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Efficient ECG Compression and QRS 
Detection for E-Health Applications
Mohamed Elgendi  1,2, Amr Mohamed3 & Rabab Ward1

Current medical screening and diagnostic procedures have shifted toward recording longer 
electrocardiogram (ECG) signals, which have traditionally been processed on personal computers (PCs) 
with high-speed multi-core processors and efficient memory processing. Battery-driven devices are now 
more commonly used for the same purpose and thus exploring highly efficient, low-power alternatives 
for local ECG signal collection and processing is essential for efficient and convenient clinical use. 
Several ECG compression methods have been reported in the current literature with limited discussion 
on the performance of the compressed and the reconstructed ECG signals in terms of the QRS complex 
detection accuracy. This paper proposes and evaluates different compression methods based not only 
on the compression ratio (CR) and percentage root-mean-square difference (PRD), but also based on 
the accuracy of QRS detection. In this paper, we have developed a lossy method (Methods III) and 
compared them to the most current lossless and lossy ECG compression methods (Method I and Method 
II, respectively). The proposed lossy compression method (Method III) achieves CR of 4.5×, PRD of 
0.53, as well as an overall sensitivity of 99.78% and positive predictivity of 99.92% are achieved (when 
coupled with an existing QRS detection algorithm) on the MIT-BIH Arrhythmia database and an overall 
sensitivity of 99.90% and positive predictivity of 99.84% on the QT database.

Cardiovascular diseases (CVDs) are cited as the number one cause of death worldwide by the World Health 
Organization (WHO)1. Medical researchers have placed signi�cant importance on cardiac health research, lead-
ing to a strong focus on technological advances for cardiac function assessment. One such research pathway is the 
improvement of the conventional cardiovascular-diagnosis technologies used in hospitals/clinics.

Electrocardiogram (ECG) analysis is the most common clinical cardiac test and has proven to be a useful 
screening tool for a variety of cardiac abnormalities due to its simple, risk-free, and inexpensive application2. 
�e ECG signal contains features that re�ect the underlying operation of the heart, and these features represent 
electrophysiological events that coincide with the sequence of depolarization and repolarization of the atria and 
ventricles. �e signals for each heartbeat contain three main events: the P wave, the QRS complex, and the T wave. 
Analyzing these events over a short period of time (<30 mins) has been achieved with high accuracy. However, 
early detection of CVDs requires long-term monitoring using ECG electrodes connected to mobile phones and/
or point-of-care devices that rely on wireless communication to improve the development of technological diag-
nostic devices.

Developing an ECG system that is reliable, scalable, and an e�ective patient monitoring and medical data 
management tool is essential for implementing a highly accurate and e�cient e-health device for CVD screening 
and diagnosis. �e ECG compression technique proposed in this study leverages current sensors and smartphone 
technologies for connecting patient networks with a medical infrastructure to facilitate remote patient treatment, 
as shown in Fig. 1. ECG data aggregators (ECGag) (e.g., mobile phones and point-of-care devices) can be used to 
acquire, minimally process, and wirelessly transmit ECG signals to an ECG analysis unit (ECGau) (e.g., a device 
with high computational resources such as a computer). ECGags are usually battery-driven and have limited 
storage and minimal computational capacity. �us, a solution that reduces the size of the acquired ECG signals 
(which are saved, stored, and transmitted by the ECGag) while protecting the integrity of the signal quality (so no 
information is lost) is needed.

A proper compression method can reduce the size of the transmitted ECG signals. However, most of the 
high-performance ECG compression methods are not suitable for wireless biosensors because of their complex-
ity3, 4. Suitable compression methods usually mandate either a low-compression rate or high energy consumption5. 
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�erefore, developing a simple, fast, and e�cient compression method that is suitable for long-term (≥30 mins) 
ECG signals is needed. Moreover, most of the ECG compression methods are discussed separately from the ability 
to detect main events (e.g., QRS complexes).

Based on a review of current literature, the evaluation of the compression method performance is widely 
evaluated by PRD6. Since a highly distorted ECG signal can be useless from a clinical point of view, reporting the 
impact of compression on detecting QRS complexes is vital. In this paper, we evaluate the overall e�ciency of 
ECG signal transmission in terms of CR, PRD, and QRS detection performance.

Another aspect that will be explored is the local analysis of the ECG signal on the ECGag unit. Developing 
an algorithm that enables the ECG analysis (such as QRS detection and beat-to-beat interval estimation) to be 
performed locally on the ECGag is also needed7, 8. Because the wireless communication between the ECGag and 
the ECGau unit (cf. Fig. 1) is a major source of power consumption for the ECGag, developing an algorithm 
that allows for local analysis will reduce the power consumed by the device. Combined with the proposed ECG 
compression method discussed above, local analysis of the ECG signals will facilitate faster decision making and 
e�cient signal processing with the use of limited resources.

Results
�e performance of the proposed algorithm was evaluated using the MIT-BIH arrhythmia and QT databases. For 
a fair and consistent evaluation of the proposed method (Method III) with all results published in the literature, 
the performance of the QRS detection algorithms from each method was assessed using two statistical measures: 
sensitivity (SE) and positive predictivity (+P). �e SE and +P were calculated as follows:

= +SE(%) TP/(TP FN), (1)

+ = +P(%) TP/(TP FP), (2)

In other words, SE reports the percentage of detected true beats out of all true beats, while the +P reports 
the percentage of detected true beats out of all detected beats. Note, TP stands for true positives (the number of 
QRS complexes detected as QRS complexes), FN stands for false negatives (the number of QRS complexes which 
have not been detected), and FP stands for the number of false positives (non-QRS complexes detected as QRS 
complexes).

Method I demonstrated the performance of the QRS detector with di�erent parameter values. �e optimal W 
and q values were determined by8 a�er testing various combinations of (W, q) with W ranging from 3 to 6 and q 
ranging from 9 to 17. It was found that optimal detection QRS accuracy was achieved with W = 3 and q = 15. Note 
that the optimization step of the QRS detector for Method II was not discussed in ref. 9.

For Method III, a rigorous optimization over all parameters was conducted. �is step is carried out once on 
either an ECGau or a PC. As soon as the optimal parameters are determined, the ECGag will be adjusted accord-
ingly without any further tuning. As this step occurs one time, it does not add any complexity to the ECG signal 
analysis at ECGag or ECGau level. �e value of B varied from bmin = 360 Hz to bmin = 500 Hz, while the value 
of K varied from kmin = 50 Hz to kmin = 360 Hz. As we have multiple objectives, plotting the Pareto frontier (the 
objective space of possible Pareto solutions) cannot be achieved. �erefore, all Pareto solutions were sorted in 
descending order according to the overall accuracy (objective function g), as shown in Table 1. �e optimal Pareto 
value of B/K was found to be 4.875, where B = 390 Hz and K = 80 Hz, achieving a maximum value of g = 99.851% 

Figure 1. A wireless ECG Monitoring System.
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with an SE of 99.78% and a +P of 99.92%. It is clear that the highest accuracy of QRS detection was scored using 
Method III with B/K = 4.875. �e results of Method III will be discussed in more detail.

A summary of the QRS detection results for all recordings using Method III with B/K = 4.875 is shown in 
Table 2.

Figures 2, 3 and 4 show the performance of Method III under noisy conditions. �e �rst plot (a) in each �gure 
shows the original ECG signal. �e second plot (b) shows the compressed ECG signal using Method III. �e third 
plot (c) shows the QRS detection based on the compressed signal shown in plot (b). Figure 2 shows the perfor-
mance of the QRS detector on a compressed ECG signal using Method III over T waves with large amplitudes, 
which are o�en misidenti�ed as QRS peaks due to their amplitude.

Figure 3 shows the QRS detection performance using an ECG signal with premature ventricular contractions, 
which introduce irregular heartbeats in terms of RR interval and morphology. Figure 4 shows that the QRS detec-
tor performed well in the presence of noise and baseline wandering within the compressed ECG signal.

Table 3 compares the QRS detection performance of well-known compression algorithms with the proposed 
methods. As shown, Method III outperformed all competing lossless algorithms in terms of increasing BCR and 
decreasing PRD simultaneously. �e multiscale morphology technique scored lower in detection accuracy given 
its high computational complexity. In comparison, Method III was fast and more e�cient for analyzing ECG 
signals making it better suited for e-health applications.

Table 4 compares the compression performance of the four methods with other compression schemes imple-
mented on hardware for wearable applications. Method III outperformed existing well-known lossy and loss-
less compression methods by scoring the highest BCR at 4.5 while scoring the lowest PRD at 0.53. Note that 
Methods III and III have already outperformed the state-of-the-art lossless compression methods: delta predictor/
Rice-Golomb coding10, adaptive predictor/Hu�man coding11, simple predictor/Hu�man coding12, and slope pre-
dictor/�xed-length packaging methods13 in terms of increasing BCR and decreasing PRD simultaneously. �e 
higher the BCR and the lower PRD values in an algorithm, the better the compression performance However, the 
detection of QRS has to be considered when choosing the optimal compression algorithm.

In this study, the proposed detector was implemented in MATLAB 2012a (MathWorks, Inc., Natick, MA, 
USA) on an Intel™ i5 CPU with 2.27 GHz. Figure 5 shows the BCR versus QRS detection performance and 
processing time. As expected, the processing time decreased as the BCR increased. Method III took an average 

B K #Beat TP FP FN SE (%) +P (%) g (%)

390 80 109985 109775 82 247 99.78 99.92 99.85

390 70 109985 109781 89 249 99.78 99.91 99.85

390 60 109985 109774 88 254 99.78 99.91 99.84

390 110 109985 109748 83 264 99.77 99.92 99.84

380 80 109985 109789 109 238 99.79 99.89 99.84

390 50 109985 109796 110 237 99.79 99.89 99.84

410 80 109985 109705 59 303 99.74 99.94 99.84

380 140 109985 109754 92 257 99.77 99.91 99.84

400 70 109985 109750 81 275 99.76 99.92 99.84

400 60 109985 109750 79 276 99.76 99.92 99.84

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

500 260 109985 109233 28 803 99.37 99.97 99.67

500 250 109985 109232 28 801 99.37 99.97 99.67

500 300 109985 109223 27 809 99.37 99.97 99.67

500 290 109985 109231 29 808 99.37 99.97 99.67

500 270 109985 109220 31 807 99.37 99.97 99.67

500 310 109985 109209 30 819 99.36 99.97 99.66

500 340 109985 109207 29 822 99.36 99.97 99.66

500 320 109985 109214 29 825 99.35 99.97 99.66

500 330 109985 109201 27 829 99.35 99.97 99.66

500 350 109985 109207 29 827 99.35 99.97 99.66

Table 1. Optimal values for Method III based on the QRS detection accuracy. Results were sorted in 
descending order according to the overall accuracy (objective function g). TP stands for true positives (the 
number of QRS complexes detected as QRS complexes), FN stands for false negatives (the number of QRS 
complexes which have not been detected), FP stands for the number of false positives (non-QRS complexes 
detected as QRS complexes), SE stands for sensitivity, +P stands for positive predictivity, and g is the F-score 
(the harmonic mean of SE and +P).
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Record # of Beats TP FP FN SE (%) +P (%)

100 2274 2274 0 0 100.00 100.00

101 1866 1866 2 0 100.00 99.89

102 2187 2187 0 0 100.00 100.00

103 2084 2084 0 0 100.00 100.00

104 2229 2229 5 1 99.96 99.78

105 2602 2601 3 1 99.96 99.88

106 2026 2026 3 0 100.00 99.85

107 2136 2136 0 0 100.00 100.00

108 1763 1786 10 4 99.78 99.44

109 2533 2533 0 0 100.00 100.00

111 2123 2123 0 0 100.00 100.00

112 2539 2539 0 0 100.00 100.00

113 1794 1794 1 0 100.00 99.94

114 1890 1882 2 8 99.58 99.89

115 1953 1953 0 0 100.00 100.00

116 2395 2395 0 0 100.00 100.00

117 1535 1535 0 0 100.00 100.00

118 2278 2278 0 0 100.00 100.00

119 1988 1988 0 0 100.00 100.00

121 1863 1863 0 0 100.00 100.00

122 2476 2476 0 0 100.00 100.00

123 1519 1519 0 0 100.00 100.00

124 1619 1619 0 0 100.00 100.00

200 2601 2601 3 0 100.00 99.88

201 1949 1949 9 0 100.00 99.54

202 2138 2133 0 5 99.77 100.00

203 2988 2965 5 25 99.16 99.83

205 2656 2656 0 1 99.96 100.00

207 2324 2151 3 179 92.32 99.86

208 2953 2946 0 7 99.76 100.00

209 3006 3006 0 0 100.00 100.00

210 2652 2641 1 11 99.59 99.96

212 2748 2748 0 0 100.00 100.00

213 3250 3249 0 1 99.97 100.00

214 2262 2260 0 2 99.91 100.00

215 3362 3362 1 0 100.00 99.97

217 2208 2208 1 0 100.00 99.95

219 2154 2154 0 0 100.00 100.00

220 2048 2048 0 0 100.00 100.00

221 2427 2427 0 0 100.00 100.00

222 2485 2485 2 0 100.00 99.92

223 2604 2604 1 0 100.00 99.96

228 2060 2058 20 2 99.90 99.04

230 2256 2256 0 0 100.00 100.00

231 1571 1571 0 0 100.00 100.00

232 1783 1783 7 0 100.00 99.61

233 3077 3077 1 0 100.00 99.97

234 2751 2751 2 0 100.00 99.93

48 records 109985 109775 82 247 99.78 99.92

Table 2. Performance of Method III using B/K = 4.875 on the MIT-BIH arrhytmia database. �e results were 
obtained using the optimal values of B and K, which are 390 Hz and 80 Hz, respectively. TP stands for true 
positives (the number of QRS complexes detected as QRS complexes), FN stands for false negatives (the number 
of QRS complexes which have not been detected), FP stands for the number of false positives (non-QRS 
complexes detected as QRS complexes), SE stands for sensitivity, and +P stands for positive predictivity.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 459  | DOI:10.1038/s41598-017-00540-x

processing time of 0.029 seconds with a BCR of 4.5 to compress ECG signals and detect the QRS complexes. �e 
time complexity of Method III is O(N) algorithm, which is similar to the lossy-based compression algorithms5, 
and the complexity is smaller than that of Method I [O(Nlog2N)] and Method II [O(Nlog2N))]. �ese results 
indicate that Method III has quick time response and less resource consumption.

Discussion
Methods Implementation. To the best of our knowledge, only one ECG compression method category is 
extensively discussed in current ECG compression literature; this method is referred to as lossless, and can be seen 

Figure 2. QRS detection over Record 117 of the MIT-BIH Arrhythmia Database with large T waves. (a) 
Original ECG signal (b) Compressed ECG signal using Method III (c) Compressed ECG signal using Method 
III with adaptive thresholding and detected QRS complexes (green blocks). Signal amplitudes have been 
manipulated to �t all signals in one �gure. Here, the red dotted line represent the �rst moving average where the 
black dashed line represents the second moving average.

Figure 3. QRS detection over Record 200 of the MIT-BIH Arrhythmia Database with irregular beats 
(premature ventricular contractions). (a) Original ECG signal (b) Compressed ECG signal using Method III 
(c) Compressed ECG signal using Method III with adaptive thresholding and detected QRS complexes (green 
blocks). Signal amplitudes have been manipulated to �t all signals in one �gure. Here, the red dotted line 
represent the �rst moving average where the black dashed line represents the second moving average.
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in Method I. �e lossless ECG compression methodology recovers the original ECG signal exactly as is. However, 
a second methodology is found in communication signal processing literature that is referred to as lossy. With 
the lossy methods, some samples are trimmed o� from the original signal. Depending on the type of lossy method 
being used, the eliminated data may or may not be noticeable to the user. Several lossy compression methods have 
been reported in the literature14–22. �ese lossy compression methods are strongly embedded in lossless compres-
sion methods due to the risk of potential distortion23.

Based on a scan of current literature, the application of the lossy compression method to compress ECG sig-
nals, without it being embedded (or part of) in a lossless, has not yet been investigated. We therefore developed a 
pure lossy method (Method III) and compared it to the most current lossless ECG compression method (Method 
I) and the most current lossy ECG compression method (Method II). Note that Method II is not a pure lossy com-
pression method, since removal of data bits within a lossless framework is implemented.

In Method I, within the signal regions with steep amplitude variations (such as the QRS complex), the pre-
dictor statistics were considerably di�erent and resulted in higher prediction error. �erefore, Deepu et al.8 used 
prediction error as a marker to locate the QRS complex in ECG signals. By contrast, Method III does not need the 
linear predictor step used in Method I.

One advantage of using the prediction error in Method I is that the output has low dynamic range (a smaller 
amplitude than the original ECG signal) and centers around zero amplitude except for the areas corresponding to 

Figure 4. QRS detection over Record 203 of the MIT-BIH Arrhythmia Database with severe baseline dri� and 
noise. (a) Original ECG signal (b) Compressed ECG signal using Method III (c) Compressed ECG signal using 
Method III with adaptive thresholding and detected QRS complexes (green blocks). Signal amplitudes have 
been manipulated to �t all signals in one �gure. Here, the red dotted line represent the �rst moving average 
where the black dashed line represents the second moving average.

Refs Method SE (%) +P (%)

Chen et al.51 Wavelet De-noising 99.55 99.49

Poli et al.52 Genetic Algorithm 99.60 99.51

Afonso et al.53 Filter Banks 99.59 99.56

Hamilton and 
Tompkins54 BPF/Search-back 99.69 99.77

Zhang and Lian55 Multiscale Morphology 99.81 99.80

Ieong et al.56 Quadratic Spline wavelet 99.31 99.70

Nallathambi and 
Principe7 Pulse Train 99.58 99.55

Martnez et al.57 Wavelet Delineation 99.66 99.56

Method I Adaptive Predictor 99.64 99.81

Method II
Compressive Sampling 
Matching Pursuit

N/R N/R

Method III Decimating By A Factor B/K 99.78 99.92

Table 3. Comparison of the QRS detection with other published algorithms on the MIT-BIH arrhythmia 
database. SE stands for sensitivity, while +P stands for positive predictivity. N/R stands for Not Reported.
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Compression 
Type Method Year # Records Used BCR PRD Refs

Lossless

Simple Predictor/Hu�man 
Coding

2009 N/R 1.92 0 12

Delta Predictor/Rice Golomb 
Coding

2011 N/R 2.38 0 10

Adaptive Predictor/Hu�man 
Coding

2013 N/R 2.43 0 11

Slope Predictor/Fixed-length 
Packaging

2013 N/R 2.25 0 13

Method I 2015
All records 
in MIT-BIH 
Arrhythmia DB

2.28 0 8

Lossy

Simultaneous Orthogonal 
Matching Pursuit

2011
One record 
from MIT-BIH 
Arrhythmia DB

7.23 2.57 58

Compressive Sensing 2011
All records 
in MIT-BIH 
Arrhythmia DB

3.44 9 59

Wavelet Transform 2012
10 records 
from MIT-BIH 
Arrhythmia DB

4.0 1.66 60

Nonuniform Binary Matrices 2012 N/R 5.0 8.58 61

Compressive Sensing 2012
3 records from 
MIT-BIH 
Arrhythmia DB

2.5 2.6 62

Encoding with Modi�ed 
�resholding

2013
4 records from 
MIT-BIH 
Arrhythmia DB

5.4 2.7 63

Compressive Sampling 2013
One record 
from MIT-BIH 
Arrhythmia DB

2.5 9 64

Method II 2015
11 records 
from MIT-BIH 
Arrhythmia DB

6.4 3.75 9

Method III 2017
All records 
in MIT-BIH 
Arrhythmia DB

4.5 0.53 —

Table 4. Compression performance comparison with other algorithms. BCR stands for bit compression ratio, 
PRD stands for percentage root-mean-square di�erence, N/R stands for Not Reported, and the symbol ≈ means 
nearly equal.

Figure 5. Compression ratio versus performance. Here, BCR stands for bit compression ratio, PT stands for 
average processing time, SE stands for sensitivity, and +P stands for positive predictivity.
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the QRS complexes. However, a lossless coding scheme is required to preserve the data. �e output of the coding 
step is used to transmit the data instead of transmitting the whole signal to save power/memory resources. It is 
not required to apply a lossless coding scheme for Methods III, because the number of samples that represent the 
signal have already been reduced; using a lossless coding scheme would further reduce the quality of the signal 
and increase the consumption of power/memory resources unnecessarily.

Coding the output of the four methods can be carried out using variable-length coding schemes like Hu�man 
and arithmetic coding24. All four methods are compatible with any of these existing coding schemes. �e com-
plexity of encoder/decoder implementation, however, is high for these techniques, although they produced opti-
mal bit representations24.

Method I applied a coding-packaging scheme that gives a practical, �xed-length 16-bit output and has low 
hardware complexity8. �e coding-packaging routine is based on the two’s complement, which is a mathemati-
cal operation on binary numbers, representation of the prediction error signal. As most of the error prediction 
signal is around zero amplitude, it can be represented with only a few bits. Again, Method III does not need this 
step, as it will increase complexity and render these algorithms less suitable for wearable devices and e-health 
applications.

Compression Performance. It can be seen in Table 4 that lossless ECG techniques, such as the delta pre-
dictor and Rice-Golomb coding scheme10, achieved a maximum BCR of 2.38. However, Rice-Golomb coding is 
highly complex and requires a dedicated memory8. �e two-stage adaptive predictor and the Hu�man coding 
schemes11 achieved a BCR of 2.43, but Hu�man coding is highly complex, generates variable-length coded data, 
and would need further packaging to interface with a standard input/output8. Simple predictor and Hu�man cod-
ing12 achieved a BCR of 1.92. �e slope predictor and a �xed-length packaging scheme12 achieved a BCR of 2.25. 
Method I (linear predictor and �xed-length packaging) achieved a BCR of 2.28. On the other hand, the proposed 
lossy compression technique, Method III, achieved a BCR of 4.5.

In general, there are many lossy compression techniques to achieve higher BCR but these require complicated 
signal processing techniques13. �ese approaches also require the usage of more complex hardware, which is not 
suitable for low-power wearable applications25, 26, and are therefore not included in the comparison.

Method III achieved a BCR of 4.5 without the need for any packaging. �e compression performance of 
Method III is substantially higher than that in refs 8, 10 and 11, and Method III validates the compression quality 
based on the QRS detection accuracy, which is essential for wearable applications. However, ECG compression 
techniques have typically been applied without being validated based on the QRS detection, making it di�cult 
to assess the quality of the compression technique. Note that although Method III is a lossy compression method, 
the main features of the ECG signal morphology were preserved, as shown in Figs 2, 3 and 4. �is indicates that 
a lossy compression method can be su�cient for ECG signal compression, in contrast to lossless methods that are 
more complex and require larger energy consumption.

In a lossy such as Method III, the minimum rate at which the ECG signal can be sampled—without losing 
the main events, such as the QRS complexes—has to be twice the highest frequency to achieve the Nyquist rate 
[Fs > 2Fmax]. In other words, the ECG sampling frequency has to be greater than or equal to 40 Hz.

Recent research into the implementation of lossy methods in an ambulatory environment faces many chal-
lenges27. �e current lossy algorithms, including the compressive sensing algorithms, do not compare favorably 
with other state-of-the-art lossless compression techniques when considering only CR vs. reconstruction qual-
ity27. �erefore, the choice of using a lossy algorithm depends on its ability to provide a low-power implemen-
tation. However, the implementation of lossy algorithms are included in lossless framework, which adds more 
complexity to the expected nature of lossy algorithms. �e main advantage of the proposed Method III, which is 
a pure lossy algorithm, is that it accomplishes a higher compression rate, and higher PRD (higher reconstruction 
signal quality) while achieving the highest QRS detection rate.

QRS Detection. �e literature cites many QRS algorithms that have not been tested against a standard data-
base, making the results di�cult to compare and evaluate. Furthermore, many algorithms scored a high detection 
performance using the overall number of detected beats (i.e., QRS complexes), as shown in Table 2. Note that the 
QRS detector in ref. 28 scored a high overall performance with a SE of 99.89% and a +P of 99.94%. However, the 
study’s authors excluded �les 214 and 215 in the MIT-BIH arrhythmia database29, and therefore this algorithm 
may not be superior in terms of performance. In addition, their algorithm was based on wavelet feature extraction 
and singularity for classi�cation without applying any compression techniques, which is considered unsuitable 
for e-health applications.

As noted, some investigators have excluded records from the MIT-BIH arrhythmia database29 for the sake of 
reducing noise in the processed ECG signals; consequently, their algorithms appeared to achieve improved per-
formance. Other researchers excluded segments with ventricular �utter30 and signals from patients with paced 
beats31 from their investigations. In contrast, we tested the QRS detector over the compressed ECG signal without 
excluding any record or particular segment making the results more robust and the algorithm more e�cient.

It is worth noting that Method III achieved a higher QRS detection accuracy because it worked as a �lter that 
captured only the QRS complexes. �e evidence of this claim can be seen in Fig. 6, where the main frequencies 
of the QRS complexes lie in the range of 0.5 Hz to 40 Hz. Method III with a sampling frequency of 80 Hz not only 
captures the main frequencies of the QRS complexes but also con�rms the �ndings in refs 32–34.

�e detection performance of the Method III on the QT database on a record by record basis is shown in 
Table 5. �e overall comparison of our results with the existing QRS detection algorithms on the QT database 
is demonstrated in Table 6. It summarizes the performances in terms of number of beats, SE, and +P. Note that 
the proposed algorithm performed higher in terms of SE and +P when compared to the Pan-Tompkins33 and 
Elgendi33 over the same number of beats. It is clear that Method III succeeds in handling long ECG recordings 
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with high performance over the 111,201 automatically annotated heart beats. Moreover, the proposed QRS detec-
tor has not been re-tuned, in other words we applied Method III to the QT database without changing the value 
of any parameter and without re-training the algorithm. �e results are promising, and Method III (with the 
parameters B = 390 Hz and K = 80 Hz) can be applied over di�erent databases, sampling frequencies, types of 
arrhythmia, and noise.

Battery-driven ECG Devices. Based on the recommendation in ref. 35, the better the computational e�-
ciency, the faster the algorithm, and vice versa. Consequently, the faster the algorithm, the more suitable it is for 
real-time monitoring. In this study we used a computationally e�cient QRS detector33 along with an optimal 
compression technique (Method III) to improve both the processing and transmission time.

With advances in computational power, the emphasis on algorithm complexity is slowly decreasing. However, 
the demand for computationally e�cient algorithms still remains for instances where ECG signals are collected 
and analyzed locally in hospitals, in the home setting, or in remote/rural areas where patient access to hospitals 
access is limited. Developing a computationally e�cient algorithm to accommodate the new trend toward the use 
of mobile ECG devices is required for these cases. Moreover, implementing a joint compression and QRS detec-
tion algorithm to analyze long-term recorded signals in a time-e�cient manner is also needed.

Typically, processing long recorded ECG signals is carried out on PCs with e�cient memory and high-speed 
multi-core processors. �is advantage is still not available for battery-operated devices: current wearable devices 
have limited memory and processing power36–38. In general, battery-driven ECG devices follow one of three 
strategies: 1) collect ECG signals for o�ine analysis; 2) collect ECG signals for real-time analysis within the 
device itself; or 3) collect ECG signals in real time and analyze the transmitted signals via a remote connection to 
a separate server. Each strategy has its own advantages and disadvantages in terms of processing time and power 
consumption. Our proposed Method III can be implemented in each strategy to improve both analysis time and 
QRS detection accuracy.

E-health Systems. E-health systems o�en use ECGags (e.g., mobile phones or personal digital assistants) 
merely to collect ECG data (either wirelessly or via a wired connection) that are then sent to an ECGau (e.g., a 
central monitoring station using 4 G mobile telecommunication or internet) for further analysis39, 40. Applying 
the proposed compression Method III at the ECGag level is bene�cial as it: reduces the transmission delay, saves 
bandwidth, saves energy on the battery-drived device, saves memory for storage, and speeds up real-time diagno-
sis feedback. Although some analysis can be done locally on the ECGags before transmitting the compressed ECG 
signals, the analysis and the subsequent transmission of the ECG signals require a large a mount of energy that is 
taxes on the ECGag’s limited battery life. �us, investigating e�cient methods for local analysis and transmission 
of ECG signals is needed in terms of compression and QRS detection. Overall, there is a need for a computation-
ally e�cient compression technique and a computationally e�cient QRS detector for real-time analysis that must 
be robust and improve QRS detection accuracy. Simple compression and QRS detection algorithms o�er low-cost 
hardware implementation in both power and size for body sensor networks41. Method III can be implemented in 
the hardware of the ECGag device (or the ECG sensor circuit) and also can be embedded in the so�ware (or an 
app) of the ECGag device. Because of the robustness, performance, e�ciency, and simplicity in implementation, 
Method III is considered ideal for e-health applications, as it can be implemented on both ECGags and ECGaus.

Figure 6. Power spectra of ECG signal (�rst 60 seconds of record #100 from MIT-BIH Arrhythmia Database). 
�e red curve curve represents the power spectra of Method III with a sampling frequency of 80 Hz. Note, the 
blue curves represent the power spectra of frequencies between 50 Hz and 360 Hz. �e green curve represents 
the power spectra of QRS complexes (sampled at 360 Hz). It is clear that the optimal frequency band to detect 
QRS complexes is 0.5–40 Hz.
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Record # of Beats TP FP FN SE (%)
+P 
(%)

100 1134 1134 0 0 100.00 100.00

102 1088 1088 0 0 100.00 100.00

103 1048 1048 0 0 100.00 100.00

104 1109 1109 0 0 100.00 100.00

114 867 860 6 10 98.85 99.31

116 1186 1184 0 2 99.83 100.00

117 766 766 0 0 100.00 100.00

123 756 756 0 0 100.00 100.00

213 1641 1639 0 2 99.88 100.00

221 1247 1246 0 1 99.92 100.00

223 1309 1307 0 2 99.85 100.00

230 1077 1077 0 0 100.00 100.00

231 732 732 7 0 100.00 99.05

232 866 866 2 0 100.00 99.77

233 1532 1537 0 0 100.00 100.00

301 1352 1353 0 0 100.00 100.00

302 1501 1499 0 2 99.87 100.00

306 1040 1040 0 0 100.00 100.00

307 853 853 0 0 100.00 100.00

308 1294 1294 0 0 100.00 100.00

310 2012 2007 0 6 99.70 100.00

803 1026 1026 0 0 100.00 100.00

808 903 903 0 0 100.00 100.00

811 704 704 0 0 100.00 100.00

820 1159 1159 0 0 100.00 100.00

821 1557 1555 0 2 99.87 100.00

840 1180 1180 0 0 100.00 100.00

847 803 802 0 1 99.88 100.00

853 1113 1113 0 0 100.00 100.00

871 917 917 0 0 100.00 100.00

872 990 989 0 1 99.90 100.00

873 859 859 0 0 100.00 100.00

883 892 892 0 0 100.00 100.00

891 1267 1267 0 0 100.00 100.00

16265 1031 1031 0 0 100.00 100.00

16272 851 851 0 0 100.00 100.00

16273 1112 1112 0 0 100.00 100.00

16420 1063 1063 0 0 100.00 100.00

16483 1087 1087 0 0 100.00 100.00

16539 922 922 0 0 100.00 100.00

16773 1008 1008 0 0 100.00 100.00

16786 925 925 0 0 100.00 100.00

16795 761 761 0 0 100.00 100.00

17453 1047 1047 0 0 100.00 100.00

104 804 803 0 1 99.88 100.00

106 897 898 0 0 100.00 100.00

107 823 822 0 1 99.88 100.00

110 872 872 4 0 100.00 99.54

111 908 1094 162 10 99.09 87.10

112 684 695 5 0 100.00 99.29

114 698 698 0 0 100.00 100.00

116 560 559 0 1 99.82 100.00

121 1434 1431 0 3 99.79 100.00

122 1414 1414 0 0 100.00 100.00

124 1121 1121 0 0 100.00 100.00

126 945 945 0 0 100.00 100.00

Continued
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Record # of Beats TP FP FN SE (%)
+P 
(%)

129 672 670 3 8 98.82 99.55

133 840 839 0 1 99.88 100.00

136 810 810 0 0 100.00 100.00

166 813 813 0 0 100.00 100.00

170 897 897 0 0 100.00 100.00

203 1246 1246 0 0 100.00 100.00

210 1063 1063 0 0 100.00 100.00

211 1575 1575 0 0 100.00 100.00

303 1045 1045 0 0 100.00 100.00

405 1216 1216 0 1 99.92 100.00

406 959 959 0 0 100.00 100.00

409 1737 1738 0 0 100.00 100.00

411 1202 1202 0 0 100.00 100.00

509 1028 1028 0 0 100.00 100.00

603 869 869 0 0 100.00 100.00

604 1031 1031 0 0 100.00 100.00

606 1442 1441 0 1 99.93 100.00

607 1184 1183 0 1 99.92 100.00

609 1127 1127 0 0 100.00 100.00

612 751 750 0 1 99.87 100.00

704 1094 1094 0 0 100.00 100.00

30 1018 1016 0 2 99.80 100.00

31 1087 1087 0 0 100.00 100.00

32 1196 1196 0 0 100.00 100.00

33 527 527 0 0 100.00 100.00

34 897 897 0 0 100.00 100.00

35 882 867 3 15 98.30 99.66

36 948 948 0 0 100.00 100.00

37 682 677 2 5 99.27 99.71

38 1563 1563 0 0 100.00 100.00

39 1171 1171 0 0 100.00 100.00

40 1069 1069 0 0 100.00 100.00

41 1366 1366 0 0 100.00 100.00

42 1247 1247 0 0 100.00 100.00

43 1430 1429 0 1 99.93 100.00

44 1337 1333 1 4 99.70 99.93

45 971 971 0 0 100.00 100.00

46 856 856 0 0 100.00 100.00

47 886 886 0 0 100.00 100.00

48 1398 1396 0 2 99.86 100.00

49 833 827 0 6 99.28 100.00

50 661 661 0 0 100.00 100.00

51 749 749 0 0 100.00 100.00

52 1411 1411 0 0 100.00 100.00

17152 1628 1628 0 0 100.00 100.00

14046 1260 1249 0 11 99.13 100.00

14157 1081 1081 0 0 100.00 100.00

14172 663 663 0 0 100.00 100.00

15814 1036 1036 0 0 100.00 100.00

105 records 111201 111323 195 104 99.90 99.84

Table 5. Performance of Method III using B/K = 4.875 on the QT database. �e results were obtained using the 
optimal values of B and K, which are 390 Hz and 80 Hz, respectively. TP stands for true positives (the number 
of QRS complexes detected as QRS complexes), FN stands for false negatives (the number of QRS complexes 
which have not been detected), FP stands for the number of false positives (non-QRS complexes detected as 
QRS complexes), SE stands for sensitivity, and +P stands for positive predictivity.
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�e proposed method could play a major role in the early detection of disease in low- and middle- income 
countries (LMICs) where there are major challenges with providing high-quality and universally accessible health 
care. �is is because it follows the framework recommended in ref. 42 for tackling noncommunicable diseases 
by achieving simplicity and reliability. Application of the method may increase the capability to develop e-health 
technologies that signi�cantly impact morbidity and mortality rates, especially for those living in LMICs.

Conclusions
Our proposed lossy compression Method III is a simple yet e�cient method that is validated with QRS detection 
and should be used for wearable, point-of-care, and e-health ECG devices. Method III outperformed existing 
compression algorithms by achieving a compression ratio of 4.5× with the highest QRS detection accuracy (an SE 
of 99.78% and a +P of 99.92% using the MIT-BIH arrhythmia database). Results show that Method III is suitable 
for wearable sensors and processing long-term recordings and large databases as well as for expanding telemed-
icine capabilities in the near future. To the best of our knowledge, this is the �rst simple algorithm that improves 
QRS detection using data compression.

Methods
Data Used. �e MIT-BIH arrhythmia database, which contains 109,984 heart beats29, was used to evaluate 
the performance of the compression methods. �is database is widely used to evaluate ECG compression and 
QRS detection algorithms as it includes di�erent types of noise and various shapes of arrhythmic QRS com-
plexes33. Moreover, the database contains annotation of R peaks for all ECG signals. �e benchmark database 
contains 48 half-hour ambulatory ECG recordings. �ese recordings have 11-bit resolution over 10 mV and are 
sampled at 360 Hz. �is database is used for training the proposed method and for comparison against the pub-
lished ECG compression methods.

�e QT database with 111,301 beats43 is used for evaluating the performance of our proposed compression 
algorithm. �e QT database contains 105 records of 15-minute recording sampled at 250 Hz.

Compression Method I: Adaptive Linear Prediction. Method I is our benchmark lossless compres-
sion method to compare and evaluate our proposed lossy method against. Several forward–prediction based 
approaches were used for QRS detection as reported in refs 8, 44 and 45. Linear forward prediction was used to 
estimate the current sample x[n] of the ECG signal in these approaches from its past m samples:

∑= −

=

x̂ n h x n k[ ] [ ]
(3)k

m
k

1

where x̂ n[ ] is the estimate of x[n], and hm is the predictor coe�cients. �us, the prediction error e[n] (the di�er-
ence between the actual sample and its estimate x̂ n[ ]) is:

= − .ˆe n x n x n[ ] [ ] [ ] (4)

In this paper, we evaluated the recently published work by Deepu and Lian8 on ECG compression techniques 
using adaptive linear prediction. �e block diagram representation of this method is shown in Fig. 7(a). �e 
method applied a QRS detector on the prediction error e[n] signal, followed by �xed-length packaging.

Compression Method II: Compressive Sampling Matching Pursuit. Method II is our benchmark 
lossy compression method to compare and evaluate our proposed lossy method against. It is based on compressive 
sensing for potential implementation in e-health systems as described in ref. 9. In Method II the ECG signal goes 
throw of four processing stages: sampling, redundancy removal module, quantization and Hu�man encoding, 
as shown in Fig. 7(b). �e output signal y[n] is then transmitted to a remote ECGau where the reconstruction of 
original ECG signal is performed. �e novelty of this algorithm relies on the reconstruction algorithm that relies 
on prior knowledge of ECG wavelet coe�cient structure to improve reconstruction quality.

Compression Method III: Decimating by a Factor B/K. Method III is our proposed lossy compression 
method. �is method achieved a sampling rate conversion by �rst applying an interpolation step (upsampling fol-
lowed by a lowpass Filter [LPF]), by factor B and then decimating (LPF followed by downsampling) the output by 
factor K as discussed in refs 46 and 47. �e two �lters can be combined as a single LPF with a frequency response 
H(ω), which possess the following frequency response characteristic:

Ref # Beats SE (%) +P (%)

Aristotle57 86892 97.20 99.46

Martnez et al.57 86892 99.92 99.88

Pan and Tompkins33 111201 97.99 99.05

Elgendi33 111201 99.99 99.67

Method III 111201 99.90 99.84

Table 6. Comparison of the QRS detection with other published algorithms on the QT database. SE stands for 
sensitivity, while +P stands for positive predictivity.
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where H(ω) is acting as a LPF for the interpolator and smoothing �lter for the decimator. �e block diagram for 
the decimation by a factor B/K method is shown in Fig. 7(c). �e interpolation step can be expressed as follows:

=






= ± ± …
J r

x r B r B B
[ ]

[ / ], 0, , 2 ,

0, otherwise (6)

�en, the interpolated signal goes to the LPF as follows:

∑= −

=−∞

∞

P r h r lB J l[ ] [ ] [ ]
(7)l

A�er downsampling J[n] by a factor K, the output signal of the decimator is:

∑= = −

=

∞

y m P mK h mK lB x l[ ] [ ] [ ] [ ],
(8)l 0

where m is the data samples of the compressed ECG signals. In other words, if we desire a sampling rate conver-
sion by a ratio B/K (where B and K are integers), we can achieve this by �rst interpolating by B and then deci-
mating by K. �e reason to introduce the interpolation step before the decimation step is to preserve the desired 
spectral characteristics of the processed signal48.

We have two variables B and K to resample the ECG signal from B to K. An optimization step is needed to 
determine the optimal values of B and K. Any change in these parameters a�ects the overall performance of the 
algorithm proposed in this paper. �e two variables are interrelated and cannot be optimized in isolation. Our 
goal is to �nd the Pareto optimal point, within all possible Pareto solutions49 for our multi-objective problem. Our 
aggregate objective function denoted by g is a combination of the three objective functions: TP(B, K), FP(B, K), 
and FN(B, K) into a scalar function is de�ned as follows:

Figure 7. Compression methods. (a) Lossless Method I (b) Lossy Method II (c) Lossy Method III Here, ECGag 
stands for ECG data aggregators (e.g., mobile phones and point-of-care devices that have limited computational 
resources that collect the ECG signal) while ECGau stands for ECG analysis unit (e.g. a device with high 
computational resources such as a computer).
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where g is the traditional F-measure or balanced F-score, which is the harmonic mean of sensitivity and positive 
predictivity. TP(B, K), FP(B, K), and FN(B, K) are the three objective functions to be maximized jointly. �e 
Pareto frontier is formed with solutions (the values of two decision variables) that optimizes all parameters. Once 
the Pareto solutions are achieved, the optimal solution will be used for the implementation. In other words, we are 
systematically enumerating all possible combinations of B and K that maximizes the value of g. Note, the Pareto 
optimal solution assures simultaneous improvement of all objectives.

QRS Detection. �e detection algorithm of the QRS complex published in refs 33 and 35, a two event-related 
moving averages (TERMA) algorithm50, was used during the data analysis to capture the QRS complexes. 
TERMA is a fast (computationally e�cient) and suitable algorithm for implementation on battery-operated 
mobile devices, as recommended in refs 33 and 35. �erefore, the use of TERMA in combination with the pro-
posed compression algorithm is expected to improve the overall ECG signal analysis, storage capacity, processing 
time, and signal transmission. In other words, an immediate feedback to the user can be achieved at the ECGag 
level, long recorded ECG signals can be saved at the ECGags, the transmission between the ECGags and ECGaus 
will be optimized, and the decision making at the ECGau level will speed up.

�e TERMA-based QRS detection algorithm50 consists of four stages (�ltering, enhancing, generating poten-
tial blocks, and thresholding) and uses �ve parameters (starting frequency [F1], end frequency [F2], �rst moving 
average [MAevent with a window size of W1], second moving average [MAcycle with a window size of W2], and rejec-
tion threshold [β]). First, the ECG signal was passed through a third-order Butterworth �lter with a bandpass 
�lter F1 − F2. �e resulting signal was then squared, and two moving averages (MAevent and MAcycle) were applied 
with a rejection threshold (β) to generate blocks of interest. A�er applying a rigorous optimization step discussed 
in ref. 33, the optimal parameters for the QRS detector were F1 = 8 Hz, F2 = 20 Hz, W1 = 97 ms, W2 = 611 ms, and 
β = 8. �erefore, the QRS detector was within these optimal parameters.

�e TERMA-based QRS detector will only be applied to proposed Methods III. Since the QRS detection per-
formance was not reported for Method II, Method I is the benchmark to compare the proposed methods against 
as described in ref. 8. Method I will use its already incorporated QRS detector, which removes the high-frequency 
impulse noise from the prediction error signal. �e output will be run through the Savtizky-Golay �lter to smooth 
the incoming signal by approximating the signal within a speci�ed window of size W to a polynomial of order q 
that best matched the given signal in a least-squares sense.

Compression Ratio. �e bit compression ratio (BCR) was calculated as follows:

=BCR
size(BW )

size(BW)
,

(10)

u

c

where BWc and BWu refer to the bit widths of compressed and uncompressed samples, respectively. If we evaluate 
the performance of a compression algorithm based only on BCR, we can conclude that the higher the BCR, the 
better the compression algorithm.

Percentage Root Means Squared Difference. �e percentage root means squared di�erence (PRD) is 
used to quantify the recovered signal quality by measuring the error between original and reconstructed signal, 
as follows:

= − ×ˆ ˆx x xPRD 100/ , (11)2 2

where x is raw ECG signal while x̂ is the reconstructed ECG signal. If we evaluate the performance of a compres-
sion algorithm based only on PRD, we can conclude that the lower the PRD, the better the compression 
algorithm.
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