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Abstract: This paper investigates a novel Efficient Dual-branch Bottleneck Network (EDBNet) to
perform real-time semantic segmentation tasks on mobile robot systems based on CCD camera.
To remedy the non-linear connection between the input and the output, a small-scale and shallow
module called the Efficient Dual-branch Bottleneck (EDB) module is established. The EDB unit
consists of two branches with different dilation rates, and each branch widens the non-linear layers.
This module helps to simultaneously extract local and situational information while maintaining
a minimal set of parameters. Moreover, the EDBNet, which is built on the EDB unit, is intended
to enhance accuracy, inference speed, and parameter flexibility. It employs dilated convolution
with a high dilation rate to increase the receptive field and three downsampling procedures to
maintain feature maps with superior spatial resolution. Additionally, the EDBNet uses effective
convolutions and compresses the network layer to reduce computational complexity, which is an
efficient technique to capture a great deal of information while keeping a rapid computing speed.
Finally, using the CamVid and Cityscapes datasets, we obtain Mean Intersection over Union (MIoU)
results of 68.58 percent and 71.21 percent, respectively, with just 1.03 million parameters and faster
performance on a single GTX 1070Ti card. These results also demonstrate the effectiveness of the
practical mobile robot system.

Keywords: semantic segmentation; CCD camera; lightweight network; neural networks

1. Introduction

Recently, the technology of machine learning and neural networks for instrumentation
and measurement has been widely discussed [1–6], especially for robotics fields [7–11]. For
example, a multisensor-based algorithm for the outdoor environment using RGB-image
neural networks for the mobile robot was considered in [12]. Furthermore, the framework
of light field imaging and convolutional neural networks was designed in [13] for the
semantic segmentation task. Machine vision, a core part of the mobile robot, plays an
essential role in the self-control system and achieves the transformation from automation to
intelligence [14,15]. As the main content of the machine vision, environmental perception
provides essential environmental information for the subsequent tasks of the unmanned
robot [16–18]. At present, Convolutional Neural Networks (CNNs) have been developing
rapidly, and they have pushed the performance of machine vision to an unprecedented
height [19]. Most semantic segmentation methods are based on CNNs. Semantic segmen-
tation is used to divide the image into semantically meaningful parts, and this technique
is known as pixel-wise classification. It is widely used in fields such as semantic seg-
mentation [20–22], classification [23], detection [24], and so on. These applications have a
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high demand for the precision and speed of semantic segmentation techniques [25,26]. In
contrast, simultaneously considering the real-time performance and accuracy is the main
challenge for engineering applications.

For semantic segmentation tasks, three problems are considered for CNNs: (1) Accu-
racy and inference speed dilemma. The complex structure produces high precision but
takes more time during inference. The fundamental issue is how to balance the conflict
between accuracy and inference speed. (2) The presence of items of different levels. Differ-
ent environmental information, such as buildings, roads, pedestrians, and lane-line, has
different sizes and shapes. This requires the network to understand the spatial features in
multiple feature spaces and extract abundant multi-scale information. (3) A large number
of parameters. Embedded devices on unmanned mobile robots often have limited storage.
Therefore, the algorithm with few parameters is suitable for application on unmanned
mobile devices.

Consequently, this study aims to construct an effective lightweight network (EDBNet)
by building a small network that meets both operating speed and accuracy with few vari-
ables. With regard to the accuracy, feature maps with high spatial resolution, wide receptive
fields, and an increase in non-linear layers can extract significant and substantial feature
representations. Furthermore, the flexible structure with channel pruning, dropping certain
layers, and applying depth-wise convolution, can reduce the computational complexity in
terms of inference speed. The following items are the main contributions:

• A shallow EDB package is suggested to capture a wealth of information from two
aspects in the situation of instrument detection on mobile robots. Firstly, this module
consists of two branches jointly extracting local and contextual information. Secondly,
two-dimensional standard convolution is divided into two parallel one-dimensional
convolutions in each branch, widening the non-linear layers and strengthening the
non-linear relationship.

• The mobile robot system can accurately and quickly draw conclusions while inter-
preting a scene. Studies using the CamVid and Cityscapes datasets demonstrate
the efficacy of two real-world experiments on mobile robot systems, as well as the
high accuracy and rapid inference speed that EDBNet accomplishes while creating a
few parameters.

Rlated works are described in Section 2 along with some fundamental and cutting-edge
techniques and an overview of current issues. Finally, the planned EDBNet is introduced,
and Section 3 goes into great depth on how to construct each component. To confirm the
usefulness of the EDBNet, we compare the experimental findings with those from other
methods in Section 4. The conclusions and future planning are presented in Section 5.

2. Related Works
2.1. Multi-Scale Strategies

Generally, the existence of multi-scale objects increases the difficulty of semantic
segmentation tasks. How to describe multi-scale objects to improve accuracy becomes a key
problem. Many researchers often address this problem by extracting multi-scale features.
Early methods such as FCN [27] and Unet [28] adopt serial skip connections to fuse the
high-level and low-level information. Segnet [29] introduces Pooling Indices to record
detailed information. The above three early methods reuse the low-level information to
optimize object details such as boundary location and achieve fine segmentation results.
However, successive downsampling operations result in the loss of lots of information, thus
adversely affecting the segmentation results. Spatial pyramid pooling is a helpful strategy
to extract multi-scale features. For instance, PSPNet [30] proposes the Pyramid Pooling
Module to fuse features under four different pyramid scales. DeepLab [31] uses Atrous
Spatial Pyramid Pooling (ASPP), which can capture objects from the image at multiple
scales. RefineNet [32], a generic multi-path refinement network, is also a good network
with multi-scale architecture. PSPNet, Deeplab, and RefineNet have complex structures
to achieve high accuracy. However, a complex structure introduces high computational
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complexity, and then we need to spend more time computing during the inference. As a
result, these algorithms often provide poor inference speeds and are ineffective for real-
time segmentation applications. Some retrieve not just multi-scale features but also offer
rapid inference speeds for lightweight neural networks. In order to obtain information
on various scales, ICNet employs three branches [33], and these data are then fused using
CFF (Cascade Feature Fusion). Additionally, ICNet speeds up inference by lowering input
resolution. DAB unit fully utilizes depthwise separable and dilated convolution while
simultaneously extracting local and factual information. DABNet [34] layers DAB blocks
to compromise inference speed and accuracy. In order to extract both high-level semantic
information and minimal specific details, BiseNet [35] employs two branches to fuse the
information using the Feature Fusion Module.

2.2. Lightweight Networks

Real-time applications have a strict requirement for inference speed. Unmanned
mobile robot often has limited storage, which requires the algorithm to have a small
number of parameters. Thus, a lightweight network, such as ENet [23], SqueezeNet [36],
ShuffleNet [37], is an effective way to improve the inference speed and parameters in some
applications. For instance, a lightweight network based on multi-scale context fusion [38]
is proposed to improve the accuracy, inference speed, and model size. A lightweight deep
neural network [39] is designed to exploit surgical instrument semantic segmentation that
meets real-time conditions, accuracy, and robustness. Regarding practical engineering
applications, balancing accuracy, inference speed, and model size is the main concern.

In the case of inference speed, four methods are often used to decrease the computa-
tional time during the inference. Firstly, reducing the resolution and pruning channels are
common and effective methods, which greatly reduce the calculation and thus decrease
the computational time. Secondly, lots of lightweight models adopt effective convolution
methods such as depthwise separable convolution [22], one-dimensional convolution [23],
and group convolution [40]. Those convolution methods change the computational strategy
of the convolution and dramatically reduce the computational complexity, thus accelerating
the inference speed. Thirdly, some algorithms abandon some convolutional/downsampling
layers to obtain a shallow/tight structure. Fourthly, Binary Ensemble Neural Networks [41]
replace most arithmetic operations with the bit-wise operation, which substantially accel-
erates the inference speed. The above methods accelerate the inference speed effectively.
Nevertheless, lowering the resolution, adopting a good convolution technique, and us-
ing BNNs would result in significant spatial information loss. The non-linear connection
between the input and the output will deteriorate if channels are pruned and layers are
abandoned, and those operations also affect precision.

In terms of parameters, three methods are mainly used to decrease the parameters.
Firstly, effective convolution methods not only accelerate the inference speed but also
decrease parameters. For example, MobileNet [42] replaces the Standard Convolution
with the Depthwise Separable Convolution, and the parameters are reduced by about
8/9. Secondly, model compression is an effective method. For example, Xception [43]
simplifies the Inception module [44] and uses the group convolution to extract the features.
GhostNet [45] and SqueezeNet [36] design the compression module named “Fire module”
and “Ghost module”, respectively. Thirdly, some models change the type of parameters.
The author transforms the data type of BNNs from float-32 to 1-bit, which decreases the
parameters substantially.

3. Proposed Network

We go into further detail on the design of the EDBNet in this part. The EDB module is
first described in detail as the main element of EDBNet, as seen in Figure 1. The design
of the EDBNet architecture is then discussed, including the network depth, the staged
extraction of features, and the arrangement of the EDB module. Finally, Figure 2 illustrates
the general structure of the proposed EDBNet.
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Figure 1. EDB module. (BN: Batch normalization; ReLU: Activation function, rectified linear unit;
c: Channel number; colorblueM: A positive number divisible by 2; s: Convolution stride; d: Dilation
rate; g: Group number).
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Figure 2. Structure of EDBNet. (c: Channel number; s: Convolution stride; d: Dilation rate; g: Group
number).

3.1. Edb Module

Bottleneck structure. Inspired by the Inception module in GoogLeNet [46], a similar
bottleneck structure is applied to the EDB module. To extract local feature information
and contextual information while preserving the small-scale structure, the EDB module
utilizes dual branches when dealing with complete feature information. As seen in Figure 1,
the input is first filtered using a 3 × 3 conventional convolutional structure, and then a
dual-branch structure is employed to extract both local and contextual feature information.
Then, new features are created by merging the information from the original features
using 1 × 1 standard convolution. The EDB module’s complexity is adjusted dynamically
using residual connections. Overall, the EDB module can extract multi-scale informa-
tion. Multiple depthwise convolutions could effectively decrease the parameters and
computational time.

Dual-branch structure. The dual-branch structure, which makes up the majority of the
EDB module, is crucial to the combined collection of local and contextual information. As
shown in Figure 1, two branches make up this dual-branch arrangement. The upper one,
named “branch 1”, mainly extracts the local information to describe the detail of the object.
It consists of a 3 × 3 standard convolution and two depthwise asymmetric convolutions.
The first is to use the 3 × 3 standard convolutions to filter the input. Then, considering
that asymmetric convolution can reduce the computational complexity and parameters, a
1 × 3 convolution and a 3× 1 convolution are applied in our EDB. Unlike factorized convo-
lutions in ERFNet [47] and DABNet [34], the 1 × 3 convolution and the 3 × 1 convolution
are parallel rather than cascade, which can widen the non-linear layers and strengthen the
non-linear relationship between the input and the output while maintaining the function of
cascade asymmetric convolutions. The bottom one, named “branch 2”, is used to extract the
contextual information. It consists of a dilated convolution, a depthwise convolution, and
two depthwise asymmetric convolutions. The dilated convolution is used to enlarge the re-
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ceptive field. Compared with the large convolutional kernel, it produces fewer parameters
and quicker computational speed while enlarging the receptive field. Then, a depthwise
convolution and two parallel depthwise asymmetric convolutions are used to widen and
deepen the non-linear layers, benefiting from extracting sufficient contextual information.
Overall, this dual-branch structure strengthens the non-linear relationship to extract as
much multi-scale feature information as possible. Meanwhile, effective convolutions such
as dilated convolution and depthwise convolution decrease parameters and accelerate
computational speed.

3.2. EDBNet Architecture Design

We will go into more detail about the EDBNet’s architecture in this part, including
how to strike a balance between accuracy, inference speed, and parameters; Figure 2 depicts
the EDBNet framework.

Since repeated downsampling operations result in feature maps with significantly
reduced spatial resolution and produce sparse features in the last layer [48,49], the EDBNet
structure will lose a significant amount of spatial information, making semantic segmenta-
tion tasks more difficult. In order to achieve a tighter architecture, the EDBNet uses three
downsampling processes. This technique generates high spatial resolution feature maps
and preserves adequate spatial feature information, but its receptive field is insufficient to
include the objects. In order to solve this issue, we thus introduce dilated convolution to
extend the receptive field.

We categorize the EDBNet into three phases based on the variations in spatial resolu-
tion. Three 3 × 3 conventional convolution processes make up the first stage’s extraction
of the original feature data. In this case, the downsampling procedure uses a 3 × 3 convo-
lution with stride 2 as the input. Compared to max-pooling, keeping a lot of information
is advantageous. On the other hand, it speeds up inference by reducing resolution. The
second stage consists of three 3 × 3 conventional convolutional networks and a downsam-
pling operation. This step likewise harvests sufficient image features, similar to the first
stage. Following the second stage, we combine the feature data from the downsampling
operation with the convolution layers from the final layer of the second section and input
them into the third stage. Four EDB modules and a downsampling process make up the
third stage. Thus, the EDBNet acquires sufficient receptive field to cover the object and
collect multi-scale feature data by progressively increasing the dilation rates in the EDB
units. In the end, we combine that data and submit it to the classifier. After the bilinear
interpolation, the output pictures restore the same resolution as the original image.

In conclusion, the EDBNet can significantly increase speed, accuracy, and parameter
adaptability. Only a few downsampling processes result in feature maps with great spatial
resolution and additional spatial data. The non-linear layers are widened by the EDB
module, which simultaneously gathers local and contextual information. The receptive
field may be increased, and multi-scale feature data can be extracted using dilated con-
volutions in EDB modules with various dilation rates. These processes frequently result
in great accuracy. The computational complexity is decreased by efficient convolutions
like depthwise and 1D convolution. A compact and shallow network topology is also
advantageous, which speeds up calculation during inference. The two processes mentioned
above help to increase the speed of inference.

4. Experiments

In this part, the accuracy, speed of inference, and parameters of the EDBNet are
assessed using the CamVid dataset and the Cityscapes dataset [50]. The implementation
process is first outlined in detail. The EDBNet’s usefulness is then shown through a series
of tests we design. Then, we assess the accuracy, speed of inference, and parameters of
EDBNet compared to big models and lightweight neural networks.
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4.1. Implementation Details

Trials are conducted on the computer equipped with a GTX 1070Ti GPU and Pytorch.
To improve the training procedure, we use an Adam optimizer. The epoch is set to 1000,
while the batch size is 8. The loss function used to determine how much the forecasted
output (Yij) differs from the label (Tij) in this case is the cross-entropy.

J = − 1
N

N

∑
i=1

C

∑
j=1

yijlog(pij) (1)

where N is the number of test samples. C is the number of classifications. pij is the predicted
probability and is dependent on the output results of EDBNet. yij is the indicator variable
and can be expressed by:

yij =

{
0, Yij 6= Tij

1, Yij = Tij
(2)

In the early stage of training, it needs to learn quickly with a large learning rate. In the
later stage of training, it needs a small learning rate to find the optimal solution. The pow
function is used to dynamically adjust the learning rate, as follows:

η = baseLR(1− cur_epoch
max_epoch

)0.9 (3)

where baseLR denotes the original learning rate. cur_epoch represents the current number
of epoch. max_epoch is the maximum number of iterations.

There are 367 training images, 101 validation images, 233 testing images, and 11 semantic
categories in the CamVid dataset. Additionally, the Cityscapes dataset includes 1525 test photos,
500 validation images, and 2975 training images that are divided into 19 semantic categories.

4.2. Ablation Experiment

We conduct ablation experiments to verify the effectiveness of the proposed algorithm.
The EDB module plays an important role in real-time semantic segmentation tasks. Here,
the EDBNet structure is used as the baseline, and we verify the effectiveness of the EDB
module from three aspects. When without branches 1 or 2, the networks are named
“EDBNet without branch1” and “EDBNet without branch 2”, respectively. “EDBNet with
extended Stage 2” represents that EDB modules in the second stage replaces standard
convolutions. “EDBNet with extended Stage 3” represents that six EDB modules are used
in the third stage with the results of Table 1.

When all EDB modules are replaced with conventional convolutions, according to
the EDBNet design, the MIoU drops from 68.58 to 58.68 percent. This demonstrates how
accurately the EDB module is intended to work. The correlation between pixels, high-level
feature information that indicates an object’s characteristic, is described by contextual
information. Incorrect object categorization will result in a lack of contextual information.
This substantially impacts the accuracy of semantic segmentation.

The related structure has a faster inference time and fewer variables when the EDB
module forgoes branches 1 or 2, but accuracy suffers since the EDB module cannot extract
contextual information. Branch 2 yields feature maps with great spatial resolution when
abandoned, according to Table 1. The accuracy is only 61.77 percent MIoU, and the
receptive field is insufficient to cover the objects. Branch 2 employs a high dilation rate
to expand the receptive area when branch 1 is abandoned, increasing accuracy from
61.77 percent to 66.7 percent. In addition, when the dilation rate in Stage 3 is fixed, the
ability of the EDB module to extract multi-scale information is limited. So EDBNet with a
fixed dilation rate achieves 67.26% accuracy, which is less than 1% compared to EDBNet
with a gradually increased dilation rate. Compared with standard convolution, dilated
convolution, or depthwise separable convolution, the EDB module can extract complete
information and better describe objects. The accuracy could be improved when standard,
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dilated, or depthwise separable convolution is replaced with an EDB module. However,
more time is spent during the inference. Too many EDB modules will slow down the
inference speed. It is crucial to design the amount of EDB modules such that accuracy and
inference speed may be traded off. Four EDB modules in the third stage, developed after
extensive testing, improve the link between inference speed and accuracy in EDBNet.

Table 1. Ablation Experiments on CamVid dataset.

Models MIoU(%) FPS Parameters

EDBNet without
Branch 2 61.77 78.13 0.80 M

EDBNet without
Branch 1 66.70 68.49 0.81 M

EDBNet with extended
Stage 2 68.45 46.08 1.40 M

EDBNet with extended
Stage 3 67.88 35.97 1.06 M

EDBNet with fixed
dilation rate 67.26 61.73 1.03 M

EDBNet(ours) 68.58 61.73 1.03 M

4.3. Performance Evaluation of the Accuracy and Parameters

The EDBNet’s network design performance is examined using the CamVid and
Cityscapes datasets. In terms of accuracy and parameters, we compare the experimental
findings of our EDBNet with those of commonly used and cutting-edge networks. Table 2
displays the findings. Refer to Figures 3 and 4.

Large models. In addition to cutting-edge algorithms like PSPNet, Deeplab, SVCNet,
and CGBNet, large models include the frequently used FCN, Segnet, Dilation 10, and
DeconvNet. The framework with iterative downsampling processes has poor spatial
resolution feature maps and loses a great deal of spatial information. This negatively
impacts semantic segmentation tasks. To address the issue, FCN-8s offers skip connection,
which fuses the low-level and high-level characteristics. Segnet introduces the pooling
indices to describe the location information accurately. DeconvNet adds unspooling and
deconvolution layers to restore details such as location and shape. Those operations
mitigate the above problem, but their role is limited. Large models that are often used
typically perform poorly in terms of accuracy. Large models using cutting-edge algorithms
typically create a new sophisticated module to extract all the information and therefore
achieve great accuracy. For example, DeepLab abandons the last downsampling layers to
create feature maps with high spatial resolution and adds the ASPP module to extract the
multi-scale sort. These procedures can increase accuracy. PSPNet creates PPM, a multi-scale
module that can extract distinct features in multiple feature spaces, to increase detailed and
semantic information representation. The inference speed of big state-of-the-art models is
drastically slowed, making them unsuitable for real-time semantic segmentation tasks and
having good accuracy overall. The suggested technique clearly outperforms commonly
used big models in terms of accuracy, inference speed, and parameters, as shown in Table 2.
Large, cutting-edge models yield great accuracy; on the Cityscapes dataset, Deeplab,
SVCNet, and CGBNet each reaches more than 80 MIoU. However, the inference speed is
severely compromised by such techniques. Compared to big state-of-the-art models, the
proposed technique better balances accuracy and inference speed.
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Table 2. Testing Results of Accuracy MIoU).

Models
GTX 1070Ti

Parameters
CamVid Cityscapes

Large Models

FCN-8s [27] 57.0 65.3 134.5 M
SegNet [29] 60.1 - 29.45 M
Dilation10 [51] 65.3 67.1 140.5 M
PSPNet [30] 69.1 78.4 65.7 M
DeepLab v3 [31] - 81.3 >30 M
SVCNet [52] 75.4 81.0 -
CGBNet [53] - 81.2 -

Lightweight
Models

ENet [23] 51.3 58.3 0.37 M
ICNet [33] 67.1 69.5 26.6 M
BiseNet [35] 65.5 68.4 12.5 M
ERFNet [47] - 68.0 2.1 M
ESPNet V2 [54] - 66.2 <10 M
FSSNet [55] 58.6 58.8 0.2 M
DABNet [34] 66.4 70.1 0.76 M
DFANet [56] 64.7 70.3 7.8 M
BiseNet v2 [57] 72.4 72.6 49 M

EDBNet (proposed) 68.6 71.2 1.03 M

Lightweight models. ENet is renowned for its fast inference speed and small parameter
requirements. In order to achieve a compact structure while simultaneously losing accuracy,
the last downsampling layers are abandoned. On the CamVid and Cityscapes datasets,
ENet only achieves 51.3 and 58.3 percent MIoU, respectively. Lightweight algorithms
like ICNet, Bisenet, DABNet, and DFANet emphasize the trade-off between accuracy and
inference speed due to the demands of real-time applications. These algorithms provide
an effective module that extracts all information rapidly. As an illustration, DABNet
creates a DAB module that quickly pulls local and contextual data. BiseNet creates a
straightforward dual-branch unit to capture both high-level semantic and low-level detail
information. Those methods comprehensively balance computational complexity and
structural complexity. From Table 2, ENet and FSSNet stress the inference speed and
parameters, their accuracy less than most widely used large models. Other lightweight
structures achieve more than 68 percent MIoU while maintaining quick inference speed.
Even DABNet and DFANet produce quicker inference speeds than ENet and FSSNet. Our
proposed EDBNet achieves 68.6% MIoU and 71.2% MIoU with 1.03 M parameter and
quick inference speed on the CamVid and Cityscapes datasets. Compared with lightweight
models, EDBNet produces competitive results.
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(a) (b) (c)

Figure 3. Semantic segmentation results on the CamVid. (a) Original images. (b) EDBNet. (c) Ground truth.

(a) (b) (c)

Figure 4. Semantic segmentation results on the Cityscapes. (a) Original images. (b) EDBNet. (c) Ground truth.
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4.4. Performance Evaluation of the Inference Speed on a Single GTX 1070Ti Card

In the original studies, certain lightweight networks are run on various computing
devices. For instance, Titan X, GTX 1080Ti, and GTX 1070Ti are used to test ENet, DABNet,
and EDBNet (planned), respectively. Since the computing equipment impacts only the
inference speed, we assess the inference speed under identical circumstances to make a
fair comparison. On a single GTX 1070Ti card, we compare our method to cutting-edge
algorithms with rapid inference speeds, including ENet, DABNet, and BiseNet. Table 3
displays the comparative findings.

Table 3. Testing Results of Inference Speed.

Models
512 × 1024
ms fps

SegNet 80.6 12.4
ENet 18.2 54.9
ICNet 15.0 67.2
DABNet 14.6 68.5
ESPNet 12.7 78.7
DFANet 12.6 79.4
BiseNet v2 9.7 103.1
EDBNet (proposed) 12.3 81.3

In contrast to conventional convolution, the EDB function includes two branches to extract
additional feature information. The complicated structure requires more time to deduce the non-
linear relationship between the input and output. We lower the computational complexity on
two fronts to speed up inference while obtaining a wealth of feature information. (1) Regarding
the EDB module design, some standard convolutions are replaced with depthwise convolutions.
(2) Some last layers are abandoned in terms of the EDBNet architecture design. In addition,
because the main role of the EDB module is to fuse multi-scale feature information, the initial
features are extracted by standard convolutions, and EDB modules are used in the last stage.
From Table 3, EDBNet has a quicker inference speed than Segnet, ENet, ICNet, and DABNet,
while achieving better accuracy. Compared with ESPNet and DFANet, EDBNet produces a
similar inference speed. On the other hand, BiseNet v2 achieves the quickest inference speed
compared to the lightweight networks listed in Table 3.

4.5. Results on a Practical Mobile Robot in the Real World

In order to evaluate the semantic performance of the practical mobile robot system,
two robot platforms are used to operate the real-time segmentation task. Firstly, for the
standard four-wheel drive mobile robot platform, the embedded device with Nvidia Jetson
AGX Xavier is used to run the EDBNet, and the CCD camera is applied to the image
acquisition equipment. The environment perception system comprises RS-LIDAR-32 Lidar,
XW-GI7660 integrated navigation, and a CCD camera. The graphics card memory of the
robot system is 8 GB, as well as the six wheel-legged robot. For fast segmentation of road
information, we only set two categories so that the mobile robot can quickly find the way
and effectively avoid obstacles simultaneously.

The semantic segmentation performance of road edge information using the EDBNet
method on the mobile robot is shown in Figure 5. In the case of different conditions such as
direct sunlight, back-lighting, and shadow, the EDBNet method can obtain a better segment
of road regions from the background. In other words, if the mobile robot quickly finds a
passable area through the result of semantic segmentation, the network result has effective
processing speed and segmentation effect. When the embedded device with Nvidia Jetson
AGX Xavier is at peak processing speed, the real-time operating speed of the EDBNet can
perform tasks under 30 FPS on the mobile robot.
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Figure 5. Semantic segmentation results of road edge information on the campus environment.

Furthermore, the six wheel-legged robot [58,59] is utilized to evaluate the proposed
algorithm in the real-world environment, as shown in Figure 6. There are the visual
perception system, central control system, motion control system, and energy system in
the robot system. The mobility system consists of six-wheeled Elmo servo motors with the
VxWorks environment and 36 GSM20-1202 electric cylinders with a 300 mm stroke. The
energy system includes 24 V storage and 300 V power batteries. The robot is equipped
with attitude, force, and motor encoder sensors for real-time feedback control. As a bonus,
the visual system integrates navigation (XW-GI7660), Lidia (Velodyne), an infrared sensor
(Gobi640), and a CCD sensor (Blackfly). The image engine is a TX2 board, and the control
environment is ROS and Ubuntu. The CCD camera is employed as the image acquisition
apparatus, and the Nvidia Jetson AGX Xavier is used to control the EDBNet.

The semantic segmentation results are shown in Figure 7. Firstly, (b) EDBNet, (c)
DABNet, and (d) ENet are trained on the Cityscapes dataset. Then, the trained results of
ENet, DABNet, and EDBNet are deployed on the six wheel-legged robot for the semantic
segmentation task. In the real-world environment, the environment information includes
roads, trees, buildings, cars, sidewalks, and so on. It can be seen in Figure 7 that three
detailed comparison results can be drawn, including three pedestrians, bicycles, and cars.
The proposed EDBNet algorithm can identify three pedestrians without a box behind them.
In contrast, the ENet network basically loses the semantic information of the box, and
the segmentation of the three pedestrians sticks together without clearly separating the
three characters. Furthermore, in the case of the semantic segmentation task for bicycle
groups and telephone poles, the EDBNet algorithm can effectively identify all bicycles and
telephone poles in the image, while the DABNet and ENet networks lose part of the object
information, and the ENet network does not express the pole information well. At the same
time, for the identification task of car groups, the proposed algorithm can also complete the
task well, while the other two methods have information loss in identification accuracy. In
summary, compared with more advanced algorithms, the proposed algorithm has effective
application performance in mobile robot systems, and it is an optional method that can be
generalized and applied to engineering applications.
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Figure 6. Hardware and software architecture of the robotic distributed system.

(a) (b) (c) (d)

Figure 7. Semantic segmentation results in the real-world environment using the six wheel-legged
mobile robot. (a) Original images. (b) EDBNet (proposed). (c) DABNet. (d) ENet.

5. Conclusions

This research attempts to enhance the real-time performance and semantic segmen-
tation accuracy acceptable for robotic systems in engineering fields. A novel Efficient
Dual-branch Bottleneck Network (EDBNet) is presented for real-time semantic segmen-
tation tasks in intricate street sceneries. With minimal arguments, this module assists in
concurrently extracting local and contextual information. Dual-branch structure, dilated
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convolutions, and group convolutions are all fully utilized by the EDB module. While
preserving a few settings, it may jointly extract local and contextual data. By substituting
two parallel one-dimensional convolutions for one two-dimensional convolution to further
eliminate feature information, the non-linear layers are widened, and the non-linear con-
nection is strengthened. The accuracy, speed, and parameters of the EDBNet are intended
to be highly effective. EDBNet delivers greater accuracy and has fewer parameters than
other shallow networks, according to trials on the Cityscapes and CamVid datasets. Despite
the items’ various sizes, EDBNet could still characterize them more accurately. EDBNet
delivers a faster inference performance on a single GTX 1070Ti when compared to DABNet.
These results demonstrate the suitability of EDBNet for real-time semantic segmentation
tasks on robot image processing. In the future, we will consider more applications on
artificial intelligence frameworks to enhance the semantic segmentation performance.
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