
 Open access  Journal Article  DOI:10.1109/TSP.2018.2858190

Efficient DSP and Circuit Architectures for Massive MIMO: State of the Art and
Future Directions — Source link 

Liesbet Van der Perre, Liang Liu, Erik G. Larsson

Institutions: Katholieke Universiteit Leuven, Lund University, Linköping University

Published on: 15 Sep 2018 - IEEE Transactions on Signal Processing (IEEE--Institute of Electrical and Electronics
Engineers Inc.)

Topics: MIMO, Digital signal processing, Precoding, Multiplexing and Signal processing

Related papers:

 Fundamentals of Massive MIMO

 Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems

 Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

 What Will 5G Be

 Decentralized Baseband Processing for Massive MU-MIMO Systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-
53o5edq0ui

https://typeset.io/
https://www.doi.org/10.1109/TSP.2018.2858190
https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-53o5edq0ui
https://typeset.io/authors/liesbet-van-der-perre-kowk8pw2wg
https://typeset.io/authors/liang-liu-5fvm7sgcav
https://typeset.io/authors/erik-g-larsson-3preehvldq
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/institutions/lund-university-1sy7t175
https://typeset.io/institutions/linkoping-university-1gig5b28
https://typeset.io/journals/ieee-transactions-on-signal-processing-ei2rx4on
https://typeset.io/topics/mimo-3diwujtl
https://typeset.io/topics/digital-signal-processing-325972u2
https://typeset.io/topics/precoding-1z8u80e9
https://typeset.io/topics/multiplexing-3lvoe0f7
https://typeset.io/topics/signal-processing-5eu95ymi
https://typeset.io/papers/fundamentals-of-massive-mimo-3dsyhrn5tk
https://typeset.io/papers/energy-and-spectral-efficiency-of-very-large-multiuser-mimo-4ksk4lv9wl
https://typeset.io/papers/noncooperative-cellular-wireless-with-unlimited-numbers-of-8hvsve4kyb
https://typeset.io/papers/what-will-5g-be-m7zlcvqma7
https://typeset.io/papers/decentralized-baseband-processing-for-massive-mu-mimo-2qiuqi1nuh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-53o5edq0ui
https://twitter.com/intent/tweet?text=Efficient%20DSP%20and%20Circuit%20Architectures%20for%20Massive%20MIMO:%20State%20of%20the%20Art%20and%20Future%20Directions&url=https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-53o5edq0ui
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-53o5edq0ui
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-53o5edq0ui
https://typeset.io/papers/efficient-dsp-and-circuit-architectures-for-massive-mimo-53o5edq0ui


IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 18, SEPTEMBER 15, 2018 4717

Efficient DSP and Circuit Architectures for Massive

MIMO: State of the Art and Future Directions
Liesbet Van der Perre , Liang Liu , and Erik G. Larsson , Fellow, IEEE

Overview Article

Abstract—Massive MIMO is a compelling wireless access con-
cept that relies on the use of an excess number of base-station
antennas, relative to the number of active terminals. This tech-
nology is a main component of 5G New Radio and addresses all
important requirements of future wireless standards: a great ca-
pacity increase, the support of many simultaneous users, and im-
provement in energy efficiency. Massive MIMO requires the si-
multaneous processing of signals from many antenna chains, and
computational operations on large matrices. The complexity of the
digital processing has been viewed as a fundamental obstacle to
the feasibility of Massive MIMO in the past. Recent advances
on system-algorithm-hardware co-design have led to extremely
energy-efficient implementations. These exploit opportunities in
deeply-scaled silicon technologies and perform partly distributed
processing to cope with the bottlenecks encountered in the inter-
connection of many signals. For example, prototype ASIC imple-
mentations have demonstrated zero-forcing precoding in real time
at a 55 mW power consumption (20 MHz bandwidth, 128 an-
tennas, and multiplexing of 8 terminals). Coarse and even error-
prone digital processing in the antenna paths permits a reduction
of consumption with a factor of 2 to 5. This article summarizes the
fundamental technical contributions to efficient digital signal pro-
cessing for Massive MIMO. The opportunities and constraints on
operating on low-complexity RF and analog hardware chains are
clarified. It illustrates how terminals can benefit from improved
energy efficiency. The status of technology and real-life prototypes
discussed. Open challenges and directions for future research are
suggested.

Index Terms—Antenna arrays, circuits, MIMO communication.

I. INTRODUCTION

M
ASSIVE MIMO is an efficient sub-6 GHz physical-layer

technology for wireless access, and a key component of

the 5G New Radio (NR) interface [1]. The main concept is

to use large antenna arrays at base stations to simultaneously
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University, Linköping 581 83, Sweden (e-mail:,erik.g.larsson@liu.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2018.2858190

Fig. 1. Massive MIMO exploits large antenna arrays at the base stations, to
spatially multiplex many terminals.

serve many autonomous terminals, as illustrated in Figure 1 [2],

[3]. Smart processing at the array exploits differences among

the propagation signatures of the terminals to perform spatial

multiplexing. Massive MIMO offers two main benefits:

1) Excellent spectral efficiency, achieved by spatial multi-

plexing of many terminals in the same time-frequency

resource [4], [5]. Efficient multiplexing requires channels

to different terminals to be sufficiently distinct. Theory as

well as experiments have demonstrated that this can be

achieved both in line-of-sight and in rich scattering.

2) Superior energy efficiency, by virtue of the array gain,

that permits a reduction of radiated power. Moreover, the

ability to achieve excellent performance while operating

with low-accuracy signals and linear signal processing

further enables considerable savings in the power required

for signal processing.

This overview paper focuses on sub-6 GHz Massive MIMO

systems implemented with fully digital per-antenna signal pro-

cessing. Massive MIMO at mmWave frequencies is also possi-

ble, and can benefit from the large bandwidth available at these

frequencies. Propagation and hardware implementation aspects

are different at mmWaves; for example, hybrid analog-digital

beamforming approaches are typically considered [6]. However,

this is not discussed further here.

The complexity of the signal processing has been considered

a potential obstacle to actual deployment of Massive MIMO

technology. An obvious concern is how operations on large

matrices and the interconnection of the many antenna signals

can be efficiently performed in real-time. Moreover, real-life

experiments have shown that the channel responses to differ-

ent terminals can be highly correlated in some propagation
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Fig. 2. Massive MIMO opens up new hardware-software co-design opportu-
nities for low-complexity circuitry.

environments. Appropriate digital signal processing hence

needs to feature interference suppression capabilities, which

further increases complexity.

This paper discusses the digital signal processing required to

realize the Massive MIMO system concept, and examines in

detail the co-design of algorithms, hardware architecture, and

circuits (Figure 2). Unconventional, low-complexity digital cir-

cuitry implementations in deeply scaled silicon are possible,

despite (and thanks to) the excess number of antenna signals.

A careful choice of algorithmic and circuit parameters permits

considerable reduction of the average energy consumption. Ter-

minals in turn can be implemented at low complexity while ben-

efiting from the channel hardening effect, that offers increased

reliability.

Proof of concept implementations and demonstrations have

revealed constraints that turned out more harsh than anticipated

in initial theoretical assessments. This concerns the interconnec-

tion of the signals from all antennas, which poses a bottleneck

that partly necessitates distributed processing. Also, relaxing

the specifications of the analog and RF chains can result in

higher distortion both in-band and out-of-band than initially

anticipated, as hardware imperfections can in general not be

considered uncorrelated.

The rest of the paper is organized as follows. First, ba-

sic concepts and notation are introduced. Next, we provide a

complexity analysis considering computation as well as data

transfer. The following section zooms in on the RF and front-

end, highlighting the opportunities and constraints of relax-

ing their specifications in the large-number-of-antennas regime.

Subsequently, the central detector and precoder blocks are de-

tailed and major complexity reductions facilitated by algorithm-

hardware co-design are demonstrated. Signal processing lever-

aging on error-resilient circuits in the per-antenna functional-

ity is discussed next, and consequent energy savings are il-

lustrated. Further we introduce introduces the increased relia-

bility that can be delivered on complexity terminals. Finally,

in the conclusions we discuss validation performed in real-life

test beds, summarize opportunities and constraints in efficient

processing for Massive MIMO systems, and suggest future re-

search directions.

II. MASSIVE MIMO SYSTEM MODEL

This section introduces the notation for MIMO transmission

that is used in the paper. Further details can be found in, for

example, [3]. We consider the block-fading model where the

time-frequency domain is partitioned into coherence intervals

within which the channel is static. The number of samples in

each coherence interval is equal to the coherence time in sec-

onds multiplied by the coherence bandwidth in Hertz. For the

signal processing algorithms discussed in this paper, it does not

matter whether there is coding across coherence intervals or

not.

In every coherence interval, a flat fading complex baseband

channel model applies. Let M be the number of antennas at the

base station, and K the number of terminals served simultane-

ously. Also, denote by gk the M -vector of channel responses

between the kth terminal and the array. Then on uplink, for

every sample in the coherence interval,

y =
K

∑

k=1

gkxk + w, (1)

where y is an M -vector comprising samples received at the base

station array, {xk} are symbols sent by the kth terminal, and w

is noise. On downlink, assuming linear precoding,

yk = gT
k

K
∑

k ′=1

ak ′xk ′ + wk . (2)

where yk is the sample received by the kth terminal, ak is

a precoding vector associated with the kth terminal, xk is the

symbol destined to the kth terminal, and wk is CN(0, 1) receiver

noise.

The base station forms a channel estimate, ĝk , of gk for each

terminal k by measurements on uplink pilots. Channel estima-

tion is discussed extensively in for example [3] (for independent

Rayleigh fading) and [7] (for correlated fading models).

On uplink, the data streams from the terminals are detected

through linear processing. This entails multiplication of y with a

vector, ak for each terminal, yielding the scalar aH
k y. Common

choices of the detection vector ak include
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

max.-ratio: ak = αk ĝk

zero-forcing: ak = αk

[

Ĝ(Ĝ
H

Ĝ)−1
]

(:,k)

MMSE: ak = αk

[

Ĝ(Ĝ
H

Ĝ + I)−1
]

(:,k)

(3)

where αk is a normalizing constant (different for the three meth-

ods), and Ĝ = [ĝ1 , . . . , ĝK ]. The result of this linear processing

will comprise the desired signal, embedded in additive interfer-

ence and noise.

On downlink, channel reciprocity is leveraged. Low-

complexity front-ends typically introduce non-reciprocity

and this non-reciprocity needs to be compensated for; see

Section IV. The base station forms the transmitted vector



PERRE et al.: EFFICIENT DSP AND CIRCUIT ARCHITECTURES FOR MASSIVE MIMO: STATE OF THE ART AND FUTURE DIRECTIONS 4719

Fig. 3. Signal processing in an OFDM-based Massive MIMO system for M BS antennas and K UEs.

∑

k akxk in (2) where the precoding vector ak is given by:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

max.-ratio: ak = αk ĝ∗
k

zero-forcing: ak = αk

[

Ĝ
∗
(Ĝ

T
Ĝ

∗
)−1

]

(:,k)

regularized zero-forcing: ak = αk

[

Ĝ
∗
(Ĝ

T
Ĝ

∗
+ λI)−1

]

(:,k)

(4)

where, again, {αk} are normalizing constants and λ is a reg-

ularization parameter. The signal received at the terminal will

contain the symbol of interest, plus additive interference and

noise.

Many variations are possible and detection and precoding

that take multi-cell interference into account are also possible

[7], [8].

III. SIGNAL PROCESSING AND DATA TRANSFER

COMPLEXITY ASSESSMENT

Both Massive MIMO base stations and terminals can be im-

plemented with significantly better energy efficiency compared

to in conventional systems. This is possible owing to a com-

bination of effects. First, the array gain permits a reduction of

the radiated power. Second, the large number of constituent sig-

nals promotes excellent performance while operating relatively

simple algorithms on coarse signals.

In this section we focus on the processing at the base station

side. The opportunity to reduce terminal-side complexity is dis-

cussed in Section VII. First, a high-level assessment of the signal

processing requirements, in terms of number of computations,

is presented. The data transfer and interconnection of signals

poses a distinct bottleneck. Hence, next a distributed processing

approach is presented to balance performance and complexity.

A. Computational Complexity

We first analyze the computational complexity of a Massive

MIMO base station. Figure 3 shows a high-level block diagram

of the signal processing for an OFDM-based Massive MIMO

TABLE I
ESTIMATED NUMBER OF DSP OPERATIONS IN GOPS, FOR M = 100 AND

K = 10, 20 MHZ BANDWIDTH, AND 3 BPS/HZ (16-QAM, CODE RATE 3/4)

system. Other modulation options can be used, and single-carrier

schemes may be preferred. The overall partition of the process-

ing presented here will still hold.

The processing in Massive MIMO systems is logically

grouped into three categories:

1) The outer modem performing symbol (de)mapping,

(de)interleaving and channel (de)coding. This process-

ing performed on the transmit/receive bits applies to each

User Equipment (UE) individually.

2) The inner modem comprising channel estimation, and de-

tection and precoding of the uplink and downlink data, re-

spectively. This central processing aggregates/distributes

data from/to all the antenna chains.

3) The per-antenna processing which primarily consists of

the analog and digital front-end (mainly re-sampling and

filtering) and OFDM processing.

We identify inherent parallelism and observe that the process-

ing complexity scales with the number of BS antennas, M , the

number of UEs, K, or both [9]:
� Per-antenna processing: Scales with M as each antenna

requires OFDM (de)modulation and a digital/analog front-

end.
� Central processing: Scales with M and K.
� Per-user processing: Scales with K.

The number of digital signal processing operations performed

in the sub-systems provides a high-level estimate of complex-

ity. Table I gives numbers for a sample system with M = 100
antennas at the base-station and K = 10 simultaneous ter-

minals. It is acknowledged that these estimates represent an
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over-simplification, as the nature and precision of the opera-

tions will be an important determining factor in the eventual

hardware complexity and power consumption.

Table I demonstrates that the collective per-antenna digital

processing is demanding, and requires a minimal-complexity

implementation. Interestingly, the per-antenna processing does

not need to be performed with high precision to offer very good

performance. An in-depth analysis and efficient implementation

options are presented in Section VI.

For the inner modem processing in Massive MIMO, a high de-

gree of reconfigurability is desired in order to adapt to changing

operating conditions, such as the number of connected UEs, and

their SNRs/path losses. Section V discusses efficient algorithm-

hardware co-design solutions for the Massive MIMO precoding

and detection.

Furthermore, reciprocity calibration needs to be performed

occasionally. Elegant solutions have been proposed and demon-

strated, see Section IV.

Channel coding clearly is an essential component of the wire-

less transmission, yet it is not Massive MIMO-specific and there-

fore not further treated in this paper.

B. Signal Interconnection and Data Transfer Complexity

The transfer of data between processing components creates

a significant challenge, as the amount of signals and data to be

aggregated/distributed from/to all the antennas is very high. The

required data shuffling rate between the per-antenna processing

and the central processing is [9]

Rantennas2central = M × ROFDM × W, (5)

where ROFDM is the sampling rate after OFDM processing and

W is the word-length of one data sample. For a 100-antenna

20 MHz bandwidth system, the sampling rate Rsamp at each

antenna is 30.72 MS/s and thus

ROFDM = Rsamp ×
Ndata

Nsub + NCP

= 16.8 MS/s, (6)

where Ndata, Nsub, and NCP are the number of data subcarriers,

the total number of subcarriers, respectively the number of cyclic

prefix samples. Assuming that 24 bits are used for one complex

sample, Rantennas2central equals 40.32 Gb/s. This requirement is

an order of magnitude higher than in a conventional system.

Additionally, the data transfer network must re-organize data

among different dimensions. Figure 4 illustrates the uplink data

shuffling between the per-antenna and the central processing.

First, ©1 in the figure, the data shuffling network aggregates

data samples of all subcarriers from all antenna chains. Next,

©2 in the figure, it divides the entire data into bandwidth chunks

depending on the number of central processing units in the

system, and distributes the data to the corresponding processing

unit.

This high data transfer requirements has motivated the de-

velopment of decentralized processing architectures, which are

introduced next.

Fig. 4. Illustration of the data shuffling between the per-antenna and central
processing.

Fig. 5. Decentralized processing architecture, performing group-based oper-
ations between the per-antenna processing (PAP) and the central unit.

C. Decentralized Processing

Depending on the selected MIMO processing algorithms,

both the processing performed in the per-antenna and in the

central units, and the communication between these two, will

influence the resulting system performance and overall com-

plexity. For instance, the maximum-ratio precoding operation
∑

k αk ĝ∗
kxk can be performed in each antenna path in a dis-

tributed manner, whereas the zero-forcing algorithm requires

centralized processing, specifically for the inversion of the Gram

matrix (Ĝ
H

Ĝ)−1 .

Decentralized processing enables parallel computing and of-

fers a balanced trade-off between system performance and data

transfer requirements [10]–[13]. The authors of [12] propose

a decentralized architecture for both uplink and downlink, il-

lustrated in Figure 5. Instead of aggregating the full channel

state information and transmit/received data vectors at the cen-

tralized processing node, M antenna nodes are grouped into B
equally sized groups, each serving C antenna nodes. A middle

-level processing node, labeled group processor, is introduced

between the per-antenna and central processor to handle the cor-

responding data dedicated to the group of C antenna nodes. As

a result, a limited amount of data is then aggregated/distributed

to/from the central processor, relaxing the requirements on the
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data transfer network. For instance, the Gram matrix calculation

Z = Ĝ
H

Ĝ can be rewritten as

Z =

B
∑

b=1

Ĝ
H

b Ĝb , (7)

where Ĝb ∈ C
C×K is the local channel estimate for each group

of C antennas. The decentralized processing is performed such

that the terms Ĝ
H

b Ĝb are computed at each group processor lo-

cally, and the results are aggregated at the central processor for

the final summation. The tree-like distributed processing archi-

tecture is further elaborated in [14], with special focus on mod-

ularity and scalability. Especially, the trade-off between data

processing, storage, and shuffling is investigated for maximum-

ratio transmission, zero-forcing, and MMSE algorithms.

IV. ANALOG AND RF PROCESSING: RELAX WITH CAUTION!

In traditional base stations, the RF electronics and analog

front-ends, and the power amplifiers specifically, consume most

of the power [15]. In Massive MIMO, thanks to the array gain

provided by the closed-loop beamforming, much less radiated

power is needed for the data transmission. This facilitates a sig-

nificant reduction of the RF complexity and power consumption

compared to conventional systems.

The hardware in any wireless transceiver will introduce dis-

tortion, and the most important source of distortion is non-

linearities in power amplifiers and quantization noise in A/D-

converters. A commonly used model in the literature has been

that this distortion is additive and uncorrelated among the an-

tennas [7]. If this were the case, then the effects of hardware

imperfections would average out as the number of antennas is

increased, in a similar way as the effects of thermal noise av-

erage out. In more detail, consider the linear processing in the

uplink, aH
k y; see Section II. The essence of the argument is

that if the received signal at the array, y, is affected by uncor-

related additive distortion noise d, then the effective power of

the useful signal after beamforming processing, aH
k gk , would

grow as M whereas the power of the distortion, aH
k d, would be

constant with respect to M (see [7] for more precise analyses).

But unfortunately, this model does not accurately describe the

true nature of the hardware distortion.

To understand why, fundamentally, the distortion is correlated

among the antennas, consider the downlink in the special case of

a single terminal in line-of-sight. Then the signal radiated by the

mth antenna is simply a phase-shifted version of the signal radi-

ated by the first antenna (m = 1). The distortion arising from an

amplifier nonlinearity at the mth antenna is phase-shifted by the

same amount as the signal. Hence, if all amplifiers have identical

characteristics (a weak assumption in practice), the distortion is

beamformed into the same direction as the signal of interest, and

receives the same array gain as that signal of interest. That is,

the effects of the distortion do scale proportionally to M rather

than disappearing as M is increased. In this case, the covari-

ance matrix of the distortion, when viewed as an M -vector d,

has rank one. A similar effect exists on the uplink, when the

nonlinearities in low-noise amplifiers are considered [16].

In the remainder of this section, we discuss the specifics of dis-

tortion arising from amplifier nonlinearities and finite-resolution

A/D-converters in more detail. We furthermore discuss the im-

pact and calibration of RF front-end non-reciprocity.

A. Power Amplifiers Benefit from the Large Array

The required output power of a Massive MIMO base station

can be reduced inversely proportionally to the square root of

number of BS antennas, or even linearly in operating regimes

with good channel estimation quality, thanks to the coherent

combination of all antenna signals. This results in significantly

reduced output specifications of the Power Amplifiers (PAs).

The power amplification stage typically accounts for >70% of

the power consumption of base stations in wireless broadband

macro-cells [15]. Moreover they necessitate cooling, causing a

∼10% overhead. The reduced output power in Massive MIMO

hence can reduce the total power by a factor of 3 in an exemplary

100-antenna base station, assuming that all other contributions

remain equal.

The PA mostly operates at a low efficiency as a consequence

of a considerable back-off, required to avoid entering the satura-

tion region. For OFDM-based systems such as 3GPP-LTE, the

PA typically operates with a back off of 8–12 dB. Best-in-class

solutions need complex techniques that achieve an efficiency

of ∼30% [17]. Entering the saturation region introduces non-

linear distortion, which comes with two detrimental effects:

distortion of the intended signal within the band of interest, and

out-of-band (OOB) emissions that result in adjacent channel

leakage.

We consider a polynomial memoryless model [18] for the

non-linear behaviour of the PA. The impact on the signal at RF

can be expressed as:

y(t) =
∑

p

αpx
p
RF(t), (8)

where xRF(t) is the input signal to the PA, y(t) is the output

signal, and αp is the non-linear distortion coefficient of the

PA for the pth harmonic component. The third-order harmonic

will have the largest impact both in terms of in-band distortion

and adjacent channel leakage. Furthermore, the amplitude will

be limited to the saturation amplitude aout,sat for input values

exceeding the input saturation amplitude ain,sat :

|y(t)| = aout,sat; |xRF(t)| > ain,sat. (9)

The non-linear distortion resulting from the PAs in the many

antenna paths is hence signal dependent. The input signals to

the PAs can be correlated, depending on the specific communi-

cation scenario in terms of users, channel responses, and power

(im)balance among the users. In [19] we analyzed how the

distortion terms can combine by means of a basic dual-tone

modulation scheme. The following effects can occur:

1) The distortions may add up coherently in the channel and

generate considerable out-of-band emissions. This will be

the case for example in a single-user situation with one

strongly dominating propagation direction.
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Fig. 6. Increasing number of base station antennas improves the EVM with
PAs operating in saturation.

2) In most multi-user scenarios the precoder will provide

significant different compositions of signals to the antenna

paths and hence power amplifiers. In general, this will

randomize the harmonic distortion terms.

The constellation diagrams in Figure 6 illustrate the impact

of increasing the number of antennas at the base station on the

Error Vector Magnitude (EVM), for a case with equal-strength

signals for the different users and i.i.d. Rayleigh fading channels.

The results were simulated based on a cubic polynomial model

for the PA, which operates in saturation (0 dB with respect to

the 1 dB compression point). With M = 30 antennas at the

base station, the constellation points are seriously dispersed

and an EVM of −10 dB is measured. When increasing the

number of antennas, in steps of 10 in the graph, the clarity of

the constellation diagram greatly improves and for M = 100 an

EVM of −22 dB is observed.

In conclusion, the power amplifiers benefit from the large ar-

ray owing to the drastically reduced total output power require-

ment. Moreover in many typical conditions, Massive MIMO

systems will not transmit predominantly to one user and in one

direction. One could then operate the PAs efficiently in their

non-linear region. Hence, a considerable further improvement

of the power consumption could be achieved. However, the in-

convenient truth is that in general, directive emissions of OOB

radiation can arise under some conditions. More detailed math-

ematical models and results can be found in [20].

B. Coarse and Lean Convertors

The impact of low-resolution data converters on system per-

formance has been investigated. We give an overview of these

theoretical results and discuss them in perspective of actual de-

sign constraints and merits of state-of-the-art data converters.

These reveal that minimizing the resolution strictly (e.g., below

6 bits) does not result in a significant power reduction in a con-

ventional base station. One should hence question any penalty

in system performance and/or additional DSP complexity when

considering very low resolution data converters.

A specific type of hardware distortion arises if low-precision

A/D converters are used at the base station. Such converters are

highly desirable owing to their low cost and power consump-

tion. In principle for each bit reduction in resolution, the A/D

converter power is halved. Doubling the sampling frequency

will double the power. This is reflected in the common figure-

of-merit (F.o.M.) in terms of energy consumption per conversion

step (cs) [21] used to assess the design merit of A/D convert-

ers implementing different architectural principles and resolu-

tion/bandwidth specifications:

F.o.M.A/D =
PowerA/D

2ENOB · fs
(10)

where ENOB is the Effective Number of Bits resolution as

measured and fs is the sampling frequency.

The resulting quantization noise of A/D conversion is fairly

easy to model accurately, and rigorous information-theoretic

analyses of its effect are available. In some cases, line-of-sight

with a single terminal, the quantization noise may combine con-

structively. However, in frequency-selective, Rayleigh fading

channels with large delay-spreads and multi-user beamforming,

the distortion averages out over the antennas to a significant ex-

tent. Specifically, with 1-bit quantization, the quantization noise

has a power equal to (π/2 − 1)P where P is the received signal

power [22], and the aggregate effect of the quantization is ap-

proximately a loss in effective SINR of 4 dB. The 1-bit A/D con-

verter case is of particular interest as it allows operation without

automatic gain control (AGC), which simplifies hardware com-

plexity. With N -bit quantization, N > 1, corresponding results

can be found in [23], and when N grows eventually the capacity

formulas for the un-quantized case [3, Ch. 3] are rediscovered.

Other authors have derived similar results subsequently [24] –

and earlier, using heuristic arguments, [25], [26]. Importantly,

these analyses take into account the fact that both the received

pilots and the payload data will be affected by quantization

noise.

The loss in effective SINR due to quantization needs to be

considered relatively to the extra power consumption result-

ing from adding bits resolution in the A/D converters. Circuit

innovation in data converters has brought great improvements

in power efficiency. State-of-the-art designs for A/D converter

cores achieve figures-of-merit following 10 in the order of

10 fJ/cs [27], [28]. A 6-bit ADC with a speed of several

100 Mbit/s consumes <1 mW.

Massive MIMO systems operating with low-resolution

Digital-to-Analog (D/A) converters at the base station in the

downlink transmission have also been studied. There is some

evidence that they are sufficient to attain a good performance in

terms of achievable link rate [29], [30]. Also, while these anal-

yses are independent of the actual modulation and coding used

in the system, numerical end-to-end link simulations have in-

dependently arrived at essentially the same conclusion that the

degradation of BER performance due to low-precision (<6 bits)

D/A converters is negligible [31]. It is however a misconcep-

tion that the number of bits resolution affects the D/A con-

verter power consumption in a similar way as it does for A/D

converters. The constraint on OOB emission in combination

with the swing to be delivered to the analog output signal are

the dominant factors in the power and complexity of a D/A

converter [21]. A relevant standard figure-of-merit (F.o.M.) for



PERRE et al.: EFFICIENT DSP AND CIRCUIT ARCHITECTURES FOR MASSIVE MIMO: STATE OF THE ART AND FUTURE DIRECTIONS 4723

current-steering D/A converters is given by

F.o.M.D/A =
Vpp · fout · 10SFDR/20

PowerD/A

(11)

where SFDR is the spurious free dynamic range, being the

distance between the signal and the largest single unwanted

component – the spurious signal, and Vpp is the peak-to-peak

signal swing which accounts for the power (and design prob-

lems) needed for generating the analog signal in a digital-to-

analog converter. D/A converters with a resolution <10 bits are

conveniently implemented by current injection or resistive ar-

chitectures whose power consumption is typically not directly

impacted by their resolution. In contrast, the complexity of the

reconstruction filter in the D/A converter is mostly determined

by the SFDR specification, which will eventually determine the

out-of-band (OOB) harmonic distortion. Digital predistortion

and analog filtering to reduce OOB emissions have been pro-

posed for coarsely quantized precoding in Massive MIMO [32].

The extra processing complexity in deeply scaled technology

will be very reasonable, yet a degradation of the in-band signal-

to-interference-noise-and-distortion ratio (SINDR) on the link

is introduced. This presents the same trade-off between in-band

transmission versus out-of-band rejection encountered in D/A

converter design.

The trend in broadband wireless systems to increase spectral

efficiency through a combination of higher order modulation

constellations and conventional multi-layer MIMO has raised

the resolution requirement for data converters >∼12 bits. Mas-

sive MIMO can operate without noticeable implementation loss

with only 4−6-bit A/D and D/A converter resolution. This re-

duces the power consumption of an individual A/D converter

specifically with a factor >∼50, which more than compensates

for the fact that 10−30 times more converters are needed. It is

however neither necessary nor overall beneficial to reduce the

resolution of A/D and D/A converters below 6 bits:
� On uplink, reducing the A/D resolution further will save

less than 100 mW in a 100 antenna basestation.
� On downlink, a potential implementation loss of 0.5 dB

or more due to a D/A converters with a lower resolution

may require 10% more power in the PA stage. More im-

portantly, the constraints on OOB emission will not be

met. Dedicated processing will hence be needed to avoid

or filter out unacceptable leakage in adjacent bands.

C. Reciprocity Calibration in RF Front-Ends

Channel estimates are obtained from uplink pilots; see

Section II. In practice, the response observed by the digital

baseband processing for each user includes both the propaga-

tion channel and the transceiver transfer functions. The full

responses for uplink and downlink can be expressed as:

gk,U L = RB g̃k tk
gT

k,DL = rk g̃k
T T B ,

(12)

where RB and T B are complex diagonal matrices containing

the base station receiver and transmitter responses, and tk and

rk are the responses of the transmitter and receiver of user

terminal k. While the responses of the propagation channel g̃k

are reciprocal, the responses of the front-ends will typically

cause non-reciprocity in the full response. In the precoded Mas-

sive MIMO downlink reception the following holds:

RB �= T B

rk �= tk

⇒ gk,DL �= gk,U L . (13)

When the corresponding estimates ĝk of gU L are used to calcu-

late the precoding coefficients, they will introduce Multi-User

Interference (MUI) and potentially an SNR loss, depending on

the precoding vectors ak . We include the derivation for the zero-

forcing precoder, and refer to [33] for a comprehensive treat-

ment. Under the assumption of negligible channel estimation er-

rors and considering normalized responses to simplify notation,1

the received signals at the terminals y = [y1 , . . . , yK ]T are

given by

y = GT
DLG∗

U L (GT
U LG∗

U L )−1x + w (14)

where x and w are the K-vectors of transmitted symbols and

received noise samples, respectively. Writing out the front-end

responses gives the following expression:

y = (RU G̃
T
T B )(R∗

B G̃
∗
T ∗

U )(GT
U LG∗

U L )−1x + w, (15)

where RU and T U are diagonal matrices containing the

transmitter and receiver responses of terminals tk and rk .

Equation (15) shows that in general the combined precoding,

channel, and transceiver responses will not result in a diagonal

matrix. As a result, MUI will occur. Structurally it is the multi-

plication of the base station’s front-end responses T B R∗
B that is

responsible for the MUI. The terminal responses appear as scalar

multiplications on the received symbols and will be contained in

the equalization processing in the terminal. A suitable calibra-

tion procedure operating locally at the base station can restore

the reciprocity. Calibration data needs to be obtained through

measurements of the transceiver front-end responses, for which

several approaches have been proposed and validated:
� Utilization of an auxiliary front-end, which sequentially

measures the RF transceiver front-ends. The method works

well in conventional MU-MIMO systems [34]. However,

it does not scale well to large numbers of antennas.
� Exploitation of the coupling, essentially radio propaga-

tion, between antennas in the array to derive the relative

differences among the transceiver responses. This solution

has been implemented in real-life testbeds and performs

well [35].

Analysis has shown that non-reciprocity requirements are not

as severe for Massive MIMO as in conventional systems [33]

and depend on the system load and precoding algorithms. The

RF transceiver responses may vary in time mainly due to tem-

perature differences. The calibration procedure hence needs to

be repeated on a regular basis. In typical conditions the required

updating frequency is in the order of hours. It thus introduces

only very limited overhead.

1Power control does not impact reciprocity, and it will show up as a scalar
multiplication on the individual terminal signals.
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V. ALGORITHM-HARDWARE CO-DESIGN FOR PRECODING

AND DETECTION

The central detector and precoder perform the crucial oper-

ations to achieve spatial multiplexing. This section zooms in

on the hardware implementation of the precoding and detection

algorithms.

A. Implementation Challenges and Design Considerations

Linear processing provides good precoding and detection per-

formance under favorable propagation conditions. However, lin-

ear processing in Massive MIMO does not necessarily result in

low computational complexity given that the operations need to

be performed on large matrices. For instance, the complexity of

computing (GH G)−1 for an M × K matrix G is

MK2 + K3 . (16)

This number is in the order of 104 for an M = 128, K = 16
system. In TDD Massive MIMO systems, processing latency

is a crucial design consideration, especially for high-mobility

scenarios. The analysis in [9] shows that the time budget for op-

erating the precoding is 150 µs to support a moderate mobility

of 70 km/h. The high computational complexity and processing

speed need to be handled with reasonable hardware cost and

power consumption. These implementation challenges neces-

sitate meticulously optimized solutions following a systematic

algorithm-hardware co-design methodology.

A central property of Massive MIMO is that the column

vectors of the channel matrix are asymptotically orthogonal

under favorable propagation conditions. As a result, the Gram

matrix, Z = GH G, becomes diagonally dominant, i.e.,

|zi,i | ≫ |zi,j |, for i �= j and M ≫ K, (17)

and for i.i.d. channels,

1

M
Z → I, for M → ∞ and for fixed K. (18)

The extent of the diagonal dominance varies with the character-

istics of the antenna array, the propagation environment, and the

number of users served. Exploiting this dominance, approximate

matrix inversion can be performed to reduce the computational

complexity. Matrix inversion approaches can be categorized into

three types: explicit computation, implicit computation, and hy-

brid methods. We next assess the complexity and suitability of

these methods.

B. Explicit Matrix Inversion

Explicit matrix inversion can be performed using approaches

such as Gauss-elimination, Neumann series expansion [36], and

truncated polynomial expansion [37]. Recently, the Neumann

series approximation has been identified as one of the most

hardware-friendly algorithms for Massive MIMO systems [38],

[39]. If a K × K matrix Z satisfies

lim
n→∞

(I − X−1Z)n ≃ 0K , (19)

its inverse can be approximated by a Neumann series with L
terms as:

Z−1 ≈
L

∑

n=0

(

I − X−1Z
)n

X−1 , (20)

where X is a pre-conditioning matrix. The number of terms, L,

can be used as a tuning parameter to trade off between complex-

ity and accuracy. It is shown in [39] that using the main diagonal

of the Gram matrix,

Zd = diag[Z1,1 , . . . ,ZK,K ], (21)

as the pre-conditioning matrix, the Neumann series approxi-

mation can provide close-to-exact-inversion performance with

L = 3 when K ≪ M . However, a significant performance loss

is demonstrated when M/K < 8. To improve the accuracy, the

following weighted Neumann series approximation was intro-

duced in [40], [41]:

Z−1 ≈
L

∑

n=0

αn

(

I − X−1Z
)n

X−1 . (22)

In [40], the coefficients αn are selected by solving the equation

∞
∑

n=0

Bn ≈

L
∑

n=0

αnBn , (23)

where

B = −Z
−1/2
d (Z − Zd)Z

−1/2
d . (24)

At the price of extra computational complexity, the method in

(22) improves the performance significantly, especially in cases

with a high user load.

C. Implicit Matrix Inversion

Implicit matrix inversion uses linear-solvers such as

conjugate-gradient [42], coordinate-descent [43], and Gauss-

Seidel [44] to perform linear precoding and detection, with-

out explicitly calculating the Gram matrix inverse. In [43], the

coordinate-descent method is adopted to realize an MMSE de-

tector. The regularized squared Euclidean distance,

f(x) = ‖y − Gx‖2
2 + N0‖x‖

2
2 , (25)

is minimized sequentially for each variable in x in a round-robin

fashion. In (25), N0 is the variance of each complex entry in the

noise vector w. In each iteration, the solution for the ith element

in x is

x̂i =
1

‖gi‖
2
2 + N0

gH
i

⎛

⎝y −
∑

j �=i

gjxj

⎞

⎠. (26)

This procedure is then repeated for L iterations.

D. Hybrid Method

Matrix decomposition algorithms factorize the Gram matrix

into intermediate matrices, which are generally triangular. For-

ward or backward substitution is then performed to accomplish
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the corresponding precoding and detection operation. The solu-

tion in [45] utilizes QR-decomposition. The Gram matrix Z is

decomposed as

Z = QR, (27)

where Q is unitary and R is upper triangular. The linear equation

ŝ = Z−1s is then rewritten as

Rŝ = QH s, (28)

which can be solved using backward substitution. This method

avoids the explicit computation of matrix inverses, relaxing (to

some extent) the requirements on data representation accuracy.

By exploiting the diagonally dominant property of the Gram

matrix, modified QR-decomposition can be performed [45]. For

instance, the original solutions

c = a/r

s = b∗/r (29)

r =
√

|a|2 + |b|2

to the Givens rotation operation
[

c s
−s∗ c

] [

a
b

]

=

[

r
0

]

, (30)

are approximated by

c = cconst

s = b∗/a.
(31)

Equation (31) makes use of the fact that |a| ≫ |b| and results in

50% complexity savings by introducing the constant cconst.

Cholesky-decomposition (Z = LL∗) has also been studied

for Massive MIMO precoding and detection implementation

[46], [47]. It has lower computational complexity than the Neu-

mann series expansion method (with L ≥ 4) [39] and provides

accurate processing independent of M and K. More impor-

tantly, the Cholesky decomposition imposes lower memory re-

quirements, since only the lower triangular matrix L needs to

be stored.

E. Complexity versus Accuracy Trade-Off

To select appropriate processing algorithms for Massive

MIMO is non-trivial, and an analysis of the trade-off between

computational complexity and processing performance is nec-

essary. Reference [48] presents such an analysis for different

MMSE detection techniques.

To evaluate the processing accuracy, we simulate the per-

formance of different detection techniques including Neumann

series approximation (NSA), Cholesky decomposition (ChD),

modified QRD (MQRD), and coordinate descent (CD). The

effects of fixed-point arithmetics is also taken into considera-

tion to examine the required data precision. In the simulations,

M = 128, K sweeps from 8 to 32, and an i.i.d. block Rayleigh

fading channel with perfect channel estimation and synchro-

nization was considered. A rate-1/2 convolutional code with

generator polynomial [171, 133] and a constraint length of 7

was used. Figure 7 shows the performance at 10−4 BER relative

to floating-point ZF detection. The number of iterations L for the

Fig. 7. Simulated performance of different detection methods. The subscripts
in the legend indicate the fixed-point resolution of the fractional part. Markers
at −4 dB performance loss mean that the corresponding detection scheme has
a performance loss greater than 4 dB or shows an error floor before reaching a
BER of 10−4 .

NSA and CD was set to 3. Implicit and hybrid methods are more

robust to lower resolutions, while NSA requires a larger number

of bits to calculate the matrix inverse explicitly. When M/K is

small the Gram matrix becomes less diagonally dominant and

approximate matrix inversion methods suffer from a larger per-

formance loss. CD offers better interference cancellation when

the user load is relatively high.

Table II lists the corresponding computational complexity in

terms of number of real multiplications. The computation is

divided into two parts depending on how frequently it needs

to be executed, i.e., per channel realization and per channel

use (instance of the detection problem). The Gram matrix cal-

culation, matrix decomposition, and matrix inversion are per-

formed when the channel changes, while matched-filtering and

backward/forward substitution are performed for each received

vector. Thereby, the computational complexity depends on the

channel dynamics, i.e., the number of samples (P ) during which

the channel is constant. Figure 8 depicts the results. Differ-

ent system setups and channel conditions are analyzed. While

changing M , K, and P in the three sub-figures, the other two

are fixed to M = 128, K = 16, and P = 5, respectively. Sev-

eral observations can be made. The detection complexity grows

linearly with M , enabling large savings in transmit power by

deploying large numbers of antennas, with a mild increase in

the processing power. Moreover, the processing complexity (for

explicit and hybrid matrix inversion algorithms) can be dramat-

ically reduced in static environments, in which case the channel

matrix-dependent operations are performed very rarely.

In addition to the processing accuracy and computational

complexity, parallelism is an important aspect to be considered,

and it highly impacts the processing latency. Iterative algorithms

such as Neumann series approximation and coordinate descent

can suffer from a long processing latency for MUI-dominant

channels. On the other hand, matrix decomposition can be per-

formed in a more parallel fashion and was thus selected for the

first Massive MIMO precoder-detector chip introduced in the

next section. Moreover, the intermediate results Z−1 , L, and

QR can be shared between the uplink and downlink process-

ing, further simplifying the hardware.
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TABLE II
COMPUTATIONAL COMPLEXITY (NUMBER OF REAL MULTIPLICATIONS) OF DIFFERENT DETECTION TECHNIQUES

Fig. 8. Computational complexity (per instance of the detection problem) of
different implementations of ZF detection, for different numbers of base station
antennas, numbers of users, and channel coherence duration.

F. 128 × 8 Massive MIMO Precoder-Detector Chip Achieving

300 Mb/s at 60 pJ/b

Integrated hardware implementations will ultimately define

both the performance and power consumption of Massive

MIMO systems. Hence, algorithms should be selected such

that the corresponding operations can be mapped into simple,

configurable, and scalable hardware architectures to enable high

throughput, low latency, and flexible implementation. The re-

configurability and scalability are essential to enable efficient

operation in a wide range of conditions. In this section we

present a design [45] demonstrating such an algorithm and

hardware architecture co-design, where the QR-decomposition

based ZF precoding is mapped onto a systolic array architec-

ture; see Figure 9. The systolic array consists of a homogeneous

network of elementary processing nodes, where each node per-

forms the same pre-defined tasks. Due to the homogeneity, the

architecture is scalable to support different M and K. The data

flow in a systolic array is straightforward and parallel, leading

to a simple and high-speed hardware implementation.

The QR-decomposition based precoder, together with a

Cholesky decomposition based detector, was fabricated using

28 nm FD-SOI (Fully Depleted Silicon On Insulator) technol-

ogy. Figure 10(a) shows a photograph of the chip. It occupies

only a 1.1 mm2 silicon area and consumes ∼50 mW power for

precoding and detection for a 128 × 8 Massive MIMO system

with a 300 Mb/s throughput. The fabricated chip and the mea-

surement results prove that the Massive MIMO concept works

in practice and that system-algorithm-hardware co-optimization

enables record energy-efficient signal processing. The cross-

level design approach also applies advanced circuits techniques

leveraging on the flexible FD-SOI body bias feature [50]. Using

forward body bias or reverse body bias allows systems to dy-

namically adjust processing speed and power consumption of

the chip towards the most efficient operating point.

The algorithm-hardware co-design method is further ex-

ploited in [49] to map an iterative expectation-propagation de-

tection (EPD) onto a condensed systolic array for higher hard-

ware resource utilization. This detector chip (Figure 10(b)) is

fabricated using 28 nm FD-SOI technology and provides

1.8 Gb/s throughput with 127 mW power consumption. It offers

3 dB processing gain comparing to [45], equivalent to a 2×
boost in link margin that can be utilized to lower the TX power

and relax the front-end requirements.

VI. PER-ANTENNA CHAIN PROCESSING AT THE

SEMICONDUCTOR EDGE

An obvious concern is how the large number of antennas and

the associated signal processing will affect the cost and energy

consumption of the base station. The individual antenna signals

may have low precision, but regardless of that, the coherent

combination yields excellent SNR eventually. We demonstrate

below that the resolution of digital signals and operators, such
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Fig. 9. Simple, configurable, and scalable architecture for QRD-based Massive MIMO precoder (From [45]).

Fig. 10. Microphotographs of Massive MIMO precoder and detector chips:
(a) From [45] (b) From [49].

as filtering coefficients, can be scaled back sharply. Further-

more, we advocate processing of the per-antenna functionality

without the conventional circuit design margins that are used

to cope with uncertainties in the semiconductor technology.

This approach has been called “at the semiconductor’s edge”

to indicate an operation point where the performance-energy

benefit of the technology is maximally exploited at the expense

of reliability [51]. Specifically, voltage over-scaling offers sig-

nificant energy reductions in deeply scaled CMOS, up to more

than 50%, at the risk of occasional processing errors. Massive

MIMO systems can be designed to meet required performance

levels when operating with error-prone digital signal process-

ing circuits. Circuits remain functional even for the worst-case

scenario in which the DSP circuitry in some antenna paths fails

completely, for example by a broken power supply. We will call

the situation where the signal in an antenna branch is fully lost

“antenna outage”.

A. Per-Antenna Functions: Coarse Processing Provides

Excellent Performance

Massive MIMO can operate well with low-resolution signals.

A profiling of the per-antenna functionality in terms of generic

operations per second shows that for an LTE-like setup, about

80% of the complexity is in the filtering and the remaining

20% is in the (I)FFT operation. The filtering functionality is

the most demanding because of the need to over-sample and

hence process at high speed. Significant savings in complexity

are therefore possible by minimizing the resolution of this pro-

cessing. An exploration of the word lengths of the data signals,

nsf , and of the filtering coefficients, nf , is reported on in [52].

The circuit area complexity CFilt of the T -tap FIR filtering of

I- and Q-signals as a function of the word lengths is calculated

using basic formulas for the complexity of adders and multipli-

ers, which are dependent on the word-lengths n and m of the

operands as follows:

Cadd = n · log2 n

Cmult = n · m (32)

CFilt = 2 · T · (m + n) · log2(m + n) + 2 · T · m · n.

If a smaller number of bits is used to represent the signals and

the filter coefficients, the hardware complexity as given in (32)

is reduced. However, decreasing the word length will increase

the quantization noise. For a desired transmission quality the

just-sufficient precision can be determined. Considering that the

quantization noise will be independent among the antennas, its

combined impact will be smaller for larger numbers of antennas.

This effect is illustrated in Figure 11 for the rather demanding

64-QAM case, and an uncoded Bit-Error Rate (BER) of 10−3 .

The curves were generated based on individual BER vs. SNR

simulations for different coefficient and signal resolutions, from

which the equal performance points were extracted. Dotted lines

show equal-complexity (in terms of area) solutions. For a 128 ×
4 Massive MIMO system, 4 and 5 bits are sufficient for the

signals and the coefficients, respectively, for the targeted per-

formance. This brings a 62% complexity reduction for the fil-

ters compared to the 8 × 4 case. The outer right points on

the curves are clearly always suboptimal and demonstrate that

high-precision filter coefficients do not improve performance,

while they can cause a significant complexity penalty. A similar

observation holds for the upper left points. For higher system

loads, more bits are needed. At the system level one could
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Fig. 11. Representation of the relative circuit complexity (area) as function of
the signal and filter coefficient word lengths. The markers show possible operat-
ing points with a BER of 10−3 . The dashed lines with numbers show operating
points with equal complexity. The graphs demonstrate that low-resolution pro-
cessing is feasible with large antenna arrays. From [52].

trade-off system load for constellation order to satisfy through-

put requirements.

This analysis provides evidence that low-complexity, coarse

processing in the digital filters of the individual antenna signals

can offer the required performance in Massive MIMO. In the

downlink the signals will next be passed to the D/A converters.

The latter could be low resolution as well. The more demanding

design challenge for D/A converters however is to meet out-of-

band emission specifications, as introduced in Section IV.

The (I)FFT operations required in Massive MIMO systems

with multicarrier modulation can also be designed for Massive

MIMO operation specifically and benefit from the complexity

reduction brought by the coarse quantization. A thorough opti-

mization is however quite complex and should consider varying

quantization at the different butterfly stages.

B. Processing at the Semiconductor’s Edge

Applications have benefited over the last decades from

Moore’s law, providing ever higher performance at lower power

consumption. Integrated Circuits (ICs) have been able to oper-

ate at lower dynamic power thanks to the scaling of the supply

voltage Vdd . For digital circuits, the average dynamic power

consumption is

Pdyn, av = (αC) · V 2
dd · fs , (33)

where αC is the effective switching capacitance of the mod-

ule and fs is the switching frequency. Clearly, Pdyn, av scales

quadratically with the supply voltage Vdd.

However with scaling towards deep sub-micron CMOS

technologies (65 nm and smaller), designers are facing ever-

increasing variability challenges. The process, voltage and tem-

perature (PVT) variabilities are considered to be the three main

contributors to circuit variability. Conventionally, to cope with

this challenge, ICs are designed at the worst PVT corners, to en-

sure that they always operate correctly. Figure 12 illustrates the

different operating regions for ICs suffering from manufacturing

variability.

Fig. 12. Different approaches to scaling of the supply voltage Vdd to cope with
speed variability. Operation at the worst-case corner misses out on potential
energy savings. Adaptive Voltage Scaling (AVS) provides the just-needed Vdd

for the circuit to function error-free. A further reduction of Vdd by Voltage
Over-Scaling (VOS) would save more power, yet would introduce processing
errors.

The conventional design approach for worst-case conditions

introduces considerable margins, leading to reduced peak per-

formance and wasted power consumption. The worst-case syn-

thesis assumes that all devices in the circuit operate in the slow-

process corner and experience the least favorable voltage and

temperature conditions. Temperature variations can yield up to

20% speed differences for a single D flip-flop. For instance,

[53] shows that for 28-nm technology, the performance (speed)

difference for a representative circuit is as large as 2.2 times

between the typical case and the worst case. Adaptive scaling

techniques manage power dissipation and temperature by using

a variable supply voltage Vdd.

Scaling down the supply voltage is regarded as an error-free

power saving method as long as the signal timing constraints

are met. However, the critical (minimum) Vdd that guarantees

timing closure cannot be determined at design time due to PVT

variabilities and aging effects.

A third design approach has recently gained interest, namely

to scale the Vdd below the critical supply voltage, which is

called Voltage Over-Scaling (VOS). In the VOS approach, the

designer accepts that sporadic errors might occur: for logic com-

ponents, the signal from the longest propagation paths can be

mis-captured; for memory components, it may lead to incor-

rect write/read data/address or data loss. This methodology of

approximate computing enables very energy-efficient process-

ing [54]. Wireless communication systems are designed to cope

with distortions and errors occurring on the channel. They are

hence inherently good candidates for error-resilient processing

solutions. In Massive MIMO, the large number of antennas im-

plies redundancy in the system. It is promising to apply VOS

specifically in the per-antenna processing, reaching beyond the

reliability margins of the circuits, but still operating at a point

where the computations are more often correct than wrong.

C. Massive MIMO Resilience to Circuit Errors

Massive MIMO inherently is resilient to some circuits errors

in the per-antenna processing. Hardware errors in a number of

antenna paths can be absorbed by the system thanks to the aver-

aging induced by the large number of antennas – reminiscent of
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Fig. 13. BER performance versus channel SNR. Randomly affected “victim
antennas” from significant digital hardware errors for uncoded and coded (3/4
soft LDPC) QPSK, and uncoded and coded (3/4 soft LDPC) 16-QAM. From
[51]. The legend denotes: i) error-free (star markers), ii) 3% victim antennas
(circle markers), and iii) 10% victim antennas (triangle markers).

how the effects of small-scale fading average out in the coher-

ent multi-user MIMO processing [3]. Semiconductor process

variability was at first experienced globally, between wafers or

circuits separated in space on a silicon wafer, hence die-to-die.

Designers have thus realistically assumed transistor parameters

to be correlated for nearby circuits on a specific die and chip.

However, in deeply scaled technologies, device variability is

mostly caused by the inaccuracy of lithography and etch tech-

nology. Intra-die (local) variations have consequently become

significant, and are even reported dominant over global varia-

tions [55]. This apparent design challenge comes with a new

opportunity to shave margins in the implementation of Mas-

sive MIMO. Indeed, different from the distortion resulting from

non-linearities, the digital distortion is independent of the signal

and hence uncorrelated over the antennas. The Massive MIMO

system will continue functioning even when, sporadically, one

or a few individual antenna signals is subject to full failure. As

mentioned in Section VI-B, this opens the door to operation of

circuits with much lower design margins compared to traditional

specifications, and most interestingly at lower supply voltages

and hence power consumption.

The digital hardware errors in (I)FFT and filters introduced

by silicon unreliability and by ambitious design methodologies

result in incorrect bits during signal processing. This can be

regarded as digital circuit distortion. We characterize the im-

pact on the purity of the signal in terms of the signal-to-digital

distortion ratio (SDDR):

SDDR = 10 · log
σs

2

σd
2

(34)

where σs
2 and σd

2 are the powers of the error-free digital an-

tenna signal output, and the noise power of the digital distor-

tion due to circuit unreliability, respectively. First, we consider

VOS errors which are temporary and local in nature. The BER-

performance is shown in Figure 13 for a severe SDDR distortion,

Fig. 14. Impact of antenna outage on Massive MIMO system performance
depends on the system load, for the pessimistic case where the errors are not
detected. Disabling antennas will limit the impact of antenna outage on the
Massive MIMO system performance. From [51].

where signals get stuck at a fixed value. Results for different

modulation orders and both uncoded and coded performance

(rate 3/4 soft decoded LPDC) are shown. The resulting SNR

degradation remains limited to <1 dB for 3% of the antennas

being a “victim” of circuit errors in the coded 16-QAM, and

even up to 10% of the antennas in QPSK case.

When operating deeply scaled circuits without margins, occa-

sionally a full circuit failure may occur. The impact of this effect

on the Massive MIMO system performance is called “antenna

outage”. The digital output are then permanently stuck at a fixed

value, which is assumed to be its maximum possible value. The

SDDR of the outage antenna is −∞, as the signals from the

victim antennas are completely lost. This model is regarded a

worst-case hardware failure. Note that the −∞ SDDR does not

imply infinite noise to the whole system, as only the victim an-

tennas are affected and their PA power is normalized among all

antennas. Therefore, a single antenna outage will not cause the

system to fail entirely. The impact on the system performance

is shown in Figure 14 for different antenna outage and system

loads, for the pessimistic case where the errors are not detected.

As demonstrated, Massive MIMO can operate well with

rather severe circuits errors, and thus allows significant VOS.

The impact increases with higher system load and modulation

constellations. The VDD may be adapted according to the system

parameters to always offer just sufficient performance. In-situ

monitoring based on test signals can be applied to perform ad-

equate VDD scaling [51].

In order to further improve the system robustness towards

hardware errors, techniques to first detect hardware errors, and

next either neglect, or if needed disable, defective hardware can

be applied. Importantly, the distortion originating from digital

circuit errors fundamentally differs from pure random noise.

While process variations may feature continuous random dis-

tributions, their effect typically results in discrete error events.

Dedicated monitoring circuitry can be established [56] for the
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Fig. 15. BER performance is only slightly degraded for up to ∼10% of
antennas failing. Systematic failure of circuits is detected and corresponding
antenna signals are discarded. From [51].

functional components such as (I)FFTs and filters, that will

detect these errors. If the Massive MIMO system is operated

whereby it receives information from the hardware level on fail-

ing circuits, it can adapt its signal processing accordingly. One

option is to disable systematically failing antenna paths and no

longer consider them in the central processing. The BER results

are given in Figure 15 for a case with moderate system load

(10 × 100 in this simulation). It shows that excluding defective

circuits limits the degradation level to <0.5 dB on uncoded

QPSK for up to ∼10% of the antenna paths failing. This

approach is equivalent to operating the Massive MIMO system

with a reduced number of BS antennas M . For a representative

case of QPSK transmission in a 100-antenna, 10-user scenario

and with 28 nm standard CMOS technology, up to 40%

power savings can be achieved with negligible performance

degradation [57].

In conclusion, lean per-antenna processing can be performed

in Massive MIMO systems. The very large number of opera-

tions, due to the large number of antenna paths, can be performed

with low precision and with a profoundly scaled supply voltage.

Combined, these techniques can reduce the power consumption

due to the digital processing on each antenna path by an order of

magnitude. For an exemplary system with 100 antennas at the

base station, the total is comparable to a conventional MIMO

system with an order of magnitude less antennas.

VII. TERMINALS: INCREASED RELIABILITY WITH

LOW-COMPLEXITY SIGNAL PROCESSING

A. Increased Service Levels on Low Complexity Terminals

It has been shown that the Massive MIMO system concept

does not require any additional specific functionality at the UE

side. Massive MIMO terminals that have a single antenna, or

apply simple diversity reception, will only be able to receive

a single spatial stream. However, large numbers of terminals

can be multiplexed in the same time-frequency slot, and every

Fig. 16. Envisioned use cases for future international mobile telecommuni-
cation. (source: Recommendation ITU-R M.2083-0 “Framework and overall
objectives of the future development of IMT for 2020 and beyond” [58])

Fig. 17. The array gain and channel hardening effect demonstrated experi-
mentally, for a M = 128, K = 8 setup. With permission and C©Ove Edfors,
Lund University.

terminal can be allocated the full bandwidth of the system.

This results in a throughput per terminal comparable with that

of conventional UEs that receive multiple spatial streams in

parallel.

5G terminals are expected to come in large numbers and sup-

port a diverse set of service requirements. Next to the continued

traffic growth towards terminals allocated to human users, a

variety of devices will require Machine Type Communication

(MTC). Figure 16 illustrates three main use cases envisioned

by industry alliances and the International Telecommunication

Union (ITU) [58].

Figure 16 demonstrates that 5G technologies not only need

to enhance mobile broadband links. New solutions are needed

to connect a very large number of (ultra-) low-power devices

and machines requiring very reliable and low-latency services.

Massive MIMO can simultaneously support many broadband

terminals in sub-6 GHz bands in indoor, outdoor, and mobile

environments. The technology can also be tailored to optimally

serve new MTC-based applications. Especially for narrowband

MTC, the high array gain and the high degree of spatial diver-

sity offered by Massive MIMO will help. The spatial diversity

specifically gives rise to channel hardening.

The effects of array gain and channel hardening are illustrated

for a 128-antenna setup in Figure 17. Consistently boosted signal

levels over all terminal positions, thanks to the array gain, are
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Fig. 18. A conventional wideband receiver for multiple spatial layers requires
complex MIMO detection.

observed. Terminals can potentially transmit data at several tens

of dB lower output powers. The latter however requires high-

quality CSI to be available, and the power allocated to pilots

will limit the savings in practice. The channel hardening effect

enhances the reliability of the links and improves the quality of

service; most notably:

1) Increased performance at the cell edges, where terminals

may experience limited or worst case no connectivity in

current networks. Massive MIMO addresses this chal-

lenge, provided good uplink pilot-based CSI acquisition

is ensured.

2) Power savings and hence longer autonomy for battery-

powered devices.

3) Improved reliability. Fewer packet retransmissions can

also reduce the end-to-end latency. The specifications put

forward for Ultra Reliable Low Latency Communication

(URLLC) in 5G is to support a 99.9999% reliability, and

an end-to-end latency better than 1ms.

4) Sustained good service levels in conditions with many

simultaneously active users.

In the next paragraphs, first a typical broadband user equip-

ment is zoomed in on. It is indicated how low-power operation

can be achieved while keeping backward compatibility with 4G

air interfaces. Next, we discuss how tailored Massive-MIMO

systems have great potential to address the challenging require-

ments of MTC terminals.

B. Energy Efficient Broadband Terminals

No advanced processing is required at the UE in Massive

MIMO systems. In contrast, 4G systems deliver broadband ser-

vices to UEs through multiplexing of several spatial layers. We

compare a typical Massive MIMO terminal with the reference

case of a 4 × 4 MIMO link. The latter requires MIMO de-

tection at the terminal side in the downlink. Figure 18 shows a

functional block scheme of a conventional broadband, multiple-

antenna terminal receiver.

The complexity breakdown of a typical MIMO-OFDM base-

band chain identifies channel estimation and MIMO detection

as the main bottlenecks. We take as a reference 4 × 4 MIMO-

OFDM case where the multiple-antenna processing can be con-

veniently performed per subcarrier resulting in relatively low-

complexity implementations [59]. We consider a basic linear

MIMO detector, and non-linear detectors implementing (or-

dered) Successive Interference Cancellation (SIC). The latter are

required to achieve acceptable system performance especially in

the low-SNR regime and in high-mobility scenarios. The power

consumption of the inner modem receiver of the terminal in

TABLE III
RELATIVE POWER CONSUMPTION ESTIMATES FOR UE INNER MODEM RECEIVERS

TABLE IV
POWER CONSUMPTION IN DIFFERENT MODES MEASURED

ON A LPWAN IOT NODE

a Massive MIMO system is estimated relatively to published

VLSI implementations for conventional MIMO receivers [60],

[61]. A range of algorithms and implementations for MIMO

detectors have been reported on, differing substantially in com-

plexity. Our analysis is based on typical data for the specific

components, and our own design know-how. Table III summa-

rizes the assessment for both single-antenna and dual-antenna

diversity-reception terminals, demonstrating an expected reduc-

tion in power consumption of a factor 5 to 50.2 The instantaneous

throughput will be higher for conventional MIMO terminals

receiving several spatial layers. To compare the energy effi-

ciency (in Joule/bit), the same average throughput needs to be

considered.

C. Tailored Solutions Fit for Low-Power Connected Devices

MTC for sensors and actuators opens the door for a variety of

new IoT applications. Low energy consumption is essential to

enable long autonomy of devices powered by batteries or even

relying on harvested energy. The physics of radio propagation

dictates a strong attenuation on the link with distance, d:

PRx ∝ GTxGRxd
−nPTx, n = 2 in free space, n > 2 typically,

(35)

where PRx and PTx are the received and transmitted powers, re-

spectively, and GRx and GTx are directivity gains at the receiving

and transmitting end of the link. The above is especially unfor-

tunate for mostly uplink-dominated MTC. Low Power Wide

Area Network (LPWAN) technologies are dedicated to connect

IoT nodes at long ranges. We performed measurements with an

IoT node communicating via a LORA gateway [62]. Inspection

of the power consumption of this illustrative node in Table IV

provides valuable insights. The transmit power is relatively high

since the power amplifier needs to provide sufficient power to

cope with large-scale fading losses. The energy consumption,

which will ultimately determine the autonomy of the node, is

shown in Figure 19.

2A similar reduction in hardware complexity could be achieved for UE radios
custom-designed to operate in Massive MIMO networks specifically. Backward
compatibility with previous broadband systems may require the presence of
MIMO detection hardware in broadband UEs in practice.
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Fig. 19. The transmit energy will dominate the battery time on a LPWAN IoT
node.

This pinpoints the fierce challenge of connecting sensor nodes

and other autonomous devices at a longer range. Their traffic

is mostly dominated by uplink, hence putting the node in the

most energy-consuming transmitting mode. Equation (35) re-

veals that fundamentally only few parameters can be influenced

to improve the link budget. Antennas at IoT nodes, due to size

and cost constraints, can hardly offer any gain and on the con-

trary not seldom introduce losses. Massive MIMO systems ex-

hibit a large-antenna array gain and apply an adaptive channel-

matched beamforming approach. They offer the opportunity to

reduce the transmit power in constrained MTC nodes propor-

tionally to the square root of number of BS antennas M or even

proportionally to M if accurate CSI is acquired. This enables

the simultaneous service of a large number of devices. This as-

set is important to keep up with the predicted evolution towards

Massive MTC. A Massive MIMO-based LPWAN could also

offer extended coverage and increased reliability, provided that

a power-efficient solution for the pilot-based CSI-acquisition is

implemented. This challenge, to develop Massive MIMO tech-

nology for MTC services is further discussed in Section VIII.

VIII. DEMONSTRATIONS, CONCLUSION AND

FUTURE DIRECTIONS

A. Signal Processing at Work in Massive MIMO

Demonstrations

Demonstrations that have proven the superior spectral effi-

ciency of Massive MIMO and the adequacy of DSP solutions

in real-life testbeds are illustrated here below. Furthermore we

summarize the conclusions of this paper and outline future re-

search directions.

To prove a new wireless technology, it is very important to

build up testbeds to conduct verification and evaluate perfor-

mance in real-life environments with over-the-air transmission.

For Massive MIMO it is especially crucial, since performance

is dependent on propagation characteristics, and measurement-

based channel models themselves are still under develop-

ment. Thanks to recent advances in Software-Defined Radio

(SDR) technology, several Massive MIMO prototype systems

have been built by both industry and academia, including the

Argos testbed with 96 antennas [10], Eurecom’s 64-antenna

testbed [64], Facebook’s ARIES project [65], the 100-antenna

LuMaMi testbed from Lund University (Figure 20a) [63], SEU’s

Fig. 20. Two different Massive MIMO testbeds: (a) the LuMaMi testbed at
Lund University a with collocated antenna array (from [63]) and (b) the KU
Leuven testbed with separated antenna arrays.

128-antenna testbed [5], and testbeds exploring distributed ar-

rays from the KU Leuven (Figure 20b) [66] and University of

Bristol [67].

1) World-Record in Spectral Efficiency and Massive MIMO

in Mobility: The signal processing techniques discussed in

this paper, especially the cross-level optimization methodol-

ogy, have been exploited in the development of Massive MIMO

testbeds to enable real-time processing of wide-band signals for

large numbers of antennas. For instance, the LuMaMi tested

adopts the processing distribution scheme in Figure 3, where

50 SDRs with Field-Programmable Gate-Arrays (FPGAs) are

used to perform per-antenna processing in a parallel fashion.

Four centralized FPGAs are responsible for per-subcarrier pro-

cessing, and the Peripheral Component Interconnect Express

(PCIe) with direct memory access (DMA) channels handles the

data shuffling. QR-decomposition based ZF processing has been

implemented to fully leverage the available parallel processing

resources in the FPGAs.

Diverse field trials, both indoors and outdoors with static and

mobile users, have been conducted using the Massive MIMO

testbeds. In a 2016 experiment, a 128-antenna Massive MIMO

base station served 22 users, each transmitting with 256-QAM

modulation, on the same time-frequency resource [67]. The

spectral efficiency benefits from the spatial multiplexing as well

as from the high constellation order, enabled by the array gain. In

practice, protocol overhead and FEC redundancy will determine

the actual net spectral efficiency. In the actual demonstration a

spectral efficiency of 145.6 bits/s/Hz was achieved on a 20 MHz

radio channel, representing a ∼20 times increase with respect

to the current 4G air interface. The performance was achieved

in an environment without mobility and multi-cell interference,

which would constitute the limiting factors performance in a

practical deployment.

The same research group also demonstrated Massive MIMO

operation in an outdoor scenario with moderate mobility

[4]. Figure 21 shows the measurement scenario where the

100-antenna LuMaMi testbed is placed on the rooftop of a build-

ing facing a parking lot ∼75 m away. Ten single-antenna users

are served in real time at 3.7 GHz, including six users moving

at pedestrian speed and four terminals on vehicles moving at a

speed up to around 50 km/h. The spatial multiplexing was fully
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Fig. 21. Overview of the testbed demonstration of Massive MIMO in a mo-
bility scenario, at the campus of Lund University, Sweden.

achieved and the communication quality was on average well

maintained for all terminals [68]. Sporadic interruptions could

be traced back to temporary loss of synchronization. It should be

noted that both the speed of the cars and the number of terminals

could be larger in a real deployment. In the proof of concept they

were limited by the available test space and equipment. In fact,

at 3.7 GHz carrier frequency and with a slot length of 0.5 ms,

the maximum permitted mobility (assuming a two-ray model

with Nyquist sampling, and a factor-of-two design margin, as in

[3]) is over 140 km/h [69].

2) Further Investigation Needed for Synchronization: A

critical challenge requiring further investigation is the initial

synchronization between the base station and the user terminals.

This initial synchronization has to start without any knowledge

of the channels, and therefore cannot benefit from an array gain.

How to efficiently perform initial time and frequency synchro-

nization acquisition without the Massive array gain and how to

explore the (partial) array gain to provide faster and more ro-

bust synchronization are still open questions. Two methods were

studied during the LuMaMi testbed experiments. One method is

to reserve a dedicated RF chain for the synchronization signal,

which is transmitted using an omni-directional antenna. In this

case, a higher-power PA (which is not available in LuMaMi) is

needed to provide coverage. Another method is to use beam-

sweeping for the synchronization signal [70], but this is ineffi-

cient, as it is essentially equivalent to repetition coding, and also

there is risk of synchronization loss when the users are not hit by

a beam. Improved techniques, based on space-time block codes,

have been investigated [71]–[73]. Iterative search and tracking

methods [74] may have potential, especially for mobile users.

B. Concluding on the Signal Processing

Appropriate co-design of algorithms, hardware architectures,

and circuits in Massive MIMO implementations brings signifi-

cant benefits:
� Energy efficient implementations of “theoretically opti-

mal” Massive MIMO DSP architectures are nontrivial but

possible. We have detailed some of the most important

innovations required, and explained their analysis. The

power consumption of conventional macro base stations

is dominated by the PA stage. They benefit in Massive

MIMO from the ability to operate on an order of magni-

tude less transmit power.
� The sufficiency of low-precision quantization and process-

ing, predicted by information-theoretic studies, has now

also been validated through real signal processing experi-

ments. A reduction in word-length up to 6 times compared

to conventional systems translates into corresponding sav-

ings in complexity, power consumption and memory.
� Dedicated and scalable hardware architectures implement-

ing tailored algorithms for large matrix processing facili-

tate zero-forcing precoding at the base station in real time,

at 30 mW power consumption in relevant scenarios for a

128 × 8 system.
� Voltage over-scaling, a speculative concept just 5 years

ago, has found appropriate application in the Massive

MIMO per-antenna processing.
� Smart control of algorithmic modes and scalable devices,

including body bias adaptation, can guarantee suitable

performance-power trade-offs over a wide range of com-

munication scenarios and channel propagation conditions.
� Lean terminals could operate in typical broadband cellular

Massive MIMO networks at about 10%−20% of the power

consumption of equivalent conventional terminals, both in

data transmission and reception.
� The efficiency of Massive MIMO base stations can be fur-

ther improved by relaxing the requirements of the RF and

analogue hardware. However, caution is needed as (non-

linear) distortion may under specific conditions combine

coherently.

C. Future Directions

1) Progress Massive MIMO Deployment in Actual Networks:

Integration of all components into deployment in actual net-

works represents a vast design and development effort, that will

include:
� Overcoming challenges related to connection of the many

antenna paths to the central processing units. This involves

implementing high-speed interconnects and coping with

potential coupling effects in the front-end modules.
� Devising efficient schedulers for large numbers of users.

Achieving the high spatial multiplexing gains offered by

Massive MIMO fundamentally requires that many termi-

nals are scheduled for service simultaneously. Tuning or

re-design of higher-layer protocols could be beneficial to

shape the traffic patterns, such that aggressive spatial mul-

tiplexing can be performed.
� Designing antenna arrays. Massive MIMO arrays do not

have to be linear, rectangular or cylindrical. Small antenna

elements could be naturally integrated into the environ-

ment, onto the surface of existing structures, or faces of

buildings, for example, in an aesthetically pleasing manner.

Insights from electromagnetics may guide the design of

new types of arrays. Specifically, for a given volume V ,

consider the corresponding smallest possible sphere that
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contains V . If one covers the surface of this sphere with

antennas at a density of ∼1/λ2 elements per square meter,

then there is no point in installing any additional elements

inside of the interior of V [75]. Sampling the surface on a

λ × λ-grid captures all information in the radiated field. In

conclusion, what goes into the interior of V is unimportant,

only the surface matters.

Industrial recognition of the value of Massive MIMO tech-

nology is evidenced by the large number of contributions on the

topic in the 3GPP-LTE standardization of New Radio (NR) for

5G systems. Leading operators have already started to perform

commercial field trials of the technology [69].

2) Enhanced Functionalities: Large antenna arrays can also

be used to perform accurate positioning and localization. This

feature can offer improved context-awareness to services. Also

the Massive MIMO communication system itself could exploit

this information to perform smart pilot allocation, for example.

3) Scale Up Capacity and Efficiency: The call for more and

higher-quality wireless services is expected to increase for many

years, and the quest for wireless systems offering higher spectral

and energy efficiency will continue. Higher peak-rates can be

offered in Massive MIMO by performing spatial multiplexing

of several streams to one terminal. Actual gains may be limited

due to insufficient rank of the channel, yet for two streams this

will mostly be achievable with co-located antennas exploiting

cross-polarization.

Wider bandwidth channels can be allocated especially in

mmWave bands. Radio propagation and in particular absorp-

tion is considerably different at these frequencies. Arrays with a

large number of antennas can be small in size, yet their effective

gain may suffer from high losses on the interconnect. Conse-

quently, Massive MIMO systems in these bands call for other

architectures and their deployment will best suit particular use

cases, for example hotspots.

With larger antenna arrays, both better spatial multiplexing

and array gains can be achieved. The new concepts of cell-free

Massive MIMO [76] and intelligent surfaces [77] accelerate this

trend to a next level. With cell-free Massive MIMO, coherently

cooperating antennas are spread out over a larger geographical

area, providing improved macro-diversity and improved channel

rank for multiple-antenna terminals. The intelligent surface con-

cept envisages distributed nodes that form electromagnetically

active walls, floors, and planar objects. New research is urgently

needed to bring these new concepts to their full potential.
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