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1. INTRODUCTION

Since its introduction [Agrawal et al. 1993], the problem of mining associa-
tion rules, as well as the more general problem of finding frequent sets, from
large databases has been the subject of numerous studies. These studies can
be broadly divided into two “generations.” In the first generation, all studies
focused either on performance and efficiency issues (e.g., the Apriori frame-
work [Agrawal and Srikant 1994; Agrawal et al. 1996], partitioning [Park et al.
1997], sampling [Toivonen 1996; Gibbons and Matias 1998], the tree-based
framework [Agarwal et al. 2000, 2001; Liu et al. 2002]), or on extending the ini-
tial notion of association rules to more general rules (e.g., multi-level rules [Han
and Fu 1995], quantitative and multi-dimensional rules [Fukuda et al. 1996;
Miller and Yang 1997], correlations and causal structures [Brin et al. 1997;
Silverstein et al. 1998], mining long patterns [Bayardo 1998], ratio rules [Korn
et al. 1998]). Studies in this generation basically considered the data mining
exercise in isolation.

Studies in the second generation have explored how data mining can best
interact with other key components in the broader picture of knowledge discov-
ery. One key component is the database management system (DBMS). Some
studies (e.g., the integration of association rule mining with relational DBMS
[Sarawagi et al. 1998], query flocks [Tsur et al. 1998]) explored how association
rule mining can handshake with the DBMS most effectively. Another compo-
nent, which is arguably even more important when it comes to knowledge dis-
covery, is the human user. From this standpoint, studies in the first generation
rely on a computational model where the computer does almost everything, and
the user is un-engaged during the process. This model provides little support
for (i) user guidance and focus (e.g., limiting the computation to what interests
the user), and (ii) user interaction (e.g., dynamically changing the parameters
midstream).

Note that it is not uncommon for the user to have certain broad phenomena
in mind, on which to focus the mining. Without user focus, the mining process is
treated as an impenetrable black-box—only allowing the user to set the thresh-
olds at the beginning, showing the user all the frequent sets (or rules) at the end,
but nothing in between. Moreover, the user cannot specify his interest via the
use of constraints. As a result, the user often needs to wait for a long period of
time for numerous frequent sets (or rules), out of which only a tiny fraction may
be interesting to the user. This motivates the call for a computing environment
where the user can express his focus. To this end, Ng, Lakshmanan, and their
colleagues [Ng et al. 1998; Lakshmanan et al. 1999] proposed the following:
(i) a constrained frequent-set mining framework within which the user can use
a rich set of constraints to guide the mining process to find only those frequent
sets satisfying the constraints; and (ii) a mining algorithm, called CAP, that
exploits the constraints to ensure that the computational effort is proportional
to the selectivity of the constraints.

Moreover, it is also important to note that the user usually does not know in
advance appropriate parameters (e.g., an appropriate support threshold) to be
used for the mining algorithms. An inappropriate choice yields, after possibly
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a long wait, either too many or too few frequent sets (or rules). This problem
is worsened when lacking continuous feedback from the mining algorithms
and when lacking user control during processing. This motivates the call for a
computing environment where the user is continually engaged in the mining
process, and can monitor the progress and dynamically make changes during
processing. To this end, Hidber [1999] proposed a “continuous/online” mining
algorithm, called Carma, that provides the user with continuous feedback on
the numerous frequent sets being computed, and permits the user to change
the support threshold dynamically.

The work presented in this article is motivated by the above observations
and the observation that data mining in general (and frequent-set mining in
particular) is a human-centered and exploratory process—not a one-shot exer-
cise. This calls for an environment where: (i) the user can express his focus,
(ii) the user is continually engaged in the process, and (iii) the user can monitor
the progress and dynamically make changes—not only to the numerical param-
eters (e.g., the support threshold), but also to the constraints—thus having a
decisive influence on subsequent computations. Such an environment needs to
support both user focus and user interaction equally well. Moreover, it has to
be extremely efficient, so as not to lose the user’s attention. Last but not least,
it has to be practical in the sense of not making unrealistic assumptions about
resources (e.g., buffer space). It is important to note that, although advances
in technology have improved today’s hardware (e.g., cheap abundant memory),
these advances also enable the user to easily collect a tremendous amount of
data. For instance, while the size of available buffer space has doubled over a
short period of time, the amount of data collected and used for mining may have
grown more than double over the same period! Hence, having the capability of
handling limited buffer space is always beneficial.

With respect to the above call for a practical environment for the human-
centered exploratory mining of constrained frequent sets, the two bodies of
work mentioned earlier fall short in different respects. Specifically, while the
use of constraints is very effective in capturing user focus, CAP does not handle
dynamic changes to the support threshold or to the constraints. While Carma
can handle dynamic changes to the support threshold, it does not handle con-
straints, let alone deal with dynamic changes to the constraints. Moreover,
Carma fails to work when the available buffer space is limited. The key general
contribution of this article is the development of an algorithmic framework,
called DCF, for Dynamic Constrained Frequent-set computation. Table I sum-
marizes the salient functionalities of DCF as compared with CAP and Carma.
Our technical contributions in this article are as follows:

—First, in Section 3, we introduce an algorithm called DCF (Dynamic Con-
strained Frequent-set computation) as an extension of Carma—but enhanced
with a structure called a segment support map (SSM). As a lightweight and
easy-to-compute structure, the SSM improves the efficiency of DCF by ob-
taining sharper upper bounds on the support of sets of items (i.e., itemsets),
which, in turn, helps to reduce the number of candidate itemsets that need
to be counted for support. Experimental results presented in Section 8 show
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Table I. DCF vs. the Most Relevant Algorithms

Salient Features Carma CAP Proposed DCF

Handling dynamic changes
to the support threshold

√
—

√
Handling constrained
frequent-set queries —

√ √
Performance enhancements
with a segment support map — —

√
Handling dynamic changes

to constraints — —
√

Capability of operating in
limited buffer space — —

√

that the SSM can significantly improve the efficiency of our proposed DCF
algorithm.

—Second, in Section 4, we extend the DCF algorithm introduced in Section 3 to
handle constraints. DCF is optimized in the sense that it exploits properties
of constraints to ensure that the search space is appropriately pruned as
early as possible. One such optimization by DCF is achieved by using the
SSM in a way different from that discussed in Section 3. This reinforces the
usefulness of the SSM.

—Third, in Section 5, we show how DCF can handle dynamic changes to con-
straints. Constraints can be tightened or relaxed. The latter case is particu-
larly computationally intensive. We show how the notion of delta member gen-
erating functions (delta MGFs) can be used to optimize the computation. Note
that delta MGFs are nontrivial—and original—extensions of member gener-
ating functions because we are not dealing with just a solution space of the
(conjunctions of) constraints, but are dealing with the set difference between
the solution spaces of the relaxed and the original constraints. Experimental
results presented in Section 8 show the effectiveness of this optimization.

—Fourth, in Section 6, we show how DCF can operate in limited buffer space.
For the unconstrained case, Carma assumes that there is enough buffer
space available for counting the support of all potentially frequent sets
simultaneously. We contend that this assumption can be unrealistic for
many scenarios. Hence, in Section 6, we show how DCF can handle realistic
situations where the buffer space is limited, and show that DCF is designed
to use the limited space as judiciously as possible to reduce I/O. Analytical
results presented in Section 6.4 show that when there is enough buffer
space, DCF is then just as efficient as Carma.

In sum, our goal is to develop an algorithmic framework for the efficient dy-
namic mining of constrained frequent sets. Our framework provides the user
with (i) the opportunity to express his focus on the mining process via the use
of constraints, and (ii) the flexibility to dynamically change the constraints. In
addition to the capabilities of handling constraints and of handling dynamic
changes to constraints, our framework also allows the user to operate in sit-
uations where the available buffer space is limited. In terms of performance,
our proposed SSM structure reduces the number of candidates that need to be
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counted for support. Our proposed delta MGF generates precisely those item-
sets satisfying the relaxed but not the original constraints (when handling dy-
namic relaxing changes to a constraint), thereby avoiding the generation and
exclusion of those itemsets that do not satisfy the relaxed constraints. This, in
turn, helps to speed up the computation.

This article is organized as follows: Section 2 provides related work and
background material relevant to the rest of this article. We start presenting our
current contributions in Section 3, where we introduce the DCF algorithm and
the SSM structure. While Section 4 focuses on handling constraints, Section 5
focuses on handling dynamic changes to the constraints. Section 6 shows how
DCF can operate in limited buffer space. Since the benefits of the SSM are
not confined to DCF, Section 7 discusses other useful applications of the SSM.
Section 8 gives experimental results. Finally, Section 9 presents conclusions
and future work.

2. RELATED WORK AND BACKGROUND

Here, we first discuss the related work; we then give a brief summary of
Carma, properties of constraints, and other background material relevant to
the rest of this article. Readers familiar with the work of Ng et al. [1998] can
skip Section 2.2, and those familiar with the work of Hidber [1999] can skip
Section 2.3.

2.1 Related Work

Among numerous studies on frequent-set mining, the most relevant algorithms
are CAP [Ng et al. 1998; Lakshmanan et al. 1999] and Carma [Hidber 1999].
They have been compared in Table I. More specifically, while the use of con-
straints is very effective in capturing user focus, CAP does not handle dynamic
changes to the support threshold or to the constraints. While Carma can han-
dle dynamic changes to the support threshold, it does not handle constraints,
let alone deal with dynamic changes to the constraints. Moreover, Carma fails
to work when the available buffer space is limited. In contrast, our proposed
DCF algorithm is capable of (i) handling constraints, (ii) handling dynamic
changes to constraints, (iii) handling dynamic changes to the support thresh-
old, and (iv) operating in limited buffer space. In terms of performance, DCF is
enhanced with a segment support map.

In addition, there are other relevant studies as well. One of them is the
DHP algorithm [Park et al. 1997], which was proposed to speed up the Apriori
algorithm by using a hash table. On the surface, the hash-based partioning
done by this DHP algorithm looks similar to our SSM structure proposed in
Section 3. However, there are several key differences between the DHP work
and our proposal. First, in the DHP algorithm, the hash table is used to partition
the itemsets of the same cardinalities (e.g., 2) into buckets; whereas, in our
DCF algorithm, the SSM partitions transactions, not itemsets. Second, the SSM
is intended to be a static data structure, whereas the hash table is created
dynamically for each run of the DHP algorithm. Third, the DHP algorithm does
not handle dynamic changes to the support threshold or to constraints, and it

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



342 • L. V. S. Lakshmanan et al.

does not deal with buffer space concerns. Fourth, the SSM delivers additional
benefits (e.g., more effective pruning of candidate itemsets) for skewed data,
when compared with the DHP.

Another relevant algorithm is the Partition algorithm [Savasere et al. 1995],
which divides transactions into partitions, and computes all itemsets that are
frequent locally within the partition. Such an algorithm does not set up any
structure like the SSM to reduce the number of candidates. Moreover, the al-
gorithm does not handle dynamic changes to the support threshold or to con-
straints, and it does not deal with buffer space concerns.

In our previous paper [Lakshmanan et al. 2000], we presented a preliminary
study on the SSM. Specifically, we focused on the effectiveness of the SSM in
facilitating online mining with Carma. Due to its effectiveness, we incorporate
the SSM into the DCF algorithm proposed in the current article. In addition
to this performance enhancement with the SSM, the two other key technical
focus areas of the current article are (i) the handling of dynamic changes to
constraints and (ii) the handling of limited buffer space. These two areas have
not been considered in our previous paper.

In another previous paper [Leung et al. 2002b], we presented methods to op-
timize the SSM. Specifically, we only focused on methods (or criteria to be used)
for partitioning database transactions into segments so that the performance
of the SSM can be further improved. We did not consider handling dynamic
changes to constraints or handling limited buffer space in that paper. In con-
trast, two key technical focus areas of the current article are (i) the handling
of dynamic changes to constraints and (ii) the handling of limited buffer space.
Moreover, in the current article, we build an SSM by arbitrarily partitioning the
transactions (i.e., not by partitioning the transactions in accordance with some
segmentation criteria). As a preview, such an SSM can prune a large number
of itemsets, and can bring a speedup that is several times better than without
using the SSM. We expect to obtain a higher speedup if we were to use the
“optimized” SSM presented in our previous paper [Leung et al. 2002b].

The next group of related work focuses on the FP-tree based (Frequent-
Pattern tree based) mining algorithms [Han et al. 2000; Pei et al. 2001; Leung
et al. 2002a]. While most algorithms find frequent sets by generating candidates
and checking their support against the transaction database, the FP-tree based
algorithms do not rely on candidate generation. One example of this group of
algorithms is the FP-growth algorithm [Han et al. 2000], which was developed—
based on an extended prefix-tree structure called an FP-tree—to improve the
performance and efficiency of frequent-set mining. Specifically, the algorithm
first constructs an FP-tree using the set of frequent singleton itemsets; it then
maps each database transaction into a tree path. By successively concatenating
those frequent singleton itemsets found in the tree path, frequent itemsets (of
various cardinalities) can be generated. Our proposed technique is different
from the FP-growth algorithm in several key aspects. First, FP-tree is query-
dependent, because it is constructed based on the transaction database and
the support threshold minsup. When minsup is relaxed, the FP-tree may need
to be reconstructed. Whereas, the SSM is query-independent. Any change of
minsup value does not affect the SSM. Second, FP-tree is constructed main
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memory-based. If the FP-tree representing the lattice of a large database does
not fit into memory, recursive projections and partitioning are required to break
such a database into smaller pieces. As a result, there will be a corresponding
performance overhead. Whereas, in our proposed technique, the size of the SSM
is independent of the size of the lattice. Third, the FP-growth algorithm does
not handle constraints, let alone deal with dynamic changes to the constraints.

Recently, extensions of the FP-growth algorithm—called FIC [Pei et al.
2001], FPS [Leung et al. 2002a], and OpportuneProject [Liu et al. 2002]—were
proposed to exploit constraints for mining constrained frequent sets. However,
these algorithms still do not handle dynamic changes to the support threshold
or to the constraints.

So far, we have discussed those studies that improve performance. Next,
we turn our attention to studies that support user interaction. Toivonen [1996]
proposed random sampling algorithms to find frequent itemsets from a random
sample of a large transaction database. While this technique reduces I/O and
computation costs, one potential weakness is that it may lead to inaccurate an-
swers (caused by the presence of skewed data). Hellerstein and his colleagues
[Hellerstein et al. 1997; Haas and Hellerstein 2001; Raman and Hellerstein
2002] proposed algorithms for online query processing (e.g., online aggrega-
tion), but not for mining. They used sampling techniques to give approximate
query answers (though these answers can be refined continuously during the
query processing). Gibbons and Matias [1998] proposed sampling-based sum-
mary statistics to improve approximate query answers. In other words, these
answers are approximate, and only hold within a certain error bound. More-
over, these sampling techniques work reasonably well for numerical parame-
ters like the support threshold, but do not necessarily work for constraints (e.g.,
S.Type ⊇ {snack, soda}). In contrast, the itemsets computed by our DCF algo-
rithm are guaranteed to satisfy both numerical parameters (e.g., the support
threshold) and the constraints.

2.2 The CFQ Language and Properties of Constraints

A constrained frequent-set query (CFQ) [Ng et al. 1998] is a query of the form
{(S, T ) | C}, where S and T are set variables, and C is a conjunction of domain,
class, and aggregate constraints. The aggregate operations allowed are the basic
ones supported by SQL, that is, min(), max(), sum(), and avg(). For our examples
below, we assume to have the transaction database trans(TID, Itemset) with
auxiliary information contained in itemInfo(Item, Type, Price). The CFQ
{(S, T ) | S.Type ∩ T.Type = ∅} asks for frequent itemset pairs whose associated
type sets are disjointed. Similarly, the CFQ {(S, T ) | S.Type = snack∧T.Type =
beer ∧ max(S.Price) < min(T.Price)} finds pairs of frequent itemsets of cheaper
snack items and of more expensive beer items.

Constraints such as S.Type = snack are called 1-var constraints (i.e., con-
straints with one variable); constraints such as max(S.Price) < min(T.Price)
are called 2-var constraints (i.e., constraints with two variables). A 1-var con-
straint can be antimonotone, and/or succinct, or neither. See Definitions 2.1
and 2.2.
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Table II. Characterization of 1-var Constraints: Antimonotonicity
and Succinctness

1-var Constraint Antimonotone Succinct

support(S) ≥ minsup yes no

S.A θ cn, where θ ∈ {=, ≤, ≥} yes yes
cn ∈ S.A no yes
S.A ⊇ CS no yes
S.A ⊆ CS yes yes
min(S.A) ≤ cn no yes
min(S.A) ≥ cn yes yes
max(S.A) ≤ cn yes yes
max(S.A) ≥ cn no yes
sum(S.A) ≤ cn yes no
sum(S.A) ≥ cn no no
avg(S.A) θ cn, where θ ∈ {=, ≤, ≥} no no

Note: S is a set variable, A is an attribute of a set S, cn is a constant for A,
and CS is a set of constants for A.

Definition 2.1 Antimonotonicity [Ng et al. 1998]. A 1-var constraint C is
antimonotone if and only if for all itemsets S, S′:

if S′ ⊇ S and S′ satisfies C, then S satisfies C.

Although antimonotonicity is not a new concept, one of the main contributions
in Ng et al.’s paper [1998]—with respect to this notion—is a detailed analy-
sis and a complete characterization of the class of 1-var constraints that are
antimonotone. Table II shows such a characterization. The second column of
the table identifies the constraints that are antimonotone, while the third col-
umn identifies the constraints that are succinct. (The concept of succinctness
is discussed below.) See Ng et al.’s paper [1998] for more details.

Like in the classical Apriori algorithm, antimonotonicity helps to prune can-
didates when evaluating a CFQ. However, at each iteration of the algorithm, we
still need to generate-and-test these candidates for satisfaction of the antimono-
tone constraints under consideration. Thus, the question we ask is whether
there are classes of constraints for which pruning can be done once-and-for-
all before any iteration takes place, thereby avoiding the generate-and-test
paradigm. This raises two key questions: (i) Can we succinctly characterize
the set of all itemsets that satisfy a given constraint, and when? (ii) How can
we generate all and only those itemsets that satisfy the given constraint, and
hence avoid the generate-and-test paradigm completely? Toward question (i),
Ng et al. [1998] formalized the notion of succinctness below (see Definition 2.2).
Toward question (ii), they proposed the notion of a member generating function
(see Definition 2.3).

In the following, for concreteness, but without loss of generality, we assume
that S is a set variable ranging over the domain of attribute Item (i.e., S ⊂ Item).
Let C be a 1-var constraint. Define SATC(Item) to be the set of itemsets that sat-
isfy C. With respect to the lattice space consisting of all itemsets, SATC(Item)
represents the pruned space consisting of those itemsets satisfying C. For ex-
ample, if C ≡ S.Price ≥ 50, then the pruned space for C contains precisely those
itemsets such that each item in the itemset has a price equal to 50 or above.
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Definition 2.2 Succinctness [Ng et al. 1998]. Define SATC(Item) to be the
set of itemsets that satisfy C. With respect to the lattice space consisting of all
itemsets, SATC(Item) represents the pruned space consisting of those itemsets
satisfying C. The notation 2I means the powerset of I .

(a) I ⊆ Item is a succinct set if it can be expressed as σp(Item) for some selection
predicate p, where σ is the selection operator.

(b) SP ⊆ 2Item is a succinct powerset if there is a fixed number of succinct
sets Item1, . . . , Itemk ⊆ Item such that SP can be expressed in terms of the
powersets of Item1, . . . , Itemk using union and minus.

(c) Finally, a 1-var constraint C is succinct provided that SATC(Item) is a suc-
cinct powerset.

For example, the constraint max(S.Price) ≥ 100 is succinct because such an
itemset must contain at least one item with Price ≥ 100. Since there is a precise
“formula” (namely, a member generating function) to generate all the itemsets
satisfying such a succinct constraint, there is no need to iteratively check the
constraint during the mining process.

Let us consider a more complicated example as follows. Given the constraint
C2 ≡ S.Type ⊇ {snack, soda}, the pruned space consists of all those itemsets
that contain at least one item of type snack and at least one item of type
soda. Let Item2, Item3, and Item4 be the sets σType=snack(Item), σType=soda(Item),
and σ(Type�=snack)∧(Type�=soda)(Item), respectively. Then, C2 is succinct because the
pruned space SATC2 (Item) can be expressed as 2Item − 2Item2 − 2Item3 − 2Item4 −
2Item2∪Item4 − 2Item3∪Item4 .

Definition 2.3 Member Generating Functions [Ng et al. 1998]. There are
two types of member generating functions:

(a) A succinct powerset SP ⊆ 2Item is said to have a basic member generating
function (basic MGF ) provided there is a function that can enumerate all
and only elements of SP, and that is of the form MGF ≡ {X 1 ∪ · · · ∪ X k+1 |
X i ⊆ σpi (Item) & X i �= ∅, for 1 ≤ i ≤ k; X k+1 ⊆ σpk+1 (Item)} for some
selection predicates p1, . . . , pk+1. In this definition, the X i ’s (for 1 ≤ i ≤
k) that are required to be nonempty are called mandatory item-subsets;
whereas X k+1 is called the optional item-subset.

(b) A succinct powerset SP ⊆ 2Item is said to have a general member generating
function (general MGF ) provided there is a function that can enumerate all
and only elements of SP, and that is of the form

⋃l
j=1 MGF j , for some basic

member generating functions MGF1, . . . , MGFl .

Whenever no confusion arises, we do not explicitly distinguish between a basic
MGF and a general MGF. Let us consider the following examples to gain a
better understanding of the above definition.

—For the constraint S.Price ≥ 50, its MGF is {X 1 | X 1 ⊆ σPrice ≥ 50(Item) &
X 1 �= ∅}. In this case, there is only one mandatory item-subset X 1, but there
is no optional item-subset. As shown above, this corresponds to the pruned
space being 2Item1 , where Item1 = σPrice ≥ 50(Item).
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—For max(S.Price) ≥ 100, its MGF is {X 1 ∪ X 2 | X 1 ⊆ σPrice≥100(Item) &
X 1 �= ∅ & X 2 ⊆ σPrice<100(Item)}. This is different from the previous example
(for S.Price ≥ 50) because once there is at least one item with Price ≥ 100,
then it is acceptable to include any item with Price < 100. This is what the
optional item-subset X 2 represents.

—For the constraint S.Type ⊇ {snack, soda}, its MGF is {X 1 ∪ X 2 ∪ X 3 |
X 1 ⊆ σType=snack(Item) & X 1 �= ∅ & X 2 ⊆ σType=soda(Item) & X 2 �= ∅ & X 3 ⊆
σ(Type�=snack)∧(Type�=soda)(Item)}. In this case, the optional item-subset X 3 con-
tains any item that is not of type snack or soda. These items may be included
so long as an itemset contains at least one snack item and one soda item.

So far, we have seen situations in which basic MGFs are used. However, there
are situations in which a general MGF is needed; the example below shows one
such situation.

—For the constraint S.Type ⊇ {snack} ∧ S.Type �⊇ {dairy, beer}, its MGF is
as follows:

{X 1 ∪ X 2 | X 1 ⊆ σType=snack(Item) & X 1 �= ∅ &
X 2 ⊆ σ(Type�=snack)∧(Type�=dairy)(Item)} ∪

{X 1 ∪ X 3 | X 1 ⊆ σType=snack(Item) & X 1 �= ∅ &
X 3 ⊆ σ(Type�=snack)∧(Type�=beer)(Item)}.

In this case, we want to find itemsets that satisfy the following “restrictions”:
(i) itemsets containing at least one item of type snack, and (ii) itemsets not
simultaneously containing both dairy and beer items (say, it may cause an
allergic reaction if we intake them together). Notice that for this constraint,
a general MGF is needed. This is not due to the conjunctive nature of the con-
straint, but due to its “restrictions.” To elaborate, on the one hand, we should
not suppress any dairy or beer item from being included; on the other hand,
we should not simultaneously include both dairy and beer items. Here, we
use a general MGF consisting of two basic MGFs. The first basic MGF enu-
merates the itemsets containing at least one snack item and some optional
items that are not of type snack or dairy; the second basic MGF enumerates
the itemsets containing at least one snack item and some optional items that
are not of type snack or beer. By so doing, we do not suppress any dairy or
beer item from being included because optional beer items can be enumer-
ated by the first basic MGF, while optional dairy items can be enumerated
by the second basic MGF. In addition, we also prevent both dairy and beer
items from being simultaneously included because none of the basic MGFs
enumerates both dairy and beer items.

While more details and discussions on constraints and MGFs can be found in
Ng et al.’s paper [1998], it suffices—for the material contained in this article—to
know the following two lemmas concerning succinct constraints.

LEMMA 2.4 ([NG ET AL. 1998]). Succinct constraints have the following
properties:

(a) For every succinct constraint C, there is a member generating function MGFC
that can generate precisely all those itemsets satisfying C.
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Procedure Carma-Phase I (TDB = 〈t1, . . . , tn〉, support sequence 〈σ1, . . . , σn〉) {
(0) V = ∅; /∗ initialization ∗/
(1) for i from 1 to n { /∗ start scanning TDB ∗/
(2) for all v ∈ V with v ⊆ ti { increment count(v); }
(3) for all v ⊆ ti with v �∈ V { /∗ insert v if appropriate ∗/
(4) if (for all w ⊂ v: w ∈ V and firstTrans(w) < i and maxSupport(w) ≥ σi) {
(5) insert v into V ;
(6) firstTrans(v) = i; count(v) = 1;
(7) if (v is a singleton itemset) maxMissed(v) = 0;
(8) else maxMissed(v) = min{ base, (maxMissed(w) + count(w) − 1) | w ⊂ v};

} /∗ end if ∗/
} /∗ end for-all ∗/

(9) /∗ pruning step, details omitted here: Retain v if maxSupport(v) ≥ σi ; ∗/
} /∗ end for ∗/

(10) return V ;
}

Fig. 1. Phase I of Algorithm Carma.

(b) For a set SC of succinct constraints, there is a member generating func-
tion MGFSC that can generate precisely all those itemsets satisfying all the
constraints in SC.

LEMMA 2.5 ([NG ET AL. 1998]). All 1-var domain, class, and aggregate con-
straints involving only min() and max() are succinct. However, all 1-var con-
straints involving sum() and avg() are not.

Hence, unlike antimonotone constraints, a succinct constraint can simply
operate in a generate-only environment (by using an MGF), rather than in
a generate-and-test environment. Moreover, it is important to note that a
majority of constraints are succinct. (For constraints that are not succinct,
many of them can be induced into weaker constraints that are succinct; see
Example 4.2.)

All the results to be presented in this article can be generalized from
1-var succinct constraints to a class of 2-var constraints called quasi-succinct
[Lakshmanan et al. 1999]. For lack of space, we do not pursue 2-var constraints
further.

2.3 Overview of Carma

To allow the user to dynamically adjust the support threshold, Carma [Hidber
1999] is divided into Phase I and Phase II. During Phase I, Carma constructs
a lattice V called the support lattice. For each itemset v ∈ V , Carma maintains
three integer counters: (i) firstTrans(v), storing the transaction index at which
v was inserted into the lattice V ; (ii) count(v), storing the support of v since v
was inserted; and (iii) maxMissed(v), storing an upper bound on the support of
v before v was inserted.

Suppose the ith transaction ti has just been read. Then, maxSupport(v),
defined to be (maxMissed(v) + count(v))/i, gives an upper bound on the support
of v in the first i transactions. At this point after reading ti, two main operations
(i.e., increment and insert) can take place. On the one hand, as shown in Step (2)
of Figure 1, Carma increments count(v) for each itemset v that is currently in
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V and is a subset of transaction ti. On the other hand, as shown in Step (3),
if v—that is a subset of ti—is not currently in the lattice V , then v is inserted
provided that the following Insertion Condition (in Step (4)) is met:

for all w ⊂ v: w ∈ V and firstTrans(w) < i and maxSupport(w) ≥ σi

where σi is the support threshold at the point after ti has just been read. If
the above Insertion Condition is met and v is inserted, then the three counters
associated with v are initialized in Steps (6), (7), and (8). Of the three counters,
the initialization of maxMissed(v) requires the most attention. If v is a singleton
itemset, the above Insertion Condition guarantees that this transaction is the
first transaction containing v, in which case maxMissed(v) should be initialized
to 0. If v is not a singleton itemset, then maxMissed(v) is initialized based on the
counters associated with all subsets w of v. In addition, such an initialization is
also based on a quantity called base, which is an estimate defined according to
the support threshold sequence: base = (i − 1) × g (〈σ1, . . . , σn〉) + |v| − 1. Here,
we omit the precise definition of the function g (), because it is immaterial to
the rest of the article.

THEOREM 2.6 ([HIDBER 1999]). Let 〈σ1, . . . , σn〉 be the sequence such that σi is
the support threshold after transaction ti is read. The support lattice V produced
at the end of Phase I of Carma is typically a superset of all frequent itemsets
relative to the support threshold given by g (〈σ1, . . . , σn〉).

The above theorem establishes some notion of correctness for Carma: The
support lattice V produced at the end of Phase I of Carma typically contains
all the frequent itemsets satisfying the specific threshold condition given by
g (〈σ1, . . . , σn〉). Here, we note that g (〈σ1, . . . , σn〉) ≥ σn in general. To deal with
the situation where g (〈σ1, . . . , σn〉) > σn, a heuristic was proposed to make
g (〈σ1, . . . , σn〉) ≈ σn (or to make it equal to σn), and was shown to behave very
well experimentally. Refer to Hidber [1999] for more details.

From time to time, Carma may invoke the pruning step (i.e., Step (9)) to prune
the lattice V during Phase I; details of the pruning step are omitted. Finally, to
complete the description of Carma, Phase II rescans the transaction database
TDB to get precise counts for all itemsets v ∈ V . Those itemsets whose supports
are below the last support threshold σn are pruned. The support threshold is
allowed to vary only during Phase I, but not during Phase II.

3. SEGMENT SUPPORT MAP

In the previous section, we provided related work and background material.
In this section, we start presenting our development of an algorithmic frame-
work for the efficient dynamic mining of constrained frequent sets. Our focus
of this section is on how we make our algorithmic framework efficient. More
specifically, to provide a human-centered and exploratory environment for data
mining, it is imperative that the system be efficient, and be able to deliver re-
sponses to the user in as “real time” as possible, so as not to lose the attention of
the user. Towards this objective, we introduce in this section a structure called
a segment support map (SSM ). We first give an overview of the SSM. We then
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introduce the DCF algorithm (as an extension of Carma), and show how DCF
can use the SSM to effect more pruning than Carma.

3.1 Motivation and Overview

Recall from Section 2.3 and from Steps (4) and (9) of Figure 1 that the only
source of pruning in Carma is based on the condition maxSupport(w) < σi.
The term maxSupport(v) is defined as (maxMissed(v) + count(v))/i. In turn,
maxMissed(v) is mainly initialized as in Step (8):

maxMissed(v) = min{base, (maxMissed(w) + count(w) − 1) | w ⊂ v}. (1)

However, there are two main weaknesses with this pruning strategy of Carma.
The first problem is that the right-hand-side of the above equation is too loose
an upper bound. In addition, because of the recursive nature of the equation,
a loose initialization of maxMissed(v) has a compound effect that causes the
bound for maxMissed(u), for all supersets u of v, to be quite loose as well.

The second problem is with the division by i in the term (maxMissed(v) +
count(v))/i. Basically, this is a uniform distribution assumption—assuming
that the transactions supporting v are uniformly distributed, that is, what-
ever happens in the first i transactions will continue to hold for the remaining
transactions. In practice, this assumption is hardly true. For example, if the
transaction database consists of supermarket transactions over a few months,
items sold during the summer can be very different from those sold in the fall.
Thus, pruning based on this assumption can be highly inaccurate. One conse-
quence is that an itemset might be pruned too early, and needs to be reinserted
afterwards. Another consequence is that an itemset might be kept for too long,
while it should have been pruned earlier.

The SSM can record whatever variations that may exist in the support of
an itemset from different parts of the transaction database. In this section, we
show how it can be used to tighten the maxMissed(v) bound, as well as to effect
pruning while discarding the uniform distribution assumption.

Let the transaction database TDB be arbitrarily divided into m nonoverlap-
ping partitions, called segments. A segment support map is a structure consist-
ing of supporti({a}) for all singleton itemsets {a}, where supporti({a}) denotes
the support of {a} in the ith segment for 1 ≤ i ≤ m. The support of {a}, by def-
inition, is then

∑m
i=1 supporti({a}). While the SSM only contains the segment

supports of singleton itemsets, it can be used to give an upper bound on the
support of an arbitrary itemset v:

estsup(v) =
m∑

i=1

min{supporti({a}) | a ∈ v}, (2)

where estsup(v) denotes the estimated segment support of v.

Example 3.1. Suppose there are four segments in an SSM, as shown in
Figure 2. The SSM stores the actual segment supports of items a, b, c for each
of the four segments. By Eq. (2), estsup({a, b}) is min{20, 5} + min{10, 20} +
min{5, 20} + min{20, 20}, for a total of 40. Similarly, by Eq. (2), the support of
itemset {a, b, c} is bounded from above by 30. On the other hand, if we did not
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SSM:

seg 1 seg 2 seg 3 seg 4 TDB

{a} 20 10 5 20 55
{b} 5 20 20 20 65
{c} 10 20 10 10 50

Fig. 2. Example of an SSM.

use the SSM (i.e., the number of segments is one), then the estimated support
for {a, b} would have been min{55, 65} = 55, while that for {a, b, c} would have
been min{55, 65, 50} = 50.

The above example shows how the SSM can provide valuable filtering by
reducing the number of candidate itemsets that need to be counted for their
supports (e.g., when the support threshold is less than 50). For many frequent-
set mining algorithms, one of the performance bottlenecks is the number of
candidates that have to be considered; even in cases where the true number of
frequent itemsets is small, there can be a huge number of candidate itemsets.
Another important thing to note is that for many algorithms (e.g., those based
on hashing), skewed data is problematic. In contrast, the more skewed the data,
the more effective the SSM is.

Clearly, the upper bound estsup(v) provided by the SSM can be made tighter
in two ways. The first way is to increase the number of segments m. The amount
of storage space required is then increased linearly. The second way to gener-
alize the SSM is to store not only the actual segment supports of singleton
itemsets, but also the actual segment supports of the itemsets of sizes at least
two. For example, for the support of itemset {a, b, c}, the actual segment sup-
ports based on {a, b}, {a, c}, and {b, c} provide a tighter upper bound than those
based on {a}, {b}, and {c}. The price is that the amount of storage space required
is then increased exponentially with respect to the sizes of the stored itemsets.
Thus, in most parts of this article, we restrict our consideration to segment sup-
ports of singleton itemsets. (We only discuss segment supports of 2-itemsets in
Section 8.5.) In this way, we keep the SSM as a very lightweight structure. For
instance, for a domain of 10,000 items, even 50 segments require the storage of
only 500,000 integers. We also note that the SSM is a fixed structure that can
be computed once at “compile-time,” and can be used regardless of how the sup-
port threshold is changed dynamically during “exploration-time.” Finally, there
is no searching involved when the SSM is used. Once the singleton itemsets are
enumerated based on some canonical ordering, the itemsets themselves need
not be stored (i.e., the first column in Figure 2), and direct addressing into the
SSM makes the computation of Eq. (2) very efficient.

3.2 Tightening the maxMissed(v) Bound

So far, we have given a general description of the SSM. Next, we introduce
the DCF algorithm. While DCF have other important features, which we will
present in later sections, we focus narrowly here on how the SSM is used in
DCF.

Figure 3 depicts the various events during a transaction scan. Here, we as-
sume that the kth segment contains h transactions. Suppose a certain itemset
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t1 . . . tq

�

point of insertion

tq+ j tq+h
. . . tn

maxMissed(v) ��
maxMissed1(v) �� k-th segment ��

futurek(v) ��

Fig. 3. Using the SSM for maxMissed(v) and futurek(v).

v is inserted after the j th transaction of this segment (i.e., transaction tq+ j
where j < h) has been read. Exactly as in Carma, our DCF algorithm ini-
tializes maxMissed(v) as per Eq. (1). However, in the presence of the SSM,
the DCF algorithm can divide maxMissed(v) into two components: (i) the part
from the first k − 1 segments, which we refer to as maxMissed1(v); and (ii) the
part from within the first j transactions in the kth segment, which we refer to
as maxMissed2(v).

Let us examine estsup(v) in Eq. (2) in the finer granularity of individual
segments. Specifically, let estsupk(v) denote the estimated segment support of
v (via the SSM) from the kth segment, that is,

estsupk(v) = min{supportk({a}) | a ∈ v}. (3)

Then, the first component maxMissed1(v) is simply

maxMissed1(v) =
k−1∑
u=1

estsupu(v), (4)

which is the sum of the estimated segment supports of v from the first k − 1
segments.

The second component maxMissed2(v) is harder to estimate, because this
corresponds to only part of a segment. Clearly, maxMissed2(v) is bounded from
above by j , the number of transactions in the kth segment read so far. Depend-
ing on how far the current segment has been read, such a bound may be too
loose. In this case, the estimated segment support of v, just from the kth seg-
ment (i.e., estsupk(v)) may give a tighter bound. Thus, the second component of
maxMissed(v) can be computed as follows:

maxMissed2(v) = min{ j , estsupk(v)}. (5)

Hence, the DCF algorithm can combine all of Eqs. (1), (3), (4), and (5) to give a
better bound for maxMissed(v). Note that this is a bound obtained at the point
of insertion of v (i.e., after the transaction tq+ j has been read).

However, at a later point in time, when the entire kth segment has been read,
a better bound may be possible. This is because in Eq. (5) above, estsupk(v)
is used to estimate the support of v from the first j transactions in the kth
segment, when in fact the same bound applies to the entire segment, implying
that we should be able to do better. Let countk(v) denote the actual support of v
in the kth segment after v was inserted. Then, by the definition of the SSM, it
must be the case that

maxMissed2(v) + countk(v) ≤ estsupk(v).
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Hence, while Eq. (5) is appropriate for initializing maxMissed2(v) at the point of
insertion, the following equation can be used to update—and possibly tighten—
maxMissed2(v) after the entire kth segment has been processed:

maxMissed2(v) = min{ j , (estsupk(v) − countk(v))}. (6)

The value of maxMissed(v) can be tightened accordingly.

3.3 Creating the futurek(v) Bound

Recall from Section 3.1 that there are two weaknesses associated with the
pruning based on maxSupport(v) = (maxMissed(v) + count(v))/i in Carma. So
far, our DCF algorithm has addressed the first problem by tightening the
maxMissed(v) bound. Next, we turn our attention to the second problem of
making the (strong) assumption of uniform distribution.

Suppose the transaction scan is at the point when the kth segment has just
been processed. Given an itemset v that has been inserted and is being pro-
cessed, let futurek(v) denote an upper bound on the support of v from all the
future/remaining segments, that is, (k+1)th, . . . , mth segments. With the SSM,
this is defined as follows:

futurek(v) =
m∑

u=k+1

estsupu(v). (7)

By putting all the pieces together, the old pruning condition (which is based
on maxSupport(v) = (maxMissed(v) + count(v))/i) can now be replaced by a
new condition (which is based on the value of (maxMissed(v) + count(v) +
futurek(v))/n, where n is the total number of transactions) at the point when the
kth segment has just been processed. The new condition can be used in Step (9)
of Figure 1. Note that both maxMissed(v) and futurek(v) are upper bounds, and
count(v) is the actual count up to the point of pruning. Thus, unlike the old con-
dition, the new pruning condition guarantees that a pruned itemset will never
need to be reinserted, unless the support threshold is reduced.

In sum, our DCF algorithm overcomes Carma’s problems of (i) a very loose
maxMissed(v) bound and (ii) a strong assumption of uniform distribution, re-
spectively, by:

—tightening the maxMissed(v) bound, and
—creating the futurek(v) bound to effect pruning and to discard the uniform

distribution assumption.

It is important to note that the SSM provides direct information about variabil-
ity of support counts in different segments of the transaction database. As a
result, such a generic structure—the SSM—can bring benefits not only to con-
strained online/dynamic mining algorithms like DCF, but also to a general class
of offline/nondynamic mining algorithms (constrained or otherwise). To avoid
distraction from our focus on the development of an algorithmic framework for
the efficient mining of constrained frequent sets, we defer discussions on other
useful applications of the SSM to Section 7.
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4. HANDLING NONFREQUENCY CONSTRAINTS

In the previous section, we considered the performance aspect of DCF. Specif-
ically, we focused on how the SSM enhances the performance of DCF. In this
section, we turn our attention to the functionality aspect of DCF. More specifi-
cally, we show how DCF can handle nonfrequency constraints.

4.1 Succinctness-Based Optimization

Given a CFQ {(S, T ) | C}, C may contain frequency as well as nonfrequency
constraints. Throughout this section, for simplicity, we use C to denote just
the set of nonfrequency constraints. A naı̈ve way to handle a CFQ is to first
run Carma as shown in Figure 1, and then to check every v ∈ V whether
v satisfies C (denoted as v |= C). We call this naı̈ve strategy Carma+. While
simple, Carma+ suffers from the fact that constraints C are not pushed inside
Carma to effect pruning as early as possible. As a result, the computational
effort is not proportional to the selectivity of constraints C. To overcome this
problem, DCF—which follows the skeleton of Carma—pushes the constraints
C deep “inside” the computation by modifying the Insertion Step of Carma (i.e.,
Step(3) in Figure 1):

(3) for all v ⊆ ti with v �∈ V { /∗ insert v if appropriate ∗/ }
to become the Insertion Step of DCF, as follows:

(3a) for all v ⊆ ti with (v �∈ V and v |= C) { /∗ insert v if appropriate ∗/ }
Recall that a constraint C ∈ C can be succinct, and/or antimonotone, or neither.
The modified Step (3a) above works for any of these classes of constraints, but
DCF can do a lot better with succinct constraints. Recall from Lemma 2.4 that
every succinct constraint C corresponds to a member generating function MGFC
that can precisely enumerate all itemsets satisfying C. Thus, while Step (3a)
above adopts a generate-and-test strategy, for a succinct constraint C, we can
use MGFC directly to avoid any testing whatsoever. Let us consider the example
below.

Example 4.1. Suppose C ≡ max(S.Price) ≥ 10, and there are 12 items in a
transaction ti (say, ti = {a, b, . . . , k, l }). In a “blind” generate-and-test, there are
(12

4 ) = 495 subsets of ti of size 4. Suppose only items a, b, and c have Price ≥ 10,
while the remaining items have Price < 10. Then, MGFC(ti) corresponds to

{S1 ∪ S2 | S1 ⊆ {a, b, c} & S1 �= ∅ & S2 ⊆ {d , . . . , l }}.
That is, every subset of ti satisfying max(S.Price) ≥ 10 must be amongst those
generated above. We can restrict MGFC(ti) to generate only subsets of size 4. In
this case, there are (3

1) × (9
3)+ (3

2) × (9
2)+ (3

3) × (9
1) subsets of size 4 satisfying C, for

a total of 369 subsets. So, for subsets of size 4 alone, making use of succinctness
generates 495 − 369 = 126 fewer subsets, and no testing is required for all the
369 subsets. This gives considerable savings.

So far, we have focused on one succinct constraint. By Lemma 2.4, we know
that given a set of succinct constraints SC, there is a member generating
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function MGFSC(ti) that can be exploited in the manner shown above. Thus,
if SC contains all the succinct constraints in C in the CFQ, our DCF algorithm
modifies Step (3a) to become the following:

(3b) for each v generated by MGFSC(ti) where (v �∈ V and v |= (C − SC))
{ /∗ insert v if appropriate ∗/ }

The set (C−SC) consists of the nonsuccinct constraints, if any. These constraints
are not covered by MGFSC(ti) and need to be verified explicitly.

Furthermore, the optimization based on MGFSC(ti) is not confined to just the
succinct 1-var constraints in C. Its application can be broadened. For a nonsuc-
cinct 1-var constraint C, it may induce a weaker constraint that is succinct, as
shown in the following example.

Example 4.2. Suppose C consists of the single constraint C1 ≡ avg
(S.Price) ≥ 10. C1 induces the weaker constraint C2 ≡ max(S.Price) ≥ 10,
in the sense that every itemset satisfying C1 must also satisfy C2. Then, for
this example, Step (3b) instantiates to the following:

for each v generated by MGFC2 (ti) where (v �∈ V and v |= C1)
{ /∗ insert v if appropriate ∗/ }

4.2 Antimonotonicity-Based Optimization with the SSM

So far, we have discussed how DCF exploits succinct constraints. Next, we
turn our attention to the other important class of constraints, namely the
antimonotone ones. A constraint C is antimonotone if for any itemset S,
S �|= C implies S′ �|= C for any superset S′ of S. The frequency constraint
C1 ≡ support(S) ≥ minsup is one example, and C2 ≡ sum(S.Price) ≤ 10 is an-
other (assuming that the price of any item is nonnegative). Without the SSM,
Step (3b) is all DCF can do.

However, with the SSM, the antimonotonic nature of C1 ≡ support(S) ≥
minsup can be exploited as follows. After transaction ti has just been read,
DCF only needs to consider as candidates those itemsets that do not include
any confirmed infrequent single items. For example, suppose ti = {a, b, . . . , k, l },
and knowing from the SSM that only three of the 12 items (namely, items a, b,
and c) have a support below σi. Then, for all subsequent computations regarding
ti, we only need to consider ti − {a, b, c} because no itemset containing a, b, or
c can be frequent. Specifically, for subsets of size j of ti, we need to process
only (9

j ) itemsets, as opposed to (12
j ) itemsets. Accumulating for all j ≥ 2, this

optimization step can bring about considerable savings.
The SSM we have seen so far can be easily extended to help ex-

ploit antimonotone constraints other than the frequency constraint. Using
C2 ≡ sum(S.Price) ≤ 10 as an example, all DCF needs to do is to add one column
to the SSM, recording the Price value of each singleton itemset. For transac-
tion ti, suppose only items a, d , and e have Price > 10. Then, it is sufficient to
consider only subsets of ti −{a, d , e} because no itemset containing a, d , or e can
satisfy C2. Moreover, for C1 ≡ support(S) ≥ minsup and C2 ≡ sum(S.Price) ≤ 10
together, only subsets of ti−{a, b, c, d , e} deserve consideration. Thus, in general,
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DCF can further enhance Step (3b) to become the following:

(3c) for each v generated by MGFSC(tSSM
i ) where (v �∈ V and v |= (C − SC))

{/∗ insert v if appropriate ∗/ }
where tSSM

i is the subset of ti that remains after the above antimonotonicity-
based optimization with the SSM has been applied.

5. HANDLING DYNAMIC CHANGES TO NONFREQUENCY CONSTRAINTS

In Section 3, we discussed how the SSM enhances the performance of DCF; in
Section 4, we discussed how DCF handles nonfrequency constraints. Hence, we
have developed an algorithmic framework for the efficient mining of constrained
frequent sets. In this section, we show how DCF can handle dynamic changes
to constraints (i.e., leading to the efficient dynamic mining of constrained fre-
quent sets). Because DCF follows the skeleton of Carma, DCF handles dynamic
changes to the support threshold minsup in exactly the same fashion as Carma
does. Thus, below, we focus on dynamic changes to nonfrequency constraints.
There are two cases: a tightening change and a relaxing change. It is impor-
tant to note that handling dynamic changes to nonfrequency constraints is
not a straightforward variation of handling dynamic changes to minsup (the
frequency constraint), because nonfrequency constraints are not necessarily
numerical. Constraints S.Type = meat and S.Type ⊇ {snack, soda} are some ex-
amples. Hence, handling nonfrequency constraints takes on a flavor different
from handling minsup. Handling dynamic changes to nonfrequency constraints
is totally different from handling dynamic changes to minsup.

5.1 Tightening a Constraint Dynamically

Our discussion here assumes that at any point in time, there is at most one
constraint that is being modified. (During the entire process, many differ-
ent constraints can, of course, be changed.) We begin with a 1-var constraint
C(S, θ , agg, cn) with a set variable S, a relational operator θ , an (optional) ag-
gregate or set operator agg, and a constant cn. The base case of our discussion
below is on how to deal with changes to the constant cn. When cn is modified by
the user in the direction of restricting the new solution space to be a subset of
the old space, we call this a tightening change. Otherwise, whenever the change
to cn corresponds to the situation where the new solution space contains the
old space, we call this a relaxing change. For example, if the original constraint
is max(S.Price) ≥ 10, then changing from 10 to 12 and to 8 corresponds to a
tightening change and a relaxing change, respectively. Similar remarks apply
to the whole family of constraints introduced in Table II (and in Ng et al.’s work
[1998]). Clearly, inserting a new constraint is a special case of a tightening
change, and deleting an old constraint is an extreme case of a relaxing change.
Thus, while our discussion below is confined to changing the constant cn, any
other modification to C(S, θ , agg, cn) such as modifying max(S.Price) ≥ 10 to
max(S.Price) ≤ 10 (or modifying S.Type = meat to S.Type ⊇ {snack, soda}) can
be dealt with as a pair of constraint deletion and insertion.
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By definition, a tightening change from Cold to Cnew corresponds to a restric-
tion of the old solution space. To accommodate Cnew dynamically, DCF takes
two steps:

—Replace Cold with Cnew for future insertions to lattice V . That is to say,
Step (3c) mentioned in the previous section now becomes the following:
(3d) for each v generated by MGFSCnew(tSSM

i )
where (v �∈ V and v |= (Cnew − SCnew)) { /∗ insert v if appropriate ∗/ }

—The step above deals with future operations on V ; what remains to be done
is to “fix” up the current V . All DCF needs to do is to check for each current
itemset v ∈ V whether it still satisfies Cnew (i.e., check if v |= Cnew).

5.2 Relaxing a Constraint Dynamically: A Generate-and-Test Approach

In general, a relaxing change has different, and tougher, computational require-
ments than a tightening change. This is because for a tightening change, the
new solution space is contained in the old space, and all that is needed is to
verify whether v |= Cnew. In contrast, for a relaxing change, this verification
is unnecessary. What is needed, however, is to insert into V all the itemsets
that were not generated before the constraint was relaxed. The question here
is whether DCF needs to do this at once, or whether—following the skeleton in
Figure 1—these itemsets will be inserted into V in due course.

The following lemma states that if there does not exist a future transaction t j
containing itemset v, then v will not be added into the lattice V . This problem
is particularly serious when the change from Cold to Cnew appears towards the
end of the transaction sequence. Note that even if there is no future transaction
after ti supporting v, there could possibly be sufficiently many transactions
supporting v prior to ti so as to make v frequent. Hence, to ensure correctness,
it is imperative that right after the relaxing change, DCF must insert into the
lattice V all those v’s satisfying Cnew but not Cold.

LEMMA 5.1. Let TDB = 〈t1, . . . , tn〉 be the transaction sequence, and let a
constraint Cold be relaxed to Cnew after transaction ti (where 1 ≤ i ≤ n) has
been read. If (i) any itemset v satisfies the relaxed constraint Cnew but does not
satisfy the original constraint Cold, and (ii) there does not exist another future
transaction t j ⊇ v (where i + 1 ≤ j ≤ n), then v cannot be in the lattice V unless
we insert it into V right after the relaxing change.

PROOF. According to the modifications to the Insertion Step (i.e., Step (3))
described so far, if v was added to V between transaction t1 to ti, then v must
satisfy the constraint Cold, which is not the case here. Thus, in order for v to be
in V eventually, v must be added after transaction ti+1. However, in accordance
with Figure 1, this is possible only if v ⊆ t j for some i + 1 ≤ j ≤ n, which is
not the case here. Thus, v cannot be in V (unless we insert it right after the
relaxing change).

Therefore, to ensure correctness, it is imperative that right after the relaxing
change, DCF must insert into lattice V all those v’s satisfying Cnew but not Cold.
Hence, the next issue is how to do this efficiently.
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The simplest approach no doubt is to do a blind generate-and-test. That is,
for every previously read transaction tk (where 1 ≤ k ≤ i), check for each
itemset v ⊆ tSSM

k to see if v satisfies Cnew ≡ (Cold − {Cold} ∪ {Cnew}), and insert
v into V if v �∈ V currently. This approach can be optimized in three ways, as
follows:

—Recall that DCF (and Carma) inserts v into V only if all w ⊂ v are already in
V . Thus, we can reduce the number of v’s that are generated-and-tested by
not considering all v’s (in particular, we do not need to consider those v’s with
large cardinality). Let maxCard be the cardinality of the largest v currently
in V . Then, DCF can restrict the generate-and-test process to each v ⊆ tSSM

k
(where 1 ≤ k ≤ i) with |v| ≤ maxCard. This is particularly effective if the
relaxing change occurs early in the transaction scan (i.e., i is closer to 1 than
to n).

—The generate-and-test process can be further optimized by using the succinct
constraints SCnew in Cnew, if any. Based on the argument in Section 4.1, the
member generating function MGFSCnew(tSSM

k ) can be used to reduce the effort
for generate-and-test.

—In practice, DCF avoids using MGFSCnew(tSSM
k ) for each transaction tk (for

1 ≤ k ≤ i), which would require a rescanning of the transaction database.
Instead, it uses MGFSCnew(∪i

k=1tSSM
k ).

Putting these three optimizations together, DCF modifies the Insertion Step to
become the following:

(3e) for each v generated by MGFSCnew(∪i
k=1tSSM

k )
where (v �∈ V and v |= (Cnew − SCnew) and |v| ≤ maxCard)

{ /∗ insert v if appropriate ∗/ }

5.3 Relaxing a Constraint Dynamically: An Optimized Approach with a Delta
Member Generating Function

As it turns out, a relaxing change can be further optimized when the constraint
being relaxed is succinct. (Recall from Section 2.2 that a majority of the con-
straints are succinct.) The trick is to use a delta member generating function
(delta MGF), which generates only the new solutions. Note that the situation
here is more complex than what is guaranteed in Lemma 2.4. The reason is
that the MGF that we have discussed so far only deals with the solution space
of (conjunctions of) constraints; however, here we are dealing with the set differ-
ence between the solution space of Cnew and that of Cold. The complication is that
it is very inefficient to obtain results by first generating all itemsets satisfying
Cnew and then excluding those satisfying Cold, because such a generate-and-test
approach would waste a lot of (unnecessary) computation. What we want is a
generate-only approach. In other words, we want to use a delta MGF to generate
precisely those itemsets in the set difference between the two solution spaces. In
the following, we show that succinct constraints enjoy the additional desirable
property that there is a delta MGF that exactly enumerates those itemsets
that satisfy the relaxed constraint Cnew but not the original constraint Cold.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



358 • L. V. S. Lakshmanan et al.

Throughout this article, we use the notation MGFCnew/Cold to denote the delta
MGF that generates precisely those itemsets that are solutions to Cnew but not
to Cold. Below, we give an example to illustrate the idea.

Example 5.2. Let us return to Example 4.1. Let Cold ≡ max(S.Price) ≥ 10
be relaxed to Cnew ≡ max(S.Price) ≥ 6. Suppose for the items contained in the
transaction ti = {a, b, . . . , k, l }, (i) items a, b, c, d , e have their Price values at 6
or above, and (ii) only items a, b, c have their Price values at 10 or above. Then,
the MGF for Cold alone is

{X 1 ∪ X 2 | X 1 ⊆ {a, b, c} & X 1 �= ∅ & X 2 ⊆ {d , . . . , l }}.
Similarly, the MGF for Cnew alone is

{X 1 ∪ X 2 | X 1 ⊆ {a, b, c, d , e} & X 1 �= ∅ & X 2 ⊆ { f , . . . , l }}.
Capturing the “delta” between the MGFs for Cold and Cnew is precisely the delta
member generating function MGFCnew/Cold (ti), which is the following:

{X 1 ∪ X 2 | X 1 ⊆ {d , e} & X 1 �= ∅ & X 2 ⊆ { f , . . . , l }}.
In the remainder of this section, we prove that a relaxing change to a succinct
constraint Cold admits a delta MGF. We give our proof in two stages. In the
first stage, we refine Lemma 2.4(a) to give the precise form of an MGF of a
constraint, depending on the nature of the constraint. The following lemma is
for that purpose.

LEMMA 5.3. Let C be a constraint equivalent to one of the succinct constraints
listed in Table II. Then, one of the following holds.

(a) Suppose C is of a form equivalent to S.A ⊇ CS, where A is an attribute of a
set S, and CS = {cn1, . . . , cnk} is a set of constants for attribute A. Then, the
corresponding MGF is of the form {X 1∪· · ·∪X k+1 | X i ⊆ σpi (Item) & X i �= ∅,
for 1 ≤ i ≤ k; X k+1 ⊆ σpk+1 (Item)}, where the selection predicate pi is of the
form (A = cni), for 1 ≤ i ≤ k, and pk+1 is of the form ((A �= cn1) ∧ · · · ∧ (A �=
cnk)).

(b) Suppose C is of a form not equivalent to that in part (a), and C is not an-
timonotone. Then, the corresponding MGF is of the form {X 1 ∪ X 2 | X 1 ⊆
σp1 (Item) & X 1 �= ∅ & X 2 ⊆ σp2 (Item)}, for some selection predicates p1 and
p2.

(c) Suppose C is of a form not equivalent to that in part (a), but C is also
antimonotone. Then, the corresponding MGF is of the form {X 1 | X 1 ⊆
σp1 (Item) & X 1 �= ∅}, for some selection predicate p1.

PROOF. This proof is divided into the following three cases, depending on
the nature of the constraint.

(a) Let C be a succinct constraint of a form equivalent to S.A ⊇ CS. It is
easy to verify that any itemset satisfying C ≡ S.A ⊇ CS must contain at least
k items (where k is the cardinality of CS). In particular, for CS = {cn1, . . . , cnk},
the itemset satisfying C requires at least one item chosen from each of the
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selections σA=cni (Item) for 1 ≤ i ≤ k. Hence, for S.A ⊇ {cn1, . . . , cnk}, the MGF
is of the form {X 1 ∪ · · · ∪ X k ∪ X k+1 | X i ⊆ σA=cni (Item) & X i �= ∅, for 1 ≤ i ≤
k; X k+1 ⊆ σ(A�=cn1)∧···∧(A�=cnk )(Item)}.

(b) Let C be a succinct constraint of a form not equivalent to that in part (a),
and C is not antimonotone. From Table II, it is easy to observe that C is equiv-
alent to one of the following: cn ∈ S.A, min(S.A) ≤ cn, or max(S.A) ≥ cn, as
summarized in the table below.

1-var Constraint p1 p2

cn ∈ S.A A = cn A �= cn
min(S.A) ≤ cn A ≤ cn A > cn
max(S.A) ≥ cn A ≥ cn A < cn

The table above specifies the exact definitions of p1 and p2, depending on the
exact form of C. Such a constraint C can be effectively reduced to the con-
straint S.Type ⊇ {1}, where {

Type = 1 if p1

Type = 0 if p2.

Here, σp1 (Item) selects the mandatory items, and σp2 (Item) selects the optional
items. Hence, the corresponding MGF is of the form {X 1∪X 2 | X 1 ⊆ σp1 (Item) &
X 1 �= ∅ & X 2 ⊆ σp2 (Item)}.

(c) Let C be a succinct constraint of a form not equivalent to that in part (a),
but C is also antimonotone. From Table II, it is easy to observe that C is equiv-
alent to one of the forms summarized in the table below.

1-var Constraint p1

S.A θ cn (where θ ∈ {=, ≤, ≥}) A θ cn
S.A ⊆ {cn1, . . . , cnk} (A = cn1) ∨ · · · ∨ (A = cnk)
min(S.A) ≥ cn A ≥ cn
max(S.A) ≤ cn A ≤ cn

Similar to the proof for part (b), the constraint C can be effectively reduced to
the constraint S.Type ⊇ {1}, where{

Type = 1 if p1

Type = 0 if p2 (where p2 = ¬p1).

Here, σp1 (Item) selects the mandatory items and σp2 (Item) selects the optional
items. Accordingly, the corresponding MGF is of the form {X 1 ∪ X 2 | X 1 ⊆
σp1 (Item) & X 1 �= ∅ & X 2 ⊆ σp2 (Item)}. However, the key difference between
this part and part (b) is that X 2 must be empty (i.e., there is no optional items).
Let us show this by contradiction. Suppose X 2 is not empty. Then, for any
a ∈ σp2 (Item), it is easy to verify that X 1 ∪ {a} does not satisfy C. Due to
the antimonotonicity of C, any superset of X 1 ∪ {a} also does not satisfy C.
In particular, for all X 2 ⊆ σp2 (Item), X 1 ∪ X 2 does not satisfy C, unless X 2
is an empty set. Hence, the corresponding MGF is of the form {X 1 | X 1 ⊆
σp1 (Item) & X 1 �= ∅}.
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We illustrate the use of the above lemma with the following example.

Example 5.4. Let us consider the three succinct constraints below. Depend-
ing on the nature of each constraint, the precise form of the corresponding MGF
is different.

—For C1 ≡ S.Type ⊇ {snack, soda}, C1 is succinct and of a form equivalent to
S.A ⊇ CS. Hence, its MGF is {X 1 ∪ X 2 ∪ X 3 | X 1 ⊆ σType=snack(Item) & X 1 �=
∅ & X 2 ⊆ σType=soda(Item) & X 2 �= ∅ & X 3 ⊆ σ(Type�=snack)∧(Type�=soda)(Item)}. In
this case, the optional item-subset X 3 contains any item that is not of type
snack or soda. These items may be included so long as an itemset contains
some mandatory items (i.e., some items from X 1 and some items from X 2).

—For C2 ≡ max(S.Price) ≥ 100, C2 is succinct but not antimonotone, and
is not of a form equivalent to S.A ⊇ CS. Hence, its MGF is {X 1 ∪ X 2 |
X 1 ⊆ σPrice≥100(Item) & X 1 �= ∅ & X 2 ⊆ σPrice<100(Item)}. This is different
from that for constraint C1 above because once there is at least one item with
Price ≥ 100, then it is acceptable to include any item whose Price < 100. This
is what the optional item-subset X 2 represents.

—For C3 ≡ S.Price ≥ 50, C3 is succinct and antimonotone, and is not of a form
equivalent to S.A ⊇ CS. Hence, its MGF is {X 1 | X 1 ⊆ σPrice≥50(Item) & X 1 �=
∅}. In this case, there is only one mandatory item-subset X 1, but there is no
optional item-subset.

Given the above lemma, we can now complete our proof that a relaxing change
to a succinct constraint Cold admits a delta MGF. Our proof is divided into two
cases, depending on whether or not the constraint is of the form S.A ⊇ CS. In
Lemma 5.5, we first deal with the simpler case where the constraint is not of
the form S.A ⊇ CS. Then, in Lemma 5.8, we deal with the more complicated
case where the constraint is of this form.

LEMMA 5.5. Let Cold be a succinct constraint not of a form equivalent to
S.A ⊇ CS, where (i) A is an attribute of a set S and (ii) CS = {cn1, . . . , cnk} is a
set of constants for attribute A. Let Cnew be a relaxing change to Cold. Then, there
exists a delta member generating function MGFCnew/Cold that generates precisely
those itemsets that satisfy Cnew but not Cold.

PROOF. This proof is divided into two cases: one for succinct but non-
antimonotone constraints, and another for succinct and antimonotone con-
straints. First, let us consider the case in which C is succinct but non-
antimonotone. According to Lemma 5.3(b), the MGF of Cold is of the form
{X 1 ∪ X 2 | X 1 ⊆ σp1 (Item) & X 1 �= ∅ & X 2 ⊆ σp2 (Item)}, where p2 = ¬p1.
By definition of a relaxing change, the MGF of the Cnew must be of the form
{X 1 ∪ X 2 | X 1 ⊆ σp′

1
(Item) & X 1 �= ∅ & X 2 ⊆ σp′

2
(Item)}, where p′

2 = ¬p′
1. Then,

consider the delta member generating function MGFCnew/Cold ≡ {X 1∪X 2 | X 1 ⊆
σp′

1∧¬p1 (Item) & X 1 �= ∅ & X 2 ⊆ σp′
2
(Item)}. It is easy to verify that this delta

MGF precisely enumerates those itemsets that satisfy Cnew but not Cold.
Then, let us consider the case in which C is both succinct and antimono-

tone. In accordance with Lemma 5.3(c), the MGF of Cold is of the form {X 1 |
X 1 ⊆ σp1 (Item) & X 1 �= ∅}. By definition of a relaxing change, the MGF of
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the Cnew must be of the form {X 1 | X 1 ⊆ σp′
1
(Item) & X 1 �= ∅}. Then, consider

MGFCnew/Cold ≡ {X 1 ∪ X 2 | X 1 ⊆ σp′
1∧¬p1 (Item) & X 1 �= ∅ & X 2 ⊆ σp1 (Item)}.

Again, it is easy to verify that this delta MGF precisely enumerates those item-
sets that satisfy Cnew but not Cold.

The example below illustrates the use of Lemma 5.5.

Example 5.6. Let us consider the following relaxing changes to the succinct
constraints that are not of the form S.A ⊇ CS.

—Suppose a succinct but non-antimonotone constraint Cold ≡ max(S.Price) ≥
100 is relaxed to Cnew ≡ max(S.Price) ≥ 60. Then, MGFCnew/Cold is

{X 1 ∪ X 2 | X 1 ⊆ σ60 ≤ Price<100(Item) & X 1 �= ∅ & X 2 ⊆ σPrice<60(Item)}.
It is easy to verify that this delta MGF precisely enumerates those itemsets
that satisfy Cnew but not Cold.

—Suppose a succinct and antimonotone constraint Cold ≡ S.Price ≥ 50 is re-
laxed to Cnew ≡ S.Price ≥ 30. Then, MGFCnew/Cold is

{X 1 ∪ X 2 | X 1 ⊆ σ30≤Price<50(Item) & X 1 �= ∅ & X 2 ⊆ σPrice≥50(Item)}.
It is easy to verify that this delta MGF precisely enumerates those itemsets
that satisfy Cnew but not Cold.

Note that Lemma 5.5 (as well as Example 5.6) above deals with the case where
there is only one mandatory item-subset (i.e., X 1 �= ∅). The situation is more
complicated when there are more mandatory item-subsets, as shown in the
following example.

Example 5.7. Suppose a constraint Cold ≡ S.Type ⊇ {snack, soda, meat}
is relaxed to Cnew ≡ S.Type ⊇ {meat}. We cannot follow the approach taken
in Lemma 5.5. The reason is that, on the one hand, we should not suppress
any soda or snack item from being included; on the other hand, we should not
simultaneously include both soda and snack items. In other words, it is not
correct to have the following MGF:

{X 1 ∪ X 2 | X 1 ⊆ σType=meat(Item) & X 1 �= ∅ &
X 2 ⊆ σ(Type�=meat)∧(Type�=snack)∧(Type�=soda)(Item)}

which excludes too many itemsets. On the other hand, it is also incorrect to
have the following MGF:

{X 1 ∪ X 2 | X 1 ⊆ σType=meat(Item) & X 1 �= ∅ &
X 2 ⊆ σ(Type=snack)∨(Type=soda)(Item)}

which includes itemsets that simultaneously contain both soda and snack items.
Hence, the correct MGFCnew/Cold is as follows:

{X 1 ∪ X 2 | X 1 ⊆ σType=meat(Item) & X 1 �= ∅ &
X 2 ⊆ σ(Type�=meat)∧(Type�=snack)(Item)} ∪

{X 1 ∪ X 3 | X 1 ⊆ σType=meat(Item) & X 1 �= ∅ &
X 3 ⊆ σ(Type�=meat)∧(Type�=soda)(Item)}.

This is a case in which a general MGF is needed.
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The lemma below shows that a relaxing change to a succinct constraint Cold
of the form S.A ⊇ CS also admits a delta MGF.

LEMMA 5.8. Let Cold be a succinct constraint of a form equivalent to S.A ⊇ CS,
where A is an attribute of a set S, and CS = {cn1, . . . , cnk} is a set of constants
for attribute A. Let Cnew be a relaxing change to Cold. Then, there exists a delta
member generating function MGFCnew/Cold that generates precisely those itemsets
that satisfy Cnew but not Cold.

PROOF. According to Lemma 5.3(a), where CS = {cn1, . . . , cnk}, the MGF
of Cold is of the form {X 1 ∪ · · · ∪ X k ∪ X k+1 | X i ⊆ σA=cni (Item) & X i �= ∅,
for 1 ≤ i ≤ k; X k+1 ⊆ σ(A�=cn1)∧···∧(A�=cnk )(Item)}. By definition of a relaxing
change, Cnew must be of the form S.A ⊇ CS′, where CS′ ⊂ CS. Without loss of
generality, let CS − CS′ = {cnm+1, . . . , cnk}. The MGF of Cnew must be of the
form {X 1 ∪ · · · ∪ X m ∪ X k+1 | X i ⊆ σA=cni (Item) & X i �= ∅, for 1 ≤ i ≤ m; X k+1 ⊆
σ(A�=cn1)∧···∧(A �= cnm)(Item)}. Now, consider MGFCnew/Cold ≡ ⋃k−m

j=1 MGF j , where

MGF j ≡ {X 1 ∪ · · · ∪ X m ∪ X k+1 | X i ⊆ σA=cni (Item) & X i �= ∅, for 1 ≤ i ≤ m;
X k+1 ⊆ σ(A�=cn1)∧···∧(A �= cnm)∧(A �= cnm+ j )(Item)}.

Each MGF j guarantees that no item with A= cnm+ j is included in the genera-
tion. It is easy to verify that the above delta MGF precisely enumerates those
itemsets that satisfy Cnew but not Cold.

Lemmas 5.5 and 5.8 above complete our proof that when Cold is a succinct
constraint, its relaxation can be efficiently handled with a delta MGF.

5.4 Discussion: Relaxing One of Multiple Constraints Dynamically

So far, we have considered handling dynamic changes to a constraint in iso-
lation. In practice, more than one constraint may be imposed on frequent-set
mining and any of them may be changed dynamically. If the change is a tight-
ening one, it can be handled easily. What if it is a relaxing one? Can we exactly
generate those itemsets that satisfy all constraints—including the changed one
but not the old version of the changed constraint? To answer these questions, let
us first present Lemma 5.9 showing how to combine multiple MGFs into one
MGF, and then present Theorem 5.11 showing how we can exactly generate
those itemsets.

LEMMA 5.9. Given multiple succinct constraints, their corresponding MGFs
can be combined into one general MGF representing the conjunction of the suc-
cinct constraints.

PROOF. First, let us consider the combination of two basic member generat-
ing functions MGF1 and MGF2 corresponding to the two succinct constraints.
The proof is divided into two cases, depending on whether one of the succinct
constraints is also antimonotone.

We start with the simpler case where at least one of the constraints is suc-
cinct and antimonotone. Recall from Definition 2.3 that the itemsets generated
using the MGF contain some mandatory items and may contain some optional
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items. The mandatory items are generated using the mandatory selection pred-
icates, and there may be more than one mandatory selection predicate in an
MGF (e.g., for a constraint of the form S.A ⊇ CS); the optional items are gen-
erated using the optional selection predicate. From Lemma 5.3(c), we know
that the MGF corresponding to a succinct and antimonotone constraint con-
tains no optional selection predicate. Hence, when combining two MGFs in
this simpler case, the mandatory items for the combined MGF can be enumer-
ated using the conjunction of the mandatory selection predicates from both
MGFs. More precisely, we are given MGF1 and MGF2. Without loss of gener-
ality, suppose MGF2 is the MGF for the succinct and antimonotone constraint.
Then, MGF2 is of the form {Y1 | Y1 ⊆ σq1 (Item) & Y1 �= ∅} for some selec-
tion predicate q1. If the constraint corresponding to MGF1 is also antimono-
tone, then MGF1 is of the form {X 1 | X 1 ⊆ σp1 (Item) & X 1 �= ∅} for some
selection predicate p1; hence, the combined MGF corresponding to the con-
junction can be constructed as {Z1 | Z1 ⊆ σp1∧q1 (Item) & Z1 �= ∅}. Otherwise,
MGF1 is of the form {X 1 ∪ · · · ∪ X k ∪ X k+1 | X i ⊆ σpi (Item) & X i �= ∅, for
1 ≤ i ≤ k; X k+1 ⊆ σpk+1 (Item)} for some selection predicates p1, . . . , pk+1; hence,
the combined MGF corresponding to the conjunction can be constructed as
{Z1 ∪ · · · ∪ Zk ∪ Zk+1 | Zi ⊆ σpi∧q1 (Item) & Zi �= ∅, for 1 ≤ i ≤ k; Zk+1 ⊆
σpk+1∧q1 (Item)}.

We then consider the more complicated case where none of the succinct con-
straints is antimonotone. Given that each MGF has two types of selection pred-
icates (mandatory and optional), there are four possible types of conjunctions
of these predicates (e.g., conjunctions of mandatory predicates of MGF1 with
mandatory predicates of MGF2, conjunctions of mandatory predicates of MGF1
with the optional predicate of MGF2). Among these types of conjunctions, the
mandatory items for the combined MGF can be enumerated using either of the
following:

(a) the conjunction of the mandatory selection predicates from both MGFs; or
(b) the conjunction of the mandatory selection predicates from MGF1 and the

optional selection predicate from MGF2, together with the conjunction of
the optional selection predicate from MGF1 and the mandatory selection
predicates from MGF2.

The resulting MGF is a union of the MGFs using part (a) and the MGFs using
part (b). More precisely, we are given MGF1 and MGF2, where MGF1 is of the
form {X 1 ∪ · · · ∪ X k ∪ X k+1 | X i ⊆ σpi (Item) & X i �= ∅, for 1 ≤ i ≤ k; X k+1 ⊆
σpk+1 (Item)} for some selection predicates p1, . . . , pk+1, and MGF2 is of the form
{Y1∪· · ·∪Yh∪Yh+1 | Y j ⊆ σqj (Item) & Y j �= ∅, for 1 ≤ j ≤ h; Yh+1 ⊆ σqh+1 (Item)}
for some selection predicates q1, . . . , qh+1. We define the notion of a (k, h)-cover
for the product {1, . . . , k + 1} × {1, . . . , h + 1} as any subset S ⊆ {1, . . . , k + 1} ×
{1, . . . , h + 1} satisfying the following conditions:

(1) for all i ∈ {1, . . . , k}, there exists j such that (i, j ) ∈ S; and
(2) for all j ∈ {1, . . . , h}, there exists i such that (i, j ) ∈ S.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



364 • L. V. S. Lakshmanan et al.

Such a cover is minimal if none of its proper subsets is a (k, h)-cover. Therefore,
the MGF corresponding to the conjunction can be constructed as⋃

S is any minimal (k, h)-cover of{1, . . . , k + 1} × {1, . . . , h + 1}

MGF1,2

where MGF1,2 is of the form {Z1 ∪ Z2 ∪ Z3 ∪ · · · ∪W | Zij ⊆ σpi∧qj (Item) & Zij �=
∅, for all (i, j ) ∈ S; W ⊆ σ∨

i j
(pi∧qj )(Item), for all (i, j ) �∈ S}.

The above construction shows the combination of two basic MGFs. This tech-
nique can be easily generalized to handle the combination of two general MGFs
(i.e., combining MGF1 ≡ ⋃l1

u=1 MGF1u with MGF2 ≡ ⋃l2
v=1 MGF2v into one MGF),

by applying the technique to each (u, v)-pair and taking the union of the results.
In other words, the MGF for the conjunction is of the following form:

⋃
1≤u≤l1; 1≤v≤l2




⋃
S is any minimal (k, h)-cover of{1, . . . , k + 1} × {1, . . . , h + 1}

MGF1u,2v


 ,

where MGF1u,2v is of the form {Z1∪Z2∪Z3∪· · ·∪W | Zij ⊆ σpi∧qj (Item) & Zij �=
∅, for all (i, j ) ∈ S; W ⊆ σ∨

i j
(pi∧qj )(Item), for all (i, j ) �∈ S} for each (u, v)-

pair. This completes the proof for combining two MGFs. Next, we consider the
combination of more than two MGFs.

Given that the result of combining any two succinct constraints is an MGF of
the form we have described above, combining the MGFs of more than two suc-
cinct constraints can be done by repeated applications of the above construction.
This completes the proof of combining multiple MGFs for succinct constraints
into one MGF.

The example below illustrates the use of the above lemma.

Example 5.10. Suppose we are given the following three succinct con-
straints: C1 ≡ max(S.Price) ≤ 200, C2 ≡ max(S.Price) ≥ 100, and C3 ≡
S.Type ⊇ {snack, soda}. Then, their corresponding MGFs are as follows:

MGF1 ≡ {X 1 | X 1 ⊆ σPrice ≤ 200(Item) & X 1 �= ∅},
MGF2 ≡ {Y1 ∪ Y2 | Y1 ⊆ σPrice≥100(Item) & Y1 �= ∅; Y2 ⊆ σPrice<100(Item)}, and
MGF3 ≡ {U1 ∪ U2 ∪ U3 | U1 ⊆ σType=snack(Item) & U1 �= ∅; U2 ⊆ σType=soda(Item)

& U2 �= ∅; U3 ⊆ σ(Type�=snack)∧(Type�=soda)(Item)},
respectively. Here, C1 is succinct antimonotone, while both C2 and C3 are suc-
cinct non-antimonotone. Then, the combined MGF for the first two succinct
constraints is as follows:

{Z1 ∪ W | Z1 ⊆ σ100≤Price ≤ 200(Item) & Z1 �= ∅; W ⊆ σPrice<100(Item)}.
The combined MGF for all three succinct constraints can be constructed by
combining the above result with MGF3. To simplify our representation, we
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denote the conjunctions of the selection predicates as follows:

pred11 ≡ (100 ≤ Price ≤ 200) ∧ (Type = snack),
pred12 ≡ (100 ≤ Price ≤ 200) ∧ (Type = soda),
pred13 ≡ (100 ≤ Price ≤ 200) ∧ (Type �= snack) ∧ (Type �= soda),
pred21 ≡ (Price < 100) ∧ (Type = snack),
pred22 ≡ (Price < 100) ∧ (Type = soda), and
pred23 ≡ (Price < 100) ∧ (Type �= snack) ∧ (Type �= soda).

Then, the resulting MGF is a general MGF consisting of four basic MGFs:

MGF5 ∪ MGF6 ∪ MGF7 ∪ MGF8.

Here, MGF5 is

{Z1 ∪ Z2 ∪ W1 | Z1 ⊆ σpred11
(Item) & Z1 �= ∅; Z2 ⊆ σpred12

(Item) & Z2 �= ∅;
W1 ⊆ σpred13∨pred21∨pred22∨pred23

(Item)}
which generates itemsets with mandatory items (i.e., itemsets containing at
least one snack item and one soda item, both with prices between 100 and 200
inclusive) enumerated using the conjunction of the mandatory selection predi-
cates from the given MGFs (i.e., MGF1, MGF2 and MGF3). Then, the remain-
ing three basic MGFs (i.e., MGF6, MGF7 and MGF8) generate itemsets with
mandatory items enumerated using the conjunction of appropriate mandatory
selection predicates from some MGFs with appropriate optional selection pred-
icates from other MGFs. Specifically, MGF6 is

{Z3 ∪ Z4 ∪ W2 | Z3 ⊆ σpred11
(Item) & Z3 �= ∅; Z4 ⊆ σpred22

(Item) & Z4 �= ∅;
W2 ⊆ σpred12∨pred13∨pred21∨pred23

(Item)}
which generates itemsets with (i) at least one snack item within the mandatory
price range (i.e., 100 ≤ Price ≤ 200), and (ii) at least one soda item within the
optional price range (i.e., Price < 100). MGF7 is

{Z5 ∪ Z6 ∪ W3 | Z5 ⊆ σpred12
(Item) & Z5 �= ∅; Z6 ⊆ σpred21

(Item) & Z6 �= ∅;
W3 ⊆ σpred11∨pred13∨pred22∨pred23

(Item)}
which generates (i) itemsets with at least one soda item within the mandatory
price range, and (ii) at least one snack item within the optional price range.
Finally, MGF8 is

{Z7 ∪ Z8 ∪ Z9 ∪ W4 | Z7 ⊆ σpred21
(Item) & Z7 �= ∅; Z8 ⊆ σpred22

(Item) & Z8 �= ∅;
Z9 ⊆ σpred13

(Item) & Z9 �= ∅; W4 ⊆ σpred11∨pred12∨pred23
(Item)}

which generates itemsets with (i) at least one snack item and one soda item,
both within the optional price range, and (ii) at least one item of optional types
(i.e., non-snack and non-soda) but within the mandatory price range.

Given the above lemma showing how to combine multiple MGFs into a gen-
eral MGF, we now present the following theorem showing how we can exactly
generating those itemsets that satisfy all constraints including the changed one
but not the old version of the changed constraints.
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THEOREM 5.11. Let C1, . . . , Cn be the succinct constraints imposed on
frequent-set mining using DCF. Suppose we relax any of these constraints, say
Ci. Then, there is an MGF which generates precisely those itemsets that satisfy
C1 ∧ · · · ∧ Ci−1 ∧ C′

i ∧ Ci+1 ∧ · · · ∧ Cn (where C′
i is the relaxed version of Ci) but

do not satisfy Ci.

PROOF. From Lemmas 5.5 and 5.8, we know there is a delta member gener-
ating function MGFC′

i/Ci which generates exactly those itemsets that satisfy C′
i

but not Ci. From Lemma 5.9, we know that there exists a general MGF corre-
sponding to C1 ∧ · · · ∧ Ci−1 ∧ Ci+1 ∧ · · · ∧ Cn. Consequently, the desired MGF can
simply be obtained by constructing the MGF corresponding to the conjunction
of (C1 ∧· · ·∧Ci−1 ∧Ci+1 ∧· · ·∧Cn) and (C′

i ∧¬Ci), as discussed in Lemma 5.9.

We illustrate the use of the above theorem with the following example.

Example 5.12. Let constraints C1 ≡ S.Type ⊇ {snack, soda, meat} and C2 ≡
max(S.Price) ≥ 100 be the succinct constraints imposed on frequent-set mining.
Suppose C1 is relaxed to C′

1 ≡ S.Type ⊇ {meat}. Then, recall from Example 5.7
that MGFC′

1/C1 = MGF11 ∪ MGF12, which is equivalent to the following:

{X 1 ∪ X 2 | X 1 ⊆ σType=meat(Item) & X 1 �= ∅ &
X 2 ⊆ σ(Type�=meat)∧(Type�=snack)(Item)} ∪

{X 1 ∪ X 3 | X 1 ⊆ σType=meat(Item) & X 1 �= ∅ &
X 3 ⊆ σ(Type�=meat)∧(Type�=soda)(Item)}.

And, recall from Example 5.10 that the MGF for C2 is as follows:

MGF21 ≡ {Y1 ∪ Y2 | Y1 ⊆ σPrice≥100(Item) & Y1 �= ∅ & Y2 ⊆ σPrice<100(Item)}.
Hence, the resulting MGF which generates precisely those itemsets satisfying
C′

1 ∧ C2 but not satisfying C1 is MGF11,21 ∪ MGF12,21, where MGF11,21 is

{Z11 ∪ W1 | Z11 ⊆ σ(Type=meat)∧(Price≥100)(Item) & Z11 �= ∅
W1 ⊆ σ(Type=meat∧Price<100)∨(Type�=meat∧Type�=snack)(Item)} ∪

{Z12 ∪ Z21 ∪ W2 | Z12 ⊆ σ(Type=meat)∧(Price<100)(Item) & Z12 �= ∅;
Z21 ⊆ σ(Type�=meat∧Type�=snack)∧(Price≥100)(Item) & Z21 �= ∅;
W2 ⊆ σ(Type=meat∧Price≥100)∨(Type�=meat∧Type�=snack∧Price<100)(Item)}

which generates meat with optional non-snack items, and MGF12,21 is

{Z11 ∪ W3 | Z11 ⊆ σ(Type=meat)∧(Price≥100)(Item) & Z11 �= ∅;
W3 ⊆ σ(Type=meat∧Price<100)∨(Type�=meat∧Type�=soda)(Item)} ∪

{Z12 ∪ Z31 ∪ W4 | Z12 ⊆ σ(Type=meat)∧(Price<100)(Item) & Z12 �= ∅;
Z31 ⊆ σ(Type�=meat∧Type�=soda)∧(Price≥100)(Item) & Z31 �= ∅;
W4 ⊆ σ(Type=meat∧Price≥100)∨(Type�=meat∧Type�=soda∧Price<100)(Item)}

which generates meat with optional non-soda items. Note that all the itemsets
generated by MGF11,21 and MGF12,21 contain at least one item with Price ≥ 100.
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In sum, we showed in this section how DCF handles dynamic changes to non-
frequency constraints. In Section 8, we present experimental results evaluating
the effectiveness of the various optimizations proposed so far.

6. HANDLING LIMITED BUFFER SPACE

So far, we have discussed how DCF performs the efficient dynamic mining of
constrained frequent sets (with a liberal amount of buffer space). In this section,
we discuss how we can extend DCF to perform the efficient dynamic mining of
constrained frequent sets when the available buffer space is limited.

As described in Hidber’s paper [1999], Carma only works when there is
enough buffer space to contain the entire lattice V , which is a superset of all
frequent itemsets. For many practical situations, this could be too strong an as-
sumption. Take the synthetic dataset used in Hidber’s paper as an example,
which considers a domain of 104 items. For this domain, the total number
of itemsets of size 4 (i.e., 4-itemsets) is about 4 × 1014. Even if a small frac-
tion of those (say 0.1%) are potentially frequent, just the number of 4-itemsets
in V is about 4 × 1011. Assuming a byte for each of the three counters (e.g.,
maxMissed(v), etc.), this alone calls for about 1.2 terabytes of buffer space for
just 4-itemsets! If the number of items in the domain is doubled (i.e., 2×104 do-
main items), the amount of buffer space required for just 4-itemsets jumps to
20 terabytes! Clearly, Carma’s requirement to simultaneously keep (at least) all
the frequent itemsets in the buffer pool can be hard to satisfy. Towards the de-
velopment of a realistic and practical environment for mining (constrained) fre-
quent sets, we show in this section how DCF can operate in limited buffer space.
We first sketch the key aspects of how DCF handles limited buffer space by pre-
senting a skeleton of DCF. To simplify our presentation, the pseudocode given
in Figure 4 omits some implementation and optimization details, which will be
discussed in Section 6.2. We then analyze the behavior of DCF more rigorously.

6.1 General Ideas

Recall from Section 2.3 that on reading a transaction ti, Carma inserts appro-
priate subsets v of ti into (the lattice V contained in) the buffer. A simple way
to handle limited buffer space is to conduct the insertion of v as usual if there
is space in the buffer, and to put v into a waiting list WL—maintained in a
file—if the buffer is full. When the current batch of itemsets in the buffer have
been processed, these itemsets are moved to the “done list” DL; a new batch
is loaded into the buffer from WL and counted in a next iteration. However, a
serious drawback is that a prohibitive number of I/O is required to enforce the
following Insertion Condition (as stated in Section 2.3), which is critical for the
success of Carma:

for all w ⊂ v: w ∈ V and firstTrans(w) < i and maxSupport(w) ≥ σi,

where v ⊆ ti.
A careful examination of the above Insertion Condition reveals that inser-

tions of itemsets are done in the order of subsets first, followed by supersets.
However, the complication in Carma is that insertions are also based on the
appearance of items in the transactions. Thus, there can be itemsets of widely
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Procedure DCF-Phase I (transaction database TDB = {t1, . . . , tn},
support sequence 〈σ1, . . . , σn〉, set of constraints C, buffer pool B) {

/∗ Step (0) Initialization ∗/
(0) minCard = 0;

openfile(WL); /∗ waiting list ∗/
openfile(DL); /∗ “done list” (which contains processed itemsets) ∗/

(1) repeat {
(2) for i from 1 to n { /∗ start scanning TDB ∗/

/∗ Step (3) Increment: Exactly as in Carma ∗/
(3) for all v in B with v ⊆ ti { increment count(v); }

/∗ Steps (4) to (14) Insert: Several key differences from Carma, note the “else” clause ∗/
(4) if((B is not full) and (the insertions as in Carma do not overflow B)) {
(5) for each v generated by MGFSC (tSSM

i ) where v |= (C − SC) {
(6) perform insertions of v as in Carma, and update maxCard if necessary;

}
(7) } else { /∗ B is full ∗/

/∗ Step (8): Intelligently generate v that has not been processed, using an MGF ∗/
(8) for each v generated by MGFSC (tSSM

i ) where (v |= (C − SC) & v �∈ (B ∪ WL) &
(minCard + 1) ≤ |v| ≤ (maxCard + 1)) {

(9) if ((|v| ≥ maxCard) and (∀w ⊂ v such that w ∈ B: maxSupport(w) ≥ σi)) {
/∗ If all subsets w (of v) that are in B satisfy the maxSupport condition,
then v (of cardinality ≥ maxCard) will be processed in a future batch. ∗/

(10) insert v into WL;
(11) } else if ((|v| < maxCard) & (∀w ⊂ v such that w ∈ B: maxSupport(w) ≥ σi)) {

/∗ If all subsets w (of v) that are in B satisfy the maxSupport condition,
then v (of cardinality < maxCard) is being processed in the current batch. ∗/
/∗ The replacement strategy replaces an itemset u (of higher cardinality) by
an itemset v (having lower cardinality). ∗/

(12) pick an itemset u in B such that |u| = maxCard;
(13) insert u into WL; decrement maxCard if necessary;
(14) insert v into B;

initialize count(v), maxMissed(v), and firstTrans(v) as in Carma;
} /∗ end else-if ∗/

} /∗ end for-each ∗/
} /∗ end else ∗/

(15) prune exactly as in Carma;
} /∗ end for; complete one scan of TDB ∗/
/∗ Steps (16) to (21): Set up buffer B for the next batch ∗/

(16) for all v in B {
/∗ move results from the buffer B to the “done list” DL ∗/

(17) copy count(v), maxMissed(v), and firstTrans(v) to DL;
}

(18) if (WL is empty) { break out of the repeat-loop; }
(19) else { /∗ reload a new batch from the waiting list WL into the buffer B ∗/
(20) fill B with as many v’s as possible from WL in ascending order of size;
(21) update minCard and maxCard accordingly for the next iteration;

}
} /∗ end repeat-loop ∗/

(22) return DL;
}

Fig. 4. Phase I of algorithm DCF.
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varied cardinalities in the buffer simultaneously. When there is only limited
buffer space available, this works against the efficient verification of the above
Insertion Condition. To this end, DCF adopts the following two strategies:

—DCF enforces a levelwise counting strategy. Specifically, when the buffer is
full, if an itemset v is to be inserted, then v “replaces” an itemset u in the
buffer if u is of a strictly higher cardinality (i.e., u, instead of v, is moved to the
waiting list WL). The rationale is that v, being of a lower cardinality than u,
is expected to be required more often than u for the verification of the above
Insertion Condition. Thus, when both cannot fit in the buffer, preferring the
smaller itemset over the larger itemset should help reduce I/O.

—DCF modifies the above Insertion Condition to consider only those subsets
that are in the buffer B. The rationale is that to decide whether v is to be
inserted, it is not necessary to check all subsets w of v. When there is only
a limited amount of buffer space, checking all subsets requires an excessive
amount of I/O. The strategy used by DCF is to restrict the checking to “imme-
diate” subsets (of v) that are in the buffer. In this way, no I/O is involved here.
This represents a tradeoff situation because more itemsets may be added to
the waiting list WL.

So far, we have dealt with the issue of which itemsets are to be kept in the buffer
and which are to be moved to the waiting list WL. An equally important issue
is the maintenance of WL. The insert operation of Carma (see the Insertion
Condition in Section 2.3) generates numerous subsets v of transaction ti, many
of which may need to be inserted. This could create a huge waiting list. DCF
intelligently deals with this issue as follows. For the current batch of itemsets
in the buffer, it restricts the generation of subsets to a maximum cardinality
of (maxCard + 1), where maxCard is the maximum cardinality of the itemsets
that are currently in the buffer. Note that this restricted generation does not
increase the number of itemsets to be processed, nor does it affect the number
of scans of the transaction database TDB. This is because subsets that are not
generated for the current batch are of cardinalities at least (maxCard + 2), and
are to be put in the waiting list. In due course, their generation can be triggered
by itemsets of size (maxCard+1), when the latter eventually get into the buffer
pool. See the example below.

Example 6.1. Suppose maxCard is 3. Then, for the current batch of item-
sets in the buffer, DCF only generates subsets of ti to a maximum size of 4.
Those subsets are put in the waiting list WL, if they are not there already.
Subsequently, when those subsets of size 4 are loaded into the buffer for their
counting, then the subsets of ti of size at least 5 will be considered and added
to WL (if necessary) at that time.

In short, when only limited buffer space is available, the main design ob-
jective of DCF is to use the buffer space judiciously to reduce I/O as much as
possible. It operates in a highly structured, levelwise fashion. Figure 4 gives
the pseudocode for DCF. Let us use the simple example below to illustrate how
DCF works.
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Example 6.2. Suppose the item domain is {a, b, c, d , e, f , . . .}, and the first
few transactions in TDB are t1 = {a, b, c, d }, t2 = {a, b, c}, t3 = {a, b, c, d }, and
t4 = {a, b, e, f }. To simplify our example, let us assume that the buffer B can
only accommodate 8 itemsets, and that the itemsets discussed below all satisfy
the given constraints C (i.e., all are generated in Step (5) or (8)).

After transaction t1 is read, Steps (5) and (6) are executed, and B now con-
tains itemsets {a}, {b}, {c}, and {d }, with maxCard set to 1.

After t2 is read, Steps (5) and (6) are executed again, and this time {a, b},
{a, c}, and {b, c} are added to B, with maxCard incremented to 2.

So far, the actions taken are exactly as in Carma. However, after t3 is read,
DCF deviates from Carma because B is now full. Step (6) adds {a, d } to B to
fill up B, and Step (10) then inserts itemsets {b, d }, {c, d }, and {a, b, c} into the
waiting list WL.

Next, after t4 is read, because items e and f appear for the first time, Step (12)
is executed. Suppose itemsets {b, c} and {a, d } that are originally in B are picked
to be moved to WL. Then, Step (14) inserts {e} and { f } into B, displacing {b, c}
and {a, d }.

Eventually, the first scan of TDB is completed, and all the itemsets and their
counted values (i.e., count(v), maxMissed(v), etc.) are moved to the file DL (i.e.,
the “done list”). Then, in Step (20), the buffer pool is reloaded with itemsets
from the WL. Suppose they are all of size 2 (e.g., {b, c}, {a, d }, etc.), in which
case both minCard and maxCard are set to 2. Thus, in the next iteration of the
repeat-loop, only subsets of size 3 of ti are generated in Step (8). In this case,
all those subsets that meet the condition in Step (9) are inserted into WL in
Step (10).

6.2 Optimizations of DCF

The pseudocode given in Figure 4 omits many details for simplicity; here, we
discuss some of the more important ones. In Figure 4, whenever an itemset
is inserted into either the buffer pool or the waiting list, we need to check
for duplication. This could be inefficient if duplication is checked every time
against the itemsets contained in the file WL. A more efficient way is to delay
the duplication check until the reloading conducted in Step (20). In this way, the
file WL can operate completely in an append mode, as the ordering of itemsets
of the same size in WL is immaterial to DCF.

In Step (13), after the itemset u has been identified and replaced, maxCard
may need to be decremented if u happens to be the last itemset of size maxCard.
An efficient implementation of this step is to keep track of the numbers of
itemsets in the buffer pool, corresponding to sizes minCard, minCard + 1, . . . ,
maxCard. Step (13) then decrements the number for maxCard; when this num-
ber drops to 0, the value of maxCard is decremented.

So far, we have focused our attention only on Phase I of DCF. For the sake of
completeness, we briefly consider the situation for Phase II. Note that Phase II
of Carma is a straightforward rescanning of the transaction database TDB to
obtain exact supports for all the itemsets in the support lattice V . It is somewhat
optimized by using firstTrans(v); this is because as far as v is concerned, it is
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/∗ Invoking condition: When there is a tightening change ∗/
Procedure DCF-tighten (new constraint Cnew, buffer pool B, waiting list WL) {

/∗ No immediate rechecking on itemsets v in DL; delay until Phase II ∗/
/∗ Immediate rechecking on itemsets v in B ∗/
for all v ∈ B {

if (v �|= Cnew) {
delete v from B;
replace v with a new itemset u ∈ W L where u |= Cnew;

} /∗ end if ∗/
} /∗ end for-all ∗/
/∗ No immediate rechecking on v in WL; delay until v is loaded into buffer ∗/

}

Fig. 5. Procedure DCF-tighten (for a tightening change).

sufficient to rescan TDB up to the transaction prior to firstTrans(v). In DCF,
Phase II is identical to that of Carma, except that when the buffer space is
limited, it is worth ignoring firstTrans(v), and simply applying the full rescan
for all v. What we gain back is that we no longer need to keep the counter
firstTrans(v) for each itemset. This would reduce the number of counters from
3 to 2, for each itemset. In other words, for a fixed size buffer pool, this would
translate to about 50% increase in the number of itemsets being processed in
each batch in both Phase I and Phase II, which, in turn, translates to a reduced
number of scans.

6.3 Handling Dynamic Changes to Nonfrequency Constraints
with Limited Buffer Space

In the remainder of this section, we turn our attention to how DCF handles dy-
namic constraint changes when buffer space is limited. Recall from our earlier
discussion that DCF constructs the solution space as it scans the transaction
database TDB batch-by-batch. When a tightening change is requested by the
user, the main algorithm of DCF is suspended, and the procedure DCF-tighten
is invoked. DCF-tighten needs to (i) recheck results obtained from previous
batches, and to (ii) enforce the new constraint for subsequent computations.
Figure 5 gives the pseudocode to show how DCF-tighten handles a tightening
change. The highlights of DCF-tighten are as follows:

—For each itemset v in the file DL (i.e., itemsets already processed), if v no
longer satisfies the new constraint Cnew (i.e., v |= Cold but v �|= Cnew), then v
can be deleted. However, there may be numerous changes to the constraints
during the mining process, DCF-tighten delays this verification step until v
is loaded for Phase II, so as to reduce I/O.

—For each itemset v in the buffer pool B, DCF-tighten checks whether v |= Cnew.
This immediate enforcement can stop any future effort spent on itemsets that
violate the new constraint.

—For itemsets that have not been processed, they are divided into two groups:
(i) those that are in file WL, and (ii) those that have not even been generated
and put into WL. For the former group, again to reduce I/O, DCF-tighten
delays the verification step until v is loaded into buffer. For the latter group,
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/∗ Invoking condition: When there is a relaxing change ∗/
/∗ Prerequisite: Buffer pool B empty on entry ∗/
Procedure DCF-relax (new/relaxed constraint Cnew, old/original constraint Cold, set of new
constraint Cnew, maximum cardinality maxCard, transaction database TDB) {
(1) if (Cold not succinct) { /∗ Cnew not succinct as well ∗/
(2) for all k from 1 to i { /∗ start scanning TDB ∗/
(3) for all v ∈ B with v ⊆ tSSM

k { increment count(v); }
(4) for all v generated by MGFSCnew (tSSM

k )
where (v |= (Cnew − SCnew) and 1 ≤ |v| ≤ maxCard) {

(5) insert v into B as in Carma;
}

(6) for all v generated by MGFSCnew (tSSM
k )

where (v |= (Cnew − SCnew) and |v| = maxCard + 1) {
(7) put v in WL;

}
(8) prune the itemsets in B exactly as in Carma;

} /∗ end for-all: scanning completed ∗/
(9) for all v ∈ B { move v and its counters to DL; }
(10) } else { /∗ Cold and Cnew succinct ∗/
(11) for all k from 1 to i { /∗ start scanning TDB ∗/
(12) for all v ∈ B with v ⊆ tSSM

k { increment count(v); }
(13) for all v generated by MGFCnew/Cold (tSSM

k )
where (v |= (Cnew − SCnew) and 1 ≤ |v| ≤ maxCard) {

(14) insert v into B as in Carma;
}

(15) for all v generated by MGFCnew/Cold (tSSM
k )

where (v |= (Cnew − SCnew) and |v| = maxCard + 1) {
(16) put v in WL;

}
(17) prune the itemsets in B exactly as in Carma;

} /∗ end for-all: scanning completed ∗/
(18) for all v ∈ B { move v and its counters to DL; }

} /∗ end else ∗/
}

Fig. 6. Procedure DCF-relax (for a relaxing change).

all DCF needs to do is to enforce the new constraint in Step (8), when the
itemset is being generated.

Next, we turn our attention to a relaxing change. Recall that a relaxing change
has different, and tougher, computational requirements than a tightening
change. When a relaxing change to a constraint is requested while the main al-
gorithm of DCF is processing a certain batch of itemsets with a specific maxCard
value, the procedure DCF-relax is invoked. Figure 6 gives the pseudocode on
how DCF-relax handles a relaxing change. The highlights of DCF-relax are as
follows:

—To ensure that the DL file is updated with respect to the new constraint Cnew,
DCF-relax must insert all those v’s satisfying Cnew but not Cold into DL. To
do this efficiently, the procedure DCF-relax restricts the generate-and-test
process to those v’s such that v ⊆ tSSM

k and |v| ≤ maxCard. Similarly, the WL
file is updated in accordance with Cnew, as carried out in Steps (6) and (7) of
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Figure 6. Notice that, to simplify our presentation in Figure 6, we assume
that all these new itemsets to be counted (i.e., cardinalities between 1 and
maxCard inclusive) can all fit into the buffer pool. If this is not true, this can
be easily dealt with as shown in Figure 4; we omit the details here.

—As in DCF, a relaxing change can be further optimized by using a delta
MGF, provided that the constraint being relaxed is succinct. This explains
Steps (13) and (15) in Figure 6.

6.4 Analysis of DCF

As discussed so far, DCF is designed to handle situations where the buffer
space is limited, and is optimized for its efficiency. To show the efficiency and
correctness of DCF, we establish some formal assurances on how DCF operates
in limited buffer space.

We begin with performance issues. Unlike Carma, our DCF algorithm is
capable of operating in situations where there is limited buffer space. In those
situations, it is obvious from the repeat-loop in Figure 4 that multiple scans of
the transaction database TDB may be required. The exact number of scans is
inversely proportional to the size of the buffer pool B. However, the following
lemma guarantees that when B is large enough to accommodate the support
lattice V constructed by Carma, then DCF—just like Carma—can complete
Phase I in just one scan. In the sequel, we use VS to denote the set of all
itemsets generated and counted by DCF. Hence, |V | and |VS| denote the number
of itemsets in V and VS, respectively. Moreover, we use |B| to denote the size
of the buffer pool, in terms of the number of itemsets (and their associated
counters) the buffer pool can accommodate.

LEMMA 6.3. Let V denote the support lattice constructed by Carma, and let
VS denote the set of all itemsets generated and counted by DCF. Then, |B|, |V |,
and |VS| are the sizes of B (buffer pool), V , and VS, respectively.

(a) When |B| < |V |, Phase I of DCF requires no more than s = ⌈|VS|/|B|⌉ scans
of TDB.

(b) When |B| ≥ |V |, we have VS = V , and Phase I of DCF requires exactly one
scan of TDB.

PROOF. For part (a), when the buffer pool is full, Steps (8) to (14) of Figure 4
may be executed. Combined with the reloading conducted in Steps (19) to (21),
it is clear that each itemset v ∈ VS is counted exactly once. Thus, the number
of scans required is s = ⌈|VS|/|B|⌉. On the other hand, for part (b), when the
buffer pool is large enough, Step (6) is executed repeatedly, which is basically
running Carma. Thus, VS is identical to V , and the number of scan required is
reduced to 1.

In general, depending on the size of the buffer pool, VS can be a strict superset
of V . This is a consequence of the tradeoff discussed in Section 6.1, when the
Insertion Condition in Section 2.3 is modified in DCF by adding w ∈ B, as in
Steps (9) and (11) of Figure 4. In the event that the buffer pool is large enough,
part (b) of the above lemma guarantees equality between V and VS.
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Next, we consider correctness issues of DCF. The first issue is to formalize
the structured-ness of DCF. Lemma 6.4 establishes the nondecreasing nature
of minCard and maxCard values at the end of each iteration. Lemma 6.4 states
that DCF generates and counts itemsets v ∈ VS in a levelwise fashion. It guar-
antees that if k is the least size of any itemset processed in the current batch,
then no itemset of size smaller than k will be processed in future iterations.

LEMMA 6.4. Let minCard and maxCard, respectively, denote the minimum
and the maximum cardinalities of the itemsets that are in the buffer pool. From
one iteration of DCF to the next, the minCard and maxCard values at the end
of each iteration are nondecreasing.

PROOF. We can show this lemma by induction. Let minCard j and maxCard j
denote the minCard and maxCard values at the end of the j th iteration. For
the base case, minCard1 = 0 and maxCard1 gets stabilized to some value c > 0
at the end of the first iteration. In preparation for the second iteration, v’s are
loaded into buffer B in Step (20) of Figure 4. The cardinalities of these v’s are
at least c, that is, minCard2 ≥ c. Otherwise, they would have been processed
in the previous batch because of Step (11). Hence, we have minCard1 = 0 <

c ≤ minCard2 and maxCard1 = c ≤ minCard2 ≤ maxCard2. This completes
the base case.

For the inductive case, suppose minCard j ≤ minCard j+1 and maxCard j ≤
maxCard j+1. Then, in preparation for the ( j + 2)th iteration, v’s are loaded
into buffer B in Step (20). The cardinalities of these v’s are at least the value
of maxCard j+1, that is, minCard j+2 ≥ maxCard j+1. Otherwise, they would
have been processed in the previous batch because of Step (11). Hence, we have
minCard j+1 ≤ maxCard j+1 ≤ minCard j+2 and maxCard j+1 ≤ minCard j+2 ≤
maxCard j+2. This completes the inductive case.

LEMMA 6.5. Let VS denote the set of all itemsets generated and counted by
DCF. Suppose |B| < |V | (i.e., the size of buffer pool B is smaller than the size
of the support lattice V constructed by Carma). Then, at the end of each batch
of itemsets in B (as constructed by DCF ), we have the following, with respect
to the corresponding minCard and maxCard values (i.e., the minimum and the
maximum cardinalities of the itemsets that are in B):

(a) For any v ∈ VS such that |v| < minCard, v was processed (i.e., count(v) and
maxMissed(v) computed) in a previous batch.

(b) For any v ∈ VS such that minCard ≤ |v| < maxCard, v either was processed
in a previous batch, or is in the current batch.

PROOF. Having established in Lemma 6.4 the nondecreasing nature of
minCard and maxCard values at the end of each iteration, we can show
Lemma 6.5 by induction. For the base case, part (a) is trivially true. For
part (b), because the buffer pool is full, Steps (8) to (14) of Figure 4 are ex-
ecuted at some point during the first iteration. For any to-be-inserted item-
set v whose cardinality is strictly less than maxCard, there is always room
for v—at the expense of another itemset u with cardinality exactly maxCard.
Thus, when the first scan of TDB is completed, all itemsets with cardinality
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strictly less than maxCard are in the current batch. This completes the base
case.

For the inductive case, we assume that parts (a) and (b) are true for the
j -iteration. Then, for the ( j + 1)th iteration, we know from Lemma 6.4 that
minCard and maxCard are nondecreasing, that is, minCard j ≤ minCard j+1
and maxCard j ≤ maxCard j+1. We also know that maxCard j ≤ minCard j+1.
If minCard j = minCard j+1, then part (a) is true because of the induction
assumption in part (a). On the other hand, if minCard j < minCard j+1, then
there are two cases. Under the first case where minCard j+1 = maxCard j , then
part (a) is proved because of the induction assumptions in parts (a) and (b).
Under the second case where minCard j+1 > maxCard j , this is only possible if
all the itemsets v of cardinality less than minCard j+1 has been processed. This
completes the proof of part (a).

As for part (b), if maxCard j = maxCard j+1, then part (b) is trivially true.
On the other hand, if maxCard j < maxCard j+1, then there are two cases.
Under the first case where minCard j+1 = maxCard j , then an itemset v with
minCard j+1 ≤ |v| < maxCard j+1 was processed in a previous batch or is in
the current batch, because of Steps (9), (10), and (20). Under the second case
where minCard j+1 > maxCard j , v is in the current batch, because of Steps (11)
to (14). This completes the proof of part (b).

Recall that the main purpose of Carma is that it handles dynamic changes
to the support threshold during Phase I. As formalized in Theorem 2.6, its
correctness is mainly guaranteed by the fact that the constructed lattice V is
typically a superset of all the frequent sets with respect to the support thresh-
old g (〈σ1, . . . , σn〉). For DCF, a similar goal is to show that DCF can handle
dynamic changes to the support threshold—even in the absence of sufficient
memory to contain the lattice V . However, to do so, there is a slight complica-
tion due to the possibility of multiple scans of TDB (cf. Lemma 6.3) when there
is not enough buffer space. For Carma, the sequence of the support threshold is
denoted as 〈σ1, . . . , σn〉, where σi is the support threshold after transaction ti is
read. For DCF, because there could be s ≥ 1 scans, the corresponding sequence
is extended to 〈σ1, . . . , σn, σn+1, . . . , σ2n, . . . , σsn〉. The following theorem shows
the correctness of DCF.

THEOREM 6.6. At the end of Phase I of the DCF algorithm, VS (i.e., the set of
all itemsets generated and counted by DCF) is typically a superset of all frequent
itemsets relative to the support threshold given by max {g (〈σ( j−1)n+1, . . . , σ j n〉) |
1 ≤ j ≤ s}, for the same function g () as in Theorem 2.6.

PROOF. For the j th batch of itemsets processed by DCF (denoted as VS j ),
the previous lemma guarantees that all itemsets v ∈ VS with cardinality
strictly less than minCard j have been processed. Then, by Theorem 2.6, we
can conclude that the set {v | v ∈ VS & |v| < minCard j } is a superset of
the set of all frequent itemsets with cardinality less than minCard j relative
to the support threshold g (〈σ( j−1)n+1, . . . , σ j n〉) and the maximum threshold
max{g (〈σ( j−1)n+1, . . . , σ j n〉) | 1 ≤ j ≤ s}. By taking the union of all the s batches
(i.e., VS = VS1 ∪ · · · ∪ VSs), VS typically contains all the frequent itemsets
relative to the maximum support threshold.
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Recall from Section 2.3 that, in the presence of changes in the support thresh-
old, we would finally like to find all frequent sets with respect to the last support
threshold of the last scan (i.e., σsn). Just like g (〈σ1, . . . , σn〉) ≥ σn in Carma’s case,
a similar condition holds here: In general, max {g (〈σ( j−1)n+1, . . . , σ j n〉) | 1 ≤ j ≤
s} ≥ σsn. In the event that the last support threshold σsn is strictly smaller, the
heuristic proposed by Hidber [1999] can be used—in exactly the same way as
was done to overcome Carma’s situation when g (〈σ1, . . . , σn〉) > σn.

7. DISCUSSION: OTHER APPLICATIONS OF THE SSM

Recall from Sections 3 and 4.2 that the segment support map (SSM) en-
hances the performance of our proposed DCF algorithm by (i) tightening the
maxSupport(v) and maxMissed(v) bounds for pruning, and (ii) better exploiting
the frequency constraint as well as other antimonotone constraints. However,
it is important to note that, being a generic structure, the SSM can bring ben-
efits not only to constrained online/dynamic mining algorithms like DCF, but
also to a general class of offline/nondynamic mining algorithms (constrained
or otherwise). Below, we present some examples of these useful applications.
Experimental results in Section 8.4 show the effectiveness of the SSM in one
of these applications.

7.1 Using the SSM in Hash-Based Frequent-Set Mining

Since its introduction, the association rule mining problem (and the frequent-
set finding problem) has been the subject of numerous studies. As a result, many
algorithms for finding association rules or frequent sets have been developed.
One of them is the DHP algorithm [Park et al. 1997], which uses a hash-based
partitioning technique to speed up the performance of frequent-set mining.
Recall from Section 2.1 that the DHP algorithm hashes candidate k-itemsets
(e.g., k = 2) into different buckets. If an insufficient number of itemsets is
hashed into a bucket (i.e., the bucket count is below the user-defined support
threshold), all candidate itemsets in this bucket are pruned before counting
their support.

In the presence of the SSM, the performance of the DHP algorithm can be
enhanced as follows. When an SSM is used simultaneously with hash tables
built by DHP, known infrequent k-itemsets do not need to be generated at all.
Itemsets that pass through the pruning by the SSM can now be further pruned
by the DHP algorithm. See Figure 7 for a skeleton of the SSM-enhanced DHP
algorithm. To simplify our presentation, this skeleton omits some details that
are immaterial to our discussion.

As shown in Step (1) of Figure 7, the SSM-enhanced DHP algorithm can eas-
ily obtain from the SSM those 1-itemsets whose support values satisfy the user
support threshold, thereby avoiding the generate-and-test process of candidate
1-itemsets. Regarding the building of hash tables for k-itemsets (i.e., Steps (2)
and (9)), the SSM-enhanced DHP algorithm avoids hashing any k-itemset v
that is known to be infrequent. This helps to reduce the number of “redundant”
(i.e., known infrequent) itemsets being hashed into a bucket. Consequently, this
effectively lowers the number of candidates to be counted. Moreover, in Steps (3)
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Algorithm SSM-enhanced DHP (transaction database TDB = {t1, ..., tn}){
(1) obtain the set of frequent 1-itemsets from the SSM

by picking those 1-itemsets v whose support(v) = estsup(v) ≥ threshold;
/∗ Step (2): Build a hash table for 2-itemsets v ⊆ tSSM

i ; use tSSM
i (instead of ti) ∗/

(2) for all 2-itemsets v ⊆ tSSM
i {

if v not known to be infrequent (from the SSM),
then hash v into an appropriate bucket, and increment the corresponding bucket count;

}
/∗ Step (3): Use the SSM in candidate generation to ensure that known infrequent itemsets
are not generated ∗/

(3) generate candidate 2-itemsets using the SSM and the set of frequent 1-itemsets;
(4) remove those candidate 2-itemsets in a bucket whose count < threshold;
(5) k = 2;
(6) while (there exists a candidate k-itemset) {
(7) for all tSSM

i {
(8) count candidate k-itemsets v ⊆ tSSM

i ;
(9) build a hash table for (k + 1)-itemsets v ⊆ tSSM

i ;
}

(10) obtain the set of frequent k-itemsets by picking those candidate k-itemsets whose
counts ≥ threshold;

(11) generate candidate (k + 1)-itemsets using the SSM and the set of frequent k-itemsets;
(12) remove those candidate (k + 1)-itemsets in a bucket whose count < threshold;
(13) k = k + 1;

} /∗ end while ∗/
}

Fig. 7. The SSM-enhanced DHP algorithm.

and (11), when the SSM-enhanced DHP algorithm generates candidate (k +1)-
itemsets, it uses both the SSM and the set of frequent k-itemsets to ensure
that known infrequent (k + 1)-itemsets are not generated. Consequently, fewer
candidate itemsets are hashed into buckets, thereby reducing the number of
candidates that need to be counted and speeding up the computation.

7.2 Using the SSM in Depth-First Search Based Frequent-Set Mining

In the previous section, we showed how the SSM brings additional benefits to
a hash-based frequent-set mining algorithm (namely, DHP). In this section, we
show how the SSM can bring additional benefits to another frequent-set mining
algorithm, namely a depth-first search based algorithm called DepthProject
[Agarwal et al. 2000].

While many existing frequent-set mining algorithms use a breadth-first
search approach (i.e., a levelwise bottom-up approach), DepthProject uses a
depth-first approach. More precisely, DepthProject generates frequent item-
sets by using a depth-first search on a lexicographic tree of itemsets. At each
recursion, the algorithm generates possible frequent lexicographic extensions
(i.e., candidates) of a tree node v and tests for frequency.

Like its applications within the DHP algorithm in Section 7.1, the SSM can
enhance the performance of the DepthProject algorithm. When an SSM is used
simultaneously with DepthProject, known infrequent candidates can be pruned
before the frequency counting. See Figure 8 for a skeleton of the SSM-enhanced
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Algorithm SSM-enhanced DepthProject (non-root itemset node v, transaction database TDB) {
(1) generate the set of candidates—which contains all possible frequent lexicographic

extensions of v—with the SSM so that known infrequent candidates are not generated in
the first place;

(2) obtain frequent lexicographic extensions of v (i.e., E(v) = {item1, ..., item|E(v)|}) by
counting the support of candidates in TDB;

(3) for k from 1 to |E(v)| {
(4) call SSM-enhanced DepthProject (v ∪ {itemk}, projected TDB);

}
}

Fig. 8. The SSM-enhanced DepthProject algorithm.

DepthProject algorithm. Again, to simplify our presentation, this skeleton omits
some details that are immaterial to our discussion.

The SSM-enhanced DepthProject algorithm can directly obtain the set of
frequent 1-itemsets from the SSM, thereby avoiding the generate-and-test pro-
cess of candidate 1-itemsets (i.e., avoiding the support counting for all domain
items). Once these frequent 1-itemsets (i.e., frequent lexicographic extensions
of the root node) are found, their frequent lexicographic extensions can be gen-
erated by calling the algorithm recursively. In each recursive call, the algo-
rithm generates candidates (i.e., possible frequent lexicographic extensions of
an itemset v) with the SSM so as to ensure that known infrequent lexicographic
extensions of v are not generated (refer to Step (1) of Figure 8). This helps to
reduce the number of candidates that need to be counted in Step (2), and helps
to prevent unnecessary computation on known infrequent itemsets.

7.3 Using the SSM in Sequential Mining

To show that the benefits of the SSM are not confined to the mining of frequent
sets, we show in this section how the SSM can be used to enhance the per-
formance of sequential mining algorithms. The problem of sequential mining
[Agrawal and Srikant 1995] can be divided into the following five phases:

I. Sort Phase, in which the original transaction database is converted into a
database of customer sequences. In other words, transactions in the origi-
nal database are sorted by customer ID and transaction time.

II. Frequent Itemset Phase, in which classical association rule mining algo-
rithms (e.g., Apriori [Agrawal and Srikant 1994]) are applied to find (i) all
frequent itemsets, and (ii) all frequent sequences of length 1 (i.e., frequent
1-sequences).

III. Transformation Phase, in which each transaction ti is replaced by the set
of all frequent itemsets (found in the Frequent Itemset Phase) that are
contained in ti.

IV. Sequence Phase, in which algorithms such as AprioriAll [Agrawal and
Srikant 1995] are applied to find the desired sequences by using the set of
frequent itemsets found in the Frequent Itemset Phase.

V. Maximal Phase, which is an optional phase for finding maximal sequences.
Among the frequent sequences found in the Sequence Phase, it removes
those that are not maximal.
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Algorithm SSM-enhanced Apriori (database of customer sequence TDB) {
(1) obtain the set of frequent 1-itemsets from the SSM

by picking those 1-itemsets v whose support(v) = estsup(v) ≥ threshold;
(2) k = 1;
(3) while (there exists a frequent k-itemset) {

/∗ Step (4): Use the SSM in candidate generation to ensure that known infrequent itemsets
are not generated ∗/

(4) generate candidate (k + 1)-itemsets using the SSM and the set of frequent k-itemsets;
(5) for each customer sequence cs in TDB {
(6) increment the count of all candidate (k + 1)-itemsets that are contained in cs;

}
(7) set of frequent (k + 1)-itemsets

= { candidate (k + 1)-itemsets whose support ≥ threshold };
(8) k = k + 1;

} /∗ end while ∗/
(9) return

⋃
k set of frequent k-itemsets;

}
Fig. 9. The SSM-enhanced Apriori algorithm.

Algorithm SSM-enhanced AprioriAll (collection of transformed database TDB′) {
(1) obtain the set of frequent 1-sequences from the SSM

by picking those 1-sequences v′ whose support(v′) = estsup(v′) ≥ threshold;
(2) k = 1;
(3) while (there exists a frequent k-sequence) {

/∗ Step (4): Use the SSM in candidate generation to ensure that known infrequent sequences
are not generated ∗/

(4) generate candidate (k + 1)-sequences using the SSM and the set of frequent k-sequences;
(5) for each transformed customer sequence tcs in TDB′ {
(6) increment the count of all candidate (k + 1)-sequences that are contained in tcs;

}
(7) set of frequent (k + 1)-sequences

= {candidate (k + 1)-sequences with support ≥ threshold};
(8) k = k + 1;

} /∗ end while ∗/
(9) return

⋃
k set of frequent k-sequences;

}

Fig. 10. The SSM-enhanced AprioriAll algorithm.

In addition to enhancing the performance of DHP and DepthProject, the SSM
can also help to enhance the performance of sequential mining algorithms—
especially in the Frequent Itemset Phase and the Sequence Phase—by reduc-
ing the number of candidate itemsets and the number of candidate sequences.
More concretely, in the Frequent Itemset Phase, when generating candidate
(k + 1)-itemsets from the set of frequent k-itemsets, the SSM-enhanced Apriori
algorithm uses the SSM to ensure that those candidate (k + 1)-itemsets that
are known to be infrequent are not generated (see Step (4) of Figure 9). This
reduces the number of candidates that require support counting in Step (6),
and thereby speeding up the computation.

Similar comments apply to the Sequence Phase. When the SSM-enhanced
AprioriAll algorithm generates candidate (k + 1)-sequences in Step (4) of
Figure 10, it uses the SSM to ensure that those candidate (k + 1)-sequences
that are known to be infrequent are not generated.
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8. EXPERIMENTAL RESULTS

The experimental results cited below are based on a transaction database TDB
of 100k records, and a domain of 10k items. TDB was generated by the program
developed at the IBM Almaden Research Center [Agrawal and Srikant 1994].
The average transaction length is 10 items, and the average cardinality of a
frequent itemset is 4. Unless otherwise specified, we used a support threshold of
0.1%. All experiments were run in a time-sharing environment using a 700 MHz
machine. The speedup shown is with respect to the total CPU and I/O time.

8.1 SSM-Based Pruning within DCF

In this experiment, we compared the results for two algorithms (implemented
in C) that support the kinds of succinctness-based pruning shown in Section 4:
DCF(w/o SSM) and DCF(w/SSM). The former does not include the SSM,
whereas the latter does. The difference is to highlight the effectiveness of SSM-
based pruning.

In this section, we first showed the results of the SSM-based pruning based on
a constant and a changing support thresholds. More specifically, we evaluated
how the number of segments can benefit DCF(w/SSM), with a CFQ consisting
of the succinct constraint C ≡ max(S.Price) ≤ 10. We conducted two sets of
experiments where 40% of items with Price ≤ 10: (i) one experiment with a
fixed support threshold of 0.1%, and (ii) another with support threshold varied
from 0.075% to 0.125% then to 0.1%. These values were chosen to correspond
to a similar set of experiments shown for Carma [Hidber 1999]. The results
of these two sets of experiments turned out to be almost the same. For lack of
space, we only show the results based on the changing support threshold.

The x-axis in Figure 11 shows the number of segments varying from 2 to
25. The y-axis in Figure 11(a) shows the size of the lattice computed by DCF(w/
SSM) relative to that by DCF(w/o SSM). The size of the lattice corresponds to the
number of itemsets that were counted. The smaller the size, the more effective
the pruning was. As expected, the larger the number of segments in the SSM,
the larger was the number of itemsets that were pruned. For instance, with
10 segments, the number of itemsets counted was about 1/6 of that required
without the SSM.

In Figure 11(b), the y-axis gives the speedup of DCF(w/SSM) relative to
DCF(w/o SSM) in terms of total runtime. With increasing number of segments,
while the relative size of the lattice decreases monotonically in Figure 11(a),
the relative speedup shows a peak when the number of segments is 10 in
Figure 11(b). The peak occurs when the reduction in the lattice size is no longer
significant enough to offset the cost of processing an extra segment. The re-
sult shows that while the SSM is a lightweight structure (e.g., 10 segments
requiring 100,000 integers for 10k items, for a total space of 0.2 megabytes
using 2 bytes per integer), the pruning effect is spectacular. In absolute terms,
DCF(w/o SSM) took about 10 seconds total time, whereas DCF(w/SSM) took
less than 3 seconds with 10 segments. This is very encouraging because this
shows that we are making significant progress towards the eventual goal of
providing a real-time response (or a real-time completion of CFQ evaluation).
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Fig. 11. SSM-based pruning: Changing support threshold.

Next, we showed the results of the SSM-based pruning based on a “sea-
sonal” transaction database. More specifically, in Section 3, we mentioned that
the SSM is well suited to handle transaction databases that do not follow the
uniform distribution assumption, and there are many databases of this kind.
An example is the supermarket database consisting of “seasonal” transactions.
By using the IBM Almaden program, we generated a transaction database
in which the effect of the “seasonal” nature has been simulated. Specifically,
50% of the items have a higher probability of appearing in the first half of the
database, and the other 50% have a higher probability of appearing in the sec-
ond half. The following table shows the speedup of DCF(w/SSM) relative to that
of DCF(w/o SSM).

Number of Segments 2 4 5 8 10 16 20 25
Relative Speedup 5.81 5.96 5.99 6.04 6.06 6.03 6.00 5.96

For the “seasonal” data, the average speedup is around 6 times, as opposed to
around 3 times as shown in Figure 11(b). This shows that the SSM, mainly via
the futurek(v) bound, delivers additional benefits when the transaction data-
base is not uniformly distributed and is “seasonal” in nature.

8.2 Succinctness-Based Optimization

Next, we turned our attention to succinctness-based optimization. This exper-
iment was a continuation of the one in Section 8.1, having the CFQ consisting
of the succinct constraint C ≡ max(S.Price) ≤ 10. The exceptions are that we
set the number of segments to 10, and we varied the percentage pct of items
whose Price is at 10 or below. In the experiment, we compared the results
for DCF(w/o SSM) and DCF(w/SSM) with that for Carma+. In Carma+, we
first ran Carma to deal with the support threshold, and then checked all the
constraints at the end. The difference between Carma+ and the two DCF algo-
rithms is to highlight the effectiveness of the succinctness-based optimization
described in Section 4.1.

The x-axis in Figure 12 shows pct varying from 40% to 100%. The y-axis
shows, in logarithmic scale, the speedup of DCF(w/SSM) and DCF(w/o SSM)
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Fig. 12. Succinctness-based optimization: Relative speedup.

against Carma+. Take pct = 40% as an example. The two DCF algorithms,
by exploiting the succinct constraint, achieve a speedup of about two orders of
magnitude. The results here convincingly show that succinctness-based opti-
mization is effective.

8.3 Effectiveness of Dynamic Constraint Changes

Then, we turned our attention to dynamic changes of constraints. In particular,
we focused on relaxing changes, which are usually computationally intensive.
In this experiment, we compared the results for three algorithms that were
implemented in C:

—DCF(w/deltaMGF), which deploys the delta member generation functions in
generating those itemsets v’s satisfying Cnew but not Cold. Note that to evalu-
ate directly the efficiency of handling the dynamic changes, we only consider
here the runtime for “fixing” the current lattice V . More specifically, sup-
pose Cold is relaxed to Cnew after i transactions have been read. Then, we are
only concerned here with the runtime to change the V (Cold, i) to V (Cnew, i),
where V (C, i) denotes the state of the lattice for constraint C after the first
i transactions have been processed (from scratch).

—DCF(w/o deltaMGF), which adopts the generate-and-test approach de-
scribed in Section 5.2 (i.e., without using the delta MGFs).

—Rerun, which directly computes V (Cnew, i) from scratch, instead of “evolving”
it from V (Cold, i) like the two algorithms above.

In this experiment, the CFQ consists of Cold ≡ max(S.Price) ≤ 8, which was
relaxed to Cnew ≡ max(S.Price) ≤ 10. Note that both Cold and Cnew are suc-
cinct constraints. The percentage pctnew of items having Price ≤ 10 and the per-
centage pctold of items having Price ≤ 8 are set in such a way that pctold =
pctnew − 20%. We varied pctnew from 80% to 100%.

In all experiments, DCF(w/deltaMGF) far dominates DCF(w/o deltaMGF);
the former is often four orders of magnitude faster! This shows the importance
of the delta member generating functions in dealing with dynamic changes to
constraints.
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Fig. 13. Effectiveness of dynamic constraint changes: DCF(w/deltaMGF) vs. Rerun.

To deal with dynamic changes to nonfrequency constraints, the approaches
outlined in Section 5 are essentially incremental in nature. That is, based on the
current state V (Cold, i), DCF “evolves” it into the appropriate state V (Cnew, i).
As with any incremental approaches, they may not always win against a sim-
ple rerun from scratch. The following experiment is to examine this issue in
detail.

The comparison between Rerun and DCF(w/deltaMGF) depends on the time
when the constraint Cold is relaxed to Cnew. The x-axis in Figure 13 shows
the number i of transactions read before relaxing the constraint, and i varied
from 20k to 80k (for a 100k transaction database). The y-axis in Figure 13(a)
shows the total runtime (in seconds) of both DCF(w/deltaMGF) and Rerun.
From the graph, it is clear that DCF(w/deltaMGF) always beats Rerun, but the
extent varies under different situations. When Cnew selects more items (e.g.,
pctnew = 100%, when compared with pctnew = 80%), Rerun is more affected by
it. Thus, the relative speedup between Rerun and DCF (w/deltaMGF) is higher
for pctnew = 100%. This is shown in Figure 13(b), which essentially translates
the absolute runtime in Figure 13(a) to give the relative speedup in Figure 13(b).
It is clear from Figure 13(b) that the incremental algorithm with delta MGFs
is always a few times faster than Rerun.

8.4 SSM-Based Pruning within Other Applications

In Section 8.1, we reported experimental results that convincingly show the
effectiveness of SSM-based pruning within the DCF algorithm. In this section,
we turned our attention to SSM-based pruning within other applications. Re-
call from Section 7 that the benefits of the SSM are not confined to the DCF
algorithm for the efficient dynamic mining of constrained frequent sets. The
SSM can bring additional benefits to many other applications (e.g., the hash-
based mining of frequent sets, the depth-first search based mining of frequent
sets, and the mining of sequential patterns).

We evaluated the effectiveness of the SSM in providing additional benefits
to an instance of these applications—namely, the DHP algorithm. Although
we only evaluated one instance (due to the lack of space), we expect that the
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SSM is also effective in providing pruning within other applications too. In the
experiment, we compared the results of two algorithms (implemented in C):

—the original DHP algorithm, denoted as DHP(w/o SSM), and
—the SSM-enhanced DHP algorithm, denoted as DHP(w/SSM).

Among the two algorithms, the former does not include the SSM, whereas the
latter does. The difference is to highlight the effectiveness of SSM-based prun-
ing within DHP. In both algorithms, hash tables having 32,768 buckets are built
for candidate 2-itemsets. In the experiment, we used a transaction database
of 100k records and 10k domain items (where average transaction length is
4 items). We varied the number of segments from 2 to 25. The following table
shows the results of DHP(w/SSM) relative to those of DHP(w/o SSM).

No. of Segments Relative Speedup No. of Candidate 2-itemsets
2 3.38 20,984
4 3.32 20,080
5 3.27 19,660
8 3.20 18,392

10 3.05 17,737
16 2.84 15,951
20 2.67 14,875
25 2.47 13,782

The above table shows that, when the DHP algorithm is used in conjunction
with the SSM, the average speedup is around 3 times (when comparing the
DHP algorithm with the SSM to that without the SSM). This indicates that, by
reducing the number of candidate 2-itemsets, the SSM brings additional bene-
fits to DHP. For example, when using 10 segments for the SSM, DHP(w/SSM)
generates 17,737 candidate 2-itemsets, which are (i) about 83% of candidate
2-itemsets generated by DHP(w/o SSM), and (ii) about 1.7% of candidate 2-
itemsets generated by Apriori.

It is interesting to note from the above table that, while the number of can-
didate 2-itemsets decreases when more segments are used in the SSM (as ex-
pected), the relative speedup decreases. The reason is that when the number
of segments increases, the reduction in the number of candidate 2-itemsets is
no longer sufficient to offset the cost of processing an extra segment.

In sum, this experimental result further reinforces the usefulness of the
SSM—namely, the SSM brings additional benefits to other applications, in-
cluding the DHP algorithm.

8.5 Benefits and Costs of the SSM of Higher Cardinalities

Finally, we evaluated the benefits and costs of using an SSM of higher cardinal-
ities. So far in the experiments, we used SSMs that store the actual segment
supports of singleton itemsets. However, recall from Section 3.1 that the upper
bound estsup(v) provided by the SSM can be made tighter in two ways. The
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Fig. 14. Effectiveness of SSM2-based pruning.

first way is to increase the number of segments m. The amount of storage space
required is then increased linearly. We experimented with varying the number
of segments in Section 8.1.

The second way to generalize the SSM is to store not only the actual seg-
ment supports of singleton itemsets, but also the actual segment supports of
k-itemsets where k ≥ 2. A benefit of so doing is that the upper bound on the
support of an itemset v can be tightened by using the actual segment supports
based on 2-itemsets than using those based on singleton itemsets. However,
the price is that the amount of storage space required is then increased expo-
nentially with respect to the sizes of the itemsets. For instance, for a domain of
10k items, an SSM storing the actual segment supports of all singleton item-
sets costs 0.2 megabytes when there are 10 segments in the SSM. However,
the amount of space required jumps to 2 gigabytes just for storing the actual
segment supports of all 2-itemsets! Even for a domain of 1k items, the amount
of space required for 10 segments jumps from 20 kilobytes (for storing singleton
itemsets) to 20 megabytes (for storing 2-itemsets).

The experiment was conducted on a transaction database of 10k records and
a domain of 1k items, with average transaction length of 10 items. Like the
experimental setup in Section 8.2, we used a CFQ consisting of the succinct
constraint C ≡ max(S.Price) ≤ 10, set the number of segments to 10, and
varied the percentage pct of items whose price is at 10 or below. We compared
the results for the following algorithms that were implemented in C:

—Carma+, which first runs Carma to deal with the support threshold, and
then checks all the constraints at the end (refer to Sections 4.1 and 8.2);

—DCF(w/o SSM), which does not include the SSM;
—DCF(w/SSM1), which includes the (usual) SSM storing the actual segment

supports of singleton itemsets; and
—DCF(w/SSM2), which includes the SSM storing the actual segment supports

of singleton itemsets and of 2-itemsets.

The x-axis in Figure 14 shows pct varying from 20% to 100%. The y-axis
in Figure 14(a) shows the sizes of the lattice computed by the three DCF
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algorithms relative to that by Carma+; the y-axis in Figure 14(b) shows
the speedups of DCF(w/o SSM), DCF(w/SSM1), and DCF(w/SSM2) against
Carma+.

The experimental results served at least three purposes. First, the differ-
ence between DCF(w/SSM1) and DCF(w/SSM2) highlights the effectiveness of
pruning based on an SSM that stores the actual segment supports of 2-itemsets
(in addition to the supports of singleton itemsets). As shown in Figure 14(a),
DCF(w/SSM2) further reduces the lattice size. Due to the reduction in lat-
tice size, the speedup of DCF(w/SSM2) is higher than those of DCF(w/SSM1)
as indicated in Figure 14(b). However, this comes with the price of an extra
20 − 0.02 = 19.98 megabytes of storage space.

Second, the difference between DCF(w/o SSM) and the other two DCF
algorithms—namely, DCF(w/SSM1) and DCF(w/SSM2)—shows the benefits
brought by the SSM. As shown in Figure 14, both DCF(w/SSM1) and
DCF(w/SSM2) lead to a smaller lattice size and higher speedup, when com-
pared to DCF(w/o SSM).

Third, the difference between Carma+ and the three DCF algorithms once
again highlights the effectiveness of the succinctness-based optimization de-
scribed in Section 4.1. To elaborate, the lower the percentage of items selected
(i.e., the fewer the items being selected), the smaller the relative lattice size
and the higher the relative speedup.

9. CONCLUSIONS

Towards the development of a practical environment for the human-centered
exploratory mining of constrained frequent sets, we considered in this article an
important component—namely, how to support efficient dynamic mining. The
DCF algorithm developed here has the capabilities of handling constrained
frequent-set queries, and handling dynamic changes to the constraints (both
relaxing and tightening) and/or the support threshold. It is also capable of op-
erating in situations where there is not enough buffer space to simultaneously
accommodate all frequent itemsets.

Functionality aside, a key contribution of this article is to optimize the per-
formance of the DCF algorithm. To this end, we proposed and studied the
novel structure of SSM. While very lightweight, the SSM provides direct in-
formation about the variability of support counts in different segments of the
transaction database. Consequently, it helps to tighten the maxSupport(v) and
maxMissed(v) bounds for pruning, and to better exploit the support constraint
as well as other antimonotone constraints. Experimental results reported con-
vincingly shows the benefits of the SSM. With a very small price to pay (e.g.,
0.2 megabytes of space for 10,000 items and 10 segments), the SSM can prune a
much larger number of itemsets, and can bring about a speedup that is (i) sev-
eral times better than without using the SSM and (ii) about two orders of
magnitude better than Carma+. Furthermore, it is important to note that all
the results on the SSM reported here have serious implications not only to con-
strained dynamic/online mining, but also to a general class of offline mining
algorithms (constrained or otherwise). This is because the notions of segment
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supports and SSM can apply even to the classical Apriori algorithm (for offline
mining of unconstrained association rules), and hence to many of its variants
for several related data mining tasks.

Central to the subject matter of this article is the efficiency of DCF in han-
dling dynamic changes to nonfrequency constraints. To this end, we proposed
and studied the notion of delta MGFs for a relaxing change, which is more
computationally expensive than a tightening change. The experimental results
reported here show that the delta MGFs are very effective in handling the
changes.

A key overall objective of our project is to develop a practical environment for
the human-centered exploratory mining of constrained frequent sets. For this
environment to be truly exploratory, it is imperative that the response time
of a system should be as little as possible. By that, we require the system not
only to give continuous feedback, but also to allow the user to make dynamic
changes; this aspect we have dealt with successfully in this article. Moreover,
we also require the system to “complete” all processing for a CFQ in a short
time. To this end, we are very encouraged to see that with the optimizations
described here, it takes less than 3 seconds total time to complete the CFQ in
Section 8.1. In ongoing work, we are interested in exploring how much sampling
and parallel processing [Park et al. 1995; Agrawal and Shafer 1996] can help. We
are also interested in extending the dynamic mining framework to handle other
patterns, such as correlations [Brin et al. 1997; Grahne et al. 2000], quantitative
rules [Miller and Yang 1997], and sequential patterns [Agrawal and Srikant
1995; Garofalakis et al. 1999].
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