential Sybil g
users are challenged to solve some resource-intensive task

that can only be accomplished by multiple real-world users
but will be impractical for a Sybil source. In contrast, in

node replication attacks, single adversary can generate a

number of physical nodes with the same identity and put
them at different locations in the network. In other words,

each replica is a real physical node, instead of a virtual one [7]

As a result, the detection mechanism proposed in [2] fails
to detect node replication. In [8], Newsome et al proposed
a few mechanisms for detecting Sybil attacks in sensor net-
works, among which only the centralized node registration
mechanism can be used to detect node replication.

8 Conclusion

We have discussed two variants of the Localized Multi-
cast approach for distributed detection of node replicatio
attacks in wireless sensor networks. Our approach com-
bines deterministic mapping (to reduce communication and
storage costs) with randomization to increase the leved-of r
silience to node compromise. Our theoretical analysis and
empirical results show that our schemes are more efficient

cation and memory costs. Moreover, in our approach, the
probability of detecting node replicas is much higher than
that achieved in previous distributed protocols.
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