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Abstract—With growing Field Programmable Gate Array (FPGA) device sizes and their integration in environments enabling sharing of

computing resources, such as cloud and edge computing, there is a requirement to share the FPGA area between multiple tasks. The

resource sharing typically involves partitioning the FPGA space into fix-sized slots. This results in suboptimal resource utilisation and

relatively poor performance, particularly as the number of tasks increase. Using OpenCL’s exploration capabilities, we employ clever

clustering and custom, task-specific partitioning and mapping to create a novel, area sharing methodology where task resource

requirements are more effectively managed. Using models with varying resource/throughput profiles, we select the most appropriate

distribution based on the runtime, workload needs to enhance temporal compute density. The approach is enabled in the system stack

by a corresponding task-based virtualisation model. Using 11 high performance tasks from graph analysis, linear algebra and media

streaming, we demonstrate an average 2.8× higher system throughput at 2.3× better energy efficiency over existing approaches.

✦

1 INTRODUCTION

Computing services, such as cloud data centres, look to
achieve a higher return on cost of computing systems by
efficient temporal and spatial sharing of resources amongst
multiple tasks. In the recent time, the drive for enhanced
performance for computationally demanding tasks have
encouraged cloud service providers, such as Amazon, to
integrate Field Programmable Gate Arrays (FPGAs) in their
data centres [?]. Whilst FPGAs offer acceleration in high
performance computing (HPC), this is typically restricted
to a single application configuration (SAC) [?] and effective
resource management for area-shared multi-task execution
still remains challenging. This has a higher significance, par-
ticularly with the migration of services to fog/edge under
stricter resource and energy utilisation constraints.

Conventional software-programmable systems typically
use discrete processing cores, abstracted as software threads
offering microsecond latency context switching between
tasks. This results in a highly flexible resource management
and tasks scheduling model, to which a range of optimi-
sations can be applied [?]. With FPGAs, however, this is
complicated as support for mapping source code has to be
considered spatially, i.e., how the devices physical resources
are shared.

Typically, frameworks are based on partial reconfig-
urable regions (PRRs) [?], [?] where the FPGA is partitioned
into fix-sized rectangular slots. Spatial mapping constraints
on modern FPGAs mean that the PRRs are designed to be
largely homogeneous. Modern HPC tasks, however, are in-
herently heterogeneous where resource needs such as mem-
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ory, computing, bandwidth, will change and have runtime
varying workload sizes and throughput needs [?]. Mapping
these independent HPC tasks with custom designed hard-
ware and I/O onto PRR systems, typically results in a mis-
match giving lower compute density and underutilisation
of FPGA resources by up to 70% [?].

Custom task-specific partitioning and mapping (CPM),
supported by the vendor tools, can be used to generate
a single bitstream supporting multiple tasks acceleration
functions for area-shared execution. The diverse computing
requirements and workload sizes of dynamic task queues
make the resource management and tasks scheduling an
NP-complete problem, in addition to the long FPGA syn-
thesis times. Thus, any effective approach needs to enable
a runtime model that can offload appropriate designs onto
FPGA to optimise overall performance, defined as the sys-
tem throughput (STP) metric [?], a more effective measure
of performance in multi-task workload processing. A full
system stack is also needed for using FPGAs as a resource
for optimum execution of dynamic workloads.

In this paper, a task-based implementation, optimisa-
tion and execution framework is proposed to tackle these
challenges. Using OpenCL’s exploration capabilities, a large
design space is generated and explored using machine
learning to custom generate high compute density and
runtime scalable accelerator functions. These are used in an
effective manner in runtime, to suit the variable workload
requirements, eventually leading to a higher STP for a range
of heterogeneous tasks. The main contributions are given as:

• A comprehensive runtime evaluation tool that pro-
vides early design analysis of the spatial and tem-
poral constraints of various mapping schemes. It
allows selection of the optimal under the operating
conditions and objectives, as well as hinting towards
areas for optimisation, e.g., area-shared multi-task
execution, via functional emulation.

• Machine learning based characterisation of
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area/throughput rate for different tasks and
clustering of tasks for custom mapping and co-
execution in an area-shared fashion to achieve high
spatial compute density designs.

• Multi-task design space exploration (DSE) and use of
preemptive scheduling to enable an effective runtime
resource allocation based on the size of each co-
executed task, in achieving a high temporal density.

• Realisation of a task-based virtualised resource allo-
cation model to support this task-specific area shar-
ing model at the higher system level.

• Use of HPC examples from graph analysis, linear
algebra, media streaming and data mining, an aver-
age STP improvement of 2.8× at 2.3× better energy
efficiency is achieved over PRR.

The paper is organised as follows. Section ?? discusses
the motivation and background. Section ?? describes our
proposed framework, whilst Section ?? gives details of the
evaluation environment. Section ?? provides an analysis
using the examples and conclusions are given in Section ??.

2 BACKGROUND

FPGA-based computing systems: With FPGAs integration
in cloud and data centres, work is being carried out to
allow seamless and efficient access to the FPGA resources
from software environments. Among these, the authors in
[?] treat the FPGA as an independent resource and develop
communication stack and associated hardware on the FP-
GAs to directly communicate with other CPUs and FPGAs
in the cluster. Work in [?] uses middleware to provide an
application-centric interface for developers and takes care of
hardware development and integration for various vendors
to enable portability and better productivity. Authors in [?]
have developed a compilation framework, communication
interfaces and runtime libraries to scale resources from
sub-FPGA to multi-FPGAs per task requirements. Similarly,
work in [?] takes a modular approach to system stack design
where different components allow portability to integrate
with varying versions of design tools and hardware and
software layers.

FPGA as reconfigurable resource: Furthermore, with
the use of an FPGA as a re-programmable source in dy-
namic environments, researchers have investigated various
reconfiguration and task mapping schemes. The temporal
sharing include the reconfiguration of FPGA with a single
task (SAC) [?], [?] and the use of software programmable
soft-cores [?]. For larger tasks, researchers have looked at
providing transparent access to multiple FPGAs with each
FPGA processing part of the task [?]. In addition, with
increasing device sizes, research has explored space sharing,
mostly via PRR [?], [?]. Finally, authors in [?] have looked
to combine homogeneous PRR block-based design with
supported interconnections that scale resources for a task
on and across FPGAs transparently.

FPGA space sharing constraints: This work is targeted
at tasks that can benefit from sharing of FPGA space. Tra-
ditionally this has been achieved via PRRs [?], [?], [?] as it
mimics discrete computing resources in multi-core software
programmable systems and provides independence in space
and time. The independence in time suggests that a task in
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Fig. 1. FPGA Partitioning for PRR

a single PRR slot can be independently reconfigured with a
new task without affecting the processing in other PRR slots,
enabling easy scheduling decisions such as task priorities.
However, the flexibility in resource scaling per task and
achieved resource mapping density suffers.

This is because the space domain programming and
mapping of FPGA fabric via PRRs is challenging, since the
distribution of the heterogeneous resources on modern tiled
FPGA is unsymmetrical, particularly along the horizontal
axis, as shown in Fig. ??. Furthermore, the FPGA uses
multiple clock regions across both the vertical and hori-
zontal axes and so crossing the region boundary requires
custom logic which cannot be supported by modern runtime
bitstream relocation schemes [?]. This limits relocation to
homogeneous regions along the y-axis with a step size equal
to height of clock region (Fig. ??), in line with work on PRR
systems for independent tasks [?].

These mapping constraints restrict PRRs to be homo-
geneously designed regions, leading to underutilisation of
resources. Firstly, after omission of the static area for I/O
interconnects, the homogeneous region along the y-axis can
be as low as 60% area of the FPGA [?]. Secondly, modern
data center workloads comprise a range of heterogeneous
tasks with varying resource requirements [?], [?]. Within
the boundaries of PRR, the actual area being allocated to
heterogeneous task may be lower, namely 38% - 51% [?].
Overall, the effect is that the utilisation can be as low as
30% of available resources, resulting in a lower system
throughput and reduction in number of tasks that can be co-
executed. Finally, due to the routing constraints surrounding
fixed PRR slots, the frequency can drop by up to 24% [?].

Space sharing optimisations Research has explored op-
timisation of resource utilisation of PRR-based designs to
maximise throughput. Authors in [?] design variable sized
slots and map a compute intensive task with a memory
intensive task. Design in [?] allows 1,2 or 4 PRR slots to
be used as a reconfigurable region for a task as a mean
of mapping options. Authors in [?] reduce fragmentation
within PRRs by optimising scheduling using policies such as
compact placement and minimum conflicts between sharing
tasks for variable sized PRRs. Research in [?] reduce the
reconfiguration overhead associated with PRR usage, by
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Fig. 2. PRR and CPM design flow and runtime

prefetching the next task’s bitstream for next scheduled task
and re-using the loaded bitstream when possible. Authors
in [?] enable runtime support for elastic resource allocation
per task if adjacent PRR slots are available, whereas those
in [?] propose slots built using homogeneous blocks where
a task can be allocated any number of blocks at runtime
to create heterogeneous slots. However, even though these
approaches improve on a basic PRR setup, they use the
largely homogeneous PRR slots to map all heterogeneous
tasks, which results in non-optimal resource utilisation.

The infrastructure in [?] is a recent work that allows
creation of amorphous subspaces on the FPGA which can
both be partially and independently reconfigured for low-
latency mode, whilst multiple subspaces can be combined
and custom mapped for high throughput mode. The work
shows large gains in throughput by increased resource util-
isation when generating combined bitstreams, particularly
by co-scheduling tasks with variable resource requirements.
However, the work is targeted at the operating system
(OS) design and providing system support to transparently
transfer between the two modes. For the high throughput
mode, it briefly suggests parallel creation of bitstreams
(from tasks’ netlists) and place and route acceleration tech-
niques to hide bitstream generation latency. However, the
proposed use of a fair usage scheduler may create non-
optimal mappings and frequent switching at runtime. In
contrast, our work looks to first create a much larger design
space and systematically explore it offline with the aim
of generating higher density designs for high-throughput
execution. Furthermore, we incorporate throughput-based
scheduling and resource allocation to increase the usage of
the high-throughput mode. Finally, we provide a thorough
evaluation of both modes to enable informed decisions
about changing modes as per the operating environment.

2.1 Design Philosophy

Consider a data computing environment where processing
requests are received at regular intervals. The key differ-
ences for execution models of PRR and the proposed CPM
framework are illustrated in Fig. ?? (a) and (b), respectively.
The PRR approach generates bistreams and treats each
incoming task requests independently. The system man-
ager manages the incoming task queue via a virtualisation
layer that abstracts the underlying hardware implementa-
tion from the user space. For each request, the virtualisation
layer caters for the I/O and communicates with the resource
manager which manages multiple regions and loads the
bitstream for each execution.

In our approach, a major focus has been made to im-
prove the resource utilisation by removing the need for each
task to go into a predefined partial region, thus improving
total execution time for the overall task set. This requires
a number of major changes to the flow. Firstly, a range of
efficient swappable FPGA accelerators with a high compute
density and varying areas are created for each task. The
aim is to integrate the bitstreams supporting execution of
multiple tasks, but rather than employing dynamic recon-
figuration, these are loaded as a single multi-task bitstream
onto the FPGA.

A lightweight scheduler, running at the same level as
virtualisation layer, links task processing requests with cor-
responding optimum bitstream based on multi-task DSE
and pre-emptive scheduling techniques. To enable intelli-
gent co-scheduling, the scheduler processes task queues in
batches, allowing reordering and processing in clusters to
gain a higher throughput from CPM. With the order of jobs
being second priority, a comparison may be made with other
approaches for epoch time at which execution of each task
is completed, in order to evaluate the effect of prioritising
throughput over the order of tasks.

Furthermore, the tasks implementation and runtime sup-
port are provided by the OpenCL framework as OpenCL is
now recognised as an established high-level language for
design as well as integration with software-based heteroge-
neous data centres [?]. The proposed approach fits well with
the FPGA version of cloud computing model of Software as
a Service (SaaS) where optimised bitstreams for standard
computing tasks are stored as a library (Amazon Market-
place for Amazon FPGA Image (AFI) [?]) and users can
request functional acceleration service with variable work-
load. Further optimisations can be made by complementing
it with real-time data center workload characterisation [?].

We previously presented a comparative evaluation of
partitioning schemes [?], an accuracy analysis of runtime
evaluation tool [?] and spatial mapping optimisation via
clustering [?]. This paper introduces a complete framework
and includes the implementation of novel new components
for temporal optimisation and integration with high-level
virtualisation model. Building on all these modules, this
work, for the first time, presents a complete system stack
from early design analysis to deployment of dynamic het-
erogeneous HPC tasks.

3 METHODOLOGY

The high compute density mapping of Fig. ?? (b) forms the
core of framework enabling task-specific execution model
and is explained in Fig. ??. From the list of heterogeneous HPC
tasks to be executed, the OpenCL computing model is used to
describe the functionality, thereby allowing the parallelism
granularity to be defined using the general high-level synthe-
sis parameters. The resulting design space is explored using
dynamic hardware profiling, ensuring that the generated
designs provide optimum speedup per resources utilisation.
The eventual multiple hardware designs are then used to
generate the dataset specifying the throughput achieved
against resources utilised for each task.

The comprehensive multi-task runtime evaluation tool
starts with the single task DSE to gauge the performance of
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various partitioning schemes for dynamic workloads against
various system design parameters. The performance analysis
showed that although CPM provides higher spatial compute
density than PRR, it is similar to SAC and may perform
worse for dynamic workloads because of lower temporal
utilisation. To address this, characterisation of tasks using the
single task DSE along with machine learning based regres-
sion models is used to evaluate the weighted relationship
between each on- and off-chip heterogeneous resource and
FPGA throughput. The characterisation is used to divide
all tasks into smaller clusters, so that tasks in a cluster
complement others’ resource needs and can be co-executed
on the FPGA.

Furthermore, to minimise the reconfiguration overhead,
a multi-task bitstream may only be replaced with a new
one after all the tasks being co-executed have finished. To
reduce stalling by the longest running task, resource allocation
per task is varied in the multi-task cluster as per the runtime
workload size of each co-executed task. To enable this, the
module generates a set of designs per cluster using a multi-
task DSE, while trading off resource allocation (and through-
put) between the cluster tasks. This permits variation in the
execution time, Texec, of each task in processing respective
workloads.

The generated multi-task designs are custom mapped
on FPGA to generate bitstreams supporting multiple task
accelerator functions. The generated sets of bitstreams per
cluster are then profiled on the hardware for throughput using
metrics defined per corresponding workload for each task
in the cluster. These high compute density mappings enable
a high throughput hardware design which are then used by
the higher level system stack.

3.1 Design Space Exploration

The DSE enables exploration of system optimisation strate-
gies and the resulting area-throughput rate supports a ben-
efit based approach where tasks can be allocated resources
which benefits them the most, i.e., memory, compute. The
DSE is enabled by OpenCL’s capability to allow explicit
description of parallel computing and scaling of hardware
resources via multiple parameters [?]. A task’s kernel can
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Fig. 4. Runtime evaluation methodology

be scaled over multiple compute units, CUs, where these
implement coarse-grained parallelism described as work-
groups. A work-group can be further spanned over work-
items where multiple pipelines for these can be defined via
the single instruction multiple data, SIMD, pragma.

A kernel may also be implemented as a single work-
item. For some of these tasks, task-specific parameters such
as the block size, number of rows, are used, as these define
the parallelism of the defined parameter size. For some
tasks, unrolling pragma, U, can be used to unroll compute
intensive part of the kernel which is identified using dynamic
profiling based on an ’always active’ counter. The counter
is coded in VHDL and passed to the OpenCL kernel as
a software library via an Intel OpenCL Library feature.
Eventually, parameters that provide the highest throughput
scaling per unit area are selected.

3.2 Runtime Evaluation

A comprehensive multi-task runtime functional emulation
tool (Fig. ??) allows fast early stage comparison. It enables
multi-task DSE using the single task DSE and may be
combined with analytical models [?], to significantly speed
up clustering and resource allocation per task.

Placement Checks: For PRR, the 2D area model treats
mapping as a rectangle fitting problem and aims to find a
region homogeneous in both size and spatial distribution
of resources to map each incoming task [?]. For CPM,
we implement a multi-dimensional model accommodating
a dimension for each heterogeneous, on-chip resource i.e.
logic, block random access memory (BRAM), digital signal
processing blocks (DSPs). The mapping optimisations try
to accommodate as many tasks as possible, whilst keeping
total utilisation of all resources within the device limit.
For PRR, each task’s configuration is treated independently
while for CPM, a configuration waits for the longest running
task and then selects a new multi-task configuration.

Memory Modelling: Even if the allocated on-chip re-
sources in the multi-task environment are same as the single
task, the achieved throughput may not be identical due to
memory contention. To model and predict memory per-
formance in multi-task processing, the tool employs ridge
regression [?]. We generate a range of multi-task bitstreams
and measure the actual performance to train the model with
the accuracy presented in [?].

System DSE/Resource Management: The tool can be
used to evaluate various resource management strategies.
For CPM, a multi-task DSE estimates the effect on through-
put while varying resource allocation per task in a cluster.
For PRR, the tool implements optimisations that target
segmentation (vacant regions on the FPGA at runtime) on
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top of basic homogeneous PRRs and which are important
to compare PRR fairly with CPM. Among these, the first
one checks if the adjacent PRR regions are free, and then
attempts to fit a larger bitstream for the same task in this
combined region to gain a speedup [?].

The second one targets partitioning FPGA into heteroge-
neous PRRs with different numbers of resources to increase
mapping flexibility [?]. The tasks are then custom designed
for one of the PRRs. Heterogeneous PRRs can be defined by
including a different ratio of each heterogeneous resource
type. However, in the current scenario, the device size
is not big enough to benefit from such an approach, so
heterogeneous PRRs are defined by varying the number of
each type of resources while their relative ratios remain the
same (Fig. ??). The optimisation uses heterogeneous PRRs
to fit a smaller bitstream for tasks when none of the original
bitstreams can be accommodated by a region [?].

Finally, the tool varies the vertical step size up to a
single row on a continuous y-axis, for bitstream relocation.
Although exhaustive, this can be achieved by generating
multiple bitstreams equal to the number of rows within each
clock region, by varying starting y-coordinates.

Configurations: Bitstreams parameters such as the co-
ordinates of bounding boxes and heterogeneous resources
usage from the DSE, are passed to the evaluation tool. The
user can also specify deviation in Texec of tasks. A uniform
distribution is used for random task generation and an input
parameter varies the range of distribution for Texec.

Constraints: In PRR, the homogeneous/heterogeneous
regions are fixed and the coordinates are provided by the
user. In CPM, the total number of available heterogeneous
resources and a realistic percentage of the maximum utilisa-
tion is provided as an input. To study the effect of various
PRR constraints, the available area for the task mapping as
well as bitstream relocation steps can be varied.

3.3 High Compute Density Bitstream Generation

We optimise system throughput by achieving a denser map-
ping of FPGA resources. The various modules include:

Characterisation and Clustering for Spatial Optimi-
sation: Along with clustering, informed runtime decisions
are enabled on heterogeneous resource allocation per task
which requires characterisation of the DSE of each task
rather than of any single bitstream. We perform regression
modelling to find the weighted contribution of each type
of resource towards throughput. This allows a benefit-based
approach where a task which profits the most from a higher
allocation of a certain resource type is clustered with a task
which profits the least. Four different resources, including
on-chip BRAM, DSPs, logic and off-chip bandwidth which
represent the key FPGA resources, are considered.

Whilst ordinary least squares is one of the more com-
monly used linear regression methods, it is highly sensitive
to random errors when variables are correlated, such as
here where DSP blocks are linked to BRAM; ridge regression
avoids this. The normalised values of on- and off-chip
heterogeneous resources against maximum available for
all bitstreams per task form the independent variables for
the regression. The achieved throughput, measured on the
actual hardware and normalised to maximum achievable for
each task, becomes the dependent variable.

Regression provides the significance scores of each type
of resource for each task to scale throughput. In addition,
the normalised bandwidth utilisation for each task’s largest
bitstream is used to cluster tasks for space sharing at a single
time. Only bandwidth is used, as unlike other on-chip re-
sources, it may become a bottleneck in the DSE for extremely
memory intensive tasks and in the ridge regression model,
consistent bandwidth usage may hide the fact that task has
a high bandwidth dependence. In order to define clusters,
each task is first represented in a multi-dimensional space
where each dimension either represents regression score of
a resource or normalised bandwidth.

Finding the best combination of clusters is a global
optimisation problem. We use a custom-designed optimi-
sation function for its reduced complexity and validity for
the considered scale of problem. It runs a set number of
iterations where each iteration randomly selects the first task
for each new cluster and then other tasks are searched such
that they have maximum distance, and thus heterogeneity
between them in the multi-dimensional space. The number
of tasks in a cluster are defined manually by the system
designer based on device size. The sum of mutual distances
between tasks is used as a score of the cluster, while sum of
all cluster scores defines iteration’s score. The iteration with
highest score is chosen as the solution.

Resource Variation Per Task: Although CPM allows
for higher spatial compute density, all cluster tasks are
reconfigured as a single integrated bitstream. This means
that the longest running task stalls the other tasks, unless
reconfigured at the expense of reconfiguration overhead,
and the resource utilisation by the tasks that finish early is
suboptimal. To counter this, sets of multiple bitstreams per
cluster with varying on-chip resources are created using the
multi-task DSE enabled by the runtime evaluation tool and
varying the high-level parameters. The clustering helps to
avoid contention for the same type of resource and each task
is allocated the resources it needs. A range of designs are
produced with varying area-throughput rates for processing
the respective workloads.

Integrated Bitsreams Generation: A PRR system is
limited to pre-defined reconfigurable regions because of
the runtime bitstream relocation needs, thus limiting the
optimisation via clustering to only off-chip memory band-
width. However, CPM can also benefit from optimisation of
on-chip resource usage using custom FPGA mapping and
resource allocation to tasks as per their heterogeneity, to
generate a single bitstream offering multiple task acceler-
ation functions.

The bitstream is generated by first using the OpenCL
front-end to create HDL modules. Placement scripts modify
the constraint files to map task modules to the correspond-
ing PRR while for CPM, the area to be mapped is set to
available area for task logic (Fig. ??). Finally an integrated
bitstream is generated using the place and route tools, which
are integrated with OpenCL back-end. In this work, no
custom mapping optimisations over the vendor’s place and
route tools are used by CPM for multiple modules. Both
the PRR and CPM modules can be partially reconfigured
independently of the static logic.

Hardware Profiling: All configurations are profiled
while executing all tasks in the cluster to calculate real
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throughput for each bitstream of all tasks using workload-
specific metrics, as described in Table ??. The workload-
specific metrics encompass all of the compute, memory and
control instructions to give a real measure of performance
for time to solution.

With FPGA bitstream generation times taking hours for
a single task, the full process can take a significant time. The
offline process leading to bitstream generation for an initial
set of tasks may be generated at the design time. For upcom-
ing new tasks at runtime and if the system manager decides
to update clustering and associated bitstreams, this may
be achieved in parallel with tasks execution and updated
once completed. Furthermore, the scope and frequency of
clustering based optimisation may be limited to reduce
design time as well as use of the simulator for faster pre-
design analysis.

3.4 Runtime Scheduler

The runtime is designed to be lightweight such that its over-
head on task execution time is negligible. For an incoming
heterogeneous task queue with variable workload sizes, the
runtime scheduler (Fig. ??) uses preemptive scheduling on
the measured throughput of various multi-task bitstreams
and selects the one that minimises the difference in the tasks
Texec. Meanwhile, checkpoints allow for re-evaluation of the
scheduling decisions and context switches. Eventually, this
reduces stalling by a single long running task and improves
temporal resource utilisation on top of high compute den-
sity mappings to achieve higher overall throughput.

Algorithm 1 provides pseudo-code for the runtime se-
lection of optimum bitstream. For each unscheduled task,
nextTask, in the task queue, the algorithm first checks if the
other tasks in the same cluster as nextTask also need to be
scheduled. If not, it uses a single task bitstream for nextTask.
Otherwise, it iterates through multiple bitstreams for that
cluster to find the bitstream that minimises the difference
of Texec (calculated as data size divided by throughput) for
the tasks in the cluster for their respective workload sizes.
The optimum bitstream and corresponding tasks are put in
scheduling order. The estimate Ti value provides estimated
Texec for the ith bitstream for task in the brackets. Max value
on line 10 equals the sum of Texec for all tasks in SAC.

The preemptive estimation selects the bitstream such
that the estimated difference in Texec for all of tasks in a
cluster is the least amongst all bitstreams. This does not
need cycle accurate estimation and even with allowable
difference in the Texec of tasks, a higher throughput is
possible, owing to the intelligent clustering and CPM and
as long as the longest running task has the highest resource
allocation in the cluster.

The runtime also makes use of lightweight scheduling
decisions to re-evaluate the bitstream selection or perform

Algorithm 1: Runtime to generate scheduling order,
SO, and associated bitstreams, B, for dynamic task
queue, TQ

1 while TQ is not empty do
2 nextTask← TQ[nextUnfinishedTask];
3 cluster← taskClusters[nextTask] ;
4 otherTasksInCluster← cluster - nextTask ;
5 if otherTasksInCluster not in TQ(unfinished) then
6 B[nextTask]← singleBitstream[nextTask];
7 SO[nextTask]← nextTask
8 end
9 else

10 ∆Texec ← max value ;
11 for i in range(bitstreamsSet[cluster]) do
12 temp ∆Texec ← estimate Ti(nextTask) -

estimate Ti(otherTasksInCluster) ;
13 if ∆Texec > temp∆Texec) then
14 ∆Texec ← temp∆Texec ;
15 B[nextTask]← bitstreams[i] ;
16 SO[nextTask]← nextTask +

otherTasksInCluster;
17 end
18 end
19 end
20 end

context switches at discrete points in time, called checkpoints.
Although checkpoints can be implemented at a finer gran-
ularity in OpenCL, such as at work-group level [?], the
reconfiguration and host-accelerator communication over-
head, may offset the acceleration gain. Instead, checkpoints
are implemented at block level, namely an independent part
of a whole workload that is batch processed, i.e., the com-
putation is off-loaded to a FPGA and outputs written back
to the host in batch. A block may be workload specific and
is generated via workload distribution at a higher software
level. All OpenCL workloads need to be processed as a set
of blocks, iterated over the total workload, due to limited
on-board DRAM.

Considering the runtime workload, the scheduler uses
the preemptive estimation of Texec at the respective block
size and the number of blocks in order to estimate total Texec

of a workload. However, at the checkpoints after each block
execution, the bitstream selection and scheduling decisions
are re-evaluated, allowing for variation in the resource
allocation per task. The scheduler evaluates the following
equation to decide on when to switch the bitstream:

New Texec = Tr(n) +
WS(r)

TH(n)
(1)

where Tr(n) and TH(n) are the reconfiguration time and
throughput of the new bitstream, respectively, while WS(r)
is the remaining workload. The scheduler compares the
New Texec with the current configuration and chooses the
improved one. Recent work in this domain has proposed
the design of mechanisms for context-saving as well as run-
time migration to a new reconfiguration on the same device
or a new device for OpenCL-based tasks while saving the
already processed data[?], [?].
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TABLE 1
Use Cases Characteristics.. Compute Units (CU) scaling is always for the whole kernel. U is for Unrolling and BW for bandwidth

Use Case Scaling Parameters Computing Characteristics
Throughput
Metric / S

# De-
signs Speedup

Page Rank (PR) [?]
CUs and U new rank calculation for

each page
Inefficient pipeline

implementation
# Links 9 6×

Alternative Least Square
(ALS) [?]

CUs and U error calculation in
recommendation estimation

Severely memory latency
bound

# Users per
unit Items

4 2×

Binomial Option Pricing
(BOP) [?]

CUs and U Binomial Tree traversal
Highly compute and

on-chip memory bound
# Options 8 21×

Breadth First Search (BFS) [?] U edges traversal of a single node On-chip memory and BW # Edges 5 5×
Sparse Matrix Vector

multiplication (SpMV) [?]
U sum calculation of each row

Logic, on-chip memory and
BW

# Non-zeros 6 190×

Finite Difference Time
Domain (FDTD) [?]

# Points in a sliding window
processed in parallel

High dependency on all
resources

# Points 5 13×

Lower Upper Decomposition
(LUD) [?]

CUs and U compute intensive loops
in decomposition

Compute and BW bound # FLOPs 7 18×

Video Decomposition (VD) [?]
# rows of pixels being processed in

parallel
On-chip resources for bigger
and BW for smaller designs

# Pixels 6 8×

Matrix Matrix multiplication
(MM) [?]

SIMD pragma for complete pipeline
and U calculation of dot product

High dependency on all
resources

# FLOPs 8 204×

Needleman-Wunsch (NW) [?]
Size of strings to divide the problem

and are processed in parallel
High dependency on all

resources
Sequences

Length
7 33×

K-nearest Neighbour (NN) [?]
U distance calculation to other

points
Highly efficient pipeline

requiring high BW
# Points 4 5×

3.5 Virtualisation and Revenue Model

The conventional PRR-based approach targets infrastructure
as a service (IaaS) and scales area per tasks with the number
of PRR slots corresponding to number of resources [?], sim-
ilar to the discrete cores-based distribution of resources in
multi-processor systems. As resource-based division incurs
a high cost of sharing in FPGA, a task-based functional
acceleration stack targeting SaaS model is employed where
functionality is offered to users as a service while the area
scales with the associated throughput. This is similar to
the Amazon model which provides AFIs containing pre-
synthesised bitstreams of FPGA functionality while hiding
the implementation details from users [?]. With CPM, the
model can be extended to area shared multi-task execution
with a higher system throughput facilitating higher revenue.

To enable the task-based model, we use the VineTalk
virtualisation framework [?]. VineTalk reduces the efforts
needed by application developers to deploy FPGA-based
acceleration in data centres by handling the communication
and control between an application and underlying acceler-
ator. It does that by registering tasks as a set of supported
functionalities accessible via easy to use interfaces while
hiding the underlying hardware implementation details. It
essentially exposes FPGA as a virtual accelerator, VineAccel-
erator, available to applications as task-based software API.
The underlying libraries then manage the task queues and
data buffers. Decoupled from this is the software controller
and hardware facing API, which communicates with the
underlying FPGA’s vendor runtime and manage bitstream
loading and host-accelerator data transfers associated with
each VineAccelerator.

We modify various layers to incorporate Vinetalk for
area-shared CPM multi-task processing. At the application
level, multiple tasks in a cluster can be integrated into a
single call associated with a single VineAccelerator. In other
words, each VineAccelerator represents a unique cluster and
its definition then manages execution of independent tasks
in a cluster. Furthermore, each VineAccelerator has access
to multiple bitstreams, where each bitstream represents

varying throughputs for each task in the cluster via an as-
sociated set of parameters. These are used by the scheduler
to select the optimum bitstream at runtime and passed to
the software controller. Finally, we implement interfaces and
drivers for the hardware facing API for integration with
Intel FPGAs.

4 TEST ENVIRONMENT

We considered 11 HPC tasks belonging to various ap-
plication domains and computing dwarfs such as sparse
and dense linear algebra, graph analytics, structured grid
computing and dynamic programming. We then identify
high-level parameters for each task for DSE for OpenCL im-
plementation. The parameters are evaluated to provide the
maximum throughput per resource usage using hardware
profiling. We also identify the key characteristics identified
after profiling, that project a need for task characterisation
on actual hardware and verify the selection of tasks for
comprehensive evaluation. The DSE along with workload
specific metrics used for each task in the throughput calcu-
lation, are summarised in Table ??.

4.1 FPGA and Host Platform

The runtime evaluation tool is written in Python 3. The
high-level DSE is performed via the Intel OpenCL SDK for
FPGAs v16.1 while constrained placement is achieved using
Quartus Prime v16.1. The hardware profiling is performed
for the Nallatech 385 board as the target FPGA system. The
power is measured using on-board power sensors accessible
via the memory-mapped device layer whilst the bandwidth
is measured using the Intel FPGA Dynamic Profiler for
OpenCL GUI. OpenCL runtime and independent command
queues are used for each task, allowing parallel execution.
Within a single command queue, non-blocking calls are
issued for memory transfers as well as to multiple kernels
of a single task, if needed. The runtime is executed on host
comprising of an Intel Xeon E5530 chip running at 2.4 GHz.
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4.2 System Throughput Metric

Assessing the system performance of a multi-task workload
running in parallel on a single processing unit is challeng-
ing, as the absolute measure of individual task’s throughput
does not provide an indication of system performance; the
contribution to absolute processing time and total speedup
may be influenced more by the tasks with larger workload
sizes. Generic metrics such as FLOPS etc. may not provide
a meaningful measure for all of the tasks being evaluated.

We use two different metrics for emulated and hardware
results in order to allow a realistic and comprehensive
assessment to be made. Firstly, the emulation of large task
queues comprising range of tasks provides the potential
to estimate the total speedup, measured as execution time
to process the whole workload or task queue for various
partitioning schemes and SAC. To evaluate the compute
density provided by various approaches in a multi-task
environment, the STP metric [?] used is defined by:

STP =
n∑

i=1

NPi =
n∑

i=1

CSP
i

CMP
i

(2)

where NP is each task’s normalised progress defined by
the number of clock cycles it takes in single task mode, CSP

i
,

when the task has all of the resources of the FPGA available
as compared to multi-task mode, CMP

i
, when it shares

the space with other tasks. Here, n defines the number of
tasks sharing the FPGA. The metric encompasses various
system design parameters such as throughput variation
with resource allocation per task, compute density varia-
tion against resource utilisation and system performance
(including STP/Watt for energy efficiency) for various space
partitioning schemes. It then provides a throughput relative
to a baseline of SAC, which has STP value of 1.

5 RESULTS AND ANALYSIS

The scope of DSE is first explored with emulated results
before analysis using clustering and runtime performance
variation with design parameters. Whilst the results target
the low-level system performance, we discuss the high-level
virtualisation model using CPM.

5.1 Design Space Exploration

The DSE provides real area numbers as well as variation in
throughput against resource utilisation for fair evaluation
and comparison of mapping schemes. The scaled param-
eters and achieved speedup are summarised in Table ??.
To measure speedup, the baseline Texec, corresponding to
the lowest area bitstream, is defined by the serial pipelined
benchmark implementation of the task. The maximum
throughput is defined by the largest bitstream, limited by
FPGA resources. We have generated 4 − 9 designs per task
where each represents a point on the area-throughput curve
and the maximum speedup ranges from 2× to 204× for
tasks being considered.
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Fig. 6. Speedup achieved by CPM versus PRR mapping
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Fig. 7. Speedup variation with variation in execution times (Tasks = 1024)

5.2 PRR vs CPM

The evaluation tool provides the projected runtime gains of
CPM against SAC and various PRR strategies. The tool also
allows variation of system parameters and task constraints
that affect the CPM throughput, particularly due to lower
independence in time as compared to PRR and SAC. We
iteratively apply different constraints to distinguish and
highlight their effects while using all of the considered 11
heterogeneous tasks but with varying workloads.

Maximum theoretical gain by CPM: Firstly, the maxi-
mum theoretical speedup achieved by CPM against various
types of the PRR mapping, namely the continuous y-axis,
heterogeneous PRRs and homogeneous PRRs, are analysed
using runtime evaluation tool. Here, we consider an ideal
scenario for CPM where tasks sharing the space have same
execution times. In total, there are 80 rows of the FPGA that
can be configured as a single region or a set of two homo-
geneous regions of 40 rows each. Two more heterogeneous
PRRs, namely 30 and 50 rows, are defined based on the sizes
of generated bitstreams.

For CPM, we either use the same region as used for the
PRR to maintain homogeneity, (Partial CPM) (P-CPM), or
use all of the available area for the task logic after placement
of the static modules, (Whole CPM) (W-CPM). The designs
for W-CPM and P-CPM are created by using appropriate
scaling parameters as well as the placement constraints for
each realisation as well as the placement constraints. Due to
lower area utilisation, P-CPM takes lower bitstream gener-
ation time and has slightly lower reconfiguration overhead.
This analysis helps to differentiate between the speedup
achieved by heterogeneous mapping in the same region, as
well as the gains made by the availability of extra logic when
mapping in a custom fashion.

Fig. ?? shows that for an ideal environment for CPM, it
can achieve up to 4.1× higher throughput as compared to
PRR, measured in terms of the total execution time for a
set task queue size. Please note that out of this 4.1× gain, a
2× speedup is achieved via heterogeneous custom mapping
whilst the rest is achieved by exploiting the higher resource
availability. The results show that if the y-axis can be made
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continuous, a throughput gain of 1.8× can be achieved
while heterogeneous PRRs can improve performance while
making use of various optimisations mentioned in Sec-
tion ??.

Texec variation: The speedup reported in Fig. ?? consid-
ers an ideal scenario for CPM by using similar Texec for all
tasks sharing the FPGA at any time, however, this is not
the case in dynamic environments. Next, the relative Texec

of the tasks is varied, with reconfiguration only after all
co-executed tasks have finished processing, thus allowing
analysis of its effect on speedup. The speedup is given
against baseline of SAC for both partitioning schemes.

The results in Fig. ?? depict a surprising trend, partic-
ularly for CPM versus PRR. Even with increasing range of
Texec by up to 32× (beyond this range a reconfiguration
overhead would become negligible for most tasks), the
speedup with CPM decreases but remains higher than PRR
by 2.7×. This is because on average, the device may be used
by 3 or less tasks using CPM, as constrained by the size
of the FPGA chip. Thus, a task may stall up to 2 tasks or
a maximum of about 50% resources with an average much
lower than that. Stalls by smaller tasks are overcome by the
higher average compute density and gains made when the
longest running task is not the smallest. Against SAC, the
CPM follows a similar trend, however, the speedup falls
below 1 as the range of Texec goes higher than 2 whilst PRR
maintains an average speedup of 0.37×.
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Fig. 8. Total execution time including the reconfiguration overhead for
varying mean of tasks individual execution time (Tasks = 1024

Reconfiguration overhead: The analysis so far has not
considered reconfiguration overhead, which can be signifi-
cant if the tasks to be executed have smaller workloads in
more dynamic environments. Furthermore, the reconfigura-
tion overhead is directly related to the area being mapped.
Thus, as the throughput increases with more resources when
going from PRR to CPM and SAC, the gains may be offset
by the higher reconfiguration overhead.

The next set of experiments evaluate the effect of recon-
figuration overhead on total Texec to process a task queue
against varying mean and range of Texec of tasks. The
experiments consider reconfiguration time for each scheme
as proportional to the area to be reconfigured. The results
are shown in Fig. ?? and include two different ranges
(R) for each evaluated mean. Starting from the offset of
reconfiguration overhead, the total Texec generally increases
linearly with increase in mean Texec of tasks. However, the
lower reconfiguration overhead plays more significant role
towards better performance for smaller tasks with lower
mean Texec while higher throughput is more significant for
larger tasks.

In the first test scenario, all tasks have similar Texec

i.e range approaches 0 which, as we mentioned earlier, is
an ideal scenario for CPM. However, even with the lowest
throughput associated with PRR, it provides the best overall
system performance by up to 1.2× owing to the lowest
reconfiguration overhead. The lower throughput for PRR
becomes the more significant factor towards total Texec with
the increasing task size and the PRR becomes the worst
performing for tasks taking more than 1 second per task.

The second set of experiments shows the benefits of
space sharing when using an increased 8× range of Texec.
Without considering reconfiguration overhead, CPM per-
formed worse than SAC (Fig. ??). However, lower number of
resources per task results in lower reconfiguration overhead
for CPM as compared to SAC. This results in CPM providing
better overall performance by up to 1.14× even at mean
Texec of 10s. The overhead only offsets the performance
loss due to lower throughput though, as CPM may perform
worse than SAC with even higher range.

Although this work is focussed on identifying the use of
CPM for higher throughput and optimising it for dynamic
environments, the detailed comparison against various con-
straints in this section highlights the need for analysis of
various schemes to suit the operating environment. Such
analysis may also enable a system to switch mapping
schemes at runtime as per variation in task dynamics, as
proposed in [?].

As for the CPM, although it allows a space-shared model
allowing scaling of resources at sub-device level, the degra-
dation of performance against SAC suggested the need for
further optimisations. A quick analysis also showed that
apart from the underutilisation of resources in time by
tasks with variable Texec, the runtime spatial utilisation by
heterogeneous tasks is limited to 62%, 49% and 71% on
average for logic, BRAM and DSPs, respectively.

5.3 High Compute Density Mappings

To analyse the gains made by the proposed approaches for
high density mappings, we first establish a baseline system
throughput before analysing various optimisations.

5.3.1 Baseline System Throughput for CPM and PRR

The size of the device being used is small, whilst further
constraints on area available are placed on it by PRR. This
limits the area sharing to a cluster of 2 tasks. For CPM, up to
3 tasks can be accommodated at one time. However, based
on practicalities and the need to keep the comparison fair,
it makes sense to use 2 tasks per cluster for CPM as well.
Using the DSE, the largest bitstreams per task are selected
within the area constraints of the PRR and CPM.

We generate 10 random clusters of tasks for both PRR
and CPM as baseline. For evaluation of the STP, the data
sizes for tasks in a cluster are chosen such that both tasks
have a similar Texec. The results in Fig. ?? (a) show that
CPM with an average STP of 0.99 can provide an average
2.4× higher throughput as compared to PRR’s STP of 0.41
on the basis of a higher compute density in space but with
consuming higher power. Fig. ?? (a) shows that although the
gain is less, the CPM provides 1.9× better energy efficiency
(STP/W) on average over PRR.
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5.3.2 Clustering

Before describing the improved throughput due to clus-
tering in Fig. ?? (b), we briefly show the contribution of
resources towards tasks’ throughput using the DSE and
Ridge Regression in Fig. ??, which forms the basis for
clustering. The bias value in the figure representing the
constant in the modelled linear equations relates to the
baseline throughput. The clustering algorithm uses these
models to create a set of 6 optimum clusters.

Fig. ?? (b) shows gains for both the PRR and CPM, using
a similar Texec for the tasks in a cluster. For PRR, the STP
increase of 1.2× to 0.5 is mostly due to optimisation of the
off-chip memory bandwidth utilisation. For CPM, the STP
increase of 1.4× to new value of 1.4 corresponds to both
the on- and off-chip resource optimisation. The gain of 3.3×
and 2.8× for the throughput (STP) and energy efficiency
(STP/W) between the CPM in Fig. ?? (b) and the PRR in
Fig. ?? (a) respectively, is the maximum achievable via the
proposed optimisations as compared to the existing area-
shared schemes while an STP gain of 1.4× compared to SAC
is achieved.

5.4 Texec Variation

Until now, the experiments have used custom data sizes
which ensured a similar Texec for co-executed tasks which
may represent a static configuration for long running tasks.
However, for a more dynamic task queue, the limitation of
CPM is that the execution is stalled by the longest running
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Fig. 11. STP variation for CPM with variation in Texec of tasks in cluster

task, unless the scheduler decides to reconfigure the FPGA.
In the next set of experiments, the Texec of tasks is varied
relative to each other. The results are shown in Fig. ?? where
the δTexec represents difference in Texec for tasks in a cluster
as a multiple.

For each sample cluster, the middle cluster represents
similar Texec, that is δTexec ≈ 1. Moving either side, the
δTexec increases with left side representing the first task in
x-label taking the longer time to execute while the right side
represents the second task, as shown by individual STP of
tasks. Considering the average values, the results show that
STP for CPM drops sharply initially but then stabilises. For
example, from 1× to 2×, the drop is by 1.3× (from 1.36 to
1.04), however, from 4× to 8×, even when variation in Texec

is 4× or more, the drop is only 1.06× (0.94 to 0.88).

The reason can be seen from the individual contribution
of each task to the total STP. With an increase in Texec

variation, the STP is increasingly defined by the longest
running task and becomes independent of the variation in
Texec. Furthermore, the individual STP contribution by the
longest running task improves with increasing the Texec

variation as it gets a higher share of the off-chip memory
bandwidth. All of these factors reduce the effect of variation
in Texec, but it still causes a significant drop in STP by 1.54×.
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5.5 Runtime

To counter the drop in the STP with variation in Texec, the
framework generates 3-4 bitstreams per cluster, with each
bitstream trading off resources for each task against the
other. We then evaluate a complete system using a queue of
36 randomly generated task workloads involving 3 work-
loads per task with variable sizes. The range of workload
size per task is such that they take 1 - 60 mins (in line with
study of real workloads processing times on three Google
clusters in [?]) to process using bitstreams from Fig. ?? (b).
Each workload comprises of a number of workload-specific
blocks such as matrices, image frames, options, graphs, etc.
Furthermore, for the sake of the experiments, each request
is treated as an independent task and the module reuse
strategy to avoid reconfiguration is not considered if the
same task has multiple requests. If so, multiple requests for
same task can be combined to form a single larger task.

The runtime scheduler then selects the optimum bit-
stream, that minimises the Texec variation in a cluster,
using the profiled workload-specific metrics for throughput
and the preemptive scheduling. As mentioned earlier, this
estimation only chooses the best fit from the available set
and does not require a cycle accurate estimation of Texec.
The runtime can also use single task per bitstream (SAC),
if needed. For the considered task queue, the scheduler
reconfigured the bitstream at checkpoints only once while
for 2 of the workloads, it used SAC.

The achieved instantaneous and average STP for 18
bitstreams of 2 tasks each used for execution of 36 tasks
(SAC is also shown as a cluster, but represents two different
bitstreams), is shown in Fig. ??. The figure also includes the
corresponding Texec variation for bitstreams from Fig. ??
(b), with an average of 9.6×. This set of experiments also
includes the reconfiguration overhead, however, it is in-
significant (less than 2s) for the size of workloads being
considered. The results show that using the intelligent run-
time selection of the bitstream, the STP can be improved by
1.3× as compared to Fig. ??, while reducing the power by
5%, on average. The actual processing time or STP for the
PRR-based processing for the generated task queue could
not be provided due to non-availability of the dynamic re-
configuration framework needed for the tasks with varying
Texec. However, the STP would be similar to that reported
in Section ??. The overall achieved STP is 2.8× higher than

the base value using PRR in Fig. ?? (a) while being 2.3×
more energy efficient.

5.6 Discussion

The focus of this work has been to improve FPGA compute
density and hence has not commented on the virtualisation
overhead and the data transfer from the host to the FPGA
via PCIe. Both the VineTalk and scheduler overhead de-
pends on the workload size and number of batches required
to complete processing. For a single batch the combined
overhead can be as low as 100µs, while excluding the
reconfiguration overhead. For higher number of batches
(256), the overhead varies for different tasks and lies in the
range of 0.3 - 0.9 % of total execution time of tasks.

Furthermore, the cost of data transfer is essentially the
same for all of the partitioning schemes. However, com-
pared to SAC, multi-task processing provides up to 1.2×
lower total Texec including the memory transfers from the
host. In this, 1.18× is due to the higher compute density
and is in the similar range as achieved STP for the set
of evaluated workloads. The rest is provided by the time
multiplexed memory transfers for multi-task processing,
with the longer running task starting execution whilst the
data is being transferred for other tasks.

The framework processes the task queue in batches
where jobs in the batch may be reordered to maximise
throughput. However, the order of jobs is the second pri-
ority and thus, the first task to be scheduled is selected from
the order and the second task corresponds to the respective
cluster. Using the runtime evaluation tool, it showed that
although the PRR allows a strict order of processing to be
followed, the lower compute density means that 100% tasks
finish execution later in terms of clock time compared to
CPM. In a multi-FPGA data centre, multiple clusters can
also be offloaded to different FPGAs to maintain adherence
to the execution order. Tasks with strict deadlines can also
be executed in SAC.

STP as a metric defines throughput as a comparison
against SAC and the theoretical limit for maximum possible
STP is defined by the number of tasks being shared i.e. 2 in
this case. The evaluations show that the CPM provides up to
a maximum of 1.4× improvement in the throughput which
drops to 1.18× for the more dynamic and variable size
workloads. This will improve with larger devices which will
allow more space sharing than 2 tasks. PRR, however, re-
duces the STP to 0.5×. There may be other benefits to using
PRR particularly for more dynamic fine-grained workloads
or faster integration of a new functionality. However, STP
must be considered for evaluation of system performance
and the CPM has the ability to provide a higher system
throughput than SAC, while allowing benefits of area shar-
ing. Even for larger workloads requiring multiple FPGAs,
multiple instances can be generated on multiple FPGAs
where each instance shares space with instances from other
tasks to improve resource utilisation. Each instance may
be treated as an independent sub-task by the scheduler to
optimise temporal usage with changing throughput require-
ments from the main task.
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6 CONCLUSION

A systematic framework is proposed for addressing the
challenges of virtualisation based on space sharing of FP-
GAs and achieving higher system throughput. The frame-
work proposes characterisation and clustering of tasks
based on their heterogeneities in resource usage, which is
then complemented by custom mapping and partitioning
of tasks to maximise utilisation in space. A lightweight
runtime scheduler integrated with a higher level virtualisa-
tion layer then makes use of off-line profiling of resource
allocation variation per task to increase compute density
in time. In doing so, the work projects the trade-offs of
various space partitioning schemes, while improving the
throughput and energy efficiency over existing methods.
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