
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2015

Efficient dynamic provable data possession with public verifiability and Efficient dynamic provable data possession with public verifiability and

data privacy data privacy

Clementine Gritti
University of Wollongong, cjpg967@uowmail.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Thomas Plantard
University of Wollongong, thomaspl@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Gritti, Clementine; Susilo, Willy; and Plantard, Thomas, "Efficient dynamic provable data possession with
public verifiability and data privacy" (2015). Faculty of Engineering and Information Sciences - Papers:
Part A. 5202.
https://ro.uow.edu.au/eispapers/5202

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/5202?utm_source=ro.uow.edu.au%2Feispapers%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient dynamic provable data possession with public verifiability and data Efficient dynamic provable data possession with public verifiability and data
privacy privacy

Abstract Abstract
We present a Dynamic Provable Data Possession (PDP) system with Public Verifiability and Data Privacy.
Three entities are involved: a client who is the owner of the data to be stored, a server that stores the data
and a Third Party Auditor (TPA) who may be required when the client wants to check the integrity of its
data stored on the server. The system is publicly verifiable with the possible help of the TPA who acts on
behalf of the client. The system exhibits data dynamicity at block level allowing data insertion, deletion
and modification to be performed. Finally, the system is secure at the untrusted server and data private.
We present a practical PDP system by adopting asymmetric pairings to gain efficiency and reduce the
group exponentiation and pairing operations. In our scheme, no exponentiation and only three pairings are
required during the proof of data possession check, which clearly outperforms all the existing schemes in
the literature. Furthermore, our protocol supports proof of data possession on as many data blocks as
possible at no extra cost.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Gritti, C., Susilo, W. & Plantard, T. (2015). Efficient dynamic provable data possession with public
verifiability and data privacy. In E. Foo & D. Stebila (Eds.), Information Security and Privacy: Proceedings of
the 20th Australasian Conference, ACISP 2015 (pp. 395-412). Switzerland: Springer.

This conference paper is available at Research Online: https://ro.uow.edu.au/eispapers/5202

https://ro.uow.edu.au/eispapers/5202

Efficient Dynamic Provable Data Possession
with Public Verifiability and Data Privacy

Clémentine Gritti, Willy Susilo and Thomas Plantard

Centre for Computer and Information Security Research
School of Computing and Information Technology

University of Wollongong, Australia
cjpg967@uowmail.edu.au, {wsusilo,thomaspl}@uow.edu.au

Abstract. We present a Dynamic Provable Data Possession (PDP) sys-
tem with Public Verifiability and Data Privacy. Three entities are in-
volved: a client who is the owner of the data to be stored, a server that
stores the data and a Third Party Auditor (TPA) who may be required
when the client wants to check the integrity of its data stored on the
server. The system is publicly verifiable with the possible help of the
TPA who acts on behalf of the client. The system exhibits data dynam-
icity at block level allowing data insertion, deletion and modification to
be performed. Finally, the system is secure at the untrusted server and
data private. We present a practical PDP system by adopting asymmet-
ric pairings to gain efficiency and reduce the group exponentiation and
pairing operations. In our scheme, no exponentiation and only three pair-
ings are required during the proof of data possession check, which clearly
outperforms all the existing schemes in the literature. Furthermore, our
protocol supports proof of data possession on as many data blocks as
possible at no extra cost.

Keywords: Provable Data Possession, Practicality, Data Operations,
Public Verifiability, Data Integrity, Data Privacy.

1 Introduction

One of the most essential issue in storing data at an untrusted server is the ability
to check the integrity of the data. Data owner has to ensure that the server re-
ally possesses the claimed stored data. Numerous proof-of-storage solutions have
been proposed such as Proofs of Retrievability systems [1, 2] and Provable Data
Possessions systems [3, 4]. In the latter system, the client is able to check that
a server has stored its data without retrieving them from the server and with-
out letting the server to access the entire data file. Both systems should satisfy
the main property of efficiency in terms of computational and communication
complexities and the storage overhead on the server’s side should be as small as
possible. The properties of unbounded uses on the number of proof-of-storage
interactions and statelessness of the client are required to obtain systems with
public verifiability, in which anyone can verify the integrity of the stored data

[5, 6]. More recently, an idea emerged as delegating the data integrity check to
a Third Party Auditor (TPA) [7, 8]. More precisely, the client retains its data
on an untrusted server and asks a trusted TPA to verify the authenticity of the
stored data. This concept can be seen as a particular case of public verifiability.
At the same time, another idea arised as dynamically updating the stored data
[9–11]. In other words, the client is able to insert, delete and modify its stored
data blocks and the server should then update these blocks on its side.

It is widely acknowledged that a storage service is susceptible to attacks or
failures and leads to possible non-retrievable losses of the client’s stored data. A
solution is to construct a system that offers an efficient, frequent and secure data
integrity check process to the client. Nevertheless, the frequency of data integrity
verification and the percentage of checked data are often limited because of
the computational and communication costs on both server’s and client’s sides,
although these two properties are really essential for storage service.

1.1 Our Contributions

In this work, we provide a Dynamic Provable Data Possession (PDP) system with
Public Verifiability and Data Privacy. There are three entities in the system: a
client who is the owner of the data to be stored, a server that stores the data (e.g.
a cloud), and a semi-honest Third Party Auditor (TPA) who can be required
when the client wants to check the integrity of its data stored on the server.
The client gets a large amount of data that it wants to store on the server
without retaining a local copy. The server gets an important storage space and
computation resources and supplies services for the client. The system is public
verifiable, meaning that anyone is enabled to check the integrity of the data, not
only the TPA on behalf of the client or the client itself. However, the TPA can be
requested to judge whether the data integrity is maintained by checking the proof
of data possession. We stress that the client may be able to perform integrity
checking by itself; however, it could be limited in resources and therefore it may
be neceesary to ask to the TPA (such as when the client is a mobile phone).
Since this often happens naturally in practice, we only consider the case of the
TPA acting on behalf of the client.

The system is also data dynamic at the block level supporting three oper-
ations: data insertion, deletion and modification. Finally, the system is secure
at the untrusted server, meaning that a server cannot successfully generate a
correct proof of data possession without storing all the file blocks, and data pri-
vate, meaning that the TPA learns nothing about the data of the client from all
available information.

Our scheme outperforms the existing schemes in the literature in terms of
practicality. The first refinement is a better efficiency due the use of asymmetric
pairings. The second amelioration is a decrease of the number of group exponen-
tiation and pairing computations. In particular, the TPA needs to compute no
exponentiation and only three pairings in order to verify the proof of data pos-
session generated by the server. This implies that the latter can be requested by
the client through the TPA to create the proof on any percentage of the stored

data, without any computational constraints. The result of these improvements
is clear in terms of performance evaluation.

1.2 Related Work

Ateniese et al. [3] first defined the notion of Provable Data Possession (PDP),
which allows a client to verify the integrity of its data stored at an untrusted
server without retrieving the entire file. Their scheme is designed for static data
and used public key-based homomorphic tags for auditing the data file. Nev-
ertheless, the precomputation of the tags imposes heavy computation overhead
that can be expensive for entire file. Subsequently, Ateniese et al. [4] constructed
scalable and efficient schemes using symmetric keys in order to improve the effi-
ciency of verification. This results in lower overhead than their previous scheme.
The scheme partially supports dynamic data operations (block updates, dele-
tions and appends to the stored file); however, it is not publicly verifiable and is
limited in number of verification requests.

Thereafter, several works were done following the models given in [3, 4]. Wang
et al. [5] combined a BLS-based homomorphic authenticator with a Merkle hash
tree to achieve a public auditing protocol with fully dynamic data. Hao et al.
[6] designed a dynamic public auditing system based on RSA. However, they
did not provide any proof of security. Their scheme is shown not to be secure in
[12]. Erway et al. [9] proposed a fully dynamic PDP scheme based on rank-based
authenticated dictionary. Unfortunately, their system is very inefficient. Zhu et
al. [11] used index-hash tables to support fully dynamic data and constructed a
zero-knowledge PDP. Zhu et al. [13] created a dynamic audit service based on
fragment structure, random sampling and index-hash table that supports timely
anomaly detection. Wang et al. [14] proposed a system to ensure the correctness
of users’ data stored on multiple servers by requiring homomorphic tokens and
erasure codes in the auditing process. Le and Markopoulou [15] constructed an
efficient dynamic remote data integrity checking scheme based on a homomorphic
MAC scheme and CPA-secure encryption scheme and specifically designed for
network coding based storage cloud. Wang et al. [16] gave a flexible distributed
storage integrity auditing protocol utilizing the homomorphic token and the
distributed erasure-coded data. Subsequently, Wang et al. [7] designed a privacy-
preserving protocol, Oruta, that allows public auditing on shared data stored
in the cloud. The scheme allows public auditing and identity privacy but fails
to support large groups and traceability. In a parallel work, Wang et al. [8]
presented a privacy-preserving auditing system, Knox, for data stored in the
cloud and shared among a large number of users in the group. The scheme allows
identity privacy, large users’ number and traceability but is only for private
auditing. Nevertheless, Yu et al. [17] demonstrated that the protocols in [16, 7,
8] are subject to active adversary attacks.

1.3 Paper Organization

In the next Section, we review the definitions and notations that will be used
throughout this paper. Additionally, we also provide the definition of dynamic
PDP scheme with public verifiability and data privacy, along with its secu-
rity models. In Section 3, we present our scheme. In Section 4, we present the
corresponding security proofs. In Section 5, we discuss about the computation
and communication costs and we evaluate and compare the performance of our
scheme with other existing ones. Finally, we conclude the paper in Section 6.

2 Definitions

We use the Homomorphic Verifiable Tags (HVT) [3] to build verification meta-
data linked to data blocks (defined in Appendix A). To construct our scheme,
we use bilinear maps (defined in Appendix A for compleness).

Throughout this paper, we write i ∈ [a, b] to describe that i can take all
the values in the interval of reals between a and b. Let i ∈]a, b] (resp. [a, b[)
mean that i can take all the values in the interval of reals between a and b, but
a excluded (resp. b excluded). Let i = 1, · · · , n mean that i can take all the
values in N ∩ [1, n], where N is the set of naturals {1, 2, · · · }. Z denotes the set
of the integers {· · · ,−2,−1, 0, 1, 2, · · · }, Zp denotes the set {0, · · · , p − 1} and
Z∗p denotes the set of positive integers smaller than p and relatively prime with
p. Q denotes the set of the rationals. We let |I| denote the cardinality of the set
I. Let || denote the symbol of concatenation, e.g. m = m1||m2 is the file made
of the concatenation of the two blocks m1 and m2. We let m =⊥ mean that m
does not take any value. Let |m| denote the bit size of the element m.

2.1 DPDP Scheme

The following definition of the scheme follows the ones from [3] and [9]. A Dy-
namic Provable Data Possession scheme with Public Verifiability and Data Pri-
vacyΠ = (KeyGen,Tag- Gen,PerfOp,CheckOp,Gen- Proof,CheckProof)
is as follows:

KeyGen(λ) → (pk, sk). The probabilistic key generation algorithm is run
by the client to setup the scheme. It takes as input the security parameter λ,
and outputs a pair of public and secret keys (pk, sk).

TagGen(pk, sk,m)→ Tm. The (possibly) probabilistic tag generation algo-
rithm is run by the client to generate the verification metadata. It takes as inputs
the public key pk, the secret key sk and a file block m, and outputs a verification
metadata Tm. Then, the client stores all the file blocks m in an ordered collection
F and the corresponding verification metadata Tm in an ordered collection E.
It forwards these two collections to the server and deletes them from its local
storage.

PerfOp(pk,F,E, info)→ (F′,E′, ν′). This algorithm is run by the server in
response to a data operation requested by the client. It takes as inputs the public

key pk, the previous collection F of all the file blocks, the previous collection E
of all the verification metadata, and the data operation details info given by
the client. The element info specifies the operation to be performed: it can
be either insertion or deletion or modification, along with other information
like the rank where the operation has to be performed, the file block and the
corresponding metadata that are looked at. It outputs the updated verification
metadata collection F′, the updated verification metadata collection E′, and
the related updating proof ν′. The server sends ν′ to the TPA. We give more
information about the data operation process below.

CheckOp(pk, ν′) → {“success”, “failure”}. This algorithm is run by the
TPA on behalf of the client to verify the server’s behavior during the data
operation (insertion, deletion or modification). It takes as inputs the public key
pk and the updating proof ν′ sent by the server. It outputs “success” if ν′ is
a correct updating proof; otherwise it outputs “failure”. We assume that the
answer is then forwarded to the client. We omit this part of the process.

GenProof(pk, F, chal,Σ)→ ν. This algorithm is run by the server in order
to generate a proof of data possession. It takes as inputs the public key pk, an
ordered collection F ⊂ F of blocks, a challenge chal and an ordered collection
Σ ⊂ E which are the verification metadata corresponding to the blocks in F . It
outputs a proof of data possession ν for the blocks in F that are determined by
the challenge chal.

We assume that a first challenge chalC is generated by the client and for-
warded to the TPA. Then, the TPA generates a challenge chal from chalC and
sends it to the server. In particular, if the client wants to check the integrity of
its data without the help of the TPA, then chalC = chal. We omit the process
done by the client at this point.

CheckProof(pk, chal, ν)→ {“success”, “failure”}. This algorithm is run by
the TPA in order to validate the proof of data possession. It takes as inputs the
public key pk, the challenge chal and the proof of data possession ν. It outputs
“success” if ν is a correct proof of data possession for the blocks determined by
chal; otherwise it outputs “failure”. We assume that the answer is then forwarded
to the client. We omit this part of the process.

We require that a Dynamic Provable Data Possession scheme with Public
Verifiability and Data Privacy Π is correct if for (pk, sk) ← KeyGen(λ), for
Tm ← TagGen(pk, sk,m), for (F′,E′, ν′) ← PerfOp(pk,F,E, info), for ν ←
GenProof(pk, F, chal,Σ), then “success”← CheckOp(pk, ν′) and “success”←
CheckProof(pk, chal, ν). We now give more details about the data operations
that can be performed.

PerfOp(pk,F,E, info = (insertion, 2i+1
2 ,m 2i+1

2
, Tm 2i+1

2

))→ (F′,E′, ν′). This

algorithm is run by the server in response to a data insertion requested by the
client. It takes as inputs the public key pk, the previous collection F of all the
file blocks, the previous collection E of all the verification metadata, the type
“insertion” of the data operation to be performed, the index 2i+1

2 denoting the
rank where the data operation is performed (in the ordered collections F and
E), the file block m 2i+1

2
to be inserted, and the corresponding verification meta-

data Tm 2i+1
2

to be inserted, for i = 0, · · · , n. More precisely, m 2i+1
2

is inserted

between the existing blocks mi and mi+1 and Tm 2i+1
2

is inserted between the

existing verification metadata Tmi and Tmi+1
, for i = 1, · · · , n − 1. For i = 0,

m 1
2

is appended before m1 and Tm 1
2

is appended before Tm1 . For i = n, m 2n+1
2

is appended after mn and Tm 2n+1
2

is appended after Tmn . Finally, it outputs

the updated file block collection F′ containing m 2i+1
2

, the updated verification

metadata collection E′ containing Tm 2i+1
2

, and the related updating proof ν′.

The server sends ν′ to the TPA.
PerfOp(pk,F,E, info = (deletion, i)) → (F′,E′, ν′). This algorithm is run

by the server in response to a data deletion requested by the client. It takes
as inputs the public key pk, the previous collection F of all the file blocks, the
previous collection E of all the verification metadata, the type “deletion” of the
data operation to be performed, and the index i denoting the rank where the data
operation is performed (in the ordered collections F and E). The server deletes
the existing file block mi, and the corresponding verification metadata Tmi , for
i = 1, · · · , n. More precisely, mi is deleted, giving that mi−1 is followed by mi+1

and Tmi is deleted, giving that Tmi−1
is followed by Tmi+1

, for i = 2, · · · , n− 1.
For i = 1, m1 is removed, giving that the file now begins from m2, and Tm1

is removed, giving that the collection of verification metadata now begins from
Tm2 . For i = n, mn is removed, giving that the file now ends at mn−1, and
Tmn is removed, giving that the collection of verification metadata now ends
at Tmn−1

. Finally, it outputs the updated file block collection F′ that does not
contain mi anymore, the updated verification metadata collection E′ that does
not contain Tmi anymore, and the related updating proof ν′. The server sends
ν′ to the TPA. The deletion operation stops when the number of blocks is equal
to 0.

PerfOp(pk,F,E, info = (modification, i,m′i, Tm′i))→ (F′,E′, ν′). This algo-
rithm is run by the server in response to a data modification requested by the
client. It takes as inputs the public key pk, the previous collection F of all the
file blocks, the previous collection E of all the verification metadata, the type
“modification” of the data operation to be performed, the index i denoting the
rank where the data operation is performed (in the ordered collections F and E),
the file block m′i which replaces the existing block mi, and the corresponding
verification metadata Tm′i which replaces the existing verification metadata Tmi ,
for i = 1, · · · , n. We assume that the file block m′i and the corresponding verifi-
cation metadata Tm′i were provided by the client to the server, such that Tm′i was
correctly computed by running the algorithm TagGen. It outputs the updated
verification metadata collection F′ replacing mi by m′i, the updated verification
metadata collection E′ replacing Tmi by Tm′i , and the related updating proof ν′.
The server sends ν′ to the TPA. We allow the client to make full re-write up-
dates, meaning that all the file blocks m1, · · · ,mn are replaced by m′1, · · · ,m′n
and all the verification metadata Tm1 , · · · , Tmn are replaced by Tm′1 , · · · , Tm′n .

Remarks. About the proof of data possession: The set of data blocks (following a
certain percentage of blocks; e.g. 90%) that are checked to be correctly stored are
chosen by the TPA on behalf of the client. The server has to generate a proof of
data possession based on this set. We notice that sometimes in the literature [6,
12], the TPA just sends a challenge chal without specifying which blocks have to
be checked, which leads to the fact that the server must generate a proof of data
possession based on all the stored data blocks, at the cost of the communication
overhead.

About the data operations: We assume that the frequency of checking the
integrity of the data is much higher than the frequency of performing data
operations. To generate an updating proof, no challenge is required, mean-
ing that the updating proof is based only the recently updated file block and
the corresponding verification metadata. Therefore, one can think that this
proof is not strong enough, however we suppose that the TPA on behalf of
the client regularly asks to the server to check the integrity of the data by gen-
erating a challenge that can include the file blocks recently updated. Moreover,
when the server is generating the updating proof ν′, it can include an element
info′ ∈ {insertion,deletion,modification} in this proof to enable the TPA to
know which operation was performed. A solution to check that the server has
correctly updated the collection F′ of the file blocks and the collection E ′ of the
verification metadata after operation is to order the data into a Merkle hash tree
[5] or rank-based authenticated skip lists [9].

2.2 Security Models

Security against the server. The below-mentioned definition of the scheme fol-
lows the ones from [3] and [9]. We consider a Dynamic Provable Data Possession
scheme with Public Verifiability and Data PrivacyΠ = (KeyGen,TagGen,Perf-
Op, CheckOp,GenProof,CheckProof). Let a data possession game between
a challenger C and an adversary A be as follows:

KeyGen. (pk, sk)← KeyGen(λ) is run by C. The element pk is given to A.
Adaptive queries. A makes adaptive queries through the intermediary of two

oracles. The adversary is given access to a tag generation oracle OTG as fol-
lows. A chooses a first block m1 and forwards it the challenger. C computes
the corresponding verification metadata Tm1 ← TagGen(pk, sk,m1) and gives
it to the adversary. The adversary keeps on the same queries process with C
for the verification metadata Tm2

← TagGen(pk, sk,m2), · · · , Tmn ← TagGen
(pk, sk,mn), where the blocks m2, · · · ,mn are chosen by A. Then, the adver-
sary creates an ordered collection F = {m1, · · · ,mn} of file blocks along with an
ordered collection E = {Tm1 , · · · , Tmn} of the corresponding verification meta-
data.

Thereafter, the adversary is given access to a data operation performance or-
acle ODOP as follows. A submits to the challenger a block mi, for i = 1, · · · , n,
and the corresponding value infoi about the data operation that the adver-
sary wants to perform. The adversary runs the algorithm PerfOp and outputs
a new file blocks ordered collection F′, a new metadata ordered collection E′,

and the corresponding updating proof ν′. C checks the value ν′ by running the
algorithm CheckOp(pk, ν′) and gives back the resulting answer belonging to
{“success”, “failure”} to the adversary. If the answer is “failure”, then the chal-
lenger aborts; otherwise, it proceeds. The above interaction between A and C
can be repeated.

Setup. The adversary submits file blocks m∗i along with the corresponding
values info∗i , for i ∈ I ⊆]0, n + 1[∩Q. Adaptive queries are again generated
by the adversary, such that the first info∗i specifies a full re-write update (this
corresponds to the first time that the client sends a file to the server). The
challenger verifies the data operations.

Challenge. The final version of the blocks mi ∈ I is considered such that
these blocks were created according to the data operations requested by the
adversary, and verified and accepted by the challenger in the previous step.
The challenger sets F = {mi}i∈I of these file blocks and E = {Tmi}i∈I of
the corresponding verification metadata. C then takes an ordered collection
F = {mi1 , · · · ,mik} ⊂ F and the corresponding verification metadata ordered
collection Σ = {Tmi1 , · · · , Tmik } ⊂ E, for ij ∈ I, j = 1, · · · , k. It generates a
resulting challenge chal for F and Σ and forwards it to A.

Forge. The adversary generates a proof of data possession ν on chal. Then,
the challenger runs CheckProof(pk, chal, ν) and gives the answer belonging to
{“success”, “failure”} to A. If the answer is “success” then the adversary wins.

The Dynamic Provable Data Possession scheme with Public Verifiability and
Data PrivacyΠ = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,Check-
Proof) is said to be secure if for any probabilistic polynomial-time (PPT) ad-
versary A who can win the above data possession game with non-negligible
probability, then the challenger C can extract at least the challenged parts of
the file by resetting and challenging the adversary polynomially many times by
means of a knowledge extractor E .

Privacy against the TPA. The below-mentioned definition of the scheme follows
the one from [12]. We consider a Dynamic Provable Data Possession scheme with
Public Verifiability and Data PrivacyΠ = (KeyGen,TagGen,PerfOp,Check-
Op,GenProof,CheckProof). Let a data privacy game between a challenger
C and an adversary A be as follows:

KeyGen. (pk, sk)← KeyGen(λ) is run by C. The element pk is given to A.
Queries. A gives to the challenger two files m0 = m0,1|| · · · ||m0,n and m1 =

m1,1|| · · · ||m1,n of equal length. C randomly selects a bit b ∈R {0, 1}, computes
Tmb,i ← TagGen(pk, sk,mb,i) for i = 1, · · · , n and gives them to A. Then,
the adversary creates an ordered collection F = {mb,1, · · · ,mb,n} of file blocks
along with an ordered collection E = {Tmb,1 , · · · , Tmb,n} of the corresponding
verification metadata.

Challenge. The adversary forwards chal to C.
Generation of the Proof. The challenger outputs a proof of data possession

ν∗ ← GenProof(pk, F, chal,Σ) for the blocks in F that are determined by
the challenge chal, where F = {mb,i1 , · · · , mb,ik} ⊂ F is an ordered collection
of blocks and Σ = {Tmb,i1 , · · · , Tmb,ik } ⊂ E is an ordered collectection of the

verification metadata corresponding to the blocks in F , for 1 ≤ ij ≤ n, 1 ≤ j ≤ k
and 1 ≤ k ≤ n.

Guess. The adversary returns a bit b′. A wins if b′ = b.
The Dynamic Provable Data Possession scheme with Public Verifiability and
Data PrivacyΠ = (KeyGen,TagGen,PerfOp,CheckOp,GenProof,Check-
Proof) is said to be data private if there is no probabilistic polynomial-time
(PPT) adversaryA who can win the above data privacy game with non-negligible
advantage equal to |Pr[b′ = b]− 1

2 |.

3 Our DPDP Construction

The file to be stored is split into n blocks, and each block is split into s sectors.
We let each block and sector be elements of Zp for some large prime p. For
instance, let the file be b bits long. Then, the file is split into n = db/s · log(p)e
blocks. The aforementioned intuition comes from [2]. Suppose that the blocks
contain s ≥ 1 elements of Zp. Therefore, a tradeoff exists between the storage
overhead and the communtication overhead. More precisely, the communication
complexity rises as s + 1 elements of Zp. Finally, a larger value of s yields less
storage overhead at cost of a high communication. Moreover, p should be λ bits
long, where λ is the security parameter such that n >> λ.

KeyGen(λ)→ (pk, sk). Let GroupGen(λ) be an algorithm that, on input
the security parameter λ, generates the cyclic groups G1, G2 and GT of prime
order p = p(λ) with bilinear map e : G1 × G2 → GT . Let g1 and g2 be gener-
ators of G1 and G2 respectively. Then, the client randomly chooses s elements
h1, · · · , hs ∈R G1. Moreover, it selects at random a ∈R Zp and sets its public
key pk = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2) and its secret key sk = a.

TagGen(pk, sk,m)→ Tm. A file m is split into n blocks mi, for i = 1, · · · , n.
Each block mi is then split into s sectors mi,j ∈ Zp, for j = 1, · · · , s. We suppose
that |m| = b and n = db/s·log(p)e. Therefore, the filem can be seen a n×smatrix
with elements denoted as mi,j . The client computes the verification metadata

Tmi = (
∏s
j=1 h

mi,j
j)−sk = (

∏s
j=1 h

mi,j
j)−a = (

∏s
j=1 h

−a·mi,j
j) for i = 1, · · · , n.

Then, it sets Tm = (Tm1
, · · · , Tmn) ∈ Gn1 .

Then, the client stores all the file blocks m in an ordered collection F and the
corresponding verification metadata Tm in an ordered collection E. It forwards
these two collections to the server and deletes them from its local storage.

PerfOp(pk,F,E, info = (insertion, 2i+1
2 , m 2i+1

2
, Tm 2i+1

2

)) → (F′,E′, ν′). Af-

ter receiving the elements 2i+1
2 , m 2i+1

2
and Tm 2i+1

2

from the client, for i =

0, · · · , n, the server prepares the updating proof as follows. It first selects at
random u1, · · · , us ∈R Zp and computes U1 = hu1

1 , · · · , Us = huss . It also
chooses at random w 2i+1

2
∈R Zp and sets cj = m 2i+1

2 ,j · w 2i+1
2

+ uj ∈ Zp for

j = 1, · · · , s, then Cj = h
cj
j for j = 1, · · · , s, and d = T

w 2i+1
2

m 2i+1
2

. Finally, it returns

ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1
1 to the TPA.

PerfOp(pk,F,E, info = (deletion, i))→ (F′,E′, ν′). After receiving an index
i = 1, · · · , n from the client, the server prepares the updating proof as follows. It

first selects at random u1, · · · , us ∈R Zp and computes U1 = hu1
1 , · · · , Us = huss .

It also chooses at random wi ∈R Zp and sets cj = mi,j · wi + uj ∈ Zp for
j = 1, · · · , s, then Cj = h

cj
j for j = 1, · · · , s, and d = Twimi , where mi and Tmi

are the existing file block and verification metadata to be deleted respectively.
Finally, it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1

1 to the TPA.

PerfOp(pk,F,E, info = (modification, i, m′i, Tm′i)) → (F′,E′, ν′). After re-
ceiving the elements i, m′i and Tm′i from the client, the server prepares the
updating proof as follows. It first selects at random u1, · · · , us ∈R Zp and com-
putes U1 = hu1

1 , · · · , Us = huss . It also chooses at random wi ∈R Zp and sets
cj = m′i,j · wi + uj ∈ Zp for j = 1, · · · , s, then Cj = h

cj
j for j = 1, · · · , s, and

d = Twim′i
. Finally, it returns ν′ = (U1, · · · , Us, C1, · · · , Cs, d) ∈ G2s+1

1 to the

TPA.

CheckOp(pk, ν′) → {“success”, “failure”}. The TPA has to check whether
the following equation holds:

e(d, ga2) · e(
s∏
j=1

Uj , g2)
?
= e(

s∏
j=1

Cj , g2) (1)

If Eq. 1 holds, then the TPA returns “success” to the client; otherwise. it returns
“failure” to the client.

GenProof(pk, F, chal,Σ) → ν. After receiving a challenge chalC from the
client, the TPA prepares a challenge chal to send to the server as follows. First,
it chooses a subset I ⊆]0, n+ 1[Q, randomly chooses |I| elements vi ∈R Zp and
sets chal = {(i, vi)}i∈I . Second, after receiving the challenge chal which indicates
the specific blocks for which the client, through the TPA, wants a proof of data
possession, the server sets the ordered collection F = {mi}i∈I ⊂ F of blocks and
an ordered collection Σ = {Tmi}i∈I ⊂ E which are the verification metadata
corresponding to the blocks in F . It then selects at random r1, · · · , rs ∈R Zp and
computes R1 = hr11 , · · · , Rs = hrss . It also sets bj =

∑
(i,vi)∈chalmi,j ·vi+rj ∈ Zp

for j = 1, · · · , s, then Bj = h
bj
j for j = 1, · · · , s, and c =

∏
(i,vi)∈chal T

vi
mi . Finally,

it returns ν = (R1, · · · , Rs, B1, · · · , Bs, c) ∈ G2s+1
1 to the TPA.

CheckProof(pk, chal, ν) → {“success”, “failure”}. The TPA has to check
whether the following equation holds:

e(c, ga2) · e(
s∏
j=1

Rj , g2)
?
= e(

s∏
j=1

Bj , g2) (2)

If Eq. 2 holds, then the TPA returns “success” to the client; otherwise. it returns
“failure” to the client.

Correctness. If all the algorithms are correctly generated, then the above scheme
is correct. For the updating proof, we have:

e(d, ga2) · e(
s∏
j=1

Uj , g2) = e(Twimi , g
a
2) · e(

s∏
j=1

h
uj
j , g2) = e(

s∏
j=1

h
mi,j ·wi+uj
j , g2)

= e(

s∏
j=1

h
cj
j , g2) = e(

s∏
j=1

Cj , g2)

For the proof of data possession, we have:

e(c, ga2) · e(
s∏
j=1

Rj , g2) = e

 ∏
(i,vi)
∈chal

T vimi , g
a
2

 · e(s∏
j=1

h
rj
j , g2) = e(

s∏
j=1

h

∑
(i,vi)
∈chal

mi,j ·vi+rj

j , g2)

= e(

s∏
j=1

h
bj
j , g2) = e(

s∏
j=1

Bj , g2)

Remarks.
About the verification metadata: The size of the verification metadata Tm is

small in comparison to the size of the data blocksm. Additionally, the verification
metadata protect the integrity of the blocks. Indeed, the server generates the
proofs of data possession that certify the verification metadata instead of the
data blocks themselves.

About the proof of data possession: The element bj =
∑

(i,vi)∈chalmi,j ·vi+rj ,
for j = 1, · · · , s, has size approximately equal to the size of a single block.

4 Security Proofs

Discrete Logarithm (DL) Problem. Let G1 be a multiplicative cyclic group of
prime order p = p(λ) (where λ is the security parameter). The DL problem is as
follows: for a ∈ Zp, given g1, g

a
1 ∈ G1, output a. The DL problem holds in G1 if

no t-time algorithm has advantage at least ε in solving the DL problem in G1.

Security against the Server. For any probabilistic polynomial-time (PPT) ad-
versary A who wins the game, there is a challenger C that interacts with the
adversary A as follows.

KeyGen. C runs GroupGen(λ) → (p,G1,G2,GT , e) and selects two gen-
erators g1 and g2 of G1 and G2 respectively. Then, it randomly chooses s
elements h1, · · · , hs ∈R G1 and an element a ∈R Zp. It sets the public key
pk = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2) and forwards it to A. It sets the secret
key sk = a and keeps it.

Adaptive queries. A has access to the tag generation oracle OTG as follows.
It first adaptively selects blocks mi, for i = 1, · · · , n. C splits each block mi, for
i = 1, · · · , n into s sectors mi,j . Then, it computes Tmi = (

∏s
j=1 h

mi,j
j)−sk =

(
∏s
j=1 h

mi,j
j)−a, for i = 1, · · · , n, and gives them to A. The adversary sets an

ordered collection F = {m1, · · · ,mn} of blocks and an ordered collection E =
{Tm1 , · · · , Tmn} which are the verification metadata corresponding to the blocks
in F. A has access to the data operation performance oracle ODOP as follows.
Repeatedly, the adversary selects a block ml and the corresponding element
infol and forwards them to the challenger. l denotes the rank where A wants
the data operation to be performed; l is equal to 2i+1

2 for an insertion and to
i for a deletion or a modification. Moreover, ml =⊥ in the case of a deletion,
since only the rank is needed to perform this kind of operation. Then, A outputs
a new file blocks ordered collection F′ (containing the updated version of the
block ml), a new verification metadata ordered collection E′ (containing the
updated version of the verification metadata Tml) and a corresponding updating
proof ν′ = (U1, · · · , Us, C1, · · · , Cs, d), such that wl is randomly chosen from
Zp, d = Twlml , and for j = 1, · · · , s, uj is randomly chosen from Zp, Uj = h

rj
j ,

cj = ml,j ·wl+uj and Cj = h
cj
j . C runs the algorithm CheckOp on the value ν′

and sends the answer to A. If the answer is “failure”, then the challenger aborts;
otherwise, it proceeds.

Setup. The adversary selects blocksm∗i and the corresponding elements info∗i ,
for i ∈ I ⊆]0, n + 1[∩Q, and forwards them to the challenger who checks the
data operations. In particular, the first info∗i indicates a full re-write.

Challenge. The challenger chooses a subset I ⊆ I, randomly chooses |I|
elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . It forwards chal as a challenge
to A.

Forge. Upon receiving the challenge chal, the resulting proof of data posses-
sion on the correct stored file m should be ν = (R1, · · · , Rs, B1, · · · , Bs, c) and
pass the Eq. 2. However, A generates a proof of data possession on an incorrect
stored file m̃ as ν̃ = (R1, · · · , Rs, B̃1, · · · , B̃s, c̃), such that rj is randomly chosen

from Zp, Rj = h
rj
j , b̃j =

∑
(i,vi)∈chal m̃i,j · vi + rj and B̃j = h

b̃j
j , for j = 1, · · · , s.

It also sets c̃ =
∏

(i,vi)∈chal T
vi
m̃i

. Finally, it returns ν̃ = (R1, · · · , Rs, B̃1, · · · , B̃s,
c̃) to the challenger. If the proof of data possession still pass the verification,
then A wins. Otherwise, it fails. We define ∆bj = b̃j − bj , for j = 1, · · · , s. At
least one element of {∆bj}j=1,··· ,s is non-zero.
Analysis: We provide the analysis of the above security proof in Appendix B.

Privacy against the TPA. For any probabilistic polynomial-time (PPT) adver-
sary A who wins the game, there is a challenger C that interacts with the ad-
versary A as follows.

KeyGen. C runs GroupGen(λ) → (p,G1,G2,GT , e) and selects two gen-
erators g1 and g2 of G1 and G2 respectively. Then, it randomly chooses s
elements h1, · · · , hs ∈R G1 and an element a ∈R Zp. It sets the public key
pk = (p,G1,G2, e, g1, g2, h1, · · · , hs, ga2) and forwards it to A. It sets the secret
key sk = a and keeps it.

Queries. A gives to the challenger two files m0 = m0,1|| · · · ||m0,n and m1 =
m1,1|| · · · ||m1,n of equal length. C randomly selects a bit b ∈R {0, 1} and for
i = 1, · · · , n, splits each block mb,i into s sectors mb,i,j . Then, it computes

Tmb,i = (
∏s
j=1 h

mb,i,j
j)−sk = (

∏s
j=1 h

mb,i,j
j)−a, for i = 1, · · · , n, and gives them

to A.

Challenge. The adversary chooses a subset I ⊆ {1, · · · , n}, randomly chooses
|I| elements vi ∈R Zp and sets chal = {(i, vi)}i∈I . It forwards chal as a challenge
to C.

Generation of the Proof. Upon receiving the challenge chal, the challenger
selects an ordered collection F = {mi}i∈I of blocks and an ordered collection
Σ = {Tmi}i∈I which are the verification metadata corresponding to the blocks
in F such that Tmi = (

∏s
j=1 h

mi,j
j)−sk = (

∏s
j=1 h

mi,j
j)−a, for i ∈ I. It then

randomly chooses r1, · · · , rs ∈R Zp and computes R∗1 = hr11 , · · · , R∗s = hrss .

It also randomly selects b1, · · · , bs ∈ Zp and computes B∗1 = hb11 , · · · , B∗s =
hbss . It sets c∗ =

∏
(i,vi)∈chal T

vi
mi as well. Finally, the challenger returns ν∗ =

(R∗1, · · · , R∗s , B∗1 , · · · , B∗s , c∗).
Guess. The adversary returns a bit b′.

Analysis: We provide the analysis of the above security proof in Appendix B.

5 Performance

5.1 Computational and Communication Costs

Sch. Algorithm Operation Total P PV D

[8] KeyGen - - 3EG1 2EG2 - -
TagGen 1MZp 1MG1 11EG1 - 3EGT 3P PA 5 5

GenPr. |I|MZp (|I| − 1)MG1 |I|EG1 - - -
CheckPr. (s + |I|)MZp (9|I| − 6)MG1 (8 + 8|I|)EG1 - |I|EGT 4P

[13] KeyGen - - 2EG1 / - -
TagGen - 1MG1 (s + 2)EG1 / - - PS 3 3

GenPr. |I|MZp (s + |I| − 2)MG1 (s + |I|+ 1)EG1 / - 1P
CheckPr. - (s + |I| − 2)MG1 (s + |I|)EG1 / - 3P

KeyGen - - - 1EG2 - -
Our TagGen - (s− 1)MG1 sEG1 - - - PA 3 3

PDP GenPr. |I|MZp (|I| − 1)MG1 (2s + |I|)EG1 - - -
CheckPr. - (2s− 2)MG1 - - - 3P

Fig. 1. Group multiplication, group exponentiation and pairing benchmarks. MZp and
MG1 denote multiplications in Zp and G1 respectively. EG1 , EG2 and EGT denote expo-
nentiations in G1, G2 and GT respectively. P, PA and PS denote pairings, asymmetric
pairings and symmetric pairings respectively. Let “PV” denote “public verifiability”
and “D” denotes “dynamicity”. Let s be the number of sector in one file block and
|I| be the cardinality of the set I ⊆]0, n + 1[∩Q when setting the challenge chal. A
blank means that there is no group operation performed. Let “/” point out symmetric
pairings, i.e. G1 = G2 [13]. Let “-” denote no operation is performed.

In Figure 1, we compare the computational cost of our scheme with the ones
in [8, 13]. We include the schemes from [8, 13] for comparison since they are re-
cent and the offer similar features to our scheme. In all the schemes, during the
execution of the algorithm KeyGen, the number of exponentiations in G1 and
G2 is constant. The algorithm TagGen in [13] and ours requires O(s) expo-
nentiations in G1, where s is the number of sectors in each file block. In [8],
TagGen needs only a constant number of exponentiations in G1, however there
is an extra computation cost of generating the verification metadata, which is
the cost of computing 3 exponentiations in GT and 3 pairings. Moreover, the
number of multiplications in G1 is constant in [8, 13], whereas it is linear in s
in our case. In [13] and our scheme, the generation of proof of prossession in
GenProof needs the computation of O(s+ |I|) exponentiations in G1; whereas
in [8], the generation of proof of prossession only involves the computation of
O(|I|) exponentiations in G1. In addition, the number of multiplications in G1

is linear in |I| in our scheme and in [8], whereas it it linear in both |I| and s in
[13]. The computation cost of checking the proof in CheckProof differs in the
three schemes. In [8], the algorithm CheckProof requires O(|I|) exponentia-
tions in G1 and GT and 4 pairings. In [13], the algorithm CheckProof needs
O(s + |I|) exponentiations in G1 and a constant number of pairings equal to
3. Moreover, the number of multiplications in both Zp and G1 varies between
the three systems. In [8], O(s + |I|) and O(|I|) multiplications are required in
Zp and G1 respectively. In [13], O(s + |I|) multiplications in G1 are computed,
while O(s) multiplications in G1 are needed in our case. Finally, in our scheme,
the computation cost is lighter; more precisely it is only the cost of computing
3 pairings (no exponentiation is required).

The communication cost of our protocol is mostly due to two factors: the chal-
lenge and the proof of data possession. The communication cost of a challenge
chal = {(i, vi)}i∈I is |I|(|n| + |p|) bits, where |I| is the number of selected file
blocks, |n| is the length of an index and |p| is the length of an element in Zp. The
communication cost of a proof of data possession ν = (R1, · · · , Rs, B1, · · · , Bs, c)
is (2 ·s+1)|p| bits, where s is the number of sectors in each block. An additional
cost can be the communication cost of an updating proof ν′ = (U1, · · · , Us, C1,
· · · , Cs, d), which is (2 · s + 1)|p| bits, where s is the number of sectors in each
block. However, this happens only when the client wants to update its data. We
assume that the frequency of checking the integrity of the data is much higher
than the frequency of performing data operations. Therefore, we leave out this
additional cost.

5.2 Evaluation and Comparison of the Performance

We evaluate the practicality of our scheme and compare it to the one of the
scheme in [13]. We use results of cryptographic operation implementations (ex-
ponentiations and pairings) using the MIRACL library, provided by Certivox for
the MIRACL Authentication Server Project Wiki. All the following experiments
are based on Borland C/C++ Compiler/Assembler and tested on a processor
2.4 GHz Intel i5 520M. For symmetric pairing-based systems (e.g. the scheme

in [13]), AES with a 80-bit key and a Super Singular curve over GFp, for a 512-
bit modulus p and an embedding degree equal to 2, are used. For asymmetric
pairing-based systems (e.g. our scheme), AES with a 80-bit key and a Cocks-
Pinch curve over GFp, for a 512-bit modulus p and an embedding degree equal
to 2, are used.

Expon. in G1 Expon. in G2 Expon. in GT Pairings Pairing Type

Time/computation 1.49 NA 0.36 3.34 Symmetric
0.51 0.51 0.12 1.14 Asymmetric

[13] KeyGen 2.98 NA - -
PDP TagGen 151.98 NA - - Symmetric

GenProof 835.89 NA - 3.34
CheckProof 596 NA - 10.02

KeyGen - 0.51 - -
Our TagGen 51 - - - Asymmetric
PDP GenProof 255 - - -

CheckProof - - - 3.42

Fig. 2. Timings for symmetric and asymmetric pairing types and pairing-based sys-
tems. Times are in milliseconds. Let “Expon.” denote exponentations. Let “NA” denote
“non available” to point out symmetric pairings, i.e. G1 = G2 [13]. Let “-” denote the
results are equal to zero.

In Figure 2, we evaluate and compare the efficiency of our scheme. We as-
sume that 2 GB data are stored. The file is split into one million blocks of size 2
KB, such that the size of the index is |n| = 20 bits. We assume that the number
of sectors in each file block is s = 100 and the number of blocks determined in
the challenge chal is |I| = 460. The main difference of time between the two pro-
tocols is not due to the exponentiation and pairing number difference but rather
to the use of symmetric or asymmetric pairings. The total time in the algorithm
KeyGen is 2.98 milliseconds in [13], whereas it is only 0.51 milliseconds in our
construction. In the algorithm TagGen, it takes 151.98 milliseconds to generate
the verification metadata in [13], whereas it takes one third of this time in ours.
Then, it requires a total time of 839.23 milliseconds in the algorithm GenProof
of [13], whereas, in our case, it requires only one third of this time. The reason
may be that there are two stages to generate the proof in [13] (called “commit-
ment” and “response”), while we need only one stage. Finally, in the algorithm
CheckProof, it takes 844.42 milliseconds to check the proof of data possession
in [13], whereas the time in our case is negligible. Indeed, the cost for verifying
the proof is constant in our protocol.

Remarks. The probability of detecting corrupted block is 1− (1− |X|n)|I|, where
|X| is the number of corrupted blocks. Given 1, 000, 000 of blocks, the challenge
requires 460 blocks to allow the detection of 1% fraction of incorrect data with
99% probability of detecting misbehavior [3]. In several papers [3, 9, 7, 16], this
observation is followed for the implementation and the experimentation of their

protocol. Because the number of computations is constant in our verification
process, we are able to check more than 460 blocks, nay all the one million of
blocks. On the client’s side, the computational cost remains the same during the
algorithm CheckProof and slightly changes when creating the challenge: the
client has to pick at random |I| elements in Zp. If the number |I| increases, then
the client has to chooses more elements. However we consider that this cost is
negligible. In addition, we assume that the server has huge storage space and
computation stock: it is able to generate a proof of data possession on as many
blocks as the client requests.

We note that the efficiency of the scheme in [13] and ours are dependent on
the value of s. Thus, a bigger value s leads to a weaker efficiency for both of the
systems. Nevertheless, our scheme still remains more practical than the one in
[13] since the number of group exponentiations in the algorithms TagGen and
GenProof is linear in s in both of the systems and the number of exponenti-
ations in the algorithm CheckProof is also linear in s in [13] whereas there is
no exponentation is required in our scheme.

6 Conclusion

We proposed an efficient Dynamic PDP with Public Verifiability and Data Pri-
vacy, which is more practical than the existing schemes in the literature. In par-
ticular, in order to check the proof of data possession generated by the server, the
client is not required to compute any exponentiation but rather only a constant
number of pairings.

References

1. A. Juels and Jr. B. S. Kaliski. Pors: Proofs of retrievability for large files. In Proc.
of CCS ’07.

2. H. Shacham and B. Waters. Compact proofs of retrievability. In Proc. of ASI-
ACRYPT ’08.

3. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. In Proc. of CCS ’07.

4. G. Ateniese, R. Di Pietro, L. V. Mancini, and G.e Tsudik. Scalable and efficient
provable data possession. In Proc. of SecureComm ’08.

5. C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for
data storage security in cloud computing. In Proc. of INFOCOM ’10.

6. Z. Hao, S. Zhong, and N. Yu. A privacy-preserving remote data integrity checking
protocol with data dynamics and public verifiability. IEEE TKDE, 23(9):1432–
1437, September 2011.

7. B. Wang, B. Li, and H. Li. Oruta: privacy-preserving public auditing for shared
data in the cloud. IEEE TCC, 2(1):43–56, 2012.

8. B. Wang, B. Li, and H. Li. Knox: Privacy-preserving auditing for shared data with
large groups in the cloud. In Proc. of ACNS ’12.

9. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data
possession. In Proc. of CCS ’09.

10. Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and
data dynamics for storage security in cloud computing. In Proc. of ESORICS ’09.

11. Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau. Dynamic audit services
for integrity verification of outsourced storages in clouds. In Proc. of SAC ’11.

12. Y. Yu, M. H. Au, Y. Mu, S. Tang, J. Ren, W. Susilo, and L. Dong. Enhanced
privacy of a remote data integrity-checking protocol for secure cloud storage. IJIS,
pages 1–12, 2014.

13. Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and C.-J. Hu. Dynamic audit
services for outsourced storages in clouds. IEEE TSC, 6(2):227–238, 2013.

14. C. Wang, Q. Wang, K. Ren, and W. Lou. Ensuring data storage security in cloud
computing. In Proc. of IWQoS ’09, 2009.

15. A. Le and A. Markopoulou. Nc-audit: Auditing for network coding storage. CoRR,
abs/1203.1730, 2012.

16. C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou. Toward secure and dependable
storage services in cloud computing. IEEE TSC, 5(2):220–232, January 2012.

17. Y. Yu, L. Niu, G. Yang, Y. Mu, and W. Susilo. On the security of auditing
mechanisms for secure cloud storage. GCS, 30(1):127–132, 2014.

A Definitions

Homomorphic Verifiable Tags (HVT). For each file block m, a HVT Tm is cre-
ated. A HVT acts as a verification metadata for the file blocks and besides being
unforgeable, it has the blockless verification property (the server constructs a
proof of data possession allowing the client to verify if the server possesses cer-
tain file blocks even when the client does not have access to the actual file blocks
along with the homomorphic tags property (given two verification metadata Tmi
and Tmj , anyone can combine them into the verification metadata Tmi+mj cor-
responding to the sum of the files mi +mj). The server stores the HVTs along
with the file. The client should be able to check the HVTs on specific blocks,
even though it does not possess any of these blocks, that is possible based on
the blockless verification property of HVT.

Bilinear Maps. Let G1, G2 and GT be three multiplicative cyclic groups of prime
order p = p(λ) (where λ is the security parameter). Let g1 be a generator of G1,
g2 be a generator of G2 and e : G1 × G2 → GT be a bilinear map with the
bilinearity property (∀u ∈ G1,∀v ∈ G2,∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab) along
with the non-degeneracy property (e(g1, g2) 6= 1GT). (G1,G2) is said to be a
bilinear group if the group operation in (G1,G2) and the bilinear map e are
both efficiently computable.

B Analysis of the Security Proofs

Security against the Server. We prove that if the adversary can win the game,
then a solution to the DL problem is found, which contradicts the assumption
that the DL problem is hard in G1. Let assume that the server wins the game.
Then, according to Eq. 2, we have e(c, ga2) · e(

∏s
j=1Rj , g2) = e(

∏s
j=1 B̃j , g2).

Since the proof ν = (R1, · · · , Rs, B1, · · · , Bs, c) is a correct one, we also have
e(c, ga2) · e(

∏s
j=1Rj , g2) = e(

∏s
j=1Bj , g2). Therefore, we get that

∏s
j=1 B̃j =∏s

j=1Bj . We can re-write as
∏s
j=1 h

b̃j
j =

∏s
j=1 h

bj
j or even as

∏s
j=1 h

∆bj
j = 1.

For two elements g, h ∈ G1, there exists x ∈ Zp such that h = gx since G1 is a
cyclic group. Without loss of generality, given g, h ∈ G1, each hj could randomly
and correctly be generated by computing hj = gyj ·hzj ∈ G1 such that yj and zj

are random values of Zp. Then, we have 1 =
∏s
j=1 h

∆bj
j =

∏s
j=1(gyj · hzj)∆bj =

g
∑s
j=1 yj ·∆bj · h

∑s
j=1 zj ·∆bj . Clearly, we can find a solution to the DL problem.

More specifically, given g, h = gx ∈ G1, we can compute h = g

∑s
j=1 yj ·∆bj∑s
j=1

zj ·∆bj = gx

unless the denominator is zero. However, as we defined in the game, at least one
element of {∆bj}j=1,··· ,s is non-zero. Since zj is a random element of Zp, the
denominator is zero with probability equal to 1/p, which is negligible. Thus, if
the adversary wins the game, then a solution of the DL problem can be found
with probability equal to 1− 1

p , which contradicts the fact that the DL problem
is assumed to be hard in G1. Therefore, for the adversary, it is computationally
infeasible to win the game and generate an incorrect proof of data possession
which can pass the verification.

Moreover, the simulation of the tag generation oracle OTG is perfect. The
simulation of the data operation performance oracle ODOP is almost perfect
except when the challenger aborts. This happens the data operation was not
correclty performed. As previously, we can prove that if the adversary can pass
the updating proof, then a solution to the DL problem is found. Following the
above analysis and according to Eq. 1, if the adversary generates an incorrect
updating proof which can pass the verification, then a solution of the DL problem
can be found with probability equal to 1 − 1

p , which contradicts the fact that
the DL problem is assumed to be hard in G1. Therefore, for the adversary, it
is computationally infeasible to generate an incorrect updating proof which can
pass the verification. The proof is completed.

Privacy against the TPA. The probability Pr[b′ = b] must be equal to 1
2 since

the verification metadata Tmb,i , for i = 1, · · · , n, and the proof ν∗ are indepen-
dent of the bit b. We now prove that the verification metadata and the proof of
data possession given to the adversary are correctly distributed. The value Tmb,i
is equal to (

∏s
j=1 h

mb,i,j
j)−sk = (

∏s
j=1 h

mb,i,j
j)−a. Since sk = a is kept secret

from A, the above simulation is perfect. For a block file mb, there exists vb,i,
for (i, vb,i) ∈ chalb, such that bb,j =

∑
(i,vb,i)∈chalb mb,i,j · vb,i + rb,j . In addition,

Rb,1, · · · , Rb,s, Bb,1, · · · , Bb,s are statically indistinguishable with the actual out-
puts corresponding to m0 or m1. Thus, the answers given to the adversary are
correctly distributed. The proof is completed.

	Efficient dynamic provable data possession with public verifiability and data privacy
	Recommended Citation

	Efficient dynamic provable data possession with public verifiability and data privacy
	Abstract
	Disciplines
	Publication Details

	tmp.1460094126.pdf.0TdVC

