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ABSTRACT

Disk access performance is a major bottleneck in traditional
information retrieval systems. Compared to system mem-
ory, disk bandwidth is poor, and seek times are worse.

We circumvent this problem by considering query eval-
uation strategies in main memory. We show how new ac-
cumulator trimming techniques combined with inverted list
skipping can produce extremely high performance retrieval
systems without resorting to methods that may harm effec-
tiveness.

We evaluate our techniques using Galago, a new retrieval
system designed for efficient query processing. Our system
achieves a 69% improvement in query throughput over pre-
vious methods.

Categories and Subject Descriptors: H3.3 Information
Storage and Retrieval: Information Search and Retrieval

General Terms: Algorithms, Design, Experimentation,
Performance

Keywords: Impact-sorted indexes, Memory

1. INTRODUCTION
The commodity computer hardware industry has seen two

major changes in the past four years. First, 64-bit x86 pro-
cessors have entered the market, breaking the 4GB address
space barrier for commodity systems. Second, increases in
processor clock speed have come to an abrupt halt, replaced
by a industry-wide push to put many processor cores on a
single die.

The first change gives us enough virtual address space to
store the entire inverted file of even large collections. Stor-
ing inverted files in memory was potentially possible before
on certain 32-bit processors, but required complicated pro-
gramming. The 64-bit address space of modern processors
makes this simple. The second change means that, in order
to achieve top performance on modern processors, we must
use many different threads simultaneously. If each thread
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represents a different query, it is not clear that disks will be
able to keep up.

Optimizing disk-based information retrieval systems re-
quires a delicate balance between reading less data and re-
quiring fewer random jumps through the data. Reading less
data is an obvious goal, since reading fewer bytes means
fewer bytes to process, but random disk seeks are so expen-
sive that choosing to skip portions of data must be done
delicately.

We instead consider storing the entire index in memory.
Storing the index in memory greatly minimizes the cost of
random reads, allowing us to focus entirely on reading fewer
bytes.

We provide the following research contributions in this
paper:

• We present a new method for continuous accumula-
tor pruning in impact-sorted indexes. Our method
increases query throughput by 15% over the method
proposed by Anh and Moffat [3] while still remaining
rank safe results (i.e. documents are returned in the
same order that they would be in an unoptimized eval-
uation)

• We show how our accumulator pruning technique can
be combined with inverted list skipping to achieve a
69% total increase in throughput while maintaining
the rank safe property.

• We provide a technique for optimizing the appropri-
ate skipping distance to use during index based on
simulation. Unlike all previous work we are aware of,
we consider different skipping distances for different
list lengths. We show that using list-length-dependent
skip lengths can improve query throughput slightly.

• We show that storing inverted lists in memory can sig-
nificantly improve performance, adding to previous re-
sults from Büttcher and Clarke [7]. We show that the
algorithm presented by Anh and Moffat [3] can evalu-
ate queries 7 times faster on our system than the speed
quoted in their paper.

• We provide additional insight into implementation tech-
niques necessary for efficient performance for in-memory
retrieval systems. In particular, our results indicate
that in-memory processing may be more economical
than disk-based systems for some tasks.
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Figure 1: Relative number of accumulators used
during the query evaluation process. The gray filled
area represents the usage pattern in Anh and Mof-
fat. The thick solid line represents the decreased
accumulator usage of our approach.

2. ALGORITHM
Over the past six years, impact-sorted indexes have been

shown to be an effective and efficient data structure for pro-
cessing text queries [1, 2]. These indexes store term weights
directly in the index, like the SMART system [6]. However,
impact-sorted indexes use a very small number of distinct
term weights; in this paper we use just 8 different values.
The small number of values used allows these indexes to
store documents in impact order while still allowing for very
high level of compression [1].

To generate effective retrieval results, care must be taken
in selecting the impact values assigned to each term. Many
different approaches are possible for this task. Anh and
Moffat have suggested a method for truncating BM25 val-
ues into integers, and later introduced a document-centric
model.

We use the Anh and Moffat document-centric impact model
of for query evaluation [2]. The details of this model can be
found in the references. For the purposes of this paper,
the important aspects of this model are that each term in
a document receives an integer weight, based primarily on
document statistics. This is roughly analogous to TF in
a TF-IDF formulation. At query time, a query weight is
computed which is analogous to IDF. We call the document
weight wt,d and the query weight wt,q.

The retrieval score Sd for a document d, evaluated with a
query Q is defined as:

Sd =
X

q∈Q

wt,qwt,d (1)

The index contains an inverted list for each term t. In
impact-sorted indexes, the list is separated into segments,
one for each distinct value of wt,d. Each segment contains a
list of documents that share the same wt,d value.

The accumulator tuple we consider for this work is the
same as used by Anh and Moffat. Each accumulator is a
triple 〈T, s, d〉, composed of a term set T , a score s, and a
document number d. The document number d and score s

are traditional: the score s records the partial score for the
document d based on query processing so far. The term set
T records all terms that have been scored for this document
so far.

In the code shown in this section, an accumulator for a
particular document d is denoted Ad. This symbol can be

used as a score or as a set of terms, but the usage should be
clear based on context.

Figure 1 describes the different phases of the Anh and
Moffat algorithm we refer to in this section, as well as our
new algorithm. The reduced accumulator usage of our algo-
rithm is shown by the dark black line.

All of the query evaluation methods we consider in this
paper follow the pseudocode shown below, although with
different implementations of ProcessSegment, TrimAccumu-
latorList, and CanQuit.

procedure ProcessQuery(Q)
A← {} ⊲ The accumulator table
S ← {} ⊲ List of accumulator segments
for all query terms t ∈ Q do

It ← inverted list for term t

wt,q ← weight for term t

for all segments It,s ∈ It do
add 〈t, wt,q × wt,d, It,s〉 to S

end for
end for
sort S in descending order by segment score
for all segments 〈t, w, It,s〉 in S do

ProcessSegment(A, w, It,s)
TrimAccumulatorList(A, S)
if CanQuit(A, S) then

break
end if

end for
sort A by score, return top k results

end procedure

The simplest form of evaluation evaluates every posting in
every segment. We define ProcessSegment below. TrimAc-
cumulatorList is set to an empty function, and CanQuit is
set to a function that returns false on all inputs. In unopti-
mized evaluation, the system is always in OR mode.

procedure ProcessSegment(A, w, Iq,s)
for all documents d in segment Iq,s do

if Ad 6∈ A and OrMode = true then
Ad ← 0

end if
if Ad ∈ A then

Ad ← Ad + w

end if
end for

end procedure

2.1 AND Processing
If we know that all documents that could possibly be in

the top k are already in A, we can update only accumula-
tors that already exist. This is called AND mode, as op-
posed to the unoptimized OR mode. When in AND mode,
ProcessSegment never adds new accumulators to the accu-
mulator table. This is beneficial both because we do not
incur the costs of building new accumulators, and because
A stays small, leaving fewer accumulators to update and
sort later.

The Anh and Moffat algorithm automatically detects when
AND processing can be used safely by monitoring two quan-
tities: a threshold value τ and a remainder function ρ. We
describe these next.

The threshold value τ is a lower bound on the score of
the last document that will be displayed to the user. Here,
we assume that k represents the number of documents re-



quested. We can compute a reasonable τ value by using
the kth largest score in the accumulator table A. Since the
score in any given accumulator is monotonically increasing,
τ represents a lower bound on the score of the kth retrieved
document at the end of an unoptimized retrieval. If k accu-
mulators do not exist yet, τ = 0.

For example, suppose at some point during the retrieval
process, the kth largest score found in any accumulator was
50. Therefore, τ = 50. Since none of the scores in the accu-
mulator table can go down, we know that every document
in the k returned to the user will have a score of at least 50.

The second monitored quantity is the score remainder
function, ρ. This function computes an upper bound on the
total additional amount of score that an accumulator could
possibly gain through further processing of the inverted lists.

As an example, suppose we know the accumulator for
some document d currently contains a score of 15, and that
we are processing a four term query: t1 t2 t3 t4. The ac-
cumulator also records that we have already seen postings
for document d in the inverted lists for t1 and t3. Any re-
maining score for document d must come from the inverted
lists for t2 and t4. If we know that all remaining postings
for t2 have scores less than 5, and all remaining postings for
t4 have scores less than 6, we know that this accumulator
can only increase by 11. Therefore, ρ({t2, t4}) = 11.

We define the function ρ as follows:

• ρ({ti}) = the largest score remaining in the inverted
list for term ti

• ρ(T ) =
P

t∈T
ρ({t})

Remember that Q is the set all terms in the query. When
τ > ρ(Q), we know that no more accumulators need to
be created. This is true because no new accumulator will
ever achieve a score greater than ρ(Q), but a score of τ is
necessary to enter the ranked list shown to the user.

With τ and ρ defined, we can now define a pruned pro-
cessing algorithm:

procedure ProcessSegmentPruned(A, q, w, Iq,s)
OrMode ← τ < ρ(Q)
ProcessSegment( A, q, w, Iq,s )

end procedure

2.2 Trimming Accumulators
Computing τ and ρ allows us to stop adding accumulators

to A, but they can also help us identify accumulators that
can be safely removed from the table.

As query evaluation continues, τ grows and ρ falls. If there
comes a time when an accumulator Ad contains a score low
enough that no additional postings could cause its value to
rise above τ , we know it can never enter the final ranked
list. Therefore, we can prune it from consideration.

procedure TrimAccumulatorList(A, S)
for all accumulators Ad in A do

if Ad + ρ(Ad) < τ then
remove Ad from A

end if
end for

end procedure
The Anh and Moffat algorithm trims the accumulator ta-

ble just once, when the top k results have been determined.
Instead, our algorithm trims accumulators after each in-
verted list segment is processed. This difference is high-
lighted in Figure 1 by the dark black line.

Having a smaller accumulator list improves speed because
there are fewer accumulators to update. However, when the
inverted list segments become much longer than the table of
accumulators, inverted list skipping becomes possible. Since
the inverted list is stored in document order, if we also store
the accumulator table in document order we can identify
when large sections of the inverted list are not worth decod-
ing. By using skipping information, discussed in more detail
later, we can skip over those regions without decompressing
them.

2.3 Ignoring Postings
At some later point during query processing, it may be

possible to determine the final order of the top k results
without continuing to process postings. For this to happen,
two conditions must be satisfied:

• The top k documents must be fixed (that is, the iden-
tity of the top k documents is not in question)

• No additional postings may be able to change the or-
dering of the top k documents.

We can check the first condition by checking all existing
accumulators. All accumulators Ad containing scores less
than τ must satisfy the condition Ad + ρ(Ad) < τ . Essen-
tially this means that if the accumulator is not in the top k

now, it never will be, no matter how many additional post-
ings we process. Note that it is not sufficient to check that
|A| = k, since many documents may share the same score.

We check the second condition by reviewing all accumu-
lators with values of at least τ . If the accumulator of the
document currently in rank i could surpass the document
in rank i−1 after processing additional postings, we cannot
stop processing.

These checks lead to the following algorithm, which is used
in both our algorithm and Anh and Moffat:

procedure CanQuit(A, S)
for all accumulators Ad in A do

if Ad < τ and Ad + ρ(Ad) ≥ τ then return False
end if

end for
A′ ← all accumulators Ai in A such that Ai +ρ(Ai) >

τ

sort A′ in ascending order by score
for all accumulators A′

i in A′ do
if A′

i = A′

i+1 and ρ(A′

i) > 0 then return False
else if ρ(A′

i) > A′

i+1 −A′

i then return False
end if

end for
end procedure

3. IMPLEMENTATION
We performed the experiments in this paper using the

Galago1 retrieval system. We created the Galago system
to help investigate indexing techniques that enable efficient
query processing. Galago consists of a flexible distributed
indexing system, written in Java, and an optimized query
processing component written in C++.

1http://www.galagosearch.org



3.1 Indexing
Our system follows the impact-ordered index design pro-

posed by Anh and Moffat [1]. Inverted lists are stored in
order of impact value. The impact value is encoded first,
followed by a length value. After that, the document num-
bers that share the same impact value are delta encoded. As
a result, each inverted list is separated into logical blocks,
one for each bin value. Each block is processed atomically
during query evaluation. This method produces indexes that
are size-competitive with other space-efficient methods, typ-
ically around 7GB for the GOV2 collection.

The inverted file is compressed using standard variable
byte encoding [18]. The vocabulary is compressed using
15-of-16 encoding, plus additional prefix encoding. The in-
verted file is segmented into blocks of approximately 32K
in size, although no term spans multiple blocks. Any term
with more than 32K of inverted list data gets its own block.
An abbreviated vocabulary table is used to look up the ap-
propriate block for a given term. A block contains a sub-
vocabulary that can be efficiently searched to find the ap-
propriate inverted list. This blocking technique efficiently
packs infrequent terms together, so that the abbreviated
vocabulary table can be very small. In our experiments,
the vocabulary table required just 2MB of space. A sim-
ilar technique has been used previously by Büettcher and
Clarke [7].

Our indexer was built for simplicity, experimentation and
extreme parallelism. We used an approach that combines
ideas from early information retrieval systems with princi-
ples from Dean and Ghemawat’s MapReduce [11] in order
to make a simple, parallel indexer. The first stage processes
text documents, converting them into compressed lists of
(document, word, count) tuples. The next phase combines
these tuples in order to determine the inverse document fre-
quency for each term. In parallel, another process combines
the list of document names into a single table. The binning
stage follows, where the IDF table is combined with the
parsed word count tuples to generate binned term weights
(in this case, document centric impacts). The final stage
merges the binned lists together into a single index.

Indexing the compressed GOV2 collection requires 60 hours
of CPU time, with 42 hours devoted to parsing, 16 for bin-
ning (impact generation), and the remaining 2 hours for
merging. However, the parsing and binning stages are mas-
sively parallel. In practice, we can build a a GOV2 index in
4 hours using roughly 20 processors (this quantity varies, as
the grid of processors is shared for other research tasks). The
skipping information in the inverted lists is written in the
final merge stage, so the skipping parameter can be changed
with only two hours of additional work once an index has
been built.

The relatively long indexing time required by our system
should not be a reflection of the optimized indexing time for
this task. Previous work in this area indicate that impact-
sorted GOV2 indexes can be built in under 7 hours on a typ-
ical desktop computer using optimized implementations [3].

3.2 Retrieval
We take advantage of the 64-bit address space of new com-

modity machines to memory map the inverted list file into
the virtual address space of the process. This allows multi-
ple retrieval processes to run simultaneously while sharing
the same memory pages.

For these experiments, each accumulator is a 64-bit value.
The term set T is encoded as an 8-bit bitmap. The docu-
ment score consumes 24 bits of the space, leaving the re-
maining 32 bits for the document identifier. For a query
with n terms, where n > 8, the system would process the
shortest n − 8 inverted lists completely, without optimiza-
tion, leaving the 8 bitmap bits for the longer lists. More
recent versions of Galago switch to larger accumulators for
longer queries.

The accumulators are stored in an array, sorted by doc-
ument identifier. Packing the accumulators closely gives us
good cache performance, and the document ordering makes
the skipping optimization possible. This accumulator orga-
nization forces Galago to copy the accumulator table once
for each inverted list segment processed; however, like Bast
et al., we found the sorted array to be preferable to hash
tables for this task [4].

4. CHOOSING SKIP LENGTHS
When adding skip information to an index, it makes sense

to ask how long the skip distance should be. Moffat and
Zobel [14] suggest a method for determining this parameter.
We use a slightly different formulation in this paper which
remains in the same spirit. We suppose that an inverted list
segment is b bytes long and k entries exist in the accumulator
table. We also suppose that there are b1 skip pointers, each
of which can be encoded in 4 bytes, and that each skip
pointer skips db bytes. Therefore, the expected total number
of bytes processed is:

4b1 +
kdb

2

The second term estimates the number of bytes decom-
pressed in the inverted list. In reality, we will never decom-
press a byte of the inverted list more than once, so this has
a natural upper bound of b:

4b1 + min(
kdb

2
, b)

If the number of accumulators k is longer than the length
of the inverted list segment, the system can quickly acknowl-
edge this situation and ignore the skip information. This
gives us the final revised time estimate:

T (b, k, db) =

8

<

:

b if k > b

4b1 + b if k ≤ b and kdb

2
> b

4b1 + kdb

2
otherwise

(2)

We estimated db using data collected from processing the
TREC 2005 Efficiency Track queries. For each inverted list
segment the system processed while in AND mode, the sys-
tem recorded the length of the segment b and number of
accumulators k that the system had stored in the accumu-
lator table at that time. This provided us with over 500,000
data points to use in simulation.

Note that b and k have an important relationship; if b

is large, the inverted list is probably also large. If so, it is
likely to be processed at the very end of the query, when the
accumulator table is almost empty. If b is smaller, we expect
larger values of k. This suggests that different values of db

should be used for different inverted list segment lengths.
Figure 2 shows this effect. For small segment lengths

(about 1000 bytes long), skipping data helps very little, even
at very small skip lengths. For moderate lengths (104 to
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Figure 2: The expected costs, relative to no skip-
ping, of processing segments of varying lengths with
varying skip sizes, based on TREC 2005 Efficiency
Track queries.

105 bytes long), very short skip distances give the largest
expected performance increase. For long lengths (over 106

bytes long), short skip distances help, but longer skip dis-
tances are even better.

The relative frequency of encountering list segments of
these different lengths is not shown in the graph. Analysis of
our logs indicate that 95% of all inverted list bytes processed
in AND mode are in segments larger than 100K. This leads
us to consider skip lengths between 50 and 200 bytes.

The analysis in this section rests on the approximation
that all byte accesses cost a similar amount. Of course, this
is not the case. Reading a single byte from an address that
is not currently in cache is expensive, but the process of
fetching that byte will cause L1 and L2 cache lines to fill.
After a single miss, nearby byte accesses are inexpensive.

Previous work [18] indicates that skip information should
be interleaved with inverted list data, but note that this
leads to inefficient cache usage; reading a single skip entry of
3 bytes results in reading an additional 29 bytes of unwanted
inverted list data. By storing skip information densely and
separately from inverted list data we avoid this problem.

5. EVALUATION
We used the TREC GOV2 collection along with the TREC

Terabyte Ad Hoc and Efficiency topics for evaluation. The
GOV2 collection consists of 25.2 million web pages crawled
from the .gov Internet domain. The text data of these web
pages consumes 426GB of space.

We processed the GOV2 collection using the Porter2 En-
glish stemmer,2 and used a common list of 600 stopwords.3

In order to ensure that our system was producing rea-
sonable results, we used the TREC Terabyte Track ad hoc
queries to evaluate its effectiveness. These results are shown
in Table 1. As is typical for mean average precision evalu-
ation, the system returned 1000 results for each query. We
computed mean average precision and precision at 20 fig-
ures for each set of ad hoc queries. The results here are
close to, although slightly below, efficient systems partici-
pating in TREC. We suspect that these results will improve

2http://snowball.tartarus.org/algorithms/english/stemmer.html
3http://goanna.cs.rmit.edu.au/˜jz/resources/stopping.zip

Query set MAP P@20

Topics 701-750 (2004) 0.2460 0.4949
Topics 751-800 (2005) 0.3004 0.5290
Topics 801-850 (2006) 0.2592 0.4590

Table 1: Effectiveness on TREC Ad Hoc Queries
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Figure 3: Distribution of query lengths (before re-
moving stopwords) across collections.

as we improve our document parser. Since all optimiza-
tions considered in this paper are rank safe, these numbers
represent the effectiveness of the system in all optimization
modes, and any improvement in baseline effectiveness would
be reflected in the optimized modes.

We used C++ preprocessor statements and conditional
compilation to build a separate executable for each query
optimization method we tested. Using conditional compila-
tion allows the compiler freedom to produce the most effi-
cient code for each query optimization technique.

We used the same computer for all retrieval experiments.
Our test machine is worth approximately US$3000. It con-
tains two dual-core Intel Xeon 5050 “Dempsey” processors,
for a total of four CPU cores. Each core runs at 3GHz,
and has a dedicated 2MB L2 cache. The cores share 8GB
of RAM over a 667MHz bus. All experiments were done in
64-bit mode, in order to permit the inverted file to fit in the
virtual address space.

Before timed runs, we ran a simple tool that memory
mapped the inverted file and read it from start to finish,
in order to ensure the inverted file was completely loaded
into memory.

The results of our optimization experiments are shown
in Tables 2 and 3. The system returned the top 20 docu-
ment results for each query. The mean query time for each
method (except the unoptimized method) was measured by
running each query set three times in immediate succession,
then computing the mean query time for the batch. In all
cases, total variation between runs of the same method was
less than 2%. Because of the wide gulf in processing time
between unoptimized and optimized methods, the unopti-
mized version was run just once.

We measured execution time for individual queries based
on log messages produced by the query evaluation code.
These messages add approximately 10% to total runtime,
and measure many aspects of query processing. Each log
message contains a timestamp, which we used to measure
the speed of each individual query; the mean times shown



All queries Query length (terms)
Method Mean Throughput 1 2 3 4 5 6 7 8 9 10

Query count 47,543 47,543 10,899 17,347 10,888 5,489 1,965 683 233 32 6 1
Unoptimized 317.2 3.2 22 144 410 724 1149 1535 1972 3499 3197 1181
Anh/Moffat 19.0 57.8 0.2 5.5 21 44 79 119 178 366 376 89
Trimming 15.0 66.7 0.1 5.6 18 37 67 105 166 397 362 44
Trimming+Skips 10.3 97.5 0.2 2.9 10 24 49 84 145 360 342 35

Table 2: TREC 2005 Efficiency Queries, average query execution times, in milliseconds. Throughput is
measured in queries per second.

All queries Query length (terms)
Method Mean Throughput 1 2 3 4 5 6 7 8 9 10+

Query count 99,650 99,650 3,926 23,430 33,122 23,488 10,283 3,515 1,151 407 167 161
Unoptimized 1006 1.0 50.4 212.8 679 1364 2128 2855 3788 4751 5000 9644
Anh/Moffat 60.0 16.7 0.4 5.7 29 73 137 218 319 440 558 3014
Trimming 49.1 20.4 0.4 6.2 24 58 110 180 268 395 586 3180
Trimming+Skips 39.0 25.7 0.4 3.5 14 40 86 150 232 355 544 3122

Table 3: TREC 2006 Efficiency Queries, average query execution times, in milliseconds. Throughput is
measured in queries per second.

Throughput
Skip Length Mean Low High

64 98.94 98.80 99.20
96 94.73 93.99 95.45

128 97.95 97.60 98.18
256 97.05 96.68 97.36

Model 99.21 98.44 99.83
Model (Large) 99.14 99.05 99.27
Model (Small) 98.69 98.40 98.96

Table 5: Efficiency at varying skip lengths, TREC
2005 Efficiency Queries

here are a result of aggregating that data. Because of this
overhead, the timings for various query lengths should be
considered somewhat less reliable than the overall average
speed figures, which were computed from experiments that
did not use logging.

In the TREC 2005 log, we found 2457 queries that did
not match any documents in the collection. In the TREC
2006 log, we found 350 queries like this. Although the full
query log was processed in each test run, we averaged query
performance only over the count of queries with at least
some results returned.

In all of the experiments except those about skipping
lengths, the index was built with a fixed skip length of 128
bytes.

To measure performance on multiple processor cores, we
ran multiple processes of the retrieval system simultaneously
on the TREC 2005 query set. To avoid possible interaction
between processes, each core processed the queries in ran-
dom order. We measured the elapsed time between starting
the first query process until the slowest query process com-
pleted. The number of queries executed was divided by total
elapsed time to produce a throughput number. We did not
compute a mean query time in this case, since such a num-
ber would be misleading: adding multiple processors does
not decrease individual query latency, but it does improve
overall throughput.

5.1 Analysis
Figure 3 compares the distribution of query lengths in

three different query logs. Note that the lengths reported
here are measured as the number of whitespace breaks in the
query plus 1; it therefore counts stopwords and words that
do not appear in the collection. The query lengths reported
in other tables refer to the number of inverted lists success-
fully fetched from the index. The TREC 2005 and TREC
2006 Efficiency queries are used for performance analysis,
while the MSN query log data is provided for comparison
purposes.4 The TREC 2005 queries are a reasonable match
for the actual distribution of query lengths on the web.

The gulf between all of the optimizations tested here and
a full evaluation is striking, especially in the case of par-
ticularly short queries. Notice how all optimizations here
complete single term queries in under a millisecond. With
no disk seek overhead, the system can jump immediately to
the necessary inverted list. After twenty results are read,
query processing halts. The unoptimized system is forced
to read the entire inverted list and create an accumulator
for every document in it, which takes much more time. The
percentage difference in query time falls as the queries grow
longer, but the Anh and Moffat approach completes queries
in half the time of the unoptimized case in all cases, while
our method completes them in less than a quarter of the
unoptimized time.

Our experiments with different skip lengths show surpris-
ingly similar performance. We ran each query set three times
in succession, with the mean throughput shown, as well as
the lowest and highest throughput recorded. The differences
between many of these settings are well within the range of
variability of our tests. The small differences here are rea-
sonable given the results in Figure 2; note that the perfor-
mance predicted for the largest inverted list segments (the
most costly ones) are remarkably flat across differing skip
lengths. However, we note that using the results suggested
by our model (varying skip lengths based on inverted list seg-

4http://research.microsoft.com/ur/us/
fundingopps/RFPs/Search 2006 RFP Awards.aspx



1 core 2 cores 4 cores
Method Throughput Speedup Throughput Speedup Throughput Speedup

Anh/Moffat 57.8 1.00 108.3 1.87 181.6 3.14
Trimming 66.7 1.00 121.1 1.81 178.2 2.67
Trimming+Skips 97.5 1.00 161.2 1.65 228.8 2.35

Table 4: Speedup when using multiple cores. Throughput is measured in queries per second, while speedup
is measured relative to each algorithm’s performance on a single processor.

ment length) results in a slight increase in performance. The
large model came from manually slightly increasing the skip
lengths suggested by the model, while the small model came
from manually slightly reducing the skip lengths suggested
by the model. These results suggest that the predicted best
setting is close to optimal, but variability in measurement
does not allow us to say this with confidence.

5.1.1 Multiple Cores

Our multiple process experiments show the limitations
of shared memory bandwidth. We used a machine that is
known to be bandwidth starved, and this shows in this ex-
periment. Using four processors simultaneously, the Anh
and Moffat algorithm is able to process 3.14 times as many
queries as when just one processor is used. This speedup is
much higher than the 2.35 speedup of our best algorithm.
When four cores are used, the Anh and Moffat algorithm
equals the performance of the Trimming version of our al-
gorithm.

We leave a detailed explanation of these numbers for fu-
ture work, but it is clear that linear scalability is not assured
with multiple processors, even when no disks are involved.
However, notice that the Anh and Moffat algorithm and the
Trimming algorithm access approximately the same amount
of memory during evaluation, while the Trimming+Skips al-
gorithm accesses less memory. We believe that the reduced
memory access allows Trimming+Skips to maintain its edge
over the other algorithms, even when memory bandwidth is
scarce.

6. RELATED WORK
Impact-sorted indexes are described in a series of papers

by Anh and Moffat [1, 2, 3]. These indexes are a natural
next step following the frequency-sorted indexes of Persin et
al. [15]. The frequency-sorted indexes suggested by Persin
et al. stored term counts instead of discretized document
scores, and so these indexes still required query-time length
normalization. Additionally, this meant that inverted list
entries were not necessarily in score order. However, sorting
lists by frequency allowed for a compact and compressible
index representation that was amenable to early termina-
tion, and formed a basis for the impact-sorted work.

Roughly at the same time as the first impact-sorted work,
Fagin et al. proposed a class of algorithms known as thresh-
old algorithms [12]. These algorithms, like the ones shown
in this paper, provide a method for efficiently computing
aggregate functions over multiple sorted lists by maintain-
ing statistics about the data that remains to be read. This
work also considers the added possibility of random access
to elements in a list, which is somewhat similar to the skip-
ping process we propose here. From an information retrieval
perspective, this work can be seen as a combination of the
max score work of Turtle and Flood [17] combined with the

frequency and impact sorted work of Persin et al. and Anh
and Moffat [1, 15]. Both Brown and Strohman et al. con-
sidered supplemental lists of top scoring documents during
query evaluation which can also be considered part of this
tradition. [5, 16].

It is possible to have some of the benefits of impact-sorted
lists while still sorting by document. Lester et al. [13] show
how the memory footprint of accumulators can be signifi-
cantly reduced without loss of effectiveness. Their algorithm
scans inverted lists in document order, but processes only
postings with term counts larger than some threshold. As
in this work, smaller accumulator sets lead to faster query
processing.

In our work, we process less index data by organizing the
index for easy skipping and query termination. Another way
to process less data is to store less data in the index. Static
pruning methods remove information from the index that is
unlikely to affect query effectiveness. Carmel et al. consid-
ered this process [9]. More recently, Büttcher and Clarke
considered index pruning specifically so that the resulting
index would fit in memory, although supplemental disk in-
dexes are sometimes used for additional information. Query
performance improves in part because of memory speed and
in part because of the smaller amount of data, although
these different factors were not analyzed in detail. More re-
cent results from the TREC 2006 Terabyte Track shows that
other researchers have considered static pruning [8].

While the actual process of storing precomputed scores
in lists is not the subject of this paper, there are many ex-
amples in the literature of researchers doing this. Clever-
don remarks how, in early experiments, human indexers
were asked to choose integer term weights for documents
for later use in automatic retrieval [10]. The SMART re-
trieval system, at least in the 1980s and beyond, used float-
ing point weights stored directly in inverted lists for fast
and flexible document scoring possibilities at query time [6].
More recently, Anh and Moffat have proposed two separate
schemes for generating term weights; one involving assigning
ranges of BM25 scores to integer values, and another using
a document-centric approach. [1, 2]

Bast et al. extend the threshold algorithm ideas of Fagin
et al. with an enhanced disk IO cost model [4]. Their system
contains a score-ordered index as well as a document-ordered
index (or, more accurately, an index of values accessible by
document identifier). The system processes information in
score order until the cost model indicates that it is more
efficient to refine remaining accumulators by random access
to score information using the document-keyed index. By
contrast, our algorithm always accesses data in score order,
but additional skip information allows us to jump rapidly to
required information when the number of active accumula-
tors drops, without requiring a separate index copy. Like us,
the authors use a machine with 8GB of RAM to test their



system, but data duplication causes their indexes to be too
large to fit in system RAM.

While memory-optimized processing is a relatively new
field for information retrieval research, it is well studied in
the database community. The MonetDB system is the tra-
ditional example of a main-memory database system [19].
MonetDB stores relational data by column instead of by row,
which significantly increases the speed of certain classes of
data warehousing database transactions. Research on the
MonetDB system has shown that there are important data
processing advantages to working in a RAM-only system.

7. CONCLUSION
We have presented a study of efficient query processing

techniques in main memory. Our best technique improves
query throughput by 69% over a strong baseline. In the pro-
cess of developing this method, we have shown how log data
can be used to determine optimal skip lengths in inverted
lists based on an estimation of total bytes read.

The results shown here convince us that memory-based
systems are not only more efficient, but more economically
sound than disk-based systems for efficient retrieval. While
systems capable of processing the GOV2 data are available
for less than US$1000, these systems are typically not capa-
ble of processing more than 10 queries per second without
resorting to unsafe optimizations (early termination and/or
static pruning). On a system that costs less than 4 times as
much, our algorithm produces throughput rates almost 10
times as fast on a single processor, and 20 times as fast when
multiple processor cores are used. However, our multiple
core experiments show that more processors do not guaran-
tee scalability: high memory bandwidth is critical for high
performance.

The combination of fast random access in memory and
skip information in inverted lists allows us to achieve per-
formance that approaches heavily statically pruned systems,
but without the potential loss in effectiveness [7]. Essen-
tially the skipping information allows us to prune the index
dynamically at query time, resulting in efficient retrieval
performance.
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