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Abstract—With growing Field Programmable Gate Array (FPGA) device sizes and their integration in environments enabling sharing

of computing resources such as cloud and edge computing, there is a requirement to share the FPGA area between multiple tasks. The

resource sharing typically involves partitioning the FPGA space into fix-sized slots. This results in suboptimal resource utilisation and

relatively poor performance, particularly as the number of tasks increase. Using OpenCL’s exploration capabilities, we employ clever

clustering and custom, task-specific partitioning and mapping to create a novel, area sharing methodology where task resource

requirements are more effectively managed. Using models with varying resource/throughput profiles, we select the most appropriate

distribution based on the runtime, workload needs to enhance temporal compute density. The approach is enabled in the system stack

by a corresponding task-based virtualisation model. Using 11 high performance tasks from graph analysis, linear algebra and media

streaming, we demonstrate an average 2:8� higher system throughput at 2:3� better energy efficiency over existing approaches.

Index Terms—FPGA systems, resource sharing, scheduling and runtime, partitioning and mapping, task-based virtualisation, clustering

Ç

1 INTRODUCTION

COMPUTING services, such as cloud data centres, look to
achieve a higher return on cost of computing systems by

efficient temporal and spatial sharing of resources amongst
multiple tasks. In the recent time, the drive for enhanced per-
formance for computationally demanding tasks have encour-
aged cloud service providers, such as Amazon, to integrate
Field Programmable Gate Arrays (FPGAs) in their data
centres [1]. Whilst FPGAs offer acceleration in high perfor-
mance computing (HPC), this is typically restricted to a single
application configuration (SAC) [1] and effective resourceman-
agement for area-shared, multi-task execution still remains
challenging. This has a higher significance, particularly with
the migration of services to fog/edge under stricter resource
and energy utilisation constraints.

Conventional software-programmable systems typically
use discrete processing cores, abstracted as software threads
offering microsecond latency context switching between
tasks. This results in a highly flexible resource management
and tasks schedulingmodel, towhich a range of optimisations
can be applied [2]. With FPGAs, however, this is complicated
as support for mapping source code has to be considered spa-
tially, i.e., how the devices, physical resources are shared.

Typically, frameworks are based on partial reconfigura-
ble regions (PRRs) [3], [4] where the FPGA is partitioned
into fix-sized rectangular slots. Spatial mapping constraints
on modern FPGAs mean that the PRRs are designed to be
largely homogeneous. Modern HPC tasks, however, are
inherently heterogeneous where resource needs such as
memory, computing, bandwidth, will change and have run-
time varying workload sizes and throughput needs [5].
Mapping these independent HPC tasks with custom
designed hardware and I/O onto PRR systems, typically
results in a mismatch giving lower compute density and
underutilisation of FPGA resources by up to 70 percent [3].

Custom task-specific partitioning and mapping (CPM),
supported by the vendor tools, can be used to generate a
single bitstream supporting multiple tasks acceleration
functions for area-shared execution. The diverse computing
requirements and workload sizes of dynamic task queues
make the resource management and tasks scheduling an
NP-complete problem, in addition to the long FPGA synthe-
sis times. Thus, any effective approach needs to enable a
runtime model that can offload appropriate designs onto
FPGA to optimise overall performance, defined as the sys-
tem throughput (STP) metric [6], a more effective measure
of performance in multi-task workload processing. A full
system stack is also needed for using FPGAs as a resource
for optimum execution of dynamic workloads.

In this paper, a task-based implementation, optimisation
and execution framework is proposed to tackle these chal-
lenges. Using OpenCL’s exploration capabilities, a large
design space is generated and explored using machine
learning to custom generate high compute density and run-
time scalable accelerator functions. These are used in an
effective manner in runtime, to suit the variable workload
requirements, eventually leading to a higher STP for a range
of heterogeneous tasks. The main contributions are given as:
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� A comprehensive runtime evaluation tool that pro-
vides early design analysis of the spatial and tempo-
ral constraints of various mapping schemes. It
allows selection of the optimal under the operating
conditions and objectives, as well as hinting towards
areas for optimisation, e.g., area-shared multi-task
execution, via functional emulation.

� Machine learning based characterisation of area/
throughput rate for different tasks and clustering of
tasks for custom mapping and co-execution in an
area-shared fashion to achieve high spatial compute
density designs.

� Multi-task design space exploration (DSE) and use of
preemptive scheduling to enable an effective run-
time resource allocation based on the size of each co-
executed task, in achieving a high temporal density.

� Realisation of a task-based virtualised resource allo-
cation model to support this task-specific area shar-
ing model at the higher system level.

� Using HPC examples from graph analysis, linear
algebra, media streaming and data mining, an aver-
age STP improvement of 2:8� at 2:3� better energy
efficiency is achieved over PRR.

The paper is organised as follows. Section 2 discusses the
motivation and background. Section 3 describes our pro-
posed framework, whilst Section 4 gives details of the eval-
uation environment. Section 5 provides an analysis using
the examples and conclusions are given in Section 6.

2 BACKGROUND

FPGA-Based Computing Systems. With FPGAs integration in
cloud anddata centres,work is being carried out to allow seam-
less and efficient access to the FPGA resources from software
environments. Among these, the authors in [7] treat the FPGA
as an independent resource and develop a communication
stack and associated hardware on the FPGAs to directly com-
municate with other CPUs and FPGAs in the cluster. Work in
[8] uses middleware to provide an application-centric interface
for developers and takes care of hardware development and
integration for various vendors to enable portability and better
productivity. Authors in [9] have developed a compilation
framework, communication interfaces and runtime libraries to
scale resources from sub-FPGA to multi-FPGAs per task
requirements. Similarly, work in [10] takes amodular approach
to system stack design where different components allow por-
tability to integrate with varying versions of design tools and
hardware and software layers.

FPGA as Reconfigurable Resource. Furthermore, with the use
of an FPGAas a re-programmable source in dynamic environ-
ments, researchers have investigated various reconfiguration
and taskmapping schemes. The temporal sharing include the
reconfiguration of FPGAwith a single task (SAC) [7], [11] and
the use of software programmable soft-cores [13]. For larger
tasks, researchers have looked at providing transparent access
tomultiple FPGAswith each FPGAprocessing part of the task
[14]. In addition, with increasing device sizes, research has
explored space sharing, mostly via PRR [3], [4]. Finally,
authors in [9] have looked to combine homogeneous PRR
block-based design with supported interconnections that
scale resources for a task on and across FPGAs transparently.

FPGA Space Sharing Constraints. This work is targeted at
tasks that can benefit from sharing of FPGA space. Tradi-
tionally, this has been achieved via PRRs [3], [4], [15] as it
mimics discrete computing resources in multi-core software
programmable systems and provides independence in
space and time. The independence in time suggests that a
task in a single PRR slot can be independently reconfigured
with a new task without affecting the processing in other
PRR slots, enabling easy scheduling decisions such as task
priorities. However, the flexibility in resource scaling per
task and achieved resource mapping density suffers.

This is because the space domain programming and map-
ping of FPGA fabric via PRRs is challenging, since the distribu-
tion of the heterogeneous resources on modern tiled FPGA is
unsymmetrical, particularly along the horizontal axis, as shown
in Fig. 1. Furthermore, the FPGA uses multiple clock regions
across both the vertical and horizontal axes and so crossing the
region boundary requires custom logic which cannot be sup-
ported by modern runtime bitstream relocation schemes [16].
This limits relocation to homogeneous regions along the y-axis
with a step size equal to height of clock region (Fig. 1), in line
withwork on PRR systems for independent tasks [3].

These mapping constraints restrict PRRs to be homo-
geneously designed regions, leading to underutilisation of
resources. First, after omission of the static area for I/O inter-
connects, the homogeneous region along the y-axis can be as
low as 60 percent area of the FPGA [3]. Second, modern data
center workloads comprise a range of heterogeneous tasks
with varying resource requirements [5], [10]. Within the
boundaries of PRR, the actual area being allocated to hetero-
geneous task may be lower, namely 38 - 51% [17]. Overall,
the effect is that the utilisation can be as low as 30% of the
available resources, resulting in a lower system throughput
and reduction in number of tasks that can be co-executed.
Finally, due to the routing constraints surrounding fixed
PRR slots, the frequency can drop by up to 24% [18].

Space Sharing Optimisations. Research has explored opti-
misation of resource utilisation of PRR-based designs to
maximise throughput. Authors in [19] design variable sized
slots and map a compute intensive task with a memory
intensive task. Design in [20] allows 1,2 or 4 PRR slots to be
used as a reconfigurable region for a task as a mean of

Fig. 1. FPGA partitioning for PRR.
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mapping options. Authors in [15] reduce fragmentation
within PRRs by optimising scheduling using policies such as
compact placement and minimum conflicts between sharing
tasks for variable sized PRRs. Research in [21] reduce the
reconfiguration overhead associated with PRR usage, by pre-
fetching the next task’s bitstream for next scheduled task and
re-using the loaded bitstream when possible. Authors in [3]
enable runtime support for elastic resource allocation per task
if adjacent PRR slots are available,whereas those in [9] propose
slots built using homogeneous blocks where a task can be allo-
cated any number of blocks at runtime to create heterogeneous
slots. However, even though these approaches improve on a
basic PRR setup, they use the largely homogeneous PRR slots
to map all heterogeneous tasks, which results in non-optimal
resource utilisation.

The infrastructure in [22] is recent work that allows crea-
tion of amorphous subspaces on the FPGA which can both
be partially and independently reconfigured for low-latency
mode, whilst multiple subspaces can be combined and cus-
tom mapped for high throughput mode. The work gives
large gains in throughput by increased resource utilisation
when generating combined bitstreams, particularly by co-
scheduling tasks with variable resource requirements. How-
ever, the work is targeted at the operating system (OS)
design and providing system support to transparently
transfer between the two modes. For the high throughput
mode, it briefly suggests parallel creation of bitstreams
(from tasks’ netlists) and place and route acceleration tech-
niques to hide bitstream generation latency. However, the
proposed use of a fair usage scheduler may create non-opti-
mal mappings and frequent switching at runtime. In con-
trast, our work looks to first create a much larger design
space and systematically explore it offline with the aim of
generating higher density designs for high-throughput exe-
cution. Furthermore, we incorporate throughput-based
scheduling and resource allocation to increase the usage of
the high-throughput mode. Finally, we provide a thorough
evaluation of both modes to enable informed decisions
about changing modes as per the operating environment.

2.1 Design Philosophy

Consider a data computing environment where processing
requests are received at regular intervals. The key differences
for execution models of PRR and the proposed CPM frame-
work are illustrated in Figs. 2a and 2b, respectively. The PRR
approach generates bistreams and treats each incoming task
requests independently. The system manager manages the
incoming task queue via a virtualisation layer that abstracts

the underlying hardware implementation from the user space.
For each request, the virtualisation layer caters for the I/O and
communicates with the resource manager which manages
multiple regions and loads the bitstream for each execution.

In our approach, a major focus has been made to improve
the resource utilisation by removing the need for each task to
go into a predefined partial region, thus improving total exe-
cution time for the overall task set. This requires a number of
major changes to the flow. First, a range of efficient swappable
FPGA accelerators with a high compute density and varying
areas are created for each task. The aim is to integrate the bit-
streams supporting execution of multiple tasks, but rather
than employing dynamic reconfiguration, these are loaded as
a singlemulti-task bitstream onto the FPGA.

A lightweight scheduler, running at the same level as virtual-
isation layer, links task processing requests with corresponding
optimum bitstream based on multi-task DSE and pre-emptive
scheduling techniques. To enable intelligent co-scheduling, the
scheduler processes task queues in batches, allowing reordering
and processing in clusters to gain a higher throughput from
CPM. With the order of jobs being second priority, a compari-
son may be made with other approaches for the epoch time at
which execution of each task is completed, in order to evaluate
the effect of prioritising throughput over the order of tasks.

Furthermore, the tasks implementation and runtime sup-
port are provided by the OpenCL framework as OpenCL is
now recognised as an established high-level language for
design as well as integration with software-based heteroge-
neous data centres [12]. The proposed approach fits well with
the FPGA version of cloud computing model of Software as a
Service (SaaS) where optimised bitstreams for standard com-
puting tasks are stored as a library (Amazon Marketplace for
Amazon FPGA Image (AFI) [1]) and users can request func-
tional acceleration service with variable workload. Further
optimisations can be made by complementing it with real-
time data centerworkload characterisation [5].

We previously presented a comparative evaluation of
partitioning schemes [23], an accuracy analysis of runtime
evaluation tool [24] and spatial mapping optimisation via
clustering [25]. This paper introduces a complete frame-
work and includes the implementation of novel new com-
ponents for temporal optimisation and integration with
high-level virtualisation model. Building on all these mod-
ules, this work, for the first time, presents a complete system
stack from early design analysis to deployment of dynamic
heterogeneous HPC tasks.

3 METHODOLOGY

The high compute density mapping of Fig. 2b forms the core
of framework enabling task-specific execution model and is
explained in Fig. 3. From the list of heterogeneous HPC tasks
to be executed, the OpenCL computing model is used to
describe the functionality, thereby allowing the parallelism
granularity to be defined using the general high-level synthe-
sis parameters. The resulting design space is explored using
dynamic hardware profiling, ensuring that the generated
designs provide optimum speedup per resources utilisa-
tion. The eventual multiple hardware designs are then used to
generate the dataset specifying the throughput achieved
against resources utilised for each task.

Fig. 2. PRR and CPM design flow and runtime.
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The comprehensive multi-task runtime evaluation tool starts
with the single task DSE to gauge the performance of various
partitioning schemes for dynamic workloads against various
system design parameters. The performance analysis showed that
although CPM provides higher spatial compute density than
PRR, it is similar to SAC andmay performworse for dynamic
workloads because of lower temporal utilisation. To address
this, characterisation of tasks using the single task DSE along
with machine learning based regression models is used to
evaluate the weighted relationship between each on- and off-
chip heterogeneous resource and FPGA throughput. The
characterisation is used to divide all tasks into smaller clusters,
so that tasks in a cluster complement others’ resource needs
and can be co-executed on the FPGA.

Furthermore, to minimise the reconfiguration overhead,
a multi-task bitstream may only be replaced with a new one
after all the tasks being co-executed have finished. To
reduce stalling by the longest running task, resource alloca-
tion per task is varied in the multi-task cluster as per the run-
time workload size of each co-executed task. To enable this,
the module generates a set of designs per cluster using a
multi-task DSE, while trading off resource allocation (and
throughput) between the cluster tasks. This permits varia-
tion in the execution time, Texec, of each task in processing
respective workloads.

The generated multi-task designs are custom mapped on the
FPGA to generate bitstreams supporting multiple task accelera-
tor functions. The generated sets of bitstreams per cluster are
then profiled on the hardware for throughput using metrics
defined per corresponding workload for each task in the
cluster. These high compute density mappings enable a high
throughput hardware design which are then used by the
higher level system stack.

3.1 Design Space Exploration

The DSE enables exploration of system optimisation strate-
gies and the resulting area-throughput rate supports a bene-
fit based approach where tasks can be allocated resources
which profits them the most, i.e., memory, compute. The
DSE is enabled by OpenCL’s capability to allow explicit
description of parallel computing and scaling of hardware

resources via multiple parameters [26]. A task’s kernel can
be scaled over multiple compute units, CUs, where these
implement coarse-grained parallelism described as work-
groups. A work-group can be further spanned over work-
items where multiple pipelines for these can be defined via
the single instruction multiple data, SIMD, pragma.

A kernel may also be implemented as a single work-item.
For some of these tasks, task-specific parameters such as the
block size, number of rows, are used, as these define the paral-
lelismof the definedparameter size. For some tasks, the unroll-
ing pragma,U, can be used to unroll compute intensive part of
the kernel which is identified using dynamic profiling based on
an ’always active’ counter. The counter is coded in VHDL and
passed to the OpenCL kernel as a software library via an Intel
OpenCL Library feature. Eventually, parameters that provide
the highest throughput scaling per unit area are selected.

3.2 Runtime Evaluation

A comprehensive multi-task runtime functional emulation
tool (Fig. 4) allows fast early stage comparison. It enables
multi-task DSE using the single task DSE and may be com-
bined with analytical models [27], to significantly speed up
clustering and resource allocation per task.

Placement Checks. For PRR, the 2D area model treats map-
ping as a rectangle fitting problem and aims to find a region
homogeneous in both size and spatial distribution of resour-
ces to map each incoming task [15]. For CPM, we implement
a multi-dimensional model accommodating a dimension for
each heterogeneous, on-chip resource i.e., logic, block ran-
dom access memory (BRAM), digital signal processing
blocks (DSPs). The mapping optimisations try to accommo-
date as many tasks as possible, whilst keeping total utilisa-
tion of all resources within the device limit. For PRR, each
task’s configuration is treated independently while for
CPM, a configuration waits for the longest running task and
then selects a new multi-task configuration.

Memory Modelling. Even if the allocated on-chip resources
in the multi-task environment are same as the single task,
the achieved throughput may not be identical due to mem-
ory contention. To model and predict memory performance
in multi-task processing, the tool employs ridge regres-
sion [28]. We generate a range of multi-task bitstreams and
measure the actual performance to train the model with the
accuracy presented in [24].

System DSE/Resource Management. The tool can be used to
evaluate various resourcemanagement strategies. For CPM, a
multi-task DSE estimates the effect on throughputwhile vary-
ing resource allocation per task in a cluster. For PRR, the tool
implements optimisations that target segmentation (vacant
regions on the FPGAat runtime) on top of basic homogeneous

Fig. 3. High compute density mapping design methodology.

Fig. 4. Runtime evaluation methodology.
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PRRs and which are important to compare PRR fairly with
CPM. Among these, the first one checks if the adjacent PRR
regions are free, and then attempts to fit a larger bitstream for
the same task in this combined region to gain a speedup [3].

The second one targets partitioning FPGA into heteroge-
neous PRRs with different numbers of resources to increase
mapping flexibility [29]. The tasks are then custom designed
for one of the PRRs. Heterogeneous PRRs can be defined by
including a different ratio of each heterogeneous resource
type. However, in the current scenario, the device size is not
big enough to benefit from such an approach, so heteroge-
neous PRRs are defined by varying the number of each type
of resources while their relative ratios remain the same
(Fig. 1). The optimisation uses heterogeneous PRRs to fit a
smaller bitstream for tasks when none of the original bit-
streams can be accommodated by a region [29].

Finally, the tool varies the vertical step size up to a single
row on a continuous y-axis, for bitstream relocation.
Although exhaustive, this can be achieved by generating
multiple bitstreams equal to the number of rows within
each clock region, by varying starting y-coordinates.

Configurations. Bitstreams parameters such as the coordi-
nates of bounding boxes and heterogeneous resources usage
from the DSE, are passed to the evaluation tool. The user
can also specify a deviation in the Texec of tasks. A uniform
distribution is used for random task generation and an
input parameter varies the range of distribution for Texec.

Constraints. In PRR, the homogeneous/heterogeneous
regions are fixed and the coordinates are provided by the
user. In CPM, the total number of available heterogeneous
resources and a realistic percentage of the maximum utilisa-
tion is provided as an input. To study the effect of various
PRR constraints, the available area for the task mapping as
well as bitstream relocation steps can be varied.

3.3 High Compute Density Bitstream Generation

We optimise system throughput by achieving a denser map-
ping of FPGA resources. The various modules include:

Characterisation and Clustering for Spatial Optimisation. Along
with clustering, informed runtime decisions are enabled on
heterogeneous resource allocation per task which requires
characterisation of the DSE of each task rather than of any sin-
gle bitstream. We perform regression modelling to find the
weighted contribution of each type of resource towards
throughput. This allows a benefit-based approach where a
taskwhich profits themost froma higher allocation of a certain
resource type is clustered with a task which profits the least.
Four different resources, including on-chip BRAM,DSPs, logic
and off-chip bandwidthwhich represent the key FPGA resour-
ces, are considered.

Whilst ordinary least squares is one of the more com-
monly used linear regression methods, it is highly sensitive
to random errors when variables are correlated, such as
here where DSP blocks are linked to BRAM; ridge regression
avoids this. The normalised values of on- and off-chip het-
erogeneous resources against maximum available for all bit-
streams per task form the independent variables for the
regression. The achieved throughput, measured on the
actual hardware and normalised to maximum achievable
for each task, becomes the dependent variable.

Regression provides the significance scores of each type
of resource for each task to scale throughput. In addition,
the normalised bandwidth utilisation for each task’s largest
bitstream is used to cluster tasks for space sharing at a sin-
gle time. Only bandwidth is used, as unlike other on-chip
resources, it may become a bottleneck in the DSE for
extremely memory intensive tasks and in the ridge regres-
sion model, consistent bandwidth usage may hide the fact
that task has a high bandwidth dependence. In order to
define clusters, each task is first represented in a multi-
dimensional space where each dimension either represents
the regression score of a resource or normalised bandwidth.

Finding the best combination of clusters is a global optimi-
sation problem. We use a custom-designed optimisation func-
tion for its reduced complexity and validity for the considered
scale of problem. It runs a set number of iterations where each
iteration randomly selects the first task for each new cluster
and then other tasks are searched such that they have maxi-
mum distance, and thus heterogeneity between them in the
multi-dimensional space. The number of tasks in a cluster are
definedmanually by the systemdesigner based on device size.
The sum of mutual distances between tasks is used as a score
of the cluster, while sum of all cluster scores defines iteration’s
score. The iterationwith highest score is chosen as the solution.

Resource Variation Per Task. Although CPM allows for
higher spatial compute density, all cluster tasks are reconfig-
ured as a single integrated bitstream. This means that the lon-
gest running task stalls the other tasks, unless reconfigured at
the expense of reconfiguration overhead, and the resource uti-
lisation by the tasks that finish early is suboptimal. To counter
this, sets of multiple bitstreams per cluster with varying on-
chip resources are created using the multi-task DSE enabled
by the runtime evaluation tool and varying the high-level
parameters. The clustering helps to avoid contention for the
same type of resource and each task is allocated the resources
it needs. A range of designs are produced with varying area-
throughput rates for processing the respectiveworkloads.

Integrated Bitsreams Generation. A PRR system is limited to
pre-defined reconfigurable regions because of the runtime bit-
stream relocation needs, thus limiting the optimisation via
clustering to only off-chip memory bandwidth. However,
CPM can also benefit from optimisation of on-chip resource
usage using custom FPGA mapping and resource allocation
to tasks as per their heterogeneity, to generate a single bit-
stream offeringmultiple task acceleration functions.

The bitstream is generated by first using the OpenCL
front-end to create HDL modules. Placement scripts modify
the constraint files to map task modules to the correspond-
ing PRR while for CPM, the area to be mapped is set to
available area for task logic (Fig. 1). Finally an integrated
bitstream is generated using the place and route tools,
which are integrated with OpenCL back-end. In this work,
no custom mapping optimisations over the vendor’s place
and route tools are used by CPM for multiple modules.
Both the PRR and CPM modules can be partially reconfig-
ured independently of the static logic.

Hardware Profiling. All configurations are profiled while
executing all tasks in the cluster to calculate real through-
put for each bitstream of all tasks using workload-specific
metrics, as described in Table 1. The workload-specific
metrics encompass all of the compute, memory and control
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instructions to give a real measure of performance for time to
solution.

With FPGA bitstream generation times taking hours for a
single task, the full process can take a significant time. The off-
line process leading to bitstream generation for an initial set of
tasks may be generated at the design time. For upcoming new
tasks at runtime and if the systemmanager decides to update
clustering and associated bitstreams, this may be achieved in
parallel with tasks execution and updated once completed.
Furthermore, the scope and frequency of clustering based
optimisation may be limited to reduce design time as well as
use of the simulator for faster pre-design analysis.

3.4 Runtime Scheduler

The runtime is designed to be lightweight such that its over-
head on task execution time is negligible. For an incoming
heterogeneous task queue with variable workload sizes, the
runtime scheduler (Fig. 5) uses preemptive scheduling on
the measured throughput of various multi-task bitstreams
and selects the one that minimises the difference in the tasks
Texec. Meanwhile, checkpoints allow for re-evaluation of the
scheduling decisions and context switches. Eventually, this
reduces stalling by a single long running task and improves
temporal resource utilisation on top of high compute den-
sity mappings to achieve an higher overall throughput.

Algorithm 1 provides pseudo-code for the runtime selec-
tion of optimum bitstream. For each unscheduled task,

nextTask, in the task queue, the algorithm first checks if the
other tasks in the same cluster as nextTask also need to be
scheduled. If not, it uses a single task bitstream for nextTask.
Otherwise, it iterates through multiple bitstreams for that
cluster to find the bitstream that minimises the difference of
Texec (calculated as data size divided by throughput) for the
tasks in the cluster for their respective workload sizes. The
optimum bitstream and corresponding tasks are put in
scheduling order. The estimate Ti value provides estimated
Texec for the ith bitstream for task in the brackets. Max_value
on line 10 equals the sum of Texec for all tasks in SAC.

Algorithm 1. Runtime to Generate Scheduling Order, SO,
and Associated Bitstreams, B, for Dynamic Task Queue,
TQ

1: while TQ is not empty do
2: nextTask TQ[nextUnfinishedTask];
3: cluster taskClusters[nextTask] ;
4: otherTasksInCluster cluster - nextTask ;
5: if otherTasksInCluster not in TQ(unfinished) then
6: B[nextTask] singleBitstream[nextTask];
7: SO[nextTask] nextTask
8: end
9: else
10: DTexec max_value ;
11: for i in range(bitstreamsSet[cluster]) do
12: temp DTexec estimate Ti(nextTask) -

estimate Ti(otherTasksInCluster) ;
13: if DTexec > tempDTexec) then
14: DTexec tempDTexec ;
15: B[nextTask] bitstreams[i] ;
16: SO[nextTask] nextTask + otherTasksInCluster;
17: end
18: end
19: end
20: end

TABLE 1
Use Cases Characteristics

Use Case Scaling Parameters Computing Characteristics Throughput

Metric / S

#

Designs

Speedup

Page Rank (PR) [32] CUs and U new rank calculation for each page Inefficient pipeline implementation # Links 9 6�
Alternative Least Square (ALS)

[31]

CUs and U error calculation in

recommendation estimation

Severely memory latency bound # Users per

unit Items

4 2�

Binomial Option Pricing (BOP)

[33]

CUs and U Binomial Tree traversal Highly compute and on-chip

memory bound

# Options 8 21�

Breadth First Search (BFS) [34] U edges traversal of a single node On-chip memory and BW # Edges 5 5�
Sparse Matrix Vector

multiplication (SpMV) [26]

U sum calculation of each row Logic, on-chip memory and BW # Non-zeros 6 190�

Finite Difference Time Domain

(FDTD) [35]

# Points in a sliding window processed in

parallel

High dependency on all resources # Points 5 13�

Lower Upper Decomposition

(LUD) [34]

CUs and U compute intensive loops in

decomposition

Compute and BW bound # FLOPs 7 18�

Video Decomposition (VD) [35] # rows of pixels being processed in parallel On-chip resources for bigger and

BW for smaller designs

# Pixels 6 8�

Matrix Matrix multiplication

(MM) [26]

SIMD pragma for complete pipeline and U

calculation of dot product

High dependency on all resources # FLOPs 8 204�

Needleman-Wunsch (NW) [34] Size of strings to divide the problem and are

processed in parallel

High dependency on all resources Sequences

Length

7 33�

K-nearest Neighbour (NN) [34] U distance calculation to other points Highly efficient pipeline requiring

high BW

# Points 4 5�

Compute Units (CU) scaling is always for the whole kernel. U is for Unrolling and BW for bandwidth

Fig. 5. Runtime scheduler for bitstream selection as per workload sizes.
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The preemptive estimation selects the bitstream such that
the estimated difference in Texec for all of tasks in a cluster is
the least amongst all bitstreams. This does not need cycle
accurate estimation and even with allowable difference in the
Texec of tasks, a higher throughput is possible, owing to the
intelligent clustering and CPM and as long as the longest run-
ning task has the highest resource allocation in the cluster.

The runtime also makes use of lightweight scheduling
decisions to re-evaluate the bitstream selection or perform
context switches at discrete points in time, called checkpoints.
Although checkpoints can be implemented at a finer granular-
ity in OpenCL, such as at work-group level [3], the reconfigu-
ration and host-accelerator communication overhead, may
offset the acceleration gain. Instead, checkpoints are imple-
mented at block level, namely an independent part of a whole
workload that is batch processed, i.e., the computation is off-
loaded to a FPGA and outputs written back to the host in
batch. A block may be workload specific and is generated via
workload distribution at a higher software level. All OpenCL
workloads need to be processed as a set of blocks, iterated
over the total workload, due to limited on-boardDRAM.

Considering the runtime workload, the scheduler uses
the preemptive estimation of Texec at the respective block
size and the number of blocks in order to estimate total Texec

of a workload. However, at the checkpoints after each block
execution, the bitstream selection and scheduling decisions
are re-evaluated, allowing for variation in the resource allo-
cation per task. The scheduler evaluates the following equa-
tion to decide as to when to switch the bitstream

NewTexec ¼ TrðnÞ þWSðrÞ
THðnÞ ; (1)

where TrðnÞ and THðnÞ are the reconfiguration time and
throughput of the new bitstream, respectively, while WSðrÞ
is the remaining workload. The scheduler compares the
NewTexec with the current configuration and chooses the
improved one. Recent work in this domain has proposed
the design of mechanisms for context-saving as well as run-
time migration to a new reconfiguration on the same device
or a new device for OpenCL-based tasks, while saving the
already processed data [9], [30].

3.5 Virtualisation and Revenue Model

The conventional PRR-based approach targets infrastructure
as a service (IaaS) and scales area per tasks with the number
of PRR slots corresponding to number of resources [3], similar
to the discrete cores-based distribution of resources in multi-
processor systems. As resource-based division incurs a high
cost of sharing in FPGA, a task-based functional acceleration
stack targeting SaaSmodel is employedwhere functionality is
offered to users as a servicewhile the area scaleswith the asso-
ciated throughput. This is similar to theAmazonmodelwhich
provides AFIs containing pre-synthesised bitstreams of FPGA
functionality while hiding the implementation details from
users [1]. With CPM, the model can be extended to area
shared multi-task execution with a higher system throughput
facilitating higher revenue.

To enable the task-based model, we use the VineTalk vir-
tualisation framework [12]. VineTalk reduces the efforts
needed by application developers to deploy FPGA-based

acceleration in data centres by handling the communication
and control between an application and underlying acceler-
ator. It does that by registering tasks as a set of supported
functionalities accessible via easy to use interfaces while
hiding the underlying hardware implementation details. It
essentially exposes the FPGA as a virtual accelerator, Vine-
Accelerator, available to applications as a task-based soft-
ware API. The underlying libraries then manage the task
queues and data buffers. Decoupled from this is the software
controller and hardware facing API, which communicates
with the underlying FPGA’s vendor runtime and manages
bitstream loading and host-accelerator data transfers associ-
ated with each VineAccelerator.

We modify various layers to incorporate Vinetalk for area-
shared CPM multi-task processing. At the application level,
multiple tasks in a cluster can be integrated into a single call
associatedwith a single VineAccelerator. In otherwords, each
VineAccelerator represents a unique cluster and its definition
then manages execution of independent tasks in a cluster.
Furthermore, each VineAccelerator has access to multiple bit-
streams, where each bitstream represents varying through-
puts for each task in the cluster via an associated set of
parameters. These are used by the scheduler to select the opti-
mumbitstream at runtime and passed to the software control-
ler. Finally, we implement interfaces and drivers for the
hardware facingAPI for integrationwith Intel FPGAs.

4 TEST ENVIRONMENT

We consider 11 HPC tasks belonging to various application
domains and computing dwarfs such as sparse and dense lin-
ear algebra, graph analytics, structured grid computing and
dynamic programming. We then identify high-level parame-
ters for each task for DSE for OpenCL implementation. The
parameters are evaluated to provide the maximum through-
put per resource usage using hardware profiling. We also
identify the key characteristics identified after profiling, that
project a need for task characterisation on actual hardware
andverify the selection of tasks for comprehensive evaluation.
The DSE along with workload specific metrics used for each
task in the throughput calculation, are summarised in Table 1.

4.1 FPGA and Host Platform

The runtime evaluation tool is written in Python 3. The
high-level DSE is performed via the Intel OpenCL SDK for
FPGAs v16.1 while constrained placement is achieved using
Quartus Prime v16.1. The hardware profiling is performed
for the Nallatech 385 board as the target FPGA system. The
power is measured using on-board power sensors accessible
via the memory-mapped device layer whilst the bandwidth
is measured using the Intel FPGA Dynamic Profiler for
OpenCL GUI. OpenCL runtime and independent command
queues are used for each task, allowing parallel execution.
Within a single command queue, non-blocking calls are
issued for memory transfers as well as to multiple kernels
of a single task, if needed. The runtime is executed on host
comprising of an Intel Xeon E5530 chip running at 2.4 GHz.

4.2 System Throughput Metric

Assessing the system performance of a multi-task workload
running in parallel on a single processing unit is challenging,
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as the absolute measure of individual task’s throughput does
not provide an indication of system performance; the contri-
bution to absolute processing time and total speedup may be
influenced more by the tasks with larger workload sizes.
Generic metrics such as FLOPS etc. may not provide a mean-
ingfulmeasure for all of the tasks being evaluated.

We use two different metrics for emulated and hardware
results in order to allow a realistic and comprehensive
assessment to be made. First, the emulation of large task
queues comprising range of tasks provides the potential to
estimate the total speedup, measured as execution time to
process the whole workload or task queue for various parti-
tioning schemes and SAC. To evaluate the compute density
provided by various approaches in a multi-task environ-
ment, the STP metric [6] used is defined by

STP ¼
Xn

i¼1
NPi ¼

Xn

i¼1

CSP
i

CMP
i

; (2)

where NP is each task’s normalised progress defined by
the number of clock cycles it takes in single task mode, CSP

i ,
when the task has all of the resources of the FPGA available as
compared to multi-task mode, CMP

i , when it shares the space
with other tasks. Here, n defines the number of tasks sharing
the FPGA. The metric encompasses various system design
parameters such as throughput variationwith resource alloca-
tion per task, compute density variation against resource uti-
lisation and system performance (including STP/Watt for
energy efficiency) for various space partitioning schemes. It
then provides a throughput relative to a baseline of SAC,
which has an STP value of 1.

5 RESULTS AND ANALYSIS

The scope of DSE is first explored with emulated results
before analysis using clustering and runtime performance
variation with design parameters. Whilst the results target
the low-level system performance, we discuss the high-level
virtualisation model using CPM.

5.1 Design Space Exploration

The DSE provides real area numbers as well as variation in
throughput against resource utilisation for fair evaluation
and comparison of mapping schemes. The scaled parame-
ters and achieved speedup are summarised in Table 1. To
measure speedup, the baseline Texec, corresponding to the
lowest area bitstream, is defined by the serial pipelined
benchmark implementation of the task. The maximum
throughput is defined by the largest bitstream, limited by
FPGA resources. We have generated 4� 9 designs per task
where each represents a point on the area-throughput curve
and the maximum speedup ranges from 2� to 204� for
tasks being considered.

5.2 PRR versus CPM

The evaluation tool provides the projected runtime gains of
CPM against SAC and various PRR strategies. The tool also
allows variation of system parameters and task constraints
that affect the CPM throughput, particularly due to lower
independence in time as compared to PRR and SAC. We

iteratively apply different constraints to distinguish and
highlight their effects while using all of the considered 11
heterogeneous tasks but with varying workloads.

MaximumTheoretical Gain by CPM. First, themaximum the-
oretical speedup achieved by CPMagainst various types of the
PRR mapping, namely the continuous y-axis, heterogeneous
PRRs and homogeneous PRRs, are analysed using a runtime
evaluation tool. Here, we consider an ideal scenario for CPM
where tasks sharing the space have same execution times. In
total, there are 80 rows of the FPGA that can be configured as
a single region or a set of two homogeneous regions of 40
rows each. Two more heterogeneous PRRs, namely 30 and 50
rows, are defined based on the sizes of generated bitstreams.

For CPM, we either use the same region as used for the
PRR to maintain homogeneity, (Partial CPM) (P-CPM), or
use all of the available area for the task logic after placement
of the static modules, (Whole CPM) (W-CPM). The designs
for W-CPM and P-CPM are created by using appropriate
scaling parameters as well as the placement constraints for
each realisation. Due to lower area utilisation, P-CPM takes
lower bitstream generation time and has a slightly lower
reconfiguration overhead. This analysis helps to differenti-
ate between the speedup achieved by heterogeneous map-
ping in the same region, as well as the gains made by the
availability of extra logic when mapping in a custom
fashion.

Fig. 6 shows that for an ideal environment for CPM, it
can achieve up to 4:1� higher throughput as compared to
PRR, measured in terms of the total execution time for a set
task queue size. Please note that out of this 4:1� gain, a 2�
speedup is achieved via heterogeneous custom mapping
whilst the rest is achieved by exploiting the higher resource
availability. The results show that if the y-axis can be made
continuous, a throughput gain of 1:8� can be achieved
while heterogeneous PRRs can improve performance while
making use of various optimisations mentioned in Section 3.

Texec Variation. The speedup reported in Fig. 6 considers
an ideal scenario for CPM by using similar Texec for all tasks
sharing the FPGA at any time, however, this is not the case
in dynamic environments. Next, the relative Texec of the
tasks is varied, with reconfiguration only after all co-exe-
cuted tasks have finished processing, thus allowing analysis
of its effect on speedup. The speedup is given against base-
line of SAC for both partitioning schemes.

The results in Fig. 7 depict a surprising trend, particu-
larly for CPM versus PRR. Even with increasing range of
Texec by up to 32� (beyond this range a reconfiguration
overhead would become negligible for most tasks), the
speedup with CPM decreases but remains higher than PRR
by 2:7�. This is because on average, the device may be used
by 3 or less tasks using CPM, as constrained by the size of
the FPGA chip. Thus, a task may stall up to 2 tasks or a max-
imum of about 50 percent resources with an average much
lower than that. Stalls by smaller tasks are overcome by the
higher average compute density and gains made when the
longest running task is not the smallest. Against SAC, the
CPM follows a similar trend, however, the speedup falls
below 1 as the range of Texec goes higher than 2 whilst PRR
maintains an average speedup of 0:37�.

Reconfiguration Overhead. The analysis so far has not con-
sidered reconfiguration overhead, which can be significant
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if the tasks to be executed have smaller workloads in more
dynamic environments. Furthermore, the reconfiguration
overhead is directly related to the area being mapped. Thus,
as the throughput increases with more resources when
going from PRR to CPM and SAC, the gains may be offset
by the higher reconfiguration overhead.

The next set of experiments evaluate the effect of reconfigu-
ration overhead on total Texec to process a task queue against
varying mean and range of Texec of the tasks. The experiments
consider reconfiguration time for each scheme as proportional
to the area to be reconfigured. The results are shown in Fig. 8
and include two different ranges (R) for each evaluatedmean.
Starting from the offset of reconfiguration overhead, the total
Texec generally increases linearly with increase in mean Texec

of tasks. However, the lower reconfiguration overhead plays
amore significant role towards better performance for smaller
tasks with lower mean Texec, while higher throughput is more
significant for larger tasks.

In the first test scenario, all tasks have similar Texec i.e
range approaches 0 which, as we mentioned earlier, is an
ideal scenario for CPM. However, even with the lowest
throughput associated with PRR, it provides the best overall
system performance by up to 1:2� owing to the lowest
reconfiguration overhead. The lower throughput for PRR
becomes the more significant factor towards total Texec with
the increasing task size and the PRR becomes the worst per-
forming for tasks taking more than 1 second per task.

The second set of experiments shows the benefits of
space sharing when using an increased 8� range of Texec.
Without considering reconfiguration overhead, CPM per-
formed worse than SAC (Fig. 7). However, lower number of
resources per task results in a lower reconfiguration over-
head for CPM as compared to SAC. This results in CPM
providing better overall performance by up to 1:14� even at
a mean Texec of 10s. The overhead only offsets the perfor-
mance loss due to lower throughput though, as CPM may
perform worse than SAC with even higher range.

Although this work is focussed on identifying the use of
CPM for higher throughput and optimising it for dynamic
environments, the detailed comparison against various con-
straints in this section highlights the need for analysis of
various schemes to suit the operating environment. Such
analysis may also enable a system to switch mapping
schemes at runtime as per variation in task dynamics, as
proposed in [22].

As for the CPM, although it allows a space-shared model
allowing scaling of resources at sub-device level, the degra-
dation of performance against SAC suggested the need for
further optimisations. A quick analysis also showed that
apart from the underutilisation of resources in time by tasks
with variable Texec, the runtime spatial utilisation by hetero-
geneous tasks is limited to 62, 49 and 71 percent on average
for logic, BRAM and DSPs, respectively.

5.3 High Compute Density Mappings

To analyse the gains made by the proposed approaches for
high density mappings, we first establish a baseline system
throughput before analysing various optimisations.

5.3.1 Baseline System Throughput for CPM and PRR

The size of the device being used is small, whilst further
constraints on area available are placed on it by PRR. This
limits the area sharing to a cluster of 2 tasks. For CPM, up to
3 tasks can be accommodated at one time. However, based
on practicalities and the need to keep the comparison fair, it
makes sense to use 2 tasks per cluster for CPM as well.
Using the DSE, the largest bitstreams per task are selected
within the area constraints of the PRR and CPM.

We generate 10 random clusters of tasks for both PRR
and CPM as a baseline. For evaluation of the STP, the data
sizes for tasks in a cluster are chosen such that both tasks
have a similar Texec. The results in Fig. 9a show that CPM
with an average STP of 0.99 can provide an average 2:4�
higher throughput as compared to PRR’s STP of 0.41 on the
basis of a higher compute density in space but with consum-
ing higher power. Fig. 9(a) shows that although the gain is
less, the CPM provides 1:9� better energy efficiency (STP/
W) on average over PRR.

5.3.2 Clustering

Before describing the improved throughput due to cluster-
ing in Fig. 9(b), we briefly show the contribution of resour-
ces towards the tasks’ throughput using the DSE and Ridge
Regression in Fig. 10, which forms the basis for clustering.

Fig. 6. Speedup achieved by CPM versus PRR mapping.

Fig. 7. Speedup variation with variation in execution times (Tasks =
1024).

Fig. 8. Total execution time including the reconfiguration overhead for
varying mean of tasks individual execution time (Tasks = 1024.
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The bias value in the figure representing the constant in the
modelled linear equations relates to the baseline through-
put. The clustering algorithm uses these models to create a
set of 6 optimum clusters.

Fig. 9(b) shows gains for both the PRR and CPM, using a
similar Texec for the tasks in a cluster. For PRR, the STP
increase of 1:2� to 0.5 is mostly due to optimisation of the off-
chip memory bandwidth utilisation. For CPM, the STP
increase of 1:4� to new value of 1.4 corresponds to both the
on- and off-chip resource optimisation. The gain of 3:3� and
2:8� for the throughput (STP) and energy efficiency (STP/W)
between the CPM in Fig. 9(b) and the PRR in Fig. 9(a) respec-
tively, is the maximum achievable via the proposed optimisa-
tions as compared to the existing area-shared schemes while
an STP gain of 1:4� compared to SAC is achieved.

5.4 Texec Variation

Until now, the experiments have used custom data sizes
which ensured a similar Texec for co-executed tasks which
may represent a static configuration for long running tasks.
However, for a more dynamic task queue, the limitation of
CPM is that the execution is stalled by the longest running
task, unless the scheduler decides to reconfigure the FPGA.
In the next set of experiments, the Texec of tasks is varied rel-
ative to each other. The results are shown in Fig. 11 where
the dTexec represents the difference in Texec for tasks in a
cluster as a multiple.

For each sample cluster, the middle cluster represents a
similar Texec, that is dTexec � 1. Moving either side, the dTexec

increases with the left side representing the first task in
x-label taking the longer time to execute while the right side
represents the second task, as shown by individual STP of
tasks. Considering the average values, the results show that
STP for CPM drops sharply initially but then stabilises. For
example, from 1� to 2� , the drop is by 1:3� (from 1.36 to
1.04), however, from 4� to 8� , even when variation in Texec

is 4� or more, the drop is only 1:06� (0.94 to 0.88).
The reason can be seen from the individual contribution

of each task to the total STP. With an increase in Texec varia-
tion, the STP is increasingly defined by the longest running
task and becomes independent of the variation in Texec. Fur-
thermore, the individual STP contribution by the longest

running task improves with increasing the Texec variation as
it gets a higher share of the off-chip memory bandwidth.
All of these factors reduce the effect of variation in Texec, but
it still causes a significant drop in STP by 1:54�.

5.5 Runtime

To counter the drop in the STP with variation in Texec, the
framework generates 3-4 bitstreams per cluster, with each
bitstream trading off resources for each task against the
other. We then evaluate a complete system using a queue of
36 randomly generated task workloads involving 3 work-
loads per task with variable sizes. The range of workload
size per task is such that they take 1 - 60 mins (in line with
study of real workloads processing times on three Google
clusters in [36]) to process using bitstreams from Fig. 9(b).
Each workload comprises a number of workload-specific
blocks such as matrices, image frames, options, graphs, etc.
Furthermore, for the sake of the experiments, each request
is treated as an independent task and the module reuse
strategy to avoid reconfiguration is not considered if the
same task has multiple requests. If so, multiple requests for
same task can be combined to form a single larger task.

The runtime scheduler then selects the optimum bit-
stream, that minimises the Texec variation in a cluster, using
the profiled workload-specific metrics for throughput
and the preemptive scheduling. As mentioned earlier, this

Fig. 9. STP and STP/W for CPM and PRR using: (a) unoptimised clustering, and (b) optimised clustering.

Fig. 10. Ridge regression models for HPC tasks.
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estimation only chooses the best fit from the available set
and does not require a cycle accurate estimation of Texec.
The runtime can also use single task per bitstream (SAC), if
needed. For the considered task queue, the scheduler recon-
figured the bitstream at checkpoints only once while for 2 of
the workloads, it used SAC.

The achieved instantaneous and average STP for 18 bit-
streams of 2 tasks each used for execution of 36 tasks (SAC
is also shown as a cluster, but represents two different bit-
streams), is shown in Fig. 12. The figure also includes the
corresponding Texec variation for bitstreams from Fig. 9(b),
with an average of 9:6�. This set of experiments also
includes the reconfiguration overhead, however, it is insig-
nificant (less than 2s) for the size of workloads being consid-
ered. The results show that using the intelligent runtime
selection of the bitstream, the STP can be improved by 1:3�
as compared to Fig. 11, while reducing the power by 5 per-
cent, on average. The actual processing time or STP for the
PRR-based processing for the generated task queue could
not be provided due to non-availability of the dynamic
reconfiguration framework needed for the tasks with vary-
ing Texec. However, the STP would be similar to that
reported in Section 5.3.2. The overall achieved STP is 2:8�
higher than the base value using PRR in Fig. 9(a) while
being 2:3�more energy efficient.

5.6 Discussion

The focus of this work has been to improve FPGA compute
density and hence has not commented on the virtualisation
overhead and the data transfer from the host to the FPGA
via PCIe. Both the VineTalk and scheduler overhead
depends on the workload size and number of batches
required to complete processing. For a single batch, the com-
bined overhead can be as low as 100ms, while excluding the
reconfiguration overhead. For a higher number of batches
(256), the overhead varies for different tasks and lies in the
range of 0.3 - 0.9 percent of total execution time of tasks.

Furthermore, the cost of data transfer is essentially the
same for all of the partitioning schemes. However, com-
pared to SAC, multi-task processing provides up to 1:2�

lower total Texec including the memory transfers from the
host. In this, 1:18� is due to the higher compute density and
is in the similar range as achieved STP for the set of evalu-
ated workloads. The rest is provided by the time multi-
plexed memory transfers for multi-task processing, with the
longer running task starting execution whilst the data is
being transferred for other tasks.

The framework processes the task queue in batches
where jobs in the batch may be reordered to maximise
throughput. However, the order of jobs is the second prior-
ity and thus, the first task to be scheduled is selected from
the order and the second task corresponds to the respective
cluster. Using the runtime evaluation tool, it showed that
although the PRR allows a strict order of processing to be
followed; the lower compute density means that 100% of
tasks finish execution later in terms of clock time compared
to CPM. In a multi-FPGA data centre, multiple clusters can
also be offloaded to different FPGAs to maintain adherence
to the execution order. Tasks with strict deadlines can also
be executed in SAC.

STP as a metric defines throughput as a comparison
against SAC and the theoretical limit for maximum possible
STP is defined by the number of tasks being shared i.e., 2 in
this case. The evaluations show that the CPM provides up
to a maximum of 1:4� improvement in the throughput
which drops to 1:18� for the more dynamic and variable
size workloads. This will improve with larger devices which
will allow more space sharing than 2 tasks. PRR, however,
this reduces the STP to 0:5�. There may be other benefits to
using PRR particularly for more dynamic fine-grained
workloads or faster integration of a new functionality. How-
ever, STP must be considered for evaluation of system per-
formance and the CPM has the ability to provide a higher
system throughput than SAC, while allowing benefits of
area sharing. Even for larger workloads requiring multiple
FPGAs, multiple instances can be generated on multiple
FPGAs where each instance shares space with instances from
other tasks to improve resource utilisation. Each instancemay
be treated as an independent sub-task by the scheduler to
optimise temporal usage with changing throughput require-
ments from themain task.

Fig. 11. STP variation for CPM with variation in Texec of tasks in cluster.

Fig. 12. STP and STP/W for variable workloads via dynamic bitstream
selection for 18 clusters that are used for execution of 36 tasks.
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6 CONCLUSION

A systematic framework is proposed for addressing the chal-
lenges of virtualisation based on space sharing of FPGAs and
achieving higher system throughput. The framework pro-
poses characterisation and clustering of tasks based on their
heterogeneities in resource usage, which is then comple-
mented by custommapping and partitioning of tasks tomaxi-
mise utilisation in space. A lightweight runtime scheduler
integrated with a higher level virtualisation layer then makes
use of off-line profiling of resource allocation variation per
task to increase compute density in time. In doing so, the
work projects the trade-offs of various space partitioning
schemes, while improving the throughput and energy effi-
ciency over existingmethods.
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