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Abstract

Continuous data assimilation (CDA) is successfully implemented for the first time

for efficient dynamical downscaling of a global atmospheric reanalysis. A com-

parison of the performance of CDA with the standard grid and spectral nudging

techniques for representing long- and short-scale features in the downscaled fields

using the Weather Research and Forecast (WRF) model is further presented and

analysed. The WRF model is configured at 0.25◦ × 0.25◦ horizontal resolution and

is driven by 2.5◦ × 2.5◦ initial and boundary conditions from NCEP/NCAR reanal-

ysis fields. Downscaling experiments are performed over a one-month period in

January 2016. The similarity metric is used to evaluate the performance of the

downscaling methods for large (2,000 km) and small (300 km) scales. Similarity

results are compared for the outputs of the WRF model with different downscaling

techniques, NCEP/NCAR reanalysis, and NCEP Final Analysis (FNL, available at

0.25◦ × 0.25◦ horizontal resolution). Both spectral nudging and CDA describe better

the small-scale features compared to grid nudging. The choice of the wave number is

critical in spectral nudging; increasing the number of retained frequencies generally

produced better small-scale features, but only up to a certain threshold after which its

solution gradually became closer to grid nudging. CDA maintains the balance of the

large- and small-scale features similar to that of the best simulation achieved by the

best spectral nudging configuration, without the need of a spectral decomposition.

The different downscaled atmospheric variables, including rainfall distribution, with

CDA is most consistent with the observations. The Brier skill score values further

indicate that the added value of CDA is distributed over the entire model domain.

The overall results clearly suggest that CDA provides an efficient new approach for

dynamical downscaling by maintaining better balance between the global model and

the downscaled fields.
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1 INTRODUCTION

Dynamical downscaling using Regional Atmospheric Mod-

els (RAMs) is a broadly recognized approach for resolving

high-resolution regional atmospheric features (e.g. Giorgi,

1990; Jacob and Podzun, 1997; Dickinson et al., 1999; GiorgiQ4

and Mearns, 1999; Rinke and Dethloff, 2000; Meehl et al.,

2007; Dasari et al., 2010; 2014; Srinivas et al., 2015; Yesub-Q5

abu et al., 2016, to cite but a few). It is widely implemented

in a wide range of applications, such as local weather fore-

casts, regional climate change projections, air quality studies,

energy applications, and numerous industrial applications

(Jacob and Podzun, 1997; Meehl et al., 2007; Langodan et al.,

2014; 2016).

Although dynamical downscaling has been proven effi-

cient for producing high-resolution information, the result-

ing outputs may still hold systematic and transient errors

(von Storch et al., 2000; Leung and Gustafson, 2005;

Steiner et al., 2006). Generally, the main sources of

errors in dynamical downscaling result from either imper-

fect model physics, or from the dynamical downscaling

method itself (Giorgi, 1990; Dickinson et al., 1999). TheQ6

uncertainties related to the model, such as the size of

the domain, vertical and horizontal resolutions, spin-up

period, topography and physical parametrizations have been

investigated in several previous studies (e.g. Davies, 1983;

Giorgi and Mearns, 1999; Denis et al., 2002; Vincent and

Hahmann, 2015).

To simulate fine-scale solutions, a balance between the

RAM and the global downscaled fields should be main-

tained during the downscaling simulations by retaining the

global large scales and evolving the RAM to generate its

own small-scale features; this has been considered as one

of the most challenging problems in dynamical downscal-

ing (Rockel et al., 2008; Vincent and Hahmann, 2015). To

address this issue, the lateral boundary relaxation, or nudg-

ing, technique was introduced by Davies (1976). It basically

consists of adding a nudging term to the predictive equation

of the variable to be nudged. In this study, we investigate

an innovative dynamical downscaling technique for RAMs,

called Continuous Data Assimilation (CDA), and compare its

performance with the state-of-the-art methods, the grid and

spectral nudging techniques.

To capture the features of the driving large-scale fields

throughout the domain, the grid (Stauffer and Seaman,

1990) and spectral (von Storch, 1995; Waldron et al., 1996;

von Storch et al., 2000) nudging techniques have been pro-

posed. Grid nudging is performed at every grid point of the

domain, constraining with equal weights the whole spectrum

of the atmospheric phenomena to the global fields (Stauffer

and Seaman, 1990). Spectral nudging aims at better main-

taining the balance of the RAMs by only constraining the

large-scale features while allowing the RAM to develop

its local variability (Miguez-Macho, 2005). This technique

allows the model to better represent the small-scale effects

due to topography, land–sea contrast, and land-use distri-

bution, and their interactions with the large-scale fields

(Feser and von Storch, 2005; Feser, 2006; Rockel et al.,

2008; Winterfeldt and Weisse, 2009; Vincent and Hah-

mann, 2015). However, the performance of spectral nudging

strongly depends on the choice of the cut-off wave number,

with no systematic way to set the value of this threshold

other than conducting trial-and-error runs (von Storch et al.,

2000; Liu et al., 2012). Closely related methods have been

also proposed, replacing the large-scale fields of the RAM

with the corresponding large-scale fields of the GCM at

specified time intervals as in Kida et al. (1991) and Sasaki

et al. (1995), or adding finer-scale perturbations to the

large-scale GCM solution (Juang and Kanamitsu, 1994;

1997) within the spirit of “anomaly models” (Navarra and

Miyakoda, 1988).

Continuous Data Assimilation (CDA) methods (Charney

et al., 1969; Daley, 1991) can assimilate atmospheric obser-

vations into dynamical models during the integration time.

Recently, significant progress has been made in the CDA

approach by introducing a nudging term to the model

equations to directly assimilate the observations (Henshaw

et al., 2003; Korn, 2009; Olson and Titi, 2009; Hayden et al.,

2011; Azouani et al., 2014; Bessaih et al., 2015; Altaf et al., Q7

2017). The introduced nudging term constrains the model

large-scale variability to available information, which is com-

puted as a misfit between interpolants of the assimilated

coarse grid information and fine grid model predictions.

This new CDA method has been designed, implemented, and

tested for different physical dynamical systems, including

the Navier–Stokes equations, Rayleigh–Bénard convection

model and planetary geostrophic ocean circulation model

(Azouani et al., 2014; Farhat et al., 2015; 2016a; 2016b;

2016c; Gesho et al., 2016; Altaf et al., 2017).

This study presents the first successful implementation of

CDA for dynamical downscaling with a three-dimensional,

non-hydrostatic regional circulation atmospheric model.

We use the Advanced Research Weather Research and

Forecasting (WRF-ARW: Skamarock et al., 2008) model

version 3.9 developed by National Centers for Environmen-

tal Prediction/National Center for Atmospheric Research

(NCEP/NCAR) for this purpose. We further evaluate and

compare the results of the WRF simulations with grid nudg-

ing, spectral nudging, and CDA for resolving the large- and

small-scale atmospheric features of a regional domain cov-

ering most of the African continent and the Middle East.

Section 2 describes the model and the different downscaling

techniques. Section 3 presents the evaluation method used

for the analysis of the downscaled fields. The results are dis-

cussed in Section 4. Section 5 summarizes the main results of

the study.
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2 MODEL AND NUDGING
METHODS

The Advanced Research WRF (WRF-ARW) model version

3.9 developed by NCEP/NCAR (Skamarock et al., 2008) is

used to conduct the dynamical downscaling experiments. The

model configuration consists of a single domain covering

the African continent and the Middle East with 25× 25 km

(∼0.25◦ × 0.25◦) horizontal resolution and 35 vertical levels.

Terrain elevation, land use, and soil types were obtained from

the United States Geological Survey (USGS) data available

at arc 2′ resolution. The simulations are performed over a

one-month period starting from 1 January 2016. The model

initial and 6 h boundary conditions are extracted from the

NCEP/NCAR reanalysis data available at 2.5◦ × 2.5◦.

Different model free runs were conducted without nudg-

ing (control run), and with the three downscaling methods:

grid and spectral nudging, and CDA. All experiments were

performed with the same WRF configuration. The grid and

spectral nudging methods are implemented as in WRF-3.1.1

following Liu et al. (2012). CDA is implemented under the

same conditions as spectral nudging. Nudging is performed

every 6 h over the entire simulation period and at every

model grid point, with a nudging coefficient of 0.0003/s for

all nudged variables (Stauffer and Seaman, 1990; Gomez and

Miguez, 2017). The default spline interpolation operator inQ8

the WRF model is used as the interpolant for the downscaling

experiments with CDA. We also performed several sensitiv-

ity experiments using spectral nudging with different cut-off

wave numbers (3, 5, 7, 9, 11 and 13) in both the x- and

y-directions to investigate its sensitivity to the choice of this

threshold; these are referred to as S33, S55, S77, S99, S1111

and S1313, respectively.

2.1 Downscaling techniques

Nudging or Newtonian relaxation is commonly used in

RAMs to maintain consistency with the large-scale forcing

fields while allowing mesoscale features to develop their own

variability in the regional simulations (von Storch, 1995; von

Storch et al., 2000; Hogrefe, 2004; Leung and Gustafson,

2005; Steiner et al., 2006). In this method, the model state

is relaxed toward a reference (could be an observation or an

analysis) state by adding an artificial tendency term, which is

computed based on the difference between the observed and

model predicted states. This section briefly summarizes the

general formulations, and the differences, of the three tested

downscaling methods. WRF is used in this study, and since

its nudging implementation is based on Stauffer and Seaman

(1990), we follow the same notations, in which nudging is

defined as:

��

��
= F(�, x, �) + G�W(x, �)�(x)(�̂0 − �), (1)

where the term F(�, x, t) is the tendency predicted by the

atmospheric model, x represents the spatial variables (x, y,

z), �(x, t) is a particular atmospheric state variable (to be

nudged), and ff̂0 is the value toward which the state variable

is nudged. G� is the nudging factor that determines the rel-

ative magnitude of the tendency term in relation to the rest

of the model processes included in F(�, x, t). In WRF, its

spatial and temporal variations are set by a time-dependent

(four-dimensional) weighting function W(x, t) = WxyWzWt,

in which Wxy and Wz are respectively the horizontal and

vertical weighting functions defined based on a radius of

influence and the distance from the observation. Similarly,

the time weighting function Wt depends on the model-relative

time and the time of the observation (Stauffer and Seaman,

1990). The analysis quality factor �(x), typically varying

between 0 and 1, depends on the distribution and quality

of the nudging data. The nudged variables, �, include the

zonal and meridional wind components, and the potential

temperature (or the water vapour mixing ratio).

2.1.1 Grid nudging

Grid nudging in the WRF modelling system does not con-

sider the quality of the analysis �(x) but includes a vertical

weighting factor V(z) with values ranging between 0 and 1.

V(z) is included to remove the impact of nudging near the sur-

face, so that to allow the downscaling model to develop its

own physics in the lower levels while nudging the circulation

in the upper levels to the reference data (Stauffer and Sea-

man, 1990). The nudging equation in the WRF model is then

expressed as.

��

��
= F(�, x, �) + G�W(x, �)V(�)(�̂0 − �). (2)

The model prediction is therefore nudged towards a refer-

ence field, typically a coarse-resolution global analysis, after

it was interpolated to the RAM's grid. Equation (2) is then

applied assuming a perfect observation at every grid point.

2.1.2 Spectral nudging

Spectral nudging is implemented in a similar way to grid

nudging, after applying a spectral filtering to the ten-

dency term (�̂0 − �), first in the x-direction and then in the

y-direction. No filtering is applied in the vertical direction.

The spectral nudging equation is then expressed as:

��

��
= F(�, x, �) + G�W(x, �)V(�)Filt�	[(�̂0 − �)], (3)

where Filtxy represents a spectral filtering above a certain

cut-off wave number. Filtering is then performed in three

steps, as follows:
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1. A Fast Fourier Transform (FFT) algorithm is first applied

on each row of the tendency term (�̂0 − �) to transform it

to the spectral space.

2. All wave numbers above a certain cut-off wave number in

the x-direction are set to zero.

3. Then, using the inverse FFT, the remaining Fourier coef-

ficients are transformed back to the spatial space.

The same procedure is then applied to each column of

(�̂0 − �) in the y-direction. The spectral filtering removes

all spatial frequencies higher than the selected cut-off wave

number, ensuring that nudging is only applied on the low

wavelengths. Due to the orthogonality of the functions of the

Fourier expansion, only the same spectral components of the

physical space term F(�, x, t) in Equation (3 are affected by

nudging.

2.1.3 Continuous data assimilation (CDA)

CDA exploits the fact that instabilities in turbulent flows

occur at spatial large-scales and that spatial small-scales

are stabilized by the viscous dissipation term in the

Navier–Stokes equations (Currie, 1974). A rigorous mathe-

matical framework was then developed showing that indeed

the asymptotic, in time, behaviour of the spatial large-scale of

any solution to the Navier–Stokes equations determines in a

unique fashion the asymptotic behaviour of the full solution

(Foias and Prodi, 1967; Jones and Titi, 1993; Cockburn et al.,

1997). As such, the potential issue of solution multiplicity in

numerical weather models (Weisse et al., 2000) would not

manifest itself unless an extended set-up is considered, involv-

ing e.g. ensembles of uncertain trajectories, and/or stochastic

parametrizations. Such a stochastic framework is yet to be

covered by the theory of CDA.

To fix ideas, let us present some examples of the above

results. Let us divide the physical domain Ω into disjoint

subdomains Ωj, j = 1, · · ·, N, such that diam(Ωj)≤ h, and let

us choose randomly points xj ∈Ωj for j = 1, · · ·, N. Suppose

�(x, t) and 
(x, t) are two different solutions of the

Navier–Stokes equations. If (�(xj, t)− 
(xj, t))→ 0 as t→∞

for j = 1, · · ·, N, then (�(x, t)− 
(x, t))→ 0 as t→∞ for

all x ∈Ω, provided h≤ h0, where h0 is a length-scale that

depends only on the Reynolds number, but is independent of

the specific solutions. This means that the nodal values of the

solutions at a spatial coarse scale of size h determine the solu-

tion on the whole domain, asymptotically in time. Similarly,

let us set �� ≡
1

|� |
∫
�
�(x, �)
�, the local volume average of the

function �, for j = 1, · · ·, N. If (��(�) − 
�(�)) → 0 as t→ ∞

for j = 1, · · ·, N, then (�(x, t)− 
(x, t))→ 0 as t→∞ for all

x ∈Ω, provided h≤ h0 as before. This means that the spatial

coarse-scale local volume averages at the domain of size h

determine the solution in a unique fashion, asymptotically

in time.

T A B L E 1 Mean and standard deviation of the similarity between the RAM and NCEP/NCAR at large scales

Mean of the similarity for large-scale waves (2,000 km)

PS T850 U850 V850 KE850 T500 U500 V500 KE500

CDA 0.99998605 0.99999714 0.97167140 0.97152543 0.96723545 0.99999964 0.99854946 0.99049723 0.99777579

Grid 0.99998581 0.99999744 0.98094010 0.97748172 0.99035347 0.99999976 0.99912435 0.99274999 0.99860662

No-nudging 0.99986231 0.99972951 0.05710086 0.33376178 0.46544221 0.99996454 0.84965920 0.30325863 0.87648469

S33 0.99998665 0.99999714 0.94595301 0.91221452 0.91652679 0.99999917 0.99386102 0.96675873 0.99145013

S55 0.99998653 0.99999756 0.97086024 0.96998733 0.94466907 0.99999964 0.99846143 0.98823738 0.99735242

S99 0.99998629 0.99999785 0.97609609 0.97662634 0.98445141 0.99999964 0.99895734 0.99211472 0.99839503

FNL 0.99999946 0.99999064 0.84402716 0.82412124 0.90915436 0.99999577 0.97440130 0.85004336 0.98543674

Standard deviation of the similarity for large-scale waves (2,000 km)

PS T850 U850 V850 KE850 T500 U500 V500 KE500

CDA 0.000005 0.000001 0.014733 0.016004 0.030686 0.000000 0.000770 0.007707 0.001503

Grid 0.000005 0.000001 0.010876 0.013207 0.005458 0.000000 0.000378 0.006230 0.000723

No-nudging 0.000042 0.000087 0.466062 0.303761 0.425571 0.000020 0.072125 0.577311 0.061159

S33 0.000005 0.000001 0.028365 0.041847 0.060352 0.000000 0.003972 0.029892 0.004708

S55 0.000005 0.000001 0.014842 0.016339 0.047274 0.000000 0.000767 0.009983 0.001695

S99 0.000005 0.000001 0.013099 0.012828 0.010660 0.000000 0.000456 0.007248 0.000999

FNL 0.000000 0.000003 0.086345 0.100384 0.056032 0.000002 0.014739 0.128554 0.008931

Abbreviations: KE850 and KE500, kinetic energy at 850 and 500 hPa levels; PS, surface pressure; T850 and T500, temperature at 850 and 500 hPa levels; U850

and U500, zonal wind components at 850 and 500 hPa levels; V850 and V500, meridional wind components at 850 and 500 hPa levels.
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Following the above notations, one can introduce inter-

polants approximation operators based on the model values

or the local volume averages, respectively. Specifically, one

can introduce, for example, the interpolant approximation

operators by step functions as follows:

�ℎ(Œ)(x) =

�∑

�=1

Œ(x�)��
(x) or �ℎ(Œ)(x) =

�∑

�=1

����
(x),

for the case of nodal values or the case of local value averages,

respectively. Here, �
�
(x) = 1 whenever x ∈Ωj; and �

�
(x) = 0

whenever x ∉Ωj the characteristic function of the subdomain

Ωj. The above interpolant operators Ih(�) are approximation

functions of � at the spatial scale of size h.

Capitalizing on these results, Azouani et al. (2014) intro-

duced a new approach for CDA that uses as nudging function

the difference between coarse-scale interpolant of the spatial

downscaled data and a coarse-scale interpolant of the model

outputs. Note that Ih(�) are functions, and hence the nudg-

ing is not only at the grid points, but it is done adequately

on a full neighbourhood diameter size h at each grid point.

This sets constraints on the spatial large-scale flow of the

model, which in turn forces the solution of the model to

behave like the unknown reference solution that corresponds

to the observational coarse-mesh data. In particular, Azouani

et al. (2014) were also able to show that the method is not

sensitive to the model initial conditions, i.e. no matter how

one initializes the model, its solution always converges, at

an exponential rate in time, to the same unique reference

solution that corresponds to the given coarse-mesh data, pro-

vided the observational grid is fine enough depending on the

Reynolds number. The CDA equation can be expressed as

��

��
= F(�, x, �) + G�W(x, �)V(�)[�ℎ(�̂0) − �ℎ(�)], (4)

where Ih is linear, coarse-mesh interpolation operator

(Azouani et al., 2014). Specifically, Ih is used to define a

smooth function that (a) interpolates the data provided at

the nodes of the coarser spatial mesh, and (b) varies linearly

between neighbouring nodes.

Furthermore, stability analysis has enabled Ibdah et al.

(2018) and Mondaini and Titi (2018) to establish uniform

in time error estimates for the spatial discretization and the

full discretization of the model, respectively, which makes its

computational implementation reliable. Notably, it has also

been observed that this CDA approach is equally applicable

to other relevant dissipative systems, and that for certain sys-

tems it is sufficient to collect coarse-mesh measurements of

only part of the state variables (Farhat et al., 2016a; 2016b;

2016c; 2017). In this context, it has been shown rigorously

(Farhat et al., 2016c) that for planetary-scale geostrophic

circulation models, the coarse-mesh observations of the

T A B L E 2 Mean and standard deviation of the similarity between the RAM and NCEP/NCAR at small scales

Mean of the similarity for small-scale waves (300 km)

PS T850 U850 V850 KE850 T500 U500 V500 KE500

CDA 0.99998337 0.99999058 0.91240192 0.89633244 0.89494669 0.99999863 0.98933464 0.97649366 0.99176407

Grid 0.99998373 0.99999225 0.95990425 0.94997531 0.97067863 0.99999911 0.99773675 0.98945946 0.99676031

No-nudging 0.99985540 0.99964535 −0.0519144 0.07106254 0.08139410 0.99993056 0.74900043 0.15007074 0.74443442

S33 0.99998409 0.99998194 0.68842328 0.63695365 0.63966984 0.99999440 0.94511408 0.82956451 0.92996812

S55 0.99998403 0.99998814 0.83709604 0.78103155 0.79188532 0.99999708 0.97539669 0.92701846 0.96858078

S99 0.99998385 0.99999207 0.92231774 0.90175653 0.92826903 0.99999875 0.99454635 0.97957581 0.99282628

FNL 0.99999863 0.99997193 0.65930980 0.60649222 0.70462215 0.99998736 0.92336237 0.72812873 0.92406327

Standard deviation of the similarity for small-scale waves (300 km)

PS T850 U850 V850 KE850 T500 U500 V500 KE500

CDA 0.000006 0.000003 0.027247 0.034035 0.074811 0.000000 0.004850 0.013146 0.004275

Grid 0.000005 0.000003 0.011793 0.017309 0.010606 0.000000 0.000569 0.005710 0.001229

No-nudging 0.000043 0.000104 0.413987 0.270213 0.461699 0.000032 0.096030 0.493374 0.107139

S33 0.000005 0.000004 0.120302 0.105091 0.173989 0.000001 0.015521 0.097885 0.029512

S55 0.000005 0.000003 0.040479 0.058794 0.075941 0.000001 0.007464 0.040535 0.013222

S99 0.000006 0.000003 0.018289 0.026641 0.021350 0.000000 0.001449 0.011168 0.003153

FNL 0.000000 0.000005 0.101990 0.104339 0.087572 0.000003 0.024534 0.139838 0.026483

Abbreviations: KE850 and KE500: kinetic energy at 850 and 500 hPa levels; PS, surface pressure; T850 and T500, temperature at 850 and 500 hPa levels; U850 and

U500: zonal wind components at 850 and 500 hPa levels; V850 and V500, meridional wind components at 850 and 500 hPa levels.
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temperature are sufficient for determining and recovering

the full reference solution, i.e. both the velocity and the

temperature, as has been asserted by Charney et al. (1969).

In addition, this CDA approach has also been extended by

Foias et al. (2016) to incorporate fully discrete, in time

and space, observations and to extract from these measure-

ments statistical information concerning the corresponding

unknown reference solution. Biswas et al. (2018) have

recently extended this approach for recovering the probabil-

ity distribution of the reference solutions from probability

distribution of the observed measurements.

3 EVALUATION METHOD

To evaluate the results of the different downscaling techniques

at different scales, we used the similarity concept proposed

by von Storch et al. (2000) and implemented, for example, in

Liu et al. (2012). The similarity index is measured based on

a metric, P(t, L), defined as

� (�, �) = 1 −
⟨[�(�, �) − �∗(�, �)]2⟩

⟨�(�, �)2⟩
, (5)

where t is the model simulation time, L the length-scale of

interest, �(t, L) the input field (NCEP/NCAR data in this

study) to the RAM, �*(t, L) the RAM (WRF) output field,

⟨⟩ denotes the 2D spatial-average over the domain. Every 6

h, the similarity at different scales of interest are computed

after obtaining �(t, L) and �*(t, L), based on which the

performances of the downscaling techniques are evaluated

for both the large and small scales in opposing ways. A high

similarity is desired for large scales, as it suggests consis-

tency between the large-scale features of the downscaled

fields and the input fields (von Storch et al., 2000; Liu et al.,

2012). In contrast, lower similarities are expected for the

small-scale features in the RAM simulation as it develops its

own variability that is not present in the global fields.

Following Liu et al. (2012), we compare the large- and

small-scale features from NCEP and the RAM at the hor-

izontal scales 2,000 and 300 km, respectively. To compute

the similarity at these scales, we first interpolate NCEP/N-

CAR data (the input to WRF) to the same grid as the RAM

(WRF, 25 km). The 25 km resolution grid cells in the mod-

elling domain are next re-divided according to the scale of

interest, in which the new cell includes several original grid

cells. The representative values of the input, �(t, L), and

output, �*(t, L), fields are then computed for each new cell.

To evaluate the small-scale features in the downscaled

WRF fields we introduce an independent dataset, NCEP Final

Analysis (FNL) available at 0.25◦ × 0.25◦ (which is of same

grid resolution as our downscaled fields) as suggested by Liu

et al. (2012). The idea is to compute the similarities between

NCEP/NCAR and FNL for both large and small scales and

use these as the reference to evaluate the similarities between

the downscaled WRF and NCEP/NCAR fields at the small

scales. If FNL and NCEP/NCAR are consistent (i.e. have

high similarity) at the large scale, then the similarity between

FNL and NCEP/NCAR at the small scales could be used as

criteria for a reasonable similarity of the WRF and NCEP/N-

CAR small-scale results. If not, the latter cannot be used

directly and instead the difference of similarity between the

large and small scales would be used to assess whether the

change in similarity between the input and downscaled fields

is reasonable (Liu et al., 2012).

To further assess quantitatively the solution of the nudging

methods, we evaluated the Added Value (AV) of the down-

scaled fields with respect to the FNL observations compared

to the model solution without nudging using the modified

F I G U R E 1 Time series of similarity in temperature at (a–c) 850 hPa and (d–f) 500 hPa, (a,b,d,e) between NCEP and different experiments

with the RAM model, and (c,f) between NCEP and FNL at large- and small-scale waves [Colour figure can be viewed at wileyonlinelibrary.com].
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F I G U R E 2 Time series of similarity in kinetic energy at (a–c) 850 hPa and (d–f) 500 hPa, (a,b,d,e) between NCEP and different experiments

with the RAM model, and (c,f) between NCEP and FNL at large- and small-scale waves [Colour figure can be viewed at wileyonlinelibrary.com].
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T A B L E 3 Mean and standard deviation of the distribution between the RAM and NCEP

at large scales

Mean of large-scale waves (2,000 km)

T850 U850 V850 T500 U500 V500

FNL 0.332 0.058 −0.196 −0.019 −0.009 0.317

CDA −0.204 −0.100 0.058 −0.054 0.027 0.045

Grid −0.208 −0.110 0.085 −0.066 0.027 0.058

S99 −0.164 −0.101 0.051 −0.054 0.042 0.054

Standard deviation of large-scale waves (2,000 km)

T850 U850 V850 T500 U500 V500

FNL 0.225 0.394 0.281 0.161 0.507 0.474

CDA 0.079 0.140 0.107 0.061 0.100 0.101

Grid 0.068 0.116 0.090 0.053 0.089 0.086

S99 0.075 0.129 0.090 0.059 0.092 0.091

Abbreviations: T850 and T500, temperature at 850 and 500 hPa levels; U850 and U500, zonal wind

components at 850 and 500 hPa levels; V850 and V500, meridional wind components at 850 and 500 hPa

levels.

Brier Skill Score (BSS: von Storch and Zwiers, 1999; Feser

et al., 2011; Li, 2016), defined as:

��� = 1 −
�2(ff�, ff�)

�2(ff� ,ff�)
, if �2(ff�,ff�) < �2(ff� ,ff�), (6)

��� =
�2(ff� ,ff�)

�2(ff�,ff�)
− 1, if �2(ff�,ff�) > �2(ff� ,ff�), (7)

where � is the root-mean-square-error (r.m.s.e.) between two

atmospheric variable solutions. �o, �c and �m denote the FNL

observations, the model control run without nudging, and the

model solutions with the different nudging techniques (grid,

spectral, CDA), respectively. Based on this definition, BSS

varies between −1 and 1, with negative BSS suggesting the

control run is more in agreement with the observations, and

positive BSS indicating WRF with nudging has generated AV

over the control run.

4 RESULTS

This section assesses the downscaling performance of the

CDA method and compares its results to those of the control,

grid nudging, and spectral nudging solutions. The evalua-

tion is performed based on surface pressure (PS), temperature

(T850 and T500), the zonal (U) and meridional (V) wind
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T A B L E 4 Mean and standard deviation of the distribution between the RAM and NCEP

at small scales

Mean of small-scale waves (300 km)

T850 U850 V850 T500 U500 V500

FNL 0.357 0.060 −0.004 0.093 −0.004 0.260

CDA −0.194 −0.046 −0.043 0.042 −0.043 0.024

Grid −0.206 −0.088 −0.055 0.028 −0.055 0.040

S99 −0.155 −0.064 0.029 −0.044 0.045 0.036

Standard deviation of small-scale waves (300 km)

T850 U850 V850 T500 U500 V500

FNL 0.250 0.390 0.281 0.153 0.524 0.462

CDA 0.080 0.130 0.107 0.060 0.097 0.090

Grid 0.075 0.108 0.090 0.052 0.093 0.078

S99 0.075 0.117 0.086 0.058 0.098 0.082

Abbreviations: T850 and T500, temperature at 850 and 500 hPa levels; U850 and U500, zonal wind

components at 850 and 500 hPa levels; V850 and V500, meridional wind components at 850 and 500 hPa

levels.

F I G U R E 3 Correlations between the temperature anomalies from NCEP/NCAR at 500 hPa for different WRF model experiments with (a)

grid nudging, (b) CDA, (c) spectral nudging with three waves, and (d) spectral nudging with nine waves in both x and y directions for large- and

small-scale waves [Colour figure can be viewed at wileyonlinelibrary.com].
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F I G U R E 4 Correlations between kinetic energy anomalies from NCEP/NCAR at 500 hPa for different WRF model experiments with (a) grid

nudging, (b) CDA, (c) spectral nudging with three waves, and (d) spectral nudging with nine waves in both x and y directions for large- and

small-scale waves [Colour figure can be viewed at wileyonlinelibrary.com].
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components, and kinetic energy (KE850 and KE500), as a sur-

rogate for wind speed, at the 850 and 500 hPa levels over the

simulation period 1–31 January 2016. The similarity metrics

P(t, L) for these variables at large and small scales are first

computed between the model and NCEP/NCAR, as described

in Section 3, and their temporal mean and standard devia-

tion are outlined in Tables 1 and 2, respectively. The time

evolutions of the similarity for large and small scales for tem-

perature (T850 and T500), and kinetic energy (KE850 and

KE500) are shown in Figures 1 and 2.

Both large (Table 1) and small scales (Table 2) of PS,

T850 and T500 show a similar magnitude (>0.9999) of sim-

ilarity between CDA, grid, spectral, and no-nudging. In all

experiments and over the whole downscaling period, the high

similarity of T850, and T500 for the large scale (Figure 1a,d)

suggest that all the downscaling techniques successfully cap-

ture the features of the driving large-scale fields. Although

the differences in the magnitudes are relatively small in all

the experiments, the similarity for temperature with NCEP/

NCAR is relatively higher at small scale for CDA and spec-

tral nudging (Figure 1b,e). Small temporal variations in the

similarity for PS at both large and small scales indicate (not

shown) a slight improvement in similarity at both scales with

the spectral nudging and CDA compared to control run and

grid nudging.

The similarities between the model and NCEP/NCAR at

large scale for KE850 and KE500 (Table 1) show (Figure 2)

significant differences between the downscaling methods. All

evaluated downscaling methods, grid, spectral and CDA, sug-

gest much higher means in similarity (>0.9) at the large

scale than the control run without nudging (<0.47), outlining

the ability of the downscaling techniques to retain the fea-

tures of the global downscaled fields. In accordance with the

discussion in Section 3, the similarity values (Table 2) are sig-

nificantly lower for the small scale for all three downscaled

simulations. These lower similarities are expected due to the

added variability produced by the RAMs (Liu et al., 2012).

Important differences were observed in the sensitivity runs

of spectral nudging with different cut-off wave number. For

instance, an increase in the retained spectral wave frequen-

cies from S33 to S99 increased the similarity between grid

and spectral nudging solution at both large and small scales.

The differences between S77 and S99 were not significant,

while the results of S1111 and S1313 quickly deteriorated
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F I G U R E 5 Correlations between the temperature anomalies from NCEP/NCAR at 850 hPa for different WRF model experiments with (a)

grid nudging, (b) CDA, (c) spectral nudging with three waves, and (d) spectral nudging with nine waves in both x and y directions for large- and

small-scale waves [Colour figure can be viewed at wileyonlinelibrary.com].
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(not shown). This confirms that spectral nudging should be

implemented with a suitable number of waves, large enough

to constrain the large scales, but not too large to avoid the

damping of the small scales, as in grid nudging.

The high similarity between the NCEP/NCAR and FNL

fields at the large scales (Table 1) confirms the consistency

between these two products. As discussed in Section 3, we

further computed the similarity between NCEP/NCAR and

FNL at small scale (Table 2) to determine the consistency of

lower similarities of the different downscaled fields at these

scales. Although all the downscaling techniques provide a

lower similarity at the small scale (Figure 1c,f and Figure 2c,f)

compared to the large scale, CDA and S99 are consistent in

producing comparable decrease in similarity to that of FNL.

The close results of CDA to those obtained with the best sim-

ulation achieved using spectral nudging (S99) at both large

and small scales indicate the advantage of CDA in produc-

ing robust downscaled fields without the need of any spectral

decomposition.

As outlined in Table 2, on average and for both large and

small scales, the differences in the similarity indices of the

different downscaling techniques are in the order of 10−6,

while their standard deviations are in the order of 10−7. To

assess the significance of these small differences in the sim-

ilarity indices in terms of the final downscaled solution, we

compared the distributions of the differences between the

WRF outputs (with the different downscaling techniques) and

NCEP/NCAR at the large and small scales with those of the

differences between FNL and NCEP/NCAR (Tables 3 and 4).

The width of the distribution represents the variability added

by the different downscaling techniques to global coarse fields

(Liu et al., 2012). A small width reflects an over-nudging of

the downscaled fields towards the driving global fields, while

a larger width emphasizes the capability of the downscaling

model to internally develop its small-scale variability that is

missing in the driving coarse fields. The differences in the dis-

tribution width of the large and small scales for temperature

and wind components at different levels using grid nudging

are quite small compared to those of S99, CDA and FNL.

This suggests that grid nudging overfits the RAM small-scale

features to the driving global fields. CDA on the other hand

produces a distribution comparable to that of S99 at both large

and small scales that is more consistent with the FNL fields.

To further assess the significance of the larger variabil-

ity in the similarity index resulting from spectral nudging

and CDA, we performed a linear regression analysis between
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F I G U R E 6 Correlations between kinetic energy anomalies from NCEP/NCAR at 850 hPa for different WRF model experiments with (a) grid

nudging, (b) CDA, (c) spectral nudging with three waves, and (d) spectral nudging with nine waves in both x and y directions for large- and

small-scale waves [Colour figure can be viewed at wileyonlinelibrary.com].
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the differences of WRF outputs and NCEP/NCAR fields,

and those of FNL to NCEP/NCAR fields. The correspond-

ing scatter plots are presented for T500 (Figure 3) and KE500

(Figure 4). CDA and spectral nudging improve the correla-

tion and slope with FNL compared to grid nudging at both

large and small scales. Similar results are obtained at 850 hPa

(Figures 5 and 6). Overall, the differences distributions analy-

sis results are consistent with those obtained from the analysis

of the similarity index above, indicating the relevance of the

small differences in the similarity index in evaluating the per-

formances of the downscaling techniques, as has been already

suggested by Liu et al. (2012).

The differences in KE similarities computed between

NCEP/NCAR and WRF using spectral nudging and CDA may

reflect significant differences in the surface sea-level pressure

(SLP), relative humidity (RH) at 850 and 500 hPa, clouds,

and precipitation patterns of the downscaled solutions, which

are important parameters for regional climate, air quality,

and hydrological modelling studies. We therefore analysed

the mean SLP (Figure 7) and RH at 850 hPa (Figure 8) and

500 hPa (Figure 9) as simulated by the different downscaling

methods along with their corresponding NCEP/NCAR fields.

The dominant pressure patterns observed in the NCEP/N-

CAR (Figure 7a) are a relatively low pressure about 1,010 hPa

to 1,015 hPa between 15◦N and 15◦S and a high pressure

above 1,020 hPa north of 15◦N. Similar patterns are well

produced by the downscaling simulations, but not the con-

trol run (Figure 7c), which shows a larger bias of about

20–25 hPa over the oceanic regions and of about 20 hPa over

the Arabian Peninsula. The spatial patterns of RH at 850 hPa

from NCEP/NCAR clearly indicate (Figure 8) the dry con-

ditions over the desert regions (around 15◦N to 25◦N) and

the coastal regions of the Arabian Sea between the Somali

coast and northwestern India. These dry and humid con-

ditions are well simulated by CDA and spectral nudging.

The control and grid-nudging simulations (Figure 8c,d) show

higher humidity over the dry regions and mountains com-

pared to NCEP/NCAR. Similar to 850 hPa, the RH patterns

(Figure 9) at 500 hPa level are also well simulated by all exper-

iments, except the control run. Low humid values north of the

Equator extending up to 30◦N, and high humid values south

of the Equator extending up to 20◦S are dominant features

in the NCEP/NCAR (Figure 9a). Again, these are well repro-

duced by all simulations except the control run (Figure 9c),
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12 DESAMSETTI ET AL.

F I G U R E 7 Spatial distribution of mean surface pressure (hPa) from (a) NCEP/NCAR and different WRF model simulations with (b) CDA,

(c) no-nudging (NONDG), (d) grid-nudging (GRID), (e) spectral nudging with three waves (S33), and (f) spectral nudging with nine waves (S99) in

both x and y directions for 1–31 January 2016 [Colour figure can be viewed at wileyonlinelibrary.com].
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which exhibits low humid values around the Equator from

20◦S to 30◦N. The small isolated regions around 10◦S with

higher humidity in CDA (Figure 9b) and spectral nudging

(Figure 9e,f) are associated with convective activities in the

Intertropical Convergence Zone. The changes in the MSLP

and RH between the different simulations can modulate the

cloud formation and associated rainfall. To confirm this, we

compared the total cloud coverage in the different simula-

tions to the Modern-Era Retrospective analysis for Research

and Applications data (MERRA: Rienecker et al., 2011) in

Figure 10. The mean total cloud coverage from MERRA

shows (Figure 10a) a higher coverage of about 70–80%

between 15◦S and the Equator compared to other regions

where the cloud coverage is relatively low (about 10–40%).

These observed mean cloud features are well produced by

the CDA (Figure 10b) and the spectral nudging simulations

(Figure 10e,f). The control (Figure 10c) and grid-nudging

(Figure 10d) simulations failed to reproduce the observed

cloud patterns as observed by MERRA, with higher cloud

coverage over the ocean regions, and over land around the

Equator. The CDA and S99 solutions are in good agreement

with MERRA not only in terms of spatial distribution, but also
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DESAMSETTI ET AL. 13

F I G U R E 8 Spatial distribution of relative humidity (%) at 850 hPa from (a) NCEP/NCAR and different WRF model simulations with (b)

CDA, (c) no-nudging (NONDG), (d) grid-nudging (GRID), (e) spectral nudging with three waves (S33), and (f) spectral nudging with nine waves

(S99) in both x and y directions for 1–31 January 2016 [Colour figure can be viewed at wileyonlinelibrary.com].
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in terms of magnitude. S99 shows (Figure 10e) better mean

cloud patterns compared to S33, confirming the sensitivity of

spectral nudging to the choice of the cut-off wave number.

Given the considerable differences in surface pressure,

relative humidity, cloud coverage, and KE similarities with

the different nudging methods, investigating the associated

changes in the simulation of precipitation is of interest. We

therefore compared the spatial patterns of the total rainfall

from the different WRF runs with and without nudging to the

Global Precipitation Measurements (GPM: Huffman, 2016).

Daily GPM observations are extracted for the studied domain

from half-hourly data at 10× 10 km. The GPM observations

suggest (Figure 11a) isolated rainfall patterns over the Ara-

bian Peninsula (AP) and adjoining regions; heavy rainfall over

the northern parts; small localized mountain regions with iso-

lated heavy rainfall between the Equator to south of the AP;

and a continuous rain belt south of the Equator. The con-

trol (Figure 11c) and grid nudging (Figure 11d) simulations

fail to predict both rainfall intensity and spatial distribution

over the study region. The observed large-scale features and

mesoscale variations are much better reproduced by CDA

(Figure 11b) and spectral nudging (Figure 11e,f). Experi-

ments with different wave numbers suggests that the higher

wave numbers (S99) generate comparable precipitation pat-

terns to those of GPM, primarily over northern Saudi Arabia,

which are comparable to those simulated by CDA.

The qualitative analysis of the spatial distribution of the

different atmospheric variables suggest that both CDA and
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F I G U R E 9 Spatial distribution of relative humidity (%) at 500 hPa from (a) NCEP/NCAR and different WRF model simulations with (b)

CDA, (c) no-nudging (NONDG), (d) grid-nudging (GRID), (e) spectral nudging with three waves (S33), and (f) spectral nudging with nine waves

(S99) in both x and y directions for 1–31 January 2016 [Colour figure can be viewed at wileyonlinelibrary.com].
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S99 are in good agreement with the observations. For a quan-

titative analysis, and to assess the added value (AV) from the

different nudging methods with respect to the FNL observa-

tions compared to the control run, we computed the modified

Brier skill score (BSS) for T850 and KE850 as representa-

tives of the thermodynamic and dynamic fields and plotted

the results in Figures 12 and 13. CDA and spectral nudging

result in important improvement for both T850 (Figure 12)

and KE850 (Figure 13) over the entire model domain com-

pared to the control run, except for a small mountainous

region of northeast Africa, southwestern Red Sea, and north-

eastern AP. The BSS results are overall consistent with those

of the analysis of similarity.

5 SUMMARY

Nudging techniques enforcing a dynamical balance between

Regional Atmospheric Models (RAMs) and global atmo-

spheric fields play an important role in producing reliable
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F I G U R E 10 Spatial distribution of total cloud cover (%) from (a) MERRA observations and different WRF model simulations with (b) CDA,

(c) no-nudging (NONDG), (d) grid-nudging (GRID), (e) spectral nudging with three waves (S33), and (f) spectral nudging with nine waves (S99) in

both x and y directions for 1–31 January 2016 [Colour figure can be viewed at wileyonlinelibrary.com].
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regional simulations. In this study, we successfully imple-

mented and tested a new method, continuous data assimilation

(CDA), for dynamical downscaling of a three-dimensional

general circulation atmospheric model. We also evaluated its

performance in reproducing the large- and small-scale fea-

tures of the downscaled region. We further compared the

results of CDA against those obtained using the standard grid

and spectral nudging methods. As one of the most widely used

atmospheric models for downscaling, we used the Weather

Research and Forecast (WRF) model in our downscaling

experiments, which offers advanced packages for downscal-

ing with grid and spectral nudging.

WRF model simulations at 25× 25 km (∼0.25◦ × 0.25◦)

horizontal resolution were carried out over a period of 31 days

starting on 1 January 2016 with no, grid, spectral, and CDA

nudging. We also performed three more simulations with

spectral nudging using different wave cut-off numbers (3, 5

and 9) to assess its sensitivity to the choice of retained wave

number. The initial conditions and boundary forcing (updated

every 6 h) were obtained from the NCEP/NCAR reanalysis

available at 2.5◦ × 2.5◦. Another independent source of data,

the NCEP Final Analysis (FNL) available at 0.25◦ × 0.25◦

resolution, was used for validation. The evaluation of the

downscaled fields was performed based on the similarity

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

http://wileyonlinelibrary.com


U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

16 DESAMSETTI ET AL.

F I G U R E 11 Spatial distribution of total precipitation (cm) from (a) GPM observations (OBS) and different WRF model simulations with (b)

CDA, (c) no-nudging (NONDG), (d) grid-nudging (GRID), (e) spectral nudging with three waves (S33), and (f) spectral nudging with nine waves

(S99) in both x and y directions for 1–31 January 2016 [Colour figure can be viewed at wileyonlinelibrary.com].
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metric suggested by Liu et al. (2012) for two different scales,

2,000 km and 300 km representing the large and small scale,

respectively. We analysed different parameters such as tem-

perature, pressure, winds and kinetic energy to assess the

performance of the different downscaling methods. The Brier

skill score (BSS) index for temperature and kinetic energy at

850 hPa was also computed to assess the added value (AV)

of different nudging methods with respect to FNL.

Overall, the downscaling experiments well captured the

features of the driving large-scale fields. At small scales, spec-

tral nudging with well-tuned cut-off wave number and CDA

produced stronger spatial and temporal variability than grid

nudging, suggesting the ability of these methods to enable

more small-scale features in the model simulations, which

may be constrained by coarse downscaled fields in grid nudg-

ing. Spectral nudging and CDA performances were also sig-

nificantly closer to FNL than grid and no-nudging for surface

pressure (PS), temperature, and kinetic energy. The choice

of the cut-off wave number was very important in spectral

nudging: an increase in the number of waves produced better

small-scale features, up to a certain wave number after which

its results became close to grid nudging. The results of the

newly implemented CDA method were consistent with the

FNL and its performance is comparable to the best spectral
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DESAMSETTI ET AL. 17

F I G U R E 12 Brier skill score distribution of the different nudging experiments relative to the control simulations with FNL temperature (◦C)

at 850 hPa level as a reference (true) field [Colour figure can be viewed at wileyonlinelibrary.com].

C
o
lo
r
o
n
li
n
e,
B
&
W

in
p
ri
n
t

F I G U R E 13 Brier skill score distribution of the different nudging experiments relative to the control simulations with FNL kinetic energy

(Joule) at 850 hPa level as a reference (true) field [Colour figure can be viewed at wileyonlinelibrary.com].
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nudging simulation in producing both large- and small-scale

features.

Our initial results suggest that the CDA method is a

promising approach for dynamical downscaling and enables

us to efficiently retain the balance between the RAMs and

GCMs by constraining the RAM large-scale features to the

GCM fields and allowing it to develop its own small-scale

features without the need of a spectral decomposition, which

also means saving in terms of computational time. More

tests and experiments will be conducted in future studies to

further assess the performance of CDA with different grid

resolution, other driving global fields, different interpola-

tion operators, and different physical processes for predicting

various regional atmospheric phenomena.
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Graphical Abstract

Efficient dynamical downscaling of general circulation models

using continuous data assimilation

Srinivas Desamsetti, Hari Prasad Dasari , Sabique Langodan, Edriss S. Titi,

Omar Knio, and Ibrahim Hoteit

Time series of similarity in temperature at 850 (top panel) and 500 hPa (bottom panel) between NCEP and different experiments

(a,b,d,e) with the Regional Atmospheric Model, and between NCEP and FNL (c,f) at large- and small-scale waves.
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