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Abstract

Given a graph G, a subset S of vertices of G is an efficient dominating
set (EDS) if |N [v]∩ S| = 1, for all v ∈ V (G). A graph G is efficiently
dominatable if it possesses an EDS. The efficient domination number
of G is denoted by F (G) and is defined to be max

{∑
v∈S(1 + deg v) :

S ⊆ V (G) and |N [x] ∩ S| ≤ 1,∀ x ∈ V (G)}. In general, not every
graph is efficiently dominatable. Further, the class of efficiently domi-
natable graphs has not been completely characterized and the problem
of determining whether or not a graph is efficiently dominatable is NP-
Complete. Hence, interest is shown to study the efficient domination
property for graphs under restricted conditions or special classes of
graphs. In this paper, we study the notion of efficient domination in
some Lattice graphs, namely, rectangular grid graphs (Pm2Pn), tri-
angular grid graphs, and hexagonal grid graphs.
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1 Introduction

Given a graph G = (V,E), a set S ⊆ V (G) is a dominating set if each vertex
v ∈ V (G) is either in S or has at least one neighbor in S. The size of the
smallest dominating set of G is the domination number of G and is denoted
by γ(G). The open neighborhood of a vertex v, denoted by N(v), is the set
of all vertices adjacent to v and the closed neighborhood of v, denoted by
N [v] is defined as N(v)∪{v}. A set S ⊆ V (G) is an efficient dominating set
(EDS ) of G if |N [v]∩S| = 1, for all v ∈ V (G). That is, S is an EDS, if each
vertex v ∈ V (G) is dominated by exactly one vertex (including itself) in S.
Not every graph possesses an EDS. If a graph G has an EDS, then it is said
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to be efficiently dominatable.

The distance between a pair of vertices u and v is the length of the short-
est path between u and v and is denoted by d(u, v). A set S ⊆ V (G) is a
2-packing if for each pair u, v ∈ S, N [u] ∩ N [v] = ∅. If S is a 2-packing,
then d(u, v) ≥ 3, for all u, v ∈ S. Thus, a dominating set is an EDS if
and only if it is a 2-packing. The influence of a set S ⊆ V (G) is denoted
by I(S) and is the number of vertices dominated by S (inclusive of vertices
in S). If S is a 2-packing, then I(S) =

∑
v∈S[1 + deg(v)]. The maximum

influence of a 2-packing of G is called the efficient domination number of G
and is denoted by F (G). That is, F (G) = max{I(S) : S is a 2-packing} =
max

{∑
v∈S(1 + deg v) : S ⊆ V (G) and |N [x] ∩ S| ≤ 1, ∀ x ∈ V (G)}. Clearly,

0 ≤ F (G) ≤ |V (G)| and G is efficiently dominatable if and only if F (G) =
|V (G)|. A 2-packing with influence F (G) is called an F (G)-set.

The concept of efficient domination is found in the literature in different
names like perfect codes or perfect 1-codes [11], independent perfect domi-
nation [20], perfect 1-domination [18] and efficient domination [2]. In this
paper, we use the terminology “efficient domination” introduced by Bange
et. al. [2]. The problem of determining whether F (G) = |V (G)| is NP-
complete on arbitrary graphs [2] as well as on some special/restricted classes
of graphs like bipartite graphs, chordal graphs, planar graphs of degree at
most three, etc. [[15], whereas it is polynomial in the case of trees [2]. In [3],
Goddard et al. have obtained bounds on the efficient domination number
of arbitrary graphs and trees. Efficient Domination has also been studied
on different special classes of graphs like chordal bipartite graphs [4], strong
product of arbitrary graphs [5], cartesian product of cycles [12], etc. Heredi-
tary efficiently dominatable graphs were defined and studied in [9] and [10].

The perfect codes or efficient domination finds wide applications in cod-
ing theory, resource allocation in computer networks, etc. (refer to [14], [17]),
while lattice graph structures play a significant role in source and channel
coding. Motivated by the applications and the graph theoretical significance
of efficient domination and lattice structures, this papers focuses on the study
of efficient domination in some special lattice structures, namely, finite rect-
angular grids (Pn2Pm, where 1 ≤ n,m < ∞) (in 2.2.1), infinite rectangular
grids (in 2.3.1), infinite triangular (in 2.3.2) and hexagonal grid graphs (in
2.3.3). The study on finite cases of triangular and hexagonal grid structures
is in progress.
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2 Main Results

2.1 Notations and Terminologies

Definition 2.1. [16] The cartesian product of two graphs G = (V1, E1) and
H = (V2, E2), denoted by G2H, is the graph with vertex set V1×V2 in which
two vertices (u1, v1) and (u2, v2) are adjacent if and only if either (i) u1 = u2
and v1v2 ∈ E2 or (ii) u1u2 ∈ E1 and v1 = v2.
The graphs G and H are called the factors of G2H. For v ∈ V (H), the
subgraph of G2H induced by {(u, v) ∈ V (G2H) : u ∈ V (G)} is called the
G-layer of G2H with respect to v and is denoted by G(v). Analogously, the
H-layer, namely, H(u) is defined for each u ∈ V (G).

In literature, the cartesian product of two paths is referred by different
terminologies like grid graphs, rectangular grid graphs, two-dimensional lat-
tice graphs, etc. [13]. In this paper, we use rectangular grid graph to refer to
the carterisan product of two paths Pn and Pm.
In the discussions to follow, we consider three categories of rectangular grids:

(i) Those grids bounded on all four sides, referred to as finite rectangular
grids, denoted by Pn2Pm, where 1 ≤ n,m <∞.

(ii) Those grids bounded on three sides (top, left and right) or two sides
(top and left) and unbounded on the other sides, denoted respectively
as Pn2P∞, where n ≥ 1 and P∞2P∞.

(iii) Those grids unbounded on all four sides, referred to as infinite rect-
angular grids.

Throughout this paper, we refer to vertices that are not dominated by a
set as voids. In the figures given throughout this paper, shaded circular dots
of larger size represent dominating vertices, shaded circular dots of smaller
size denote vertices dominated by a set (excluding self-dominating vertices)
and non-shaded circular dots correspond to voids.

2.2 Finite lattice graphs

2.2.1 Finite rectangular grid graphs

It is known that if a graph is efficiently dominatable, then all its EDSs are of
same size and is equal to γ(G) [1, 2]. The domination number of rectangular
grid graphs has been studied in [6], [7]. In the discussions to follow, we give
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constructive characterizations for efficiently dominatable lattice graphs. In
the case of graphs which are not efficiently dominatable, we obtain either the
exact value or bounds of efficient domination number.

In what follows, assume that V (Pn2Pm) = {vi,j|1 ≤ i ≤ m, 1 ≤ j ≤ n},
unless mentioned otherwise. For convenience, we label the m Pn-layers of
Pn2Pm as R1, R2, . . . Rm and its n Pm-layers as C1, C2, . . . Cn, respectively.
That is, for each i (1 ≤ i ≤ m), Ri

∼= Pn and for each j (1 ≤ j ≤ n), Cj
∼= Pm.

Further, it is noted that the distance between any two vertices vi,j and vp,q
is |i− p|+ |j − q|. With these conventions, the results discussed below lead
to characterizations of efficiently dominatinable rectangular grids.

Theorem 2.2. For n ≥ 1, Pn2P2 is efficiently dominatable if and only if n
is odd.

Proof. The result is trivially true if n = 1. So, assume that n > 1 and n
is odd. That is, n = 2k + 1 for some natural number k. Then, {v1,j|j =
1, 5, . . . , 4bk

2
c + 1} ∪ {(v2,j)|j = 3, 7, . . . , 4bk−1

2
c + 3} is an EDS of Pn2P2

and hence, it is efficiently dominatable. Suppose n is even, then we show

Figure 1: Pn2P2

that F (Pn2P2) < 2n. Let n = 2k, for some natural number k and S be
an F (Pn2P2)-set. If possible, assume that I(S) = 2n. Then, by definition,
|N [vi,j] ∩ S| = 1, for each vi,j ∈ V (Pn2P2).

Consider an arbitrary vertex, say v1,1. Since I(S) = 2n, to dominate v1,1,
either v1,1 ∈ S or v1,2 ∈ S or v2,1 ∈ S. Suppose v1,2 ∈ S, then N [v2,1]∩S = ∅,
which is a contradiction. Hence, either v1,1 ∈ S or v2,1 ∈ S. Without
loss of generality, let v1,1 ∈ S. Then, progressively including vertices in S
(refer to figure 1), it can be observed that to dominate v2,2, v2,3 must be
in S. Next, to dominate v1,4, v1,5 ∈ S. Continuing this pattern, we get
S = {v1,j|j = 1, 5, 9, . . . , 4bk−1

2
c + 1} ∪ {v2,j|j = 3, 7, 11, . . . , 4bk

2
c − 1}. If

k is odd, then S dominates all vertices except v2,n. If k is even, then S
dominates all vertices but v1,n. In either case, I(S) = 2n − 1, which is a
contradiction. Therefore, Pn2P2 is not efficiently dominatable when n is
even and in particular, F (Pn2P2) = 2n− 1.

In the next theorem, to study efficient domination in Pn2P3, the grid is
partitioned columnwise into k blocks, say, B1, B2, . . . Bk, such that each Bi

4



(1 ≤ i ≤ k− 1) is of size 3× 3 and Bk is of size either 3× 3 or 3× 4 or 3× 5,
depending on whether n ≡ 0 or 1 or 2 (mod 3), respectively. Here, we refer
a block Bi to be internal if it is adjacent to two other blocks (namely, Bi−1
and Bi+1) and a terminal block if it is adjacent to only one block (to the left
or right).

Observation 2.3. Clearly, as observed in figure 2, P32P3 (or any 3 × 3
block) is not efficiently dominatable and F (P32P3) = 7, resulting in two
voids. And, if a 3 × 3 block occurs as an internal block or a terminal block,
then out of its two voids, atmost one can be dominated by an adjacent block
in Pn2P3. Therefore, any 3 × 3 block in Pn2P3 contains at least one void
and this leads to a total of at least bn

3
c voids in Pn2P3.

Figure 2: Efficient domination in P32P3

In Theorem 2.4 we show the existence of a 2-packing that results in exactly
bn
3
c voids in Pn2P3. Thereby, it is proved that F (Pn2P3) = 3n − bn

3
c and

hence, it is not efficiently dominatable. Further, in Theorem 2.4, for ease of
reference we follow a different labeling for the vertices of Pn2P3, than the
one mentioned earlier in this section. Upon partitioning the vertices into
blocks, label the vertices of each block in Pn2P3 as shown in figure 3. Note
that vertices at same positions in different blocks receive similar labels, but
are distinguished in terms of the block they belong to. Similar pattern is
extended for blocks of larger size.

Theorem 2.4. Pn2P3 is not efficiently dominatable and F (Pn2P3) = 3n−
bn
3
c.

Proof. An F (Pn2P3)-set is obtained by choosing vertices blockwise as fol-
lows: As explained earlier, at most two vertices can be chosen from any 3×3
block. Let S = {v(i)1,1, v

(i)
3,2 : 1 ≤ i ≤ k − 2}. It can be observed from figure 4

that by the above choice of two vertices from each Bi (1 ≤ i ≤ k − 3), the

5



Figure 3: Labeling of vertices of block Bi in Pn2P3

vertex v
(i)
1,3 that appeared as void in Bi is later dominated by v

(i+1)
1,1 . This

results in exactly one void, namely v
(i)
2,3 in each Bi (1 ≤ i ≤ k − 3). Next,

based on the value of n, suitable vertices are chosen from Bk−1 and Bk as
explained below:
Case (i): n ≡ 0 (mod 3)

Let S ′ = {v(k−1)2,1 , v
(k−1)
1,3 } ∪ {v(k)3,1 , v

(k)
2,3}. By this choice, the voids v

(k−2)
2,3 , v

(k−1)
3,3

and v
(k)
1,1 that were in Bk−2, Bk−1 and Bk are later dominated by v

(k−1)
2,1 , v

(k)
3,1

and v
(k−1)
1,3 respectively (refer to figure 4). So, S ′ results in exactly one void

each in Bk−2, Bk−1 and Bk. Totally there are bn
3
c blocks and S∪S ′ results in

one void in each block. Hence, S ∪ S ′ is a 2-packing with influence 3n− bn
3
c

in Pn2P3.

Case (ii): n ≡ 1 (mod 3)
In this case, the last block Bk is of size 4 × 4 (refer to figure 5). Let

S ′′ = {v(k−1)1,1 , v
(k−1)
3,2 } ∪ {v(k)1,1 , v

(k)
3,2 , v

(k)
2,4}. Then, by a similar argument as in

case (i), S ∪ S ′′ is a 2-packing with influence 3n − bn
3
c in Pn2P3, when

n ≡ 1 (mod 3) (refer to figure 5).

Case (iii): n ≡ 2 (mod 3)

In this case, Bk is of size 3×5. With S ′′′ = {v(k−1)1,1 , v
(k−1)
3,2 }∪{v(k)1,1 , v

(k)
3,2 , v

(k)
1,4 , v

(k)
3,5},

6



Figure 4: P122P3

Figure 5: P132P3

it can be shown by a similar argument as in case (i) that S∪S ′′′ is a 2-packing
with influence 3n− bn

3
c in Pn2P3, when n ≡ 2 (mod 3) (refer to figure 6).

Figure 6: P142P3

Thus, in each case, Pn2P3 has a 2-packing with influence 3n − bn
3
c and it

follows from Observation 2.3 that it is the maximum influence of Pn2P3.
Hence, the result follows.
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The next proposition deals with efficient domination in square grids of
sizes 4, 5, and 6 and the results follow trivially (refer to figures 7a, 7b and
7c).

Proposition 2.5.

(i) P42P4 is efficiently dominatable.

(ii) P52P5 is not efficiently dominatable and F (P52P5) = 23.

(iii) P62P6 is not efficiently dominatable and F (P62P6) = 33.

Next in Theorem 2.7, we discuss the notion of efficient domination in
Pn2Pm, for n,m ≥ 7. Later using the proof technique adopted in this the-
orem and Proposition 2.5, we characterize the efficiently dominatable rect-
angular grids Pn2Pm, for n,m ≥ 3. The following observation supports the
discussions in Theorem 2.7.

Observation 2.6. Suppose that Pn2Pm (n,m ≥ 7) is partitioned into blocks
of suitable sizes and we identify vertices from each block to include in an
F (Pn2Pm)-set. Then, choosing vertices from a 3× 3 block as in either figure
8(a) (choosing vi,j and vi+2,j+2) or figure 8(b) (choosing vi,j and vi+2,j+2) will
create a void in that block, at a vertex of degree four. In such cases, these
voids cannot be further dominated by any other adjacent block in Pn2Pm,
unlike the cases discussed earlier in Theorem 2.4. Hence, if such voids occur
independently in any (sub)block of size 3 × 3, they will continue to be voids
in Pn2Pm.

Theorem 2.7. If n ≥ 7 and m ≥ 7, then Pn2Pm is not efficiently dominat-
able.

Proof. Let S be an F (Pn2Pm)-set. If possible, assume that I(S) = nm.
Then, |N [vi,j] ∩ S| = 1, for each vi,j ∈ V (Pn2Pm). Choose an arbitrary
vertex, say v1,1. Then, either v1,1 ∈ S or exactly one of its neighbors, namely,
v1,2 or v2,1 must be in S. The above three cases are discussed in detail as
below:
Case (i): v1,1 ∈ S
If v1,1 ∈ S, then to dominate v2,2, either v2,3 or v3,2 must be in S. Suppose
v2,3 ∈ S, then to dominate v3,1, v4,1 ∈ S. But, choosing v2,3 and v4,1 to
include in S results in a 3 × 3 block in which the vertices are dominated as
in figure 8 (a) (with i = 2, j = 1). Then, it follows from Observation 2.6
that N [v3,2] ∩ S = ∅, which is a contradiction.
On the other hand, if v3,2 ∈ S, then by a similar argument as above, to
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(a) P42P4

(b) P52P5

(c) P62P6

Figure 7: Efficient domination in square grids of sizes 4, 5, and 6

dominate v1,3, v1,4 ∈ S. This choice of vertices results in a 3× 3 block with
domination as in figure 8 (a) (with i = 1, j = 2). Hence, N [v2,3] ∩ S = ∅,
which is a contradiction.
Case (ii): v2,1 ∈ S
To dominate v4,1, either v5,1 or v4,2 ∈ S. If v5,1 ∈ S, then to dominate v3,2,
v3,3 must be in S. This results in a 3× 3 block with domination as in figure

9



(a) (b)

Figure 8: 2-packings of P32P3 creating a void at a vertex of degree four

Figure 9: Efficient domination in P72P7
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8 (a) (with i = 3, j = 1). Consequently, N [v4,2] ∩ S = ∅, leading to a
contradiction. So, let v4,2 ∈ S. Then, to dominate v5,1, v6,1 ∈ S. Next, to
dominate v6,3, either v6,4 or v7,3 ∈ S.
If v6,4 ∈ S, then it results in a 3× 3 block with domination as in figure 8 (b)
(with i = 4, j = 2). Hence, N [v5,3] ∩ S = ∅, leading to a contradiction.
So, let v7,3 ∈ S. Then, to dominate v5,3 we are left with only one choice,
namely, v5,4 to include in S. At this stage, S = {v2,1, v4,2, v6,1, v7,3, v5,4}. But,
to dominate v3,3, we are left with no choice as all its neighbors are at distance
1 or 2 from S (refer to figure 9). Hence, N [v3,3] ∩ S = ∅, which is again a
contradiction.
Case (iii): v1,2 ∈ S
Since there is an automorphism f(vi,j) = vj,i of Pn2Pm that maps v2,1 to v1,2,
the argument made in case(ii) can be modified accordingly. This results in
S = {v1,2, v2,4, v1,6, v3,7, v4,5} in S. But, as discussed in case (ii), to dominate
v3,3, we are left with no choice as all its neighbors are at distance 1 or 2 from
S. Hence, N [v3,3] ∩ S = ∅, which is a contradiction.
Summarizing the above arguments, it can be observed that each of these
cases resulted in a void in Pn2Pm, whcih cannot be further dominated by
any adjacent block. In particular, such a void is created in a 7 × 7 block of
Pn2Pm (i.e., considering the first seven rows and the first seven columns). As
P72P7 is an induced subgraph of Pn2Pm, for all n ≥ 7 and m ≥ 7, Pn2Pm

is not efficiently dominatable when n,m ≥ 7.

The efficient domination in the grids Pn2P4 for n > 4, Pn2P5 for n > 5
and Pn2P6 for n > 6 can be studied by similar arguments as in Theorem 2.7
and we arrive at the following result.

Theorem 2.8. For 4 ≤ m ≤ 6 and n > m, Pn2Pm is not efficiently domi-
natable.

The results discussed above in Theorem 2.2 to Theorem 2.8 lead to the
following characterization for efficiently dominatable grid graphs.

Corollary 2.9. If n ≥ 3 and m ≥ 3, then Pn2Pm is efficiently dominatable
if and only if n = m = 4.

Next, using Construction 2.10 discussed below, we derive a lower bound
on F (Pn2Pn) for n ≥ 7. The bound is obtained by constructing a 2-packing
which dominates all vertices of Pn2Pn, except a few vertices at the bound-
aries. Interestingly, it is evident from Table 1 that the 2-packing obtained in
the construction is nearly optimal (that is, most likely an F (Pn2Pn)-set), as
equality in the derived lower bound is attained for most values of n. In addi-
tion, the construction helps in generalizing the efficient domination property
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in the infinite cases disucssed in Section 2.3. An illustration of the construc-
tion is shown in figure 10 for P92P9 and it is easy to extend the construction
for any n ≥ 7.

v1,1
v1,9

v9,1 v9,9

Figure 10: Efficient domination in P92P9

Construction 2.10. For n ≥ 7, we obtain a nearly optimal 2-packing for
Pn2Pn as follows:

(i) Initially, select vertices from the first and second columns alternatively
and at each selection, pick up a pair of vertices, namely, (vi,1, vi+2,2).
Depending on the value of n, we start from either first or second row.
Precisely, if n = 5k + 4 (k ∈ N), start with v2,1. Else, start with v1,1.

(ii) Upon choosing each pair, skip two rows inbetween and proceed with the
selection of next pair. For example, if n = 5k + 4, the first pair is with
(v2,1, v4,2) and leaving two rows inbetwen, the second pair is (v7,1, v9,2),
third pair is (v12,1, v14,2) and so on (refer to figure 10). Continue this
selection until all rows are covered. Note that the last choice may be
either a pair of vertices or a single vertex in first column.

(iii) Let x be the last vertex (may be from first column or second column)
chosen in the above process. Based on the choice of x, we select a vertex
y from the last row as below:

12



Case(i) : Suppose x is vn−2,2, then y = vn,3.
Case(ii) : Suppose x is vn−1,2, then y = vn,5.
Case(iii) : Suppose x is vn−1,1, then y = vn,4.
Case(iv) : Suppose x is vn,1, then y = x = vn,1.
Case(v) : Suppose x is vn,2, then y = x = vn,2. (Occurs when n = 5k + 4)

(iv) Upon fixing y as above, select the vertices on the last row which are at
a distance of {5k|k = 1, 2, . . . , bn

5
c} from y.

(v) Next, for each vi,j selected in above steps, choose the vertices
{vi−k,j+2k : k ∈ N} until the boundary is reached. The choice is analo-
gous to a knight placed at vi,j moving towards east (two-step right, one
step up) repeatedly.

It is evident from the above choice of vertices that the set of vertices generated
at the end forms a 2-packing of Pn2Pn, where n ≥ 7 (refer to figure 10).

Number of voids generated by the above 2-packing:

To compute the number of voids generated by the above 2-packing, the
following observations are noted:

• The vertices are included in S in such a way that all vertices of Pn2Pn

are dominated exaclty once by S, except a few that lie on the bound-
aries. Hence, voids occur only at the boundaries, that is, on the rows
R1, Rn and the columns C1, Cn.

• It follows from the construction that such voids occur either between
a pair of vertices in S which are at distance five apart or at corners or
at distance two from corner vertices.

• For instance, if v1,j, v1,q ∈ S ∩ R1, then d(v1,j, v1,q) = 5. Since v1,j and
v1,q dominate their respective neighbors in R1, out of the four internal
vertices lying on the path between v1,j and v1,q, possibly, there are at
most two voids between v1,j and v1,q. But, in cases where one of their
neighbors in the adjacent row, namely, R2 is in S, then the number
of voids reduces to one. Similar arguments hold for Rn, C1 and Cn.
The number of such pairs of vertices at distance five on the boundaries
and consequently, the number of voids depends on the value of n, as
discussed in detail below:

• Case (i): n ≡ 0 (mod 5) or n = 5k
In this case, k vertices from each of C1 and Rn belong to S, resulting in
a total of 2k voids on C1 and Rn. Similarly, k vertices from each of Cn

13



and R1 belong to S, resulting in a total of 2k voids. Hence, if n = 5k,
then S generates 4k voids in Pn2Pn, for n ≥ 7.

• Case (ii): n ≡ 1 (mod 5) or n = 5k + 1
In this case, k + 1 vertices from each of R1,C1,Rn and Cn belong to S,
resulting in k voids on each. Hence, totally 4k voids are generated by
S, if n = 5k + 1.

• Case (iii): n ≡ 2 (mod 5) or n = 5k + 2
In this case, k + 1 vertices from each of R1 and C1 belong to S, gen-
erating k voids on each. And, k vertices from Rn and Cn belong to S,
leading to a total of 2k + 1 voids. Hence, totally 4k + 1 = n − k − 1
voids are generated by S, when n = 5k + 1.

• Case (iv): n ≡ 3 (mod 5) or n = 5k + 3
Here, k + 1 vertices from each of R1, Rn and C1 belong to S, resulting
in a total of 3k + 1 of voids. Further, k vertices from Cn are in S,
leading to k + 1 voids. Hence, a total of 4k + 2 = n− k − 1 voids are
generated by S.

• Case (v): n ≡ 4 (mod 5) or n = 5k + 4
In this case, k + 1 vertices from each of R1,C1,Rn and Cn belong to
S. This results in k voids on each and hence, a total of 4k voids are
generated by S.

For n = 9, the pattern of selection is shown in figure 10 and it can be
observed that the voids occur at the edges or boundaries. Following the above
discussion, Table 1 gives the number of voids (n2 − I(S)) for 7 ≤ n ≤ 22,
where S is the 2-packing obtained using Construction 2.10. In fact, for each
7 ≤ n ≤ 22, it is observed that the influence of S obtained above is maximum
and is equal to F (Pn2Pn).

Table 1: Number of voids in Pn2Pn
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Construction 2.10 guarantees the existence of a 2-packing for Pn2Pn

(n ≥ 7) resulting in the number of voids as discussed above. This leads
to the following lower bound for Pn2Pn, when n ≥ 7.

Theorem 2.11. For n ≥ 7 and k = bn
5
c,

F (Pn2Pn) ≥

{
n2 − 4k; if n ≡ 0 or 1 or 4 (mod 5)

n2 − n+ k + 1; if n ≡ 2 or 3 (mod 5)

As mentioned earlier, it is observed that the bound given in Thorem 2.11
is attained for most values of n ≥ 7. Based on this, we state the following
conjecture.

Conjecture 2.12. For n ≥ 7 and k = bn
5
c,

F (Pn2Pn) =

{
n2 − 4k; if n ≡ 0 or 1 or 4 (mod 5)

n2 − n+ k + 1; if n ≡ 2 or 3 (mod 5)

2.3 Infinite lattice graphs

The construction of a 2-packing discussed for a finite rectangular grid in the
previous section resulted in voids at the boundaries. The vertices included in
the 2-packing lie on the diagonal lines as shown in figure 10. This pattern can
also be extended for an infinite rectangular grid and for an infinite triangular
grid. The infinite hexagonal grid has another interesting pattern which is
discussed in Section 2.3.3.

2.3.1 Infinite Rectangular grid

As mentioned earlier, a rectangular grid that is bounded on the three sides
(top, left and right) and unbounded at the bottom is referred to as Pn2P∞,
where 1 ≤ n <∞. The one which is bounded on the two sides (top and left)
and unbounded at right and bottom is referred to as P∞2P∞.

It is noted that Table 1 depicts a pattern in the difference between the
number of voids for consecutive values of n as follows: (+1,−2,+4, 0,+1),
(+1,−2, 4, 0,+1) . . . Hence, as n increases or as n → ∞, the number of
voids keep oscillating and does not coverge to zero. Consequently, the grids
Pn2P∞ for 1 ≤ n ≤ ∞ and P∞2P∞ are not efficiently dominatable.

In the next result, extending construction 2.10, we prove that an infinite
rectangular grid (unbounded on all four sides) is efficiently dominatable.

Theorem 2.13. An infinite rectangular grid is efficiently dominatable.
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Proof. Let G denote an infinite rectangular grid. Construct an EDS S for
G as follows: Start with an arbitrary vertex, say, vi,j and let S = {vi,j}.
Next, add the four vertices vi+1,j−2, vi+2,j+1, vi−1,j+2, vi−2,j−1 to S, if they are
already not in S. Since d(vi,j, vp,q) = |i−p|+|j−q|, it can be observed that all
these four vertices are at distance three from vi,j and they are also mutually
at distance at least three. Hence, S = S∪{vi+1,j−2, vi+2,j+1, vi−1,j+2, vi−2,j−1}
is a 2-packing of G. Next, for each vertex vp,q in S, select another set of
four vertices in the same manner as above and add them to S. The vertices
are chosen in such a way that distance between any two vertices in S is
at least three and hence, the set S so obtained forms a 2-packing of G.
Note that the vertices in S lie on the diagonal lines as shown in figure 11.
Pairing the vertices of S lying on consecutive diagonal lines to form opposite
corners of 2 × 3 grids as in figure 12, it can be observed these 2 × 3 grids
are disjoint and there are no voids between the diagonal lines. Since G is
infinite (or unbounded on all sides), this pattern of adding vertices to S shall
continue iteratively so that all vertices of G are dominated, resulting in no
void. Hence, the set S so obtained is an EDS of G or equivalently, G is
efficiently dominatable.

Figure 11: Efficient domination in an Infinite rectangular grid
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Figure 12: Disjoint 2× 3 grids

Construction 2.14. Existence of efficiently dominatable near-Grid
graphs:
Note that in figure 11, the intersections of two lines correspond to vertices.
The subtructure P112P11 of an infinite grid is highlighted using bold lines.
Independently examining the grid P112P11, it can be observed that there exists
an F (P112P11)-set resulting in voids which lie on the boundaries as shown
in figure 11. These voids can be dominated by adding new vertices, one to
dominate each void so that the resultant graph is efficiently dominatable. In
general, given a grid Pn2Pn, where n ≥ 7, if there k voids generated by an
F (Pn2Pn)-set, then by arranging them suitably to lie on the boundaries, we
can add k new vertices and make them adjacent to one void each. Then, the
resultant graph becomes efficiently dominatable. This results in a new class
of efficiently dominatable graphs which are nearly grid graphs.

2.3.2 Infinite Triangular grid

A triangular grid graph is formed by triangular tessellations. We label the
jth vertex in the ith row of a triangular grid as vi,j (refer to figure 13). By
following the same procedure explained for an infinte rectangular grid in
Section 2.3.1, we can construct an EDS for an infinite triangular grid. For
ease of reference, we refer to an infinite triangular grid by T∞.
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v2,2

v1,1

v2,1

v3,1

v8,4

v9,3

v10,2

v11,1

Figure 13: Labeling of a Triangular Grid

Theorem 2.15. An infinite triangular Grid is efficiently dominatable.

Proof. We construct an EDS, say S, of T∞ as follows: Choose an arbitrary
vertex, say vi,j, and let vi,j ∈ S. Select the four vertices vi−1,j+2, vi+1,j−2,
vi+2,j and vi−2,j around vi,j as shown in figure 14. Clearly, these four vertices
are at distance three from vi,j and are at mutually at distance at least three
(refer to figure 14). Hence, the set S = S ∪ {vi−1,j+2, vi+1,j−2, vi+2,j, vi−2,j}
will be a 2-packing of T∞. Next, for each vertiex vp,q ∈ S, choose another
set of four vertices in the same manner and add them to S. The chosen
vertices are in such a way that they are mutually at distance at least three
and they all fall on the diagonal lines as shown in the figure 15. Hence, the
set S so generated forms a 2-packing of T∞. Further, pairing the vertices of
consecutive diagonal lines to form opposite corners of disjoint 3×2 triangular
grids (that is, grids containing 3 rows with each row containing 2 vertices),
it can be observed that these vertices dominate every vertex between the
diagonal lines and no voids are created. As the grid is infinite, it is possible
to iteratively continue this pattern of choosing vertices along all directions
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and add to S. Based on the way the vertices are selected, it can be observed
the set S obtained at each iteration is a 2-packing of T∞ and all vertices
between the diagonal lines are dominated (refer to figure 15). Hence, the
final set S so obtained will be an EDS of T∞.

vi,j

vi−2,j

vi+2,j

vi+1,j−2

vi−1,j+2

Figure 14: Choice of vertices in an infinite triangular grid

Figure 15: EDS of an Infinite triangular grid
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2.3.3 Infinite hexagonal grid

A hexagonal grid graph is formed by tessellations of hexagons. We know
that C6 is an efficiently dominatable graph and any two diagonally opposite
vertices form an EDS of C6. This property forms the basis for constructing
an EDS for an infinite hexagonal grid. For conveninece, we use H∞ to refer
to an infinite hexagonal grid.

Figure 16: EDS of an infinite hexagonal grid

Theorem 2.16. An infinite hexagonal grid is efficiently dominatable.

Proof. We construct an EDS, say S, of H∞ as follows: Note that each vertex
in an infinite hexagonal grid lies in (or common to) three adjacent hexagons.
Choose an arbitrary vertex, say v, and let v ∈ S. Next, from each of the three
hexagons to which v belongs, select the vertices which are at distance 3 from
v (that is, the vertex diagonally opposite to v in each hexagon containing v).
Add these three vertices to S. Note that the set S generated at this stage
is a 2-packing as all its vertices are mutually at distance at least three in
H∞ (refer to figure 16). Next, for each of the newly added vertices, repeat
the process of choosing the diagonally opposite vertices from the hexagons
they belong to. This process of constructing a 2-packing for H∞ results in a
structure as shown in figure 16. It can be observed that all those vertices in
S are mutually at distance at least three and they lie on the zig-zag lines. It

20



can be noted that for any hexagon, either two diagonally opposite vertices
lie on these lines or no vertex lies on these lines. Suppose no vertex of a
hexagon H belongs to S, then each vertex of H is dominated by a unique
neighbor outside H. Thereby, the set S so generated dominates all vertices
of H∞ and hence, S is a EDS of H∞.

3 Conclusion

In this paper, the concept of efficient domination has been studied on lattice
graphs, namely rectangular grid graphs, triangular grid graphs, and hexag-
onal grid graphs. A characterization is obtained for efficiently dominatable
finite rectangular grids. A finite square grid Pn2Pn has been shown to effi-
ciently dominatable if and only if n = 4. For those finite square grids which
are not efficiently dominatable, a lower bound on its efficient domination
number is derived. A contructive procedure is given to derived these lower
bounds and the construction could be extended to both infinite rectangular
grids and infinite triangular grids to prove that they are efficiently dominat-
able. The lower bound derived is found to be attained at most values of n,
based on which a conjecture is stated. Another constructive procedure has
been discussed to study the notion of efficient domination in infinite hexago-
nal grids. The study on finite triangular and hexagonal grid structures is in
progress.
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