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Abstract

Most of the design challenges for complex cyber-physical systems, where a digital controller governs a multi-

physics plant, relate to the distributed nature of the systems to be controlled. Cars, airplanes, and power distribution

grids are well-known examples. The characteristics of the communication network that connects the system compo-

nents affect the derivation of the control law and the verification of design correctness. For this reason, there has been

a strong interest in using languages and methodologies that facilitate the use of formal methods. These languages

and methodologies are mostly based on a synchronous paradigm that, while satisfies the need for formalization, of-

ten results in an inefficient implementation requiring substantial overhead when compared to approaches that do not

enforce synchronicity on the execution platform. Therefore, the interest is high for techniques that on one hand,

maintain the formal properties of synchronous models, and on the other hand, enable the use of asynchronous and

distributed execution platforms with little overhead.

In this paper we address the problem of automatic synthesis, and in particular automatic and semantics-preserving

implementation of Triggered Synchronous Block Diagrams (SBDs) on distributed, asynchronous execution platforms.

This problem was studied for “pure” SBDs (where all blocks are triggered in every synchronous step) in [23]. The

method of [23] can be adapted to Triggered SBDs by using trigger elimination [16], where triggers are transformed

to standard inputs. However, this often results in unnecessary communication overhead. In this paper we propose

methods to minimize this overhead, thus improving the efficiency of the approach. We consider both general Trig-

gered SBDs where the values of triggers are dynamically computed and are thus not known a-priori, as well as Timed

SBDs where triggers are statically known, usually specified by (period, initial phase) pairs.

1 Introduction

Cyber-physical systems involve complex interactions between physical environment and electronic control systems,

and usually consist of heterogeneous spatially-distributed subsystems exchanging information on asynchronous net-

works. Cyber-physical systems are difficult to design and to verify given these characteristics. There is a great deal of

interest in developing approaches that prevent unexpected and unwanted behaviors. As witnessed in hardware design,

synchronous approaches are effective in providing a formal framework for design. Various synchronous design tools

and languages were proposed for modeling, simulation, verification and synthesis of complex cyber-physical systems,

including SCADE, Lustre [9], Simulink and others. Simulink, based on the model-based design paradigm, is widely

used in many application domains (e.g. automotive, avionics, industrial control) for capturing both the control systems

and the physical environment/plants . At the heart of these languages, synchronous Block Diagrams (SBDs) [11] are

usually chosen as the model of computation, because they facilitate formal analysis of the system behavior and ver-

ification of the design correctness. Synchronicity is particularly interesting in safety-critical cyber-physical systems

given the predictability of synchronous designs.
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However, the implementation of synchronous designs is often inefficient requiring significant resource overhead

and yielding inferior performance. In an ideal world, we would like to maintain the formalization aspects of syn-

chronous designs while exploiting the efficiency of asynchronous implementations. Indeed, cyber-physical systems

being addressed today do pose significant pressure on verification and on the effectiveness of the implementation plat-

form. We are interested in methods that starting with a synchronous abstract design, derive an implementation that is

semantically equivalent (hence any property valid in the abstract is also valid in the concrete) and does not require ad-

herence to the synchronous paradigm (therfore minimizes any overhead needed to achieve semantic equivalence). We

believe this approach, if supported by appropriate synthesis tools, is a strong candidate for standardization in design

flows used in cyber-physical system design.

The fundamental component in an SBD is a block, which can be modeled as a (not necessarily finite) state machine

with inputs and outputs à la Mealy. Outputs of blocks can be connected to inputs of other blocks to form a diagram.

The semantics of such diagrams are synchronous in the sense that all blocks proceed in lock-step. Provided the diagram

has no cyclic dependencies (within a step), all blocks “fire” within a synchronous step in a certain order, so that the

external outputs of the diagram are computed by propagating the external inputs throughout the diagram. The firing

of a block corresponds to a local reaction step of the corresponding state machine: the machine reads its local inputs,

computes its local outputs and updates its local state.

Triggered SBDs are an extension of SBDs where the firing of a block may be controlled by a boolean signal called

a trigger. At a given synchronous step, if the trigger is true , the block fires normally; otherwise, the block stutters,

that is, keeps its local state and local outputs unchanged, until the next step. Triggered SBDs are useful for modeling

multi-rate systems, where different parts of the system operate at different time scales. Notice that the triggering

patterns need not be periodic. A triggering signal for a block A may be produced by another block B, or it may even

be an external input of the diagram. The point is that the behavior of the triggers (i.e., at which steps they are true

or false) is generally unknown. An exception is the special case of Timed SBDs, where triggering patterns are known

statically (“at compile time”).

Although Triggered SBDs can be translated into equivalent SBDs by a trigger elimination procedure that trans-

forms triggers into standard inputs [16], this is often undesirable. In particular, as we show in this paper, it can result

in inefficient distributed implementations, with higher communication loads than necessary.

The problem we address in this paper is the semantics-preserving and communication-efficient distribution of Trig-

gered SBDs on asynchronous execution platforms. In particular, given a design specification described as a Triggered

SBD, how to map it to a distributed, asynchronous execution platform, so that the semantics of the Triggered SBD

is stream-equivalent to the semantics of the distributed implementation, and the communication overhead between

the distributed processes is reduced. Addressing such problem is important as distributed platforms are commonly

used in various cyber-physical systems. Without a formal synthesis methodology, we will not be able to guarantee the

correctness of the distributed implementation w.r.t. the original synchronous specification.

The semantics-preserving distribution problem has been studied in [23], but only for a “pure” SBD model, where

all blocks fire at every synchronous step. In this paper we generalize these results to the case of Triggered SBDs. We

also study distribution of Timed SBDs as a special case, for which more efficient implementations can be obtained.

We follow the problem formulation of [23] where “distributed asynchronous execution platforms” are captured

by so-called finite FIFO platforms (FFPs). An FFP is similar to a Kahn Process Network (KPN) [13], with the

difference that while in a KPN queues are unbounded, in an FFP they are of fixed, finite size. Although FFPs model

a specific kind of distributed systems and in particular network communication, they can themselves be mapped in

a semantics-preserving way to a variety of underlying networks, such as onto the loosely time triggered architecture

(LTTA) [23]. Therefore, FFPs represent a useful intermediate layer that can serve as a first step in distributing a model

onto many different execution platforms (all platforms upon which FIFO queues can be implemented, e.g., using the

TCP protocol). This can be done because FFPs make no assumption about the relative speed of the local clocks of

distributed processes, hence the characterization asynchronous.

There is a simple way to solve the distribution problem for Triggered SBDs: first, apply trigger elimination to

translate the Triggered SBD into a pure SBD; then, use the mechanisms of [23] for distribution of pure SBDs. Un-

fortunately, this simple method often results in unnecessary communication overhead: a block always sends output

messages even when its trigger is false . The block does not fire in this case, so the outputs have the same value as in the

previous step, but they are still transmitted to downstream blocks. In this paper we present an implementation method
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that eliminates this overhead. This is especially critical in CPS where communication is expensive, for example, in

wireless applications where the channel capacity is limited, or where energy savings are essential.

In particular, our implementation method optimizes communication along the following two directions: first, data

messages are not sent to processes that are not triggered; second, a process which is not triggered need not send a full

data message to its successor processes, but only a flag indicating that the data are the same as in the previous step.

In addition to these optimizations that apply to general Triggered SBDs, we also present further optimizations for the

case of Timed SBDs.

1.1 Motivating Examples

Fig. 1 shows a Triggered SBD. This diagram models a two-mode system, consisting of two separate sets of communi-

cating blocks, plus a mode control block that triggers only one of the sets at any given time. The output of the control

block is a boolean signal: when it is true , the blocks of Mode 1 are triggered, and when it is false , the blocks of Mode

2 are triggered. Notation-wise, we use different types of arrow heads to distinguish triggering signals from standard

inter-block communication signals, and we usually draw triggering signals as incoming to the top of a block.

Mode Ctrl 

Mode 1 Mode 2 

M
11

M
12

M
23

M
22

M
0

M
13

M
21

Figure 1: A Triggered SBD.

P
11

P
12

P
13

P
21

P
22

P
23

P
0

Figure 2: The FFP system resulting from the Triggered SBD of Fig. 1 after trigger elimination [16] and distribu-

tion [23].

After applying the trigger elimination method of [16], followed by the distribution method of [23], we get the FFP

diagram shown in Fig. 2. The FFP diagram is a model of a distributed system where concurrent processes communicate

through FIFO queues. Each block M0,M11,M12, etc., of the original diagram gives rise to a process P0, P11, P12,

etc., in the FFP. The triggers of the original diagram have now become standard inputs to the FFP processes. Each

FFP process P executes the following pseudo-code:

P(inputs: ins, trigger; outputs: outs)

{

initialize state and outs;

while (true) {

wait until all input/output queues

are non-empty/non-full;

get_inputs(ins, trigger);

if (trigger) then

(state, outs) := M.step(state, ins);

put_outputs(outs);

}

}

where state denotes the internal state of M , that P inherits. In addition, output variables outs are also state

variables in P . Process P behaves as follows. It starts by initializing its state variables (including outs – the reason

for this will become clear below). It then enters an infinite loop. At each iteration, P waits until all its input queues

are non-empty (i.e., contain at least one message) and all its output queues are non-full (i.e., have room for at least one
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message). Then, P “fires”, that is, it performs a synchronous step: one input message is read from each input queue

(including the trigger) and one output message is written to each output queue, using the functions get inputs()

and put outputs() (we assume that these functions are “smart enough” to know which variable corresponds to

which queue). When the trigger is true , P uses the output function of M , M.step(), to update the outputs and

the state. When the trigger is false , no updates are made and the values written at the outputs are the same as in the

previous step (i.e., the process “stutters”).

All processes in the FFP of Fig. 2 execute concurrently, following the above pattern P . Although the processes

are not synchronized, some loose form of synchronization is still imposed because of the queues: a process cannot fire

when it waits for an input from another process, or for a downstream process to free up space in an output queue. This

distributed concurrent system completes a logical step when all messages corresponding to the same synchronous step

in the original SBD have been processed.

We use this notion to estimate the communication load in this FFP implementation. We can see that 6 trigger

messages plus 7 data messages are transmitted at every logical step. The 6 trigger messages correspond to the mes-

sages sent from the control process P0 to each of the other processes (the negation block is not implemented as a

separate process, but is part of the control process). The data messages are sent by the processes among themselves:

two messages from P11 to P12 and P13, one from P12 to P13, one from P13 to P21, and so on. Let LT and LD

denote the message lengths for trigger and data messages, respectively. Then, the communication load of the naive

implementation is 6 · LT + 7 · LD, measured in bits per logical step.

In the optimized implementation method that we present in this paper, a producer process only sends a message

to a consumer process when the consumer is triggered. In our running example, P11 only sends messages to P12 and

P13 when the latter are triggered. In this example all processes in the set {P11, P12, P13} are triggered simultaneously,

and similarly for {P21, P22, P23}. Moreover, only one of the two sets is triggered at any given logical step. Therefore,

in the optimized implementation, at most 4 data messages are transmitted in each logical step: 3 messages among

processes of the same mode, plus 1 message from P13 to P21. Moreover, the message from P13 to P21 is only

transmitted at the beginning of a mode switch. After that, while the system remains in the same mode, only a control

message is transmitted indicating that the data is the same as in the last step. The savings are significant and can be

close to 4
7 ≈ 57%, considering that the data messages are usually much longer than trigger/control messages (whose

payload is only a few bits).

Even more significant savings arise in the case of Timed SBDs, where triggering patterns are known statically.

An example is shown in Fig. 3. The writer block W is fired at every synchronous step, while the reader block R is

fired only once every 10 steps. In the naive implementation, process W would send a message to R at every logical

step. R would execute to consume these messages and then do nothing 9 out of 10 times. 9
10 of those messages are

unnecessary, and are eliminated by our mechanism.

W R

(1, 0) (10, 0) 

Figure 3: A Timed SBD.

2 Background: Triggered SBDs and FFPs

2.1 Triggered SBDs

A Triggered SBD consists of a set of blocks connected to form a diagram. Each block has a number of input ports

(possibly zero) and a number of output ports (possibly zero). Diagrams are formed by adding connections. There are

two types of connections: a data connection connects some output port of a block M to some input port of another

block M ′; a trigger connection connects some output port of a block M directly to another block M ′: we say that M ′

has a trigger. A block can have at most one incoming trigger (it can also have none). An output port can be connected

to more than one input ports. However an input port can only be connected to a single output.

Semantically, each block corresponds to a state machine, generally of type Mealy [14]. We say that a block is

“Moore” if its output function only depends on its state, and not on the inputs. Every connection in the diagram
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corresponds semantically to a stream, that is, a function s : N → U , where N = {0, 1, 2, ...} is the set of natural

numbers, U is the universe of all possible data values that streams in the diagram can take, and s(n) represents the

value of s at the n-th synchronous step. For simplicity, we ignore typing issues, which in practice would only allow

connections between ports of compatible types. However, we use terms such as “boolean signal” for streams that only

take values in a restricted subset of U , e.g., {true, false} for boolean signals.

The semantics of a diagram can be given as a composite state machine, obtained by synchronous composition

of all machines corresponding to blocks in the diagram. To define the composite state machine, we assume that the

diagram is acyclic, that is, every dependency cycle visits at least one Moore block. We also assume that there are no

“self-loops”: this is not a restrictive assumption since blocks can have internal state. The state space of the composite

machine is the product of the state spaces of all its component machines, plus all outputs of blocks that have triggers.

These outputs become states because when a block is not triggered, its outputs maintain their previous value. The

outputs of the composite machine can be defined to be all outputs in the system (including those connected to inputs).

The state of the composite machine is updated by updating the states of all individual components. The output

function of the composite machine is defined by defining the value s(n) of every stream s in the diagram, for a given

n ∈ N. Suppose s is the output of machine M . If M has no trigger, s(n) is defined by the output function of M . This

requires the local inputs of M to be already known, but since the diagram is acyclic, there always exists a well-defined

order in which to evaluate all streams in the diagram at every step n. If M has trigger t and t(n) = true , again s(n)
is defined by the output function of M . If M has trigger t and t(n) = false , s(n) = s(n − 1) (if this happens when

n = 0, some default value is used for s(0)). Notice that M having no trigger is equivalent to M having a trigger which

is true at every step.

A Timed SBD is a special case of a Triggered SBD where every trigger is generated by a (period, initial phase) pair

(PPP) (τ, θ) ∈ N × N, where τ represents a period and θ an initial phase.1 For example, the pair (2, 1) generates the

stream false true false true · · · . Clearly, every PPP can be defined by a finite state machine, so Timed SBDs are a

subclass of Triggered SBDs. The important thing about Timed SBDs is that the triggering pattern is known “at compile

time”. This is not the case for general Triggered SBDs. Note that the implementation methods that we present here, as

well as those proposed in [23], are agnostic of the internals of blocks, that is, blocks are treated as black boxes whose

internal state machines are not known.

2.2 FFPs

We model the distributed, asynchronous execution platform as a Finite FIFO Platform (FFP) [23]. An FFP consists

of a set of sequential processes communicating via directed, point-to-point, lossless, FIFO queues of finite length.

As such, an FFP is similar to a Kahn process network (KPN) [13], with the difference that in a KPN the queues are

unbounded. Another difference is that in an FFP, unlike in a KPN, both reads and writes are non-blocking in an FFP

and the processes have the responsibility for checking that the queue is non-empty before doing a read, and that the

queue is non-full before doing a write. An example FFP is shown in Fig. 2. It consists of 7 processes and 12 queues

(not necessarily of size 3, or of the same size).

Each FFP process is a sequential program that calls special API functions to access the services of the queues, in

particular, isFull() and isEmpty(), to check whether a given queue is full or empty, and get() and put(), to

pop and return the first element of a (non-empty) queue, and to append a message at the end of a (non-full) queue. An

example of an FFP process is process P executing the pseudo code shown in Section 1.1 (get inputs() iterates

get() over all input queues and put outputs() iterates put() over all output queues). Note that not all FFP

processes must look like that example. Indeed, the distribution methods that we present in Sections 3 and 4 rely on

different FFP process structures and achieve better communication efficiency.

2.3 The Distribution Problem

The distribution problem is to automatically generate from a given Triggered SBD, an FFP that is stream-equivalent to

the Triggered SBD. Generating an FFP means synthesizing the topology of the FFP (processes and FIFO queues) and

1 More generally, triggers in timed SBDs could be specified by firing time automata (FTA) [16]. Our implementation method can be directly

extended to FTA, but for simplicity, we limit our discussion to PPPs.
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W (M)
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W (M)
1

T(M)
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B(M)
1

B(M)
B(M )

R(M)
R(M )

R(M)
1

Figure 4: A block M and its surroundings.

the code that each FFP process executes (the topology synthesis is easy, since we assume a 1-1 mapping of blocks to

processes, as is done in [23]). In an FFP, a stream is essentially the sequence of values that are written in a given queue.

In the naive implementation, stream equivalence requires that every stream s∗ produced in the FFP be identical to the

corresponding stream s defined by the Triggered SBD. This requirement is too strict for the optimized implementation,

where redundant messages are omitted from s∗. Instead, we require only that s∗ be identical to s sampled at the points

in time when the consumer of s is triggered.

Note that, contrary to Triggered SBDs, streams of FFPs are not guaranteed to be infinite. This is because some

processes in an FFP may “deadlock”, waiting forever for messages in an input queue or space in an output queue.

A proof of semantical preservation must therefore include arguments to show that the resulting FFPs are deadlock-

free [23].

As mentioned in Section 1, the straightforward, “naive” solution to the distribution problem is to combine the trig-

ger elimination procedure of [16] with the distribution method of [23]. This method creates communication overhead,

however, as illustrated by the examples of Section 1.1. In what follows we propose alternative implementations that

eliminate this overhead while preserving the semantics.

3 Distribution of General Triggered SBDs

We first introduce some notation and terminology. Fig. 4 shows the general configuration of a block M and its

surroundings, as a part of a Triggered SBD.

• If M has a trigger t, T (M) denotes the block that produces t (i.e., that has t as an output). If M has no trigger,

T (M) is undefined: we examine this as a special case below.

• The set of blocks that have data connections into M is denoted as W (M). 2

• B(M) denotes the set of blocks triggered by M .

• R(M) denotes the set of blocks that have data connections from M , except for those blocks that are already in

B(M). R(M) is partitioned in two disjoint subsets: RR(M), containing all blocks in R(M) that either have

no trigger or have a trigger but are already in W (B(M)); and RT (M), containing all the remaining blocks of

R(M).

Note that W (M), R(M), B(M) are pairwise disjoint. Also, absence of self-loops ensures that M cannot be a member

of any of these three sets. Finally, T (M) cannot be an element of neither R(M) nor B(M) (this would result in cyclic

diagrams) but it may be an element of W (M).

2For a set W , |W | denotes its cardinality. We use W1,W2, etc., to enumerate and denote its elements, so that W (M) =
{W (M)1, ...,W (M)|W (M)|}. Also, we define W (X) =

⋃
Q∈X W (Q), for a set of processes X .
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Figure 5: Part of an FFP generated from block M and its surroundings shown in Fig. 4.

3.1 Mapping Triggered SBDs on FFPs

A Triggered SBD is mapped into an FFP in the following way. Every block M in the Triggered SBD is mapped to

an FFP process P . Every link between a pair of blocks M and M ′ in the Triggered SBD is mapped to a FIFO queue

between the corresponding FFP processes, from P to P ′. The sizes of the queues are as in [23]. In particular, if M is

not Moore, a queue of size 1 suffices; if M is Moore, a queue of size 2 suffices: this queue is initialized with a message

carrying the initial output of M . Schematically, the Triggered SBD part shown in Fig. 4 results in the FFP part shown

in Fig. 5.

Similarly to notation T (M),W (M), ... for blocks, we introduce notation T (P ),W (P ), ... for processes. That is,

if block M is mapped to process P , T (P ) denotes the process corresponding to T (M), W (P ) denotes the set of all

processes P ′ such that P ′ corresponds to block M ′ ∈ W (M), etc.

As can be seen from Fig. 5, P may have more inputs and outputs (shown in blue) than its corresponding block M .

In particular, P receives additional input signals from processes in T (RT (P )). This is done in order to minimize data

traffic: if a process P ′ ∈ RT (P ) is not triggered in a given step, P need not send a message to P ′ for that step. To

know whether P ′ is triggered or not, P needs to receive a message from the process triggering P ′, that is, from T (P ′).
These additional signals are called backward signals and the corresponding queues are called backward queues. They

are illustrated in Fig. 6. Backward signals are sent to backward queues at every step.

Symmetrically, P itself may trigger other processes (those in B(P )). Therefore, P needs to notify potential writers

of processes in B(P ) about whether the latter are triggered or not. This explains the additional output queues of P ,

namely, queues to the process set W (B(P )).
We should note that additional queues are introduced by the optimized implementation only if they do not already

exist in the naive implementation. For example, the process T (P ) may also be in T (RT (P )). This is the case in

Fig. 2, where T (P11) = T (P12) = P0. Since there is already a queue from P0 to P11, no additional queue is needed.

Additional backward queues may create apparent dependency cycles in the FFP, as illustrated in Fig. 7. If M1

already has a forward link to M3, adding a backward queue from P3 to P1 in the FFP creates a cycle. To ensure that

such cycles are not problematic, i.e., do not result in deadlocks, a process P is designed in a way such that its execution

is structured in stages. The stages are ordered so that dependency cycles are not introduced. In the example of Fig. 7,

P1 will transmit to P3 without waiting for messages from the backward queue. These messages are necessary only in

order for P1 to decide whether to send a message to P2 or not, and are not needed for P1 to compute its outputs.

M
1

M
3

M
2

P
1

P
3

P
2

Figure 6: Backward queue sending trigger information about P2 to P1.
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Figure 7: Avoiding deadlocks by structuring each process in stages.

The code that each FFP process P executes is shown in Fig. 8. The code follows the same general scheme as the

naive implementation described in Section 1.1: initialization of state variables, followed by execution of an infinite

loop. Every iteration of the loop proceeds in a number of stages. First (Stage 0), P determines if it is triggered in the

current iteration. If T (P ) is undefined, P is implicitly always triggered, therefore trigger is set to true . Otherwise,

P needs to consume a message from the input queue trigger coming from process T (P ) and containing the value

of the trigger. If the queue is empty, P needs to wait until a message arrives. At Stage 1, P fires iff the trigger is true

and sends messages to RR(P ) ∪ B(P ) ∪ W (B(P )) (the union of the sets is denoted as RB(P ) in the code): these

messages are sent at every step, even when P is not triggered. At Stage 2, P sends messages to those processes in

RT (P ) that are triggered: the rest need not receive data messages. This is part of the traffic optimizations that our

method achieves.

Returning to the example of Fig. 7, the transmission from P1 to P3 will occur at Stage 1, since P3 ∈ RR(P1).
Then, P3 can execute and transmit back to P1 via the backward queue. Once P1 has this information, it can decide

whether a message needs to be sent to P2. If so, this will happen at Stage 2 (in P1’s code). One can see how this

careful ordering avoids dependency cycles and deadlocks in this example. More complicated cases exist, however, for

instance, where P3 itself may be triggered, therefore belonging not to RR(P1) but to RT (P1). The proof of semantical

preservation described in Section 3.2 argues how these cases are also handled correctly by our method.

We now further explain the code of P shown in Fig. 8. ins denotes the set of all input queues of P . outs denotes

the set of all output queues. We use notation such as ins[i] to denote the queue from a given process i. Similarly,

if X is a set of processes, ins[X] denotes the set of the corresponding queues.

P maintains state variables ins’ and outs’. For each i, ins’[i] memorizes the last data message received

in ins[i]. This is used when a process has no “fresh” message for P (i.e., no new message since the last time P

was triggered), in which case it only sends a flag to P indicating that the last data message should be used. Sym-

metrically, for each output queue, outs’ memorizes the latest message that P produced for that queue. Note that

get inputs() and put outputs() use only ins and outs and do not affect ins’ and outs’.

Messages in outs’ contain an extra boolean flag fresh, indicating that the corresponding output is newly

produced, as opposed to one that has already been sent. Initially all output data are fresh: this is because in the first

iteration these data must be sent even if P is not triggered. When put outputs() takes outs’ as argument, it uses

the fresh flag of each message: if it is true , the whole message is sent; otherwise, only the flag is sent, indicating

that the data is the same as in the last transmitted message. This reduces communication load, since data messages

typically have a larger payload. Note also that each message sent by put outputs() contains all the information

that must be transmitted from one process to another. Such a message may therefore include both a trigger and a data

part.

For each process i in T (RT (P )), P also maintains a boolean flag known[i]. These flags are used to indicate

whether the value of certain triggers is known at a given iteration. All flags are reset to false at the beginning of each

iteration. As messages are received, the corresponding flags are set to true .

RTunproc represents the set of all processes in RT (P ) that P needs to consider in Stage 2. For each rt ∈ RT (P ),
P needs to determine if rt is triggered: if so, P sends a message to rt, otherwise, it does not. P iterates over all

processes in RT (P ) until all of them have been handled. A process rt is selected at random, and P checks whether

the triggering status for rt is known. If not, P attempts to find out by checking whether the backward queue from

T(rt) contains a message. If the trigger value for rt is known, if it is false , P need not send a message to it. If

the trigger is true , P sends a message if space is available in the corresponding queue. In these cases, rt is removed

from RTunproc, marking the fact that rt has been handled.

Stage 2 may appear unnecessarily complicated: why not simply iterate over all processes rt ∈ RT (P ), wait for
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P (inputs: ins, trigger; outputs: outs)

{

initialize state, outs, ins’ and outs’;

for all i, outs’[i].fresh := true;

while (true) {

for all i in T(RT(P)), known[i] := false;

// Stage 0: determine trigger

if (T(P) is defined) {

wait until trigger queue is not empty;

get_inputs(trigger);

if(trigger.fresh = true)

ins’[T(P)] := trigger;

if (T(P) in T(RT(P))) known[T(P)] := true;

}

else

trigger := true;

// Stage 1: fire and send to RB(P), where

// RB(P) := RR(P) union B(P) union W(B(P))

wait until no queue to RB(P) is full;

if (trigger) {

wait until no queue from W(P) is empty;

get_inputs(ins[W(P)\T(P)]);

for (every i in W(P)\T(P) s.t.

ins[i].fresh = true)

ins’[i] := ins[i];

for (every i in W(P)\T(P) s.t. i in T(RT(P)))

known[i] := true;

(state, outs) := M.step(state, ins’[W(P)]);

for all i in (RB(P)) {

outs’[i].fresh := true;

outs’[i].data := outs[i];

}

}

put_outputs(outs’[RB(P)]);

for all i in (RB(P))

outs’[i].fresh := false;

// Stage 2: selectively send to RT(P)

RTunproc := RT(P);

while (RTunproc != empty) {

pick a process rt in RTunproc;

if (T(rt) = P) {

known[T(rt)] := true;

ins’[T(rt)] := outs’[rt];

}

if (known[T(rt)] = false and the

queue from T(rt) is not empty) {

get_inputs(ins[T(rt)]);

if (ins[T(rt)].fresh = true)

ins’[T(rt)] := ins[T(rt)];

known[T(rt)] := true;

}

if (known[T(rt)] = true)

if (ins’[T(rt)] = false)

remove rt from RTunproc;

else if (the queue to rt is not full) {

put_outputs(outs’[rt]);

outs’[rt].fresh = false;

remove rt from RTunproc;

}

}

}

}

Figure 8: FFP process for a general Triggered SBD.
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a message from T (rt), proceed to decide whether rt is triggered or not, and send a message to rt if it is triggered?

The reason is that a fixed order of iterating over processes in RT (P ) may result in deadlocks. For example, if

P1, P2 ∈ RT (P ) and we decide to wait first for a message from T (P1) and then from T (P2), there is a deadlock in

the case that P1 is itself triggered by P2, i.e., T (P1) = P2. This situation is illustrated in Fig. 9 (the Triggered SBD

is shown to the left and the corresponding FFP to the right). Links from P3 to P and from P2 to P are backward

links. The deadlock arises because: P2 waits at Stage 1 for a message from P ; at the same time, given the above fixed

iteration order, P at Stage 2 first waits for a message from T (P1), i.e., from P2. This happens before P can wait for a

message from T (P2) to decide whether to send a message to P2.

This deadlock is avoided in our method: Suppose P1 is selected first in Stage 2 of P . Then, P attempts to read the

trigger signal from T (P1) = P2, but finds the backward queue from P2 to P empty, so another process in RT (P ) is

selected. In this way, no extra dependencies are added among processes, and P eventually handles P2 before P1.

P
3

P
2

M
3

M
2

PM

M
1 P

1

Figure 9: Potential for deadlock with a static iteration order over RT (P ).

Note that the deadlock could be avoided with a static iteration order, where P handles P2 before P1. However, such

a static order generally depends on the topology of the diagram. In this paper, we opted for a method that guarantees

absence of deadlocks while being modular, that is, where the code for P does not depend at all on the diagram (see

also discussion in Section 6).

3.2 Semantical Preservation

Stream equivalence between a Triggered SBD G and the FFP generated by our method, denoted as F ∗, can be proven

in four steps.

Step 1: The Triggered SBD G is transformed to an equivalent pure SBD, denoted as Gs using the trigger elimi-

nation method proposed in [16]. Triggers in G are transformed to standard inputs in Gs, and all the blocks in Gs are

fired at every synchronous step.

Step 2: The pure SBD Gs is mapped to an FFP, denoted as Fs, using the method proposed in [23], which guarantees

stream equivalence between Fs and Gs, and therefore also between Fs and G.

Step 3: In this step, we transform Fs to a new FFP, denoted as F ′

s, by adding backward signals (and queues if

needed) and restructuring every process into three stages, as with the processes in the FFP F ∗. The difference between

F ′

s and F ∗ is the following: although a process in F ′

s reads the backward signals, it does not use the information;

instead, it always sends messages to the output queues at every synchronous step.

The code of a process P in F ′

s is shown in Fig. 10. In the case that it has a trigger, the process and its surroundings

with details on stages is shown in Fig. 11. 3 The functionality of each of the stages is as follows:

• Stage 0: If P has a trigger input, it reads the input in this stage. Otherwise, P does not contain this stage. The

stage is denoted as P.S0 in Fig. 11.

• Stage 1: P reads inputs from W (P ), executes, and sends outputs to RR(P ) and TO(P ). Note that even when

the trigger is false, it still reads inputs and it sends outputs (although they are the same as previous ones), the

same as in Fs. P does not need to reads the inputs from T (RT (P )) in this stage because the output function

only depends on the inputs from W (P ) to compute the outputs. The stage is denoted as P.S1 in Fig. 11.

3 The figure for a process without a trigger is almost the same, except that it does not have input queues from a trigger process or stage 0, and it

reads inputs from Stage 1 of the writers.
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P (inputs: ins, trigger; outputs: outs)

{

initialize state, outs, ins’ and outs’;

while (true) {

for all i in T(RT(P)), known[i] := false;

// Stage 0: determine trigger

if (T(P) is defined) {

wait until trigger queue is not empty;

get_inputs(trigger);

if (T(P) in T(RT(P))) known[T(P)] := true;

}

else

trigger := true;

// Stage 1: fire and send to RB(P), where

// RB(P) := RR(P) union B(P) union W(B(P))

wait until no queue to RB(P) is full;

if (trigger) {

wait until no queue from W(P) is empty;

get_inputs(ins[W(P)\T(P)]);

for (every i in W(P)\T(P) s.t. i in T(RT(P)))

known[i] := true;

(state, outs) := M.step(state, ins[W(P)]);

}

put_outputs(outs[RB(P)]);

// Stage 2: send to RT(P)

RTunproc := RT(P);

while (RTunproc != empty) {

pick a process rt in RTunproc;

if (known[T(rt)] = false and the

queue from T(rt) is not empty) {

get_inputs(ins[T(rt)]);

known[T(rt)] := true;

}

if (known[T(rt)] = true)

if (the queue to rt is not full) {

put_outputs(outs[rt]);

remove rt from RTunproc;

}

}

}

}

Figure 10: FFP process in F ′

s generated in step 3 of the proof.

• Stage 2: P sends outputs to all the processes in RT (P ), as in Fs.

RTunproc represents the set of all processes in RT (P ) that P needs to handle in Stage 2. P iterates over all

processes in RT (P ) until all of them have been handled. A process rt is selected at random, and P checks

whether the triggering status of rt is known. If not, P checks whether the backward queue from R(rt)

contains a message and reads the message if it is true. If the triggering status for rt is known, P checks

whether there is space available in the output queue to rt, and sends a message to the queue if it is true (no

matter the triggering status is true or false), and then rt is removed from RTunproc. Note that in the case that

any of the above checking returns false, P skips this iteration immediately and another process in RTunproc

is selected. In this way, no extra dependencies are added among the processes.

Stage 2 contains multiple sub-stages, a sub-stage for every process RT (P )i in RT (P ), denoted as P.S2.RT (P )i
in Fig. 11.

We next show that F ′

s is stream-equivalent to Fs. For this, it suffices to prove that no process in F ′

s ever deadlocks.

This is because every process P in F ′

s behaves identically to the corresponding process in Fs, except that P consumes

a set of additional messages that it never uses. To prove that no process in F ′

s deadlocks, we use the careful structuring

of the code into stages, which ensures that the additional backward queues do not create any dependency cycles. It is

proven by induction as follows.
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Figure 11: P and its surroundings with stage details in the FFP F ′

s, in the case that P has a trigger.

• Basis: We construct an FFP, denoted as F ′

s(0), by removing all the additional backward queues (together with

the backward signals transmitted through them) in F ′

s . F ′

s(0) does not have any dependency cycles because it

has the same dependency relations as Fs.

• Inductive step: Let F ′

s(i + 1) be the FFP constructed by adding to the FFP F ′

s(i) another additional backward

queue, denoted as Qa(i + 1), which is from a process T (RT (P )k) to P . Specifically, it is a queue from

T (RT (P )k).S1 to P.S2.RT (P )k if we consider the stages. Below we prove by contradiction that: given that

F ′

s(i) has no dependency cycles, F ′

s(i+ 1) has no dependency cycles either.

Assuming that F ′

s(i+ 1) has a dependency cycle, denoted as C. Since F ′

s(i) has no dependency cycles, C must

contain the newly added backward queue, i.e., Qa(i + 1). It means that there is a path from P.S2.RT (P )k to

T (RT (P )k).S1 which does not contains Qa(i+ 1). Since the queue from P.S2.RT (P )k to RT (P )k.S1 is the

only output queue of P.S2.RT (P )k, C must contain a path, denoted as φ, from RT (P )k.S1 to T (RT (P )k).S1,

which doe not contains Qa(i + 1). Therefore, the path φ is also in F ′

s(i). On the other hand, there is a path in

F ′

s(0) and therefore also in F ′

s(i), denoted as φ′, from T (RT (P )k).S1 through RT (P )k.S0 to RT (P )k.S1. So

Fs(i) contains a cycle composed of φ and φ′, which contradicts with the assumption that F ′

s(i) has no cycles.

By adding back all the additional backward queues one by one F ′

s(0), we can conclude that the resulting FFP F ′

s

has no dependency cycles.

Step 4: In this step, we prove that F ∗ is stream-equivalent to F ′

s.

These two FFPs have the same structure, i.e. there is a one-to-one mapping between the processes and the FIFO

queues in the two FFPs. Therefore, for a pair of corresponding processes in the two FFPs, P ∗ in F ∗ and P in F ′

s, P ∗

has a trigger iff P has a trigger.

As explained in Section. 2.3, what we need to prove is the following: for any pair of corresponding processes in

the two FFPs, the input trigger signals (if the processes have triggers) are the same at every synchronous step, and the

input data are the same at the synchronous steps when the trigger signals are true.

Two facts are used to support our proof in this step:

(a) For any given pair of processes W ∗ and R∗, and the queue QW∗,R∗ connecting them in F ∗, if R∗ is in the set

RT (W ∗), W ∗ only sends a message to the queue Q(W ∗, R∗) after it receives from T (R∗) a trigger signal of R∗ and

the value of the trigger signal is true, and R∗ only reads a message from the queue after it receives from T (R∗) the

same trigger signal and the value of the signal is true; otherwise, W always sends to (and R∗ always reads from) the

queue at every synchronous step. Therefore, the message sent to the queue by W at a synchronous step is always read

by R at the same synchronous step.
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On the other hand, For the corresponding pair of processes W ′ and R′, and the queue QW ′,R′ connecting them in

F ′

s, the process W ′ sends a message to the queue QW ′,R′ at every synchronous step, and R′ reads a message from the

queue at every synchronous step. Therefore, R at any synchronous step always reads the message from W ′ produced

at the same synchronous step.

(b) Besides, the state variable outs’[R*] of W ∗ keeps the up-to-date output message for R∗: it is updated with

the new output data produced by the output function when W ∗ is triggered and its fresh-bit is set to be true; once the

message is sent to the queue its fresh-bit is set to be false . On the other hand, the state variable ins’[W*] of R∗

memorizes the latest input data it reads from W ∗. If R∗ receives a message from W ∗ whose fresh-bit is false, meaning

that R∗ has already read the latest output data from W ∗, it uses the data in ins’[W*] (which is the latest input data)

as the input from W ∗ for execution.

The stream equivalence between the two FFPs can be proven by induction as follows:

• Basis: For any pair of corresponding processes in the two FFPs F ∗ and F ′, the internal states and the messages

in the input queues (if any) are initialized the same.

• Inductive step: Assuming that for any pair of corresponding processes P ∗ and P ′ in the two FFPs, the followings

are true before and at the k-th step:

(1) the input trigger signals, including those from T (P ∗)∪ T (RT (P ∗)) and T (P ′)∪ T (RT (P ′)), are the same

at any of the steps.

(2) For any W (P ∗)i ∈ W (P ∗) and W (P ′)i ∈ W (P ′), the input data from W (P ∗)i (or actually from the state

variables ins’ if a message from W (P ∗) contains a fresh-bit whose value is false) and W (P ′)i are the same

at the steps when the trigger signals from T (P ∗) and T (P ′) (which are the same according to (1)) are true.

(3) the internal states of P ∗ and P ′ are the same at any of the steps.

Below we prove that (1)-(3) are also true for any pair of corresponding processes P ∗ in F ∗ and P ′ in F ′ before or

at the (k+1)-th step. It is proven by tracing down the dependency graphs of the stages of processes, denoted as

(process.stage)’s (as shown in Fig. 11), in both FFPs. Note that according to the result of Step 3, the dependency

graphs of the two FFPs are DAGs, and they are the same.

First of all, the follows are true before and at the k-th step because the two processes have the same output

function:

(4) the output trigger signals, including those to B(P ∗) ∪W (B(P ∗)) and B(P ′) ∪W (B(P ′)), are the same at

any of the steps.

(5) the output messages to RR(P ∗) and RR(P ′) are the same at any of the steps.

(6) the output messages to RT (P ∗) and RT (P ′) are the same at the steps when the trigger signals of the

consumers are true. (Note that the values of the trigger signals are the same for the corresponding consumer

processes because of (1)).

Note that a message from P ∗ to a process in R(P ∗), which contains only a false fresh-bit, is essentially the same

as a message from P ′ to the corresponding process in R(P ′), which contains the same data as the last step.

Consider a pair of corresponding (process.stage)’s in the two dependency graphs, denoted as ps∗ and ps′: if

they are the sources of the dependency graphs, their output messages at the (k + 1)-th step are the same since

the outputs only depend on the internal states at step k, and the output data produced by some processes before

or at the k-th step.

Otherwise, given that (1)-(3) are true (and consequently (4)-(6)) for all the (process.stage)’s which are smaller

(in terms of the dependency order which can be partial order) than ps∗ and ps′:

– In the case that ps∗ = P ∗.S0 and ps′ = P ′.S0: they read the input trigger signals (which are the same),

and send the signals to P ∗.S1 and P ′.S1.

– In the case that ps∗ = P ∗.S1 and ps′ = P ′.S1: if the trigger signals (which come from P ∗.S0 and P ′.S0,

and therefore are the same) are true, they read input data (which are the same according to the assumptions),

execute (using the same output function), and consequently their states and output data are updated with
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the same values; if the trigger signal is false, the states and output data in both of them stay the same. The

output data are then sent to all the stages in P ∗.S2 and P ′.S2, as well as B(P ∗).S0 ∪W (B(P ∗)).S2 and

B(P ′).S0 ∪W (B(P ′)).S2. So the input trigger signals for B(P ∗).S0 ∪W (B(P ∗)).S2 and B(P ′).S0 ∪
W (B(P ′)).S2 are the same at the (k + 1)-th step.

– In the case that ps∗ = P ∗.S2.RT (P ∗)i and ps′ = P ′.S2.RT (P ′)i: they reads the same input data from

P ∗.S1 and P ′.S1 and the trigger signals T (RT (P ∗)).S1 and T (RT (P ′)).S1. When the trigger signals

(which are the same according to the assumptions) from T (RT (P ∗)i).S1 and T (RT (P ′)i).S1 are true,

they send outputs (which come from P ∗.S1 and P ′.S1, and therefore are the same) to RT (P ∗)i.S1 and

RT (P ′)i.S1. So the input data for RT (P ∗)i.S1 and RT (P ′)i.S1 are the same at the (k + 1)-th step.

By tracing down the dependency graphs, we can conclude that (1)-(3) are also true at the (k + 1)-th step.

3.3 Communication Savings Analysis

Compared to the naive method, the communication savings achieved by the optimized method are, on the average (in

bits per step)

∑

l:(W,R)∈L

PWLD +BRT
W,RP

∗

W,RLD − (BRT
W,R(1− PR) + (1−BRT

W,R) +BRT
W,R) · LT (1)

where: L is the set of all links in the Triggered SBD; W and R are the writer and reader blocks of a link l; PW and PR

are the probabilities of W and R not being triggered at any given step; BRT
W,R is a boolean variable indicating whether

R is in the set RT (W ) or not.

The first term of savings, PWLD, comes from the fact that, in the FFP, W only sends to R the new data which is

produced when W is triggered. The second term is due to the fact that if R ∈ RT (W ), W only sends a message to

R when R is triggered. Specifically, let P ∗

W,R(k) be the probability of savings due to the non-triggering of the reader

R at step k. The savings are realized when the following two conditions are met: (1) R is not triggered while W

is triggered at step k (the case where W is not triggered is already included in the first term of savings); (2) W is

triggered at least once no later than the next time R is triggered. In this case, the output of W produced at step k need

not be sent to R. P ∗

W,R(k) can be calculated as

P ∗

W,R(k) = PR · (1− PW )2 ·
PW (PR)

N+1−k − 1

PWPR − 1
(2)

for a finite number of steps N . As N goes to infinity, P ∗

W,R becomes independent of k and is equal to:

P ∗

W,R = PR · (1− PW )2 ·
1

1− PWPR

(3)

Returning to Equation (1), LT bits must be deducted (in the worst case) from the savings with probability (1 − PR)
if R ∈ RT (W ), due to the fact that an additional fresh message is sent from W to R at any step when R is triggered,

and with probability 1 if R 6∈ RT (W ), since the fresh-bit needs to be sent at every step in this case. Finally, if

R ∈ RT (W ), there is an additional backward signal sent from T (R) to W at every step. These messages can often

be merged but in the worst case will result in individual control messages whose size is approximately the same as the

size of a trigger message, LT .

4 Distribution of Timed SBDs

Since Timed SBDs are a special case of Triggered SBDs, we could simply use the mechanism described in Section 3.

However, we can do better than that if we exploit the information about triggering patterns which is statically available

in timed SBDs. In particular, let P be the FFP process corresponding to a block M with (period,initial phase) pair

(τM , θM ). Let τP = τM and θP = θM .
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P (inputs: ins; outputs: outs)

{

initialize state, outs, and ins’;

k := 0;

for (every R in R(P))

if (theta_R < theta_P)

put_outputs(outs[R]);

while (true) {

Wset, Rset := empty sets;

for (every W in W(P))

if (get?(W, P, k))

add W to Wset;

for (every R in R(P))

if (put?(P, R, k))

add R to Rset;

wait until no queue from Wset is empty

and no queue to Rset is full;

get_inputs(ins[Wset]);

for all i in Wset, ins’[i] := ins[i];

(state, outs) := M.step(state, ins’);

put_outputs(outs[Rset]);

k := k + 1;

}

}

Figure 12: FFP process for a Timed SBD.

Let R be a process receiving data from P . To save communication load, P need only send a message to R when

P is triggered and the message will be read by R, i.e., R will be triggered at least once before the next time P is

triggered. More precisely, at its k-th triggered instant, P needs to send a message to R iff R is triggered at least once

in the interval of synchronous steps between the k-th and (k+1)-th triggered instants of P . This is represented by the

predicate put?(P,R, k), defined as follows:

put?(P,R, k)

=̂ ∃j : kτP + θP ≤ jτR + θR < (k + 1)τP + θP (4)

≡ ⌈
kτP + θP − θR

τR
⌉τR + θR < (k + 1)τP + θP

Note that if τP ≥ τR, P sends a message to R at every instant when P is triggered.

Similarly, let W be a process sending data to P . At its k-th triggered instant, P must expect a new message

from W iff W has been triggered between the (k − 1)-th and k-th triggered instants of P . This is represented by the

predicate get?(W,P, k), defined as follows:

get?(W,P, k)

=̂ ∃j : (k − 1)τP + θP < jτW + θW ≤ kτP + θP (5)

≡ (⌊
kτP + θP − θW

τW
⌋ − 1)τP + θP > (k − 1)τP + θP

Note that if τW ≤ τP , P receives a message from W at every instant when P is triggered.

The above predicates are used in the code of a process P generated from a Timed SBD, and shown in Figure 12.

At every iteration, P computes the sets Wset (resp. Rset) of processes that P needs to receive from (resp. send to).

Then P waits for messages (resp. slots) to become available on the corresponding queues, and once this condition

is satisfied, P fires. To compute Wset and Rset, P maintains a local counter k: notice that k does not count

synchronous steps, but rather the times that P has fired. P has period τP and therefore fires every τP steps. P also

maintains a state variable ins’ which, similar to the code of Fig. 8, memorizes the last messages received at the

inputs.
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4.1 Semantical Preservation

Stream equivalence between a Timed SBD and the corresponding FF generated by our method (denoted as F ∗) can be

proven in three steps. As explained in Section. 2.3, the set of streams we consider here consists of the streams of input

data sampled at the points in time where the consumers are triggered.

Step 1: A Timed SBD can be transformed to an equivalent pure SBD using the trigger elimination method of [16].

Specifically, a block Mi in a Timed SBD is transformed to a block M ′

i in a pure SBD where M ′

i is fired at every

synchronous step.

Step 2: The pure SBD generated in step 1 can be mapped to an FFP, denoted as F ′, using the method proposed in

[23], which guarantees stream equivalence.

Step 3: In this step, we prove that when triggered, any process in F ′ has the same stream of input data as the

corresponding process in F ∗.

F and F ′ have the same structure, i.e. there is a one-to-one mapping between the processes and the FIFO queues

in the two FFPs. For any given pair of processes W ∗ and R∗ in F ∗ that are connected by a FIFO queue, denoted as

QW∗,R∗ , we have their counterparts in F ′, denoted as W ′, R′ and QW ′,R′ . Note that the (period, initial phase) pairs

(PPPs) of the corresponding processes in the two FFPs are the same. The PPPs are denoted as (τW , θW ) for W ′ and

W ∗, and (τR, θR) for R′ and R∗.

Next we need to prove that for any k-th triggering of R∗, the input data it reads from QW∗,R∗ (or from its state

varialbe ins’) has the same value as the input data being read at the (kτR + θR)-th synchronous step of R.

From the definition in step 1, it is obvious that the (kτR + θR)-th synchronous step of R′ corresponds to the k-th

triggering of the corresponding block in the original Timed SBD. Therefore, if we can prove the equivalence between

the k-th triggering of R∗ and the (kτR + θR)-th synchronous step of R′, we can prove the equivalence between the

FFP F ∗ and the original Timed SBD.

At the (kτR + θR)-th synchronous step, R′ reads the (kτR + θR)-th data output by W ′. Note that W ′ outputs

“new” data at the synchronous steps {iτW + θW |i = 0, 1, 2, ...}. At other steps it outputs “old” data as in previous

step. Assuming that at the (kτR + θR)-th synchronous step, R′ reads the j-th “new” data produced by W ′, we can

deduce the following relationship:

• the j-th “new” data must be produced by W ′ before or at the (kτR+ θR)-th synchronous step, i.e. jτW + θW ≤
kτR + θR,

• the (j + 1)-th “new” data must be produced after the (kτR + θR)-th synchronous step, i.e. (j + 1)τW + θW >

kτR + θR.

On the other hand, assuming k-th triggering of R∗ reads the l-th “new” data produced by W ∗. Note that according

to the definition of get?() and put?() functions, W ∗ puts the l-th new data to QW∗,R∗ iff R∗ is triggered at least

once between the l-th and (l + 1)-th triggering of W ∗. The data will then be read and stored at the state varialbe

ins’[W*] by R∗ at its first triggering between the l-th and (l+1)-th triggering of W ∗. While at any other triggering

of R∗ between l-th and (l + 1)-th triggering of W ∗, R∗ reads from its state varialbe ins’[W*], which is the l-th

“new” data of W ∗. Therefore, we can deduct the following relationship:

• the l-th “new” data must be produced by W ∗ before or at the k-th triggering of R∗, i.e. lτW + θW ≤ kτR + θR,

• the (l + 1)-th “new” data must be produced after the k-th triggering of R∗, i.e. (l + 1)τW + θW > kτR + θR.

Clearly, j and l should be the same. Therefore, the k-th triggering of R∗ and the (kτR + θR)-th triggering of R′

reads the same data.

Based on the above reasoning, the FFP F ∗ is stream-equivalent to the original Timed SBD.

4.2 Communication Savings Analysis

In our method for Timed SBDs, the communication load for a link l is max{τW , τR}
−1 · LD. Therefore, compared

to the naive method, the savings achieved by our method are

∑

l:(W,R)∈L

(1−
1

max{τW , τR}
) · LD (6)
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5 Discussion: an Alternative Implementation Method using Timestamps

In this section we briefly discuss an alternative method for distribution of Triggered SBDs on FFPs. We call this

method the timestamp method. It is inspired by distributed discrete-event simulation methods [10, 17]. The idea is

that a process P only sends messages when it is triggered, but it also “tags” each message m with a timestamp k ∈ N

denoting the synchronous step on which m is produced. Receiving processes can use the tags to locally synchronize the

messages, as well as to “fill-in the gaps”. In particular, if a process P ′ receives two successive timestamped messages

(m1, k1) and (m2, k2) on the same queue, such that k2 > k1+1, P ′ can conclude that the stream at that queue remains

constant and equal to m1 for all steps i with k1 ≤ i < k2. The timestamp method reduces communication even further

than the method we presented in the previous sections, which has the overhead of adding backward signals. However,

as we illustrate in this section, the timestamp method may introduce a large, and in some cases unbounded, end-to-end

latency in the system, as well as bursty traffic which results in high jitter. These characteristics are often unacceptable,

especially in embedded applications where time predictability and low latency are essential. Therefore, we believe

that the timestamp method is not appropriate for embedded applications.

A B

C

(1,0,…,0,1,…) 

D

(0,1,1,1,…) 

step k 

Figure 13: Example illustrating the problem of the timestamp method.

We illustrate the timestamp method and its problems with the example of Fig. 13. In this Triggered SBD, block

A is triggered at step 0 and then at step k, say, k = 10, while block B is triggered at all steps except 0. Let

PA, PB , PC , PD denote the FFP processes that blocks A,B,C,D are mapped to, respectively. Let tA, tB , ... denote

the local synchronous step counters of PA, PB , .... According to the timestamp method, at its first iteration, tA = 0,

PA sends message (m, 0) to PB , which signifies that a value m is produced by A at step 0. No messages are sent by

PA for the next k − 1 iterations. At iteration tA = k, PA sends message (m′, k). Meanwhile, PB does not consume

m at its first iteration, tB = 0, since B is not triggered at step 0. At tB = 1, PB cannot consume m either. This is

because tB is at that point greater than 0, the timestamp of m. PB cannot know whether PA sent a message at logical

step 1 (in which case m is obsolete and should be discarded) or whether PA will not send any message at step 1 (in

which case m should be used). PB will not know that the latter case applies until (m′, k) arrives. Until then, PB

remains effectively idle. At that point, it can perform a series of computations to advance its local counter tB to k, and

emit a burst of messages at its output. Only then can PB consume m and emit its first output message, for logical step

0. Therefore, the end-to-end latency from PA to PB is proportional to k, since it takes at least k iterations for PB to

emit even the first message. As k goes to infinity, the latency as well as the burstiness also go to infinity. Therefore, in

the timestamp method, latency (and burstiness) cannot be bounded in general.

In comparison, our method works on this example as follows. PA will transmit nothing to PB at tA = 0, since PB

is not triggered in that step: PA receives this information via the backward link from PD to PA in the generated FFP.

In subsequent steps tA = 1, ..., k − 1, PA transmits a message to PB , even though PA is not triggered. PB consumes

each of these messages at its own rate. The end-to-end latency in this implementation is therefore independent from k.

6 Conclusion and future work

We presented a method to optimize communication in asynchronous distributed implementations of triggered syn-

chronous block diagrams, while preserving behavior equivalence. To the best of our knowledge, this paper is the first

to address this problem.

Related work: There is a large body of research on distribution of synchronous models, and in particular syn-

chronous languages [4]. The model of Triggered SBDs corresponds to a restricted class of synchronous programs. It
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is directly inspired by tools such as Simulink4 and SCADE.5 SCADE can be seen as a subclass of Lustre [9]. Because

we target a restricted class of synchronous models, we avoid many of the difficulties arising when considering more

general models, such as the full Lustre, Signal or Esterel synchronous languages, for which there exists a wealth of

techniques, e.g., see [12, 3, 21, 20, 1].

Our approach follows the one of [23] which is to map synchronous models on the FFP platform. The FFP platform

makes no assumptions on clock synchronization. This has the advantage of providing implementations that are robust

to various types of timing uncertainties such as clock drifts and network delays. Similar techniques are used in the

design of digital circuits, in particular, latency-insensitive or elastic circuits [5, 6]. On the other hand, knowledge

about the timing characteristics of the execution platform may sometimes be available, e.g., bounds on clock drifts and

network delays. A number of works present implementation techniques that use such type of knowledge, e.g., see [21,

7, 2]. Other works target synchronous distributed execution platforms such as the Time-Triggered Architecture [15]:

in that case, one of the main challenges is to synthesize time-triggered communication schedules so that semantics is

preserved [8].

In this paper we assumed a 1-1 mapping between blocks of the synchronous model and processes of the distributed

architecture. This simplifies the problem and allows focusing on semantical preservation. How to allocate functional

blocks to processes is an important and difficult problem in embedded control systems, that often involves multi-

criteria optimization and tradeoffs, e.g., see [22, 19, 18, 24].

While we consider the results of this paper a significant advance, we believe much remains to be done: one direc-

tion is to combine the method for general triggered diagrams and the one for timed diagrams into a single method that

works for “hybrid” diagrams (those that contain both triggered and timed parts). Yet, another direction is examining

alternatives in the implementation of Stage 2 of the execution of processes in the triggered method. As discussed at the

end of Section 3.1, in this paper we opted for a modular code generation method, where the code of each process P is

independent from the topology of the diagram. The downside is that execution time may increase, since a process in

RT (P ) may be considered multiple times until it is marked as handled. On the other hand, choosing a fixed iteration

order disregarding topology may result in deadlocks. It would be interesting to devise a method that uses a fixed order

yet is guaranteed to avoid deadlocks. That method would most likely have to carefully choose the order by analyzing

the block dependencies of the entire diagram. This approach would improve run-time performance, at the expense

of compile time, but also at the expense of modularity. Devising a method that is both modular and has also good

run-time performance is an interesting challenge.
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