
Efficient Elliptic Curve Exponentiation
Using Mixed Coordinates

Henri Cohen1, Atsuko Miyaji2, and Takatoshi Ono3

1 Laboratoire A2X, Université Bordeaux I
2 Multimedia Development Center, Matsushita Electric Industrial Co., Ltd.
3 Matsushita Information Systems Research Laboratory Nagoya Co., Ltd.

Abstract. Elliptic curve cryptosystems, proposed by Koblitz ([12]) and
Miller ([16]), can be constructed over a smaller field of definition than
the ElGamal cryptosystems ([6]) or the RSA cryptosystems ([20]). This
is why elliptic curve cryptosystems have begun to attract notice. In this
paper, we investigate efficient elliptic curve exponentiation. We propose
a new coordinate system and a new mixed coordinates strategy, which
significantly improves on the number of basic operations needed for el-
liptic curve exponentiation.

key words: elliptic curve exponentiation, coordinate system

1 Introduction

Koblitz ([12]) and Miller ([16]) proposed a method by which public key cryptosy-
stems can be constructed on the group of points of an elliptic curve over a finite
field instead of a finite field. If elliptic curve cryptosystems satisfy both MOV-
conditions ([15,10]) and FR-conditions ([4]), and avoid p-divisible elliptic curves
over IFpr ([23,21,25]), then the only known attacks are the Pollard ρ−method
([19]) and the Pohlig-Hellman method ([18]). Hence with current knowledge, we
can construct elliptic curve cryptosystems over a smaller definition field than the
discrete-logarithm-problem (DLP)-based cryptosystems like the ElGamal cryp-
tosystems ([6]) or the DSA ([5]) and RSA cryptosystems ([20]). Elliptic curve
cryptosystems with a 160-bit key are thus believed to have the same security as
both the ElGamal cryptosystems and RSA with a 1,024-bit key. This is why ellip-
tic curve cryptosystems have been discussed in ISO/IEC CD 14883-3, ISO/IEC
DIS 11770-3, ANSI ASC X.9, X.9.62, and IEEE P1363 ([10]). As standardization
advances, fast implementations of elliptic curve cryptosystems has been reported
([9,22,27,8,3]).

There are two approaches for efficient elliptic curve exponentiation. One uses
general methods valid for any elliptic curve. The other uses ad-hoc methods
for special elliptic curves, which use the complex multiplication field ([26,13]).
For security purposes, an elliptic curve should not be fixed and be changed
periodically. Therefore an efficient algorithm valid for any elliptic curve and not
for a fixed elliptic curve is desirable. This paper explores an efficient algorithm
valid for any elliptic curve.

K. Ohta and D. Pei (Eds.): ASIACRYPT’98, LNCS 1514, pp. 51–65, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



52 H. Cohen, A. Miyaji, and T. Ono

Elliptic curve exponentiations involve three different factors: the field of de-
finition, the addition-chains ([11,17,14,22]), and the coordinate systems. For the
field of definition, we may choose optimal fields on which modular reduction is
efficient ([3]) or on which inversion is efficient ([22]). For the addition-chains,
the addition-subtraction method is usually mixed with the window method
([11,17,14,22,3]). On the other hand, the optimal coordinate systems have not
been so thoroughly studied, though there have been some proposals ([1]). In
this paper, we study optimal coordinates for the case of a field of definition IFp

(with p larger than 3). We propose a new coordinate system and a new mixed
coordinates strategy for elliptic curve exponentiation.

1. Coordinates of an elliptic curve
An elliptic curve can be represented using several coordinate systems. For each
such system, the speed of additions and doublings is different. Therefore a good
choice of coordinate system is an important factor for elliptic curve exponentia-
tions. Affine coordinates and projective coordinates are well known ([24]). Two
more coordinate systems, the Jacobian coordinates and the five element Jaco-
bian coordinates (which we will call the Chudnovsky Jacobian coordinates) have
been proposed in [1]. The efficiency of Jacobian coordinates for elliptic curve
exponentiation is discussed in [3].

In the present paper, we introduce what we call modified Jacobian coordina-
tes, which gives faster doublings than affine, projective, Jacobian and Chudno-
vsky Jacobian coordinates. Since doublings take the largest part of the time for
an elliptic curve exponentiation, this leads to noticeable improvements.

2. Strategy of elliptic curve exponentiation
Although we have at our disposal five coordinate systems including our new one,
there is no single system which gives both fast doublings and fast additions: for
example, the Jacobian coordinates have faster doublings but slower additions
than the Chudnovsky Jacobian coordinates. Up to now, for fast elliptic curve
exponentiation, a single coordinate system has been used which minimizes the
total computation time ([9,22,27,8,3]). This is not the best method since some
coordinates are good at additions and others are good at doublings. In this
paper, we propose a new strategy using mixed coordinate systems for efficient
elliptic curve exponentiation: for doublings, we use the best possible system for
doublings, and for additions, we use the best possible system for additions.

This paper is organized as follows. Section 2 discusses the four known coor-
dinate systems. Section 3 presents our new coordinate system and investigates
strategies using mixed coordinate systems. The number of basic field operati-
ons for elliptic curve exponentiation using mixed coordinates is also estimated.
Section 5 presents an implementation of our strategy.

2 The Coordinate Systems

An elliptic curve can be represented by several coordinate systems. We give
here the addition and doubling formulas for affine coordinates ([24]), projective



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 53

coordinates ([14]), Jacobian coordinates ([1,3]), and Chudnovsky Jacobian coor-
dinates ([1]), as well as the necessary number of field operations. From now on,
we assume that IFp is a field with p > 3.

2.1 The Addition Formulas in Affine Coordinate

Let

E : y2 = x3 + ax + b (a, b ∈ IFp, 4a3 + 27b2 6= 0).

be the equation of an elliptic curve E over IFp.
The addition formulas for affine coordinates are the following. Let P =

(x1, y1), Q = (x2, y2) and P + Q = (x3, y3) be points on E(IFp).
• Curve addition formulas in affine coordinates (P 6= ±Q)

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, (1)

where λ = (y2 − y1)/(x2 − x1);
• Curve doubling formulas in affine coordinates (P = Q)

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, (2)

where λ = (3x2
1 + a)/(2y1).

Here we discuss the computation times for these formulas in detail. For simplicity,
we neglect addition, subtraction and multiplication by a small constant in IFp

because they are much faster than multiplication and inversion in IFp. Let us
denote the computation time of an addition (resp. a doubling) by t(A + A)
(resp. t(2A)) and represent multiplication (resp. inverse, resp. squaring) in IFp

by M (resp. I, resp. S). Then we see that t(A + A) = I + 2M + S and t(2A) =
I + 2M + 2S.

2.2 The Addition Formulas in Projective coordinates

For projective coordinates, we set x = X/Z and y = Y/Z, giving the equation

EP : Y 2Z = X3 + aXZ2 + bZ3.

The addition formulas in projective coordinates are the following. Let P =
(X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q = R = (X3, Y3, Z3).
• Curve addition formulas in projective coordinates (P 6= ±Q)

X3 = vA, Y3 = u(v2X1Z2 − A) − v3Y1Z2, Z3 = v3Z1Z2, (3)

where u = Y2Z1 − Y1Z2, v = X2Z1 − X1Z2, A = u2Z1Z2 − v3 − 2v2X1Z2;
• Curve doubling formulas in projective coordinates (R = 2P )

X3 = 2hs, Y3 = w(4B − h) − 8Y1
2s2, Z3 = 8s3, (4)

where w = aZ1
2 + 3X1

2, s = Y1Z1, B = X1Y1s, h = w2 − 8B.

The computation times are t(P + P) = 12M + 2S and t(2P) = 7M + 5S, where
P means projective coordinates.



54 H. Cohen, A. Miyaji, and T. Ono

2.3 The Addition Formulas in Jacobian and Chudnovsky Jacobian
coordinates

For Jacobian coordinates, we set x = X/Z2 and y = Y/Z3, giving the equation

EJ : Y 2 = X3 + aXZ4 + bZ6.

The addition formulas in the Jacobian coordinates are the following. Let P =
(X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q = R = (X3, Y3, Z3).
• Curve addition formulas in Jacobian coordinates (P 6= ±Q)

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H

3 + r(U1H
2 − X3), Z3 = Z1Z2H, (5)

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2−U1, r = S2−S1;

• Curve doubling formulas in Jacobian coordinates (R = 2P )

X3 = T, Y3 = −8Y1
4 + M(S − T ), Z3 = 2Y1Z1, (6)

where S = 4X1Y
2
1 , M = 3X2

1 + aZ4
1 , T = −2S + M2.

The computation times are t(J +J ) = 12M +4S and t(2J ) = 4M +6S, where
J means Jacobian coordinates.

We see that Jacobian coordinates offer a faster doubling and a slower ad-
dition than projective coordinates. In order to make an addition faster, we
should represent internally a Jacobian point as the quintuple (X, Y, Z, Z2, Z3)
([1]). This is called the Chudnovsky Jacobian coordinate and denoted by J c.
The addition formulas in the Chudnovsky Jacobian coordinates are the follo-
wing. Let P = (X1, Y1, Z1, Z

2
1 , Z3

1 ), Q = (X2, Y2, Z2, Z
2
2 , Z3

2 ) and P + Q = R =
(X3, Y3, Z3, Z

2
3 , Z3

3 ).
• Curve addition formulas in Chudnovsky Jacobian coordinates (P 6=
±Q)

X3 = −H3−2U1H
2+r2, Y3 = −S1H

3+r(U1H
2−X3), Z3 = Z1Z2H, Z2

3 = Z2
3 , Z3

3 = Z3
3 ,

(7)
where U1 = X1(Z2

2 ), U2 = X2(Z2
1 ), S1 = Y1(Z3

2 ), S2 = Y2(Z3
1 ), H = U2 − U1, r =

S2 − S1;
• Curve doubling formulas in Chudnovsky Jacobian coordinates (R =
2P )

X3 = T, Y3 = −8Y1
4 + M(S − T ), Z3 = 2Y1Z1, Z2

3 = Z2
3 , Z3

3 = Z3
3 , (8)

where S = 4X1Y
2
1 , M = 3X2

1 + a(Z2
1 )2, T = −2S + M2.

The computation times are t(J c + J c) = 11M + 3S and t(2J c) = 5M + 6S.

3 A new Strategy for Elliptic Curve Exponentiation

In this section, we investigate a new strategy for elliptic curve exponentiation. Up
to now, since only one kind of coordinate system is used, it has been necessary
that it should offer both an addition and a doubling with reasonable speed
(not the fastest but not too slow) ([8,9,27,26,22,3]). The Chudnovsky Jacobian



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 55

coordinate system is a good example: it reduces the computation time of an
addition by slightly increasing the doubling time, but this is still worthwhile
since Jacobian coordinates have a rather faster doubling but slower addition
times than projective coordinates.

On the contrary, here we further improve on the Jacobian coordinate system
in order to offer even faster doublings, and there will be no loss in elliptic curve
exponentiation since we are going to use a new strategy of mixed coordinate
systems.

3.1 The Modified Jacobian Coordinates

Here we modify the Jacobian coordinates in order to obtain the fastest possi-
ble doublings. For this, we represent internally the Jacobian coordinates as a
quadruple (X, Y, Z, aZ4). We call this the modified Jacobian coordinate system,
and denote it by J m. The addition formulas in the modified Jacobian coordi-
nates are the following. Let P = (X1, Y1, Z1, aZ4

1 ), Q = (X2, Y2, Z2, aZ4
2 ) and

P + Q = R = (X3, Y3, Z3, aZ4
3 ).

• Curve addition formulas in modified Jacobian coordinates (P 6= ±Q)

X3 = −H3−2U1H
2+r2, Y3 = −S1H

3+r(U1H
2−X3), Z3 = Z1Z2H, aZ4

3 = aZ4
3 , (9)

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2−U1, r = S2−S1;

• Curve doubling formulas in modified Jacobian coordinates (R = 2P )

X3 = T, Y3 = M(S − T ) − U, Z3 = 2Y1Z1, aZ4
3 = 2U(aZ4

1 ), (10)

where S = 4X1Y
2
1 , U = 8Y1

4, M = 3X2
1 + (aZ4

1 ), T = −2S + M2.

The computation times are then t(J m + J m) = 13M + 6S and t(2J m) =
4M + 4S. Obviously a modified Jacobian coordinate doubling is faster than a
projective, Jacobian or Chudnovsky Jacobian coordinate doubling. Furthermore
it is faster than an affine coordinate doubling unless I < 3.6M (S is set to 0.8M),
which seems extremely unlikely if p is larger than 100 bits, independently of the
field of definition IFp and of the implementation of inversion.

3.2 Using Mixed Coordinates

It is evidently possible to mix different coordinates, i.e. to add two points where
one is given in some coordinate system, and the other point is in some other
coordinate system. We can also choose the coordinate system of the result. Since
we have five different kinds of coordinate systems (represented by the symbols
A, P, J , J c, and J m), this gives a large number of possibilities. Generalizing
slightly the notation used above, let us denote by t(C1 + C2 = C3) the time for
addition of points in coordinates C1 and C2 giving a result in coordinates C3, and
by t(2C1 = C2) the time for doubling a point in coordinates C1 giving a result in
coordinates C2. Table 1 gives the computation times for additions and doublings
in various coordinates (not all possible combinations are given, only the most
useful ones).



56 H. Cohen, A. Miyaji, and T. Ono

A small discussion is necessary if we want to compare computation times.
The ratio S/M is almost independent of the field of definition and of the imple-
mentation, and can be reasonably taken equal to 0.8. On the other hand, the
ratio I/M deeply depends on the field of definition and on the implementation:
it can be estimated to be between 9M and 30M in the case of p larger than 100
bits. From Table 1, we see that for a doubling using a fixed coordinate system,
J m is the best choice. On the other hand, for an addition using a fixed coordi-
nate system, we cannot decide what is the best coordinate system independently
of the relative speed of inversion: it will usually be J c, unless I/M < 10.6, in
which case it will be A.

doubling addition
operation computation time operation computation time

t(2P) 7M + 5S t(J m + J m) 13M + 6S

t(2J c) 5M + 6S t(J m + J c = J m) 12M + 5S

t(2J ) 4M + 6S t(J + J c = J m) 12M + 5S

t(2J m = J c) 4M + 5S t(J + J ) 12M + 4S

t(2J m) 4M + 4S t(P + P) 12M + 2S

t(2A = J c) 3M + 5S t(J c + J c = J m) 11M + 4S

t(2J m = J ) 3M + 4S t(J c + J c) 11M + 3S

t(2A = J m) 3M + 4S t(J c + J = J ) 11M + 3S

t(2A = J ) 2M + 4S t(J c + J c = J ) 10M + 2S

– – t(J + A = J m) 9M + 5S

– – t(J m + A = J m) 9M + 5S

– – t(J c + A = J m) 8M + 4S

– – t(J c + A = J c) 8M + 3S

– – t(J + A = J ) 8M + 3S

– – t(J m + A = J ) 8M + 3S

– – t(A + A = J m) 5M + 4S

– – t(A + A = J c) 5M + 3S

t(2A) 2M + 2S + I t(A + A) 2M + S + I

Table 1. Computation amount of addition and doubling

3.3 Use of Mixed Coordinate Systems

Elliptic curve exponentiation kP usually combines the addition-subtraction me-
thod with the window method ([8,14,26,22,3]). We will set n = blog2(k)c + 1
(i.e. n is the number of bits of k), and we denote the width of a window by
w. Some representations in signed binary are reported in [11,14,3]. Since our
discussion does not depend on this representation, we restrict here k to be in
the following representation,

k = 2k0(2k1(· · · 2kv−1(2kvW [v] + W [v − 1]) · · ·) + W [0]) (11)



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 57

where W [i] is an odd integer in the range −2w + 1 ≤ W [i] ≤ 2w − 1 for all i,
W [v] > 0, k0 ≥ 0 and ki ≥ w + 1 for i ≥ 1. This representation is easy to obtain
inductively by looking at the bit pattern of k ([3]). Then kP can be computed
using the following procedure: first precompute points Pi = iP for odd integers
i and 1 ≤ i ≤ 2w − 1, set P−i = −Pi for each i, and then repeat doublings and
addition/subtractions with these precomputed points.

The first stage of computation, that is 2kvPW [v], can be modified in order to
reduce the computation amount as follows. In the case of W [v] = 1, kv doublings
are reduced to (kv − w) doublings and 1 addition by setting

2kvP1 = 2kv−w(P2w−1 + P1).

In the case of W [v] = 3, kv doublings are reduced to (kv − w + 1) doublings and
1 addition by setting

2kvP3 = 2kv−w+1(P2w−1 + P2w−1+1).

Similar modifications can be made for all W [v] < 2w−1, and one can show that
the most significant doublings 2kvPW [v] can be reduced by (w2+5w−2)/(2w+4)
doublings minus (w + 1)/(w + 2) additions on average.

Up to now, we have used a single coordinate system in all the procedure.
Here we propose to mix different coordinate systems by dividing the computa-
tion into three parts: we will use the coordinate system C1 for repeated main
doublings (i.e. 2ki−1P ′), the coordinate system C2 for the result of a final doub-
ling (i.e. 2(2ki−1P ′)) and the coordinate system C3 for the precomputed points,
where P ′ is an intermediate point in the computation of kP . Summarizing, the
computation of kP is done by repeating 2kiP ′ +PW [i−1] = 2(2ki−1P ′)+PW [i−1],
whose computation time is equal to

(ki − 1)t(2C1) + t(2C1 = C2) + t(C2 + C3 = C1).

Let us now discuss suitable coordinate systems for C1, C2, and C3. Since
doublings in C1 are repeated the most frequently, we should choose C1 such that
t(2C1) is the fastest, hence we set C1 equal to J m.

We now look at the coordinates suitable for C2 and C3. In this case, we
must also consider the computation time necessary for constructing the table of
precomputed points, which requires addition routines. For those, Table 1 says
that

t(J c + J c) < t(A + A) ⇐⇒ 9M + 2S < I, (12)

where t(J c + J c) is the fastest of all addition routines with no inversions and
a fixed coordinate system. ¿From equation (12), the optimal coordinate system
depends on the relative speed of inversion. Roughly speaking, when the relative
speed of I to M is fast, we use affine coordinates as C3. When the relative speed
of I to M is slow, we use Chudnovsky Jacobian coordinates as C3. In the next
section, we first discuss each case generally, and then investigate the ratio of I
to M in the case where k has 160-bits, 192-bits, and 224-bits.



58 H. Cohen, A. Miyaji, and T. Ono

3.4 Precomputed Points in Affine Coordinates

We assume here that we choose C3 to be A. For C2, we search for the coordinate
system such that t(2J m = C2) + t(C2 + A = J m) is as small as possible. From
Table 1, we see that both J c and J are suitable choices for C2. Thus, we choose
the simplest system J . To summarize, we set (C1, C2, C3) = (J m,J ,A).

To compute the table of precomputed points Pi, we have two methods. We
can compute it in the straightforward way, which requires a time of

2w−1I + 2wM + (2w−1 + 1)S. (13)

Or we can use the well known Montgomery trick of simultaneous inversions: the
inverses modulo p of m numbers can be computed in time I +(3m−3)M (see for
example [2], Algorithm 10.3.4). We compute (2P ), then (3P, 4P ), (5P, 7P, 8P ),...
((2w−2 + 1)P, ..., (2w−1 − 1)P, 2w−1P ), ((2w−1 + 1)P, ..., (2w − 1)P ), giving a
computation time of

wI + (5 · 2w−1 + 2w − 10)M + (2w−1 + 2w − 3)S. (14)

This will be almost always less than the time given in Equation (13) (for example,
if w = 4, it will be the case if I > 6.3M). Furthermore the memory size necessary
for constructing the table in Montgomery’s trick is just the same as that in the
above straightforward way. Thus, we will use this method for computing the
table.

To compute the first stage of doublings, that is 2kvPW [v], we use the modifi-
cation discussed in Section 3.3: for example if W [v] = 1 we compute

t(2kvPW [v]) = t(A + A = J m) + (kv − w − 1)t(2J m) + t(2J m = J )

On the other hand, in the final stage, that is 2k0(P ′+PW [0]), we use t(J +A = J )
instead of t(J + A = J m) if k0 = 0, and otherwise we use t(2J m = J ) instead
of t(2J m) as the final doubling.

We now discuss the total computation time. From Equations (11) and (14),
the total computation time T 1

w(n) including the time for constructing a table of
Pi (i odd, 1 ≤ i ≤ 2w − 1) is equal to

T 1
w(n) = wI+(5·2w−1−12+

11
w + 2

+4u+8v)M +(2w−1−6+
12

w + 2
+4u+5v)S,

(15)
where u is equal to

∑v
i=0 ki. It is easily shown that the average interval between

two windows is 2 bits ([3]). More precisely, one can show that we have approxi-
mately u = n−w/2+θ and v = (n−w/2−θ)/(w+2), where θ = 1/2−1/(w+2).
Thus, if we set n1 = n − w/2, T 1

w(n) is approximately given by the following
formula:

T 1
w(n) = wI + (5 · 2w−1 − 7θ − 13

2
+ 4n1 +

8
w + 2

(n1 − θ))M

+(2w−1 − 8θ + 4n1 +
5

w + 2
(n1 − θ))S. (16)



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 59

3.5 Precomputed Points in Chudnovsky Jacobian Coordinates

We assume here that we choose C3 to be J c. For C2, we search for the coordinate
system such that t(2J m = C2)+ t(C2 +J c = J m) is as small as possible. ¿From
Table 1, we see that both J c and J are suitable choices for C2. Thus, we choose
the simplest system J . To summarize, we set (C1, C2, C3) = (J m,J ,J c).

The computation time for constructing a table of Pi (i odd, 1 ≤ i ≤ 2w − 1)
is

t(2A = J c)+(2w−1−2)t(J c+J c)+t(A+J c = J c) = (11·2w−1−11)M+(3·2w−1+2)S.

The first computation of 2P can be done instead using affine coordinates. In this
case, the computation time for a table is

t(2A)+(2w−1 −2)t(A+J c = J c)+t(A+A = J c) = I +(2w+2 −9)M +(3 ·2w−1 −1)S.

However, this is never optimal if 224 ≥ k ≥ 100 so we omit this case.
To compute the first stage of doublings, that is 2kvPW [v], we use the modifi-

cation discussed in Section 3.3: for example if W [v] = 1, we compute

t(2kvPW [v]) = t(A + J c = J m) + (kv − w − 1)t(2J m) + t(2J m = J )

On the other hand, in the final stage of addition, that is 2k0(P ′ + PW [0]), we
use t(J + J c = J ) instead of t(J + J c = J m) if k0 = 0, and otherwise we use
t(2J m = J ) instead of t(2J m) as the final doubling.

Here we discuss the total computation amount. We obtain a total compu-
tation time T 2

w(n) including the time for constructing a table of Pi (i odd,
1 ≤ i ≤ 2w − 1), given by

T 2
w(n) = (11 · 2w−1 − 2w − 7 − 4

w + 2
+ 4u + (11 − 3/2w−1)v)M

+(3 · 2w−1 − 2w − 1 +
12

w + 2
+ 4u + 5v)S. (17)

Note that the term 3/2w−1 comes from the fact that although the Pi for i > 1
are in Chudnovsky Jacobian coordinates, P1 is in affine coordinates so addition
with P1 is faster.

In the same way as in Section 3.4 with n1 = n − w/2, we get approximately

T 2
w(n) = (11 · 2w−1 − 2w + 8θ − 9 + 4n1 +

11 − 3/2w−1

w + 2
(n1 − θ))M

+(3 · 2w−1 − 2w − 8θ + 5 + 4n1 +
5

w + 2
(n1 − θ))S. (18)

4 Time Comparisons Depending on the Ratio I/M

4.1 The Case of k = 160 Bits

To fix ideas, we assume here that k has 160 bits and that S = 0.8M . In this
case, the optimal value of w is equal to 4, u is approximately equal to 158.33,
and v is approximately equal to 26.28. We obtain the following results:



60 H. Cohen, A. Miyaji, and T. Ono

1. I < 30.5M
The optimal mixed coordinate system is as in Section 3.4: (C1, C2, C3) =
(J m,J ,A). In other words, we use affine coordinates for computing the
table, modified Jacobian coordinates in the main doublings (i.e. 2ki−1P ′),
and we compute the result of a final doubling (i.e. 2(2ki−1P ′)) using Jacobian
coordinates. The computation time is given by T 1

4 (160) = 4I + 1488.4M
(Equation (15)).

2. I > 30.5M
The optimal mixed coordinate system is as in Section 3.5: (C1, C2, C3) =
(J m,J ,J c). In other words, we use Chudnovsky Jacobian coordinates for
computing the table, modified Jacobian coordinate in the main doublings
(i.e. 2ki−1P ′), and we compute the result of a final doubling (i.e. 2(2ki−1P ′))
using Jacobian coordinates. The computation time is given by T 2

4 (160) =
1610.2M (Equation (17)).

Let us compare our new method using mixed coordinate systems with the tra-
ditional method using a single coordinate system. If we use Jacobian coordinates
and addition-subtraction with the window method as above, the computation
time for elliptic curve exponentiation is approximately 1869.1M , which is the
best known among projective, Jacobian or Chudnovsky Jacobian coordinate sy-
stems. If we use our new modified Jacobian coordinates instead of the Jacobian
coordinates, the computation time of elliptic curve exponentiation is improved to
approximately 1708.2M . On the other hand, affine coordinates would be worse.
We thus see that the use of modified Jacobian coordinate J m, together with
a clever use of mixed coordinate systems, with a computation time of at most
1610.2M , gives a very significant improvement.

4.2 The Case of k = 192 Bits

We assume here that k has 192 bits and that S = 0.8M . In this case, the
optimal value of w is equal to 4, u is approximately equal to 190.33, and v is
approximately equal to 31.61. We obtain the following results:

1. I < 33.9M
The optimal mixed coordinate system is as in Section 3.4: (C1, C2, C3) =
(J m,J ,A). The computation time is given by T 1

4 (192) = 4I + 1782.8M
(Equation (15)).

2. I > 33.9M
The optimal mixed coordinate system is as in Section 3.5: (C1, C2, C3) =
(J m,J ,J c). The computation time is given by T 2

4 (192) = 1918.5M
(Equation (17)).

Let us compare our new method using mixed coordinate systems with the
traditional method using a single coordinate system. If we use Jacobian coordi-
nates and addition-subtraction with the window method as above, the computa-
tion time for elliptic curve exponentiation is approximately 2228.6M . If we use
our new modified Jacobian coordinates instead of the Jacobian coordinates, the



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 61

computation time of elliptic curve exponentiation is improved to approximately
2030.3M . We thus see that the use of modified Jacobian coordinate J m, to-
gether with a clever use of mixed coordinate systems, with a computation time
of at most 1918.5M , gives a very significant improvement.

4.3 The Case of k = 224 Bits

We assume here that k has 224 bits and that S = 0.8M . In this case, the
optimal value of w is equal to 4 except for the mixed coordinate system of
(C1, C2, C3) = (J m,J ,A) in Section 3.4. In the case of (C1, C2, C3) = (J m,J ,A),
the optimal value of w is determined by the relative speed of I to M : if I >
17.7M , then w = 4, otherwise w = 5. Here we assume that w is equal to 4 since
I > 17.7M in our implementation. Then u is approximately equal to 222.33, and
v is approximately equal to 36.94. We obtain the following results:

1. I < 37.4M
The optimal mixed coordinate system is as in Section 3.4: (C1, C2, C3) =
(J m,J ,A). The computation time is given by T 1

4 (224) = 4I + 2077.2M
(Equation (15)).

2. I > 37.4M
The optimal mixed coordinate system is as in Section 3.5: (C1, C2, C3) =
(J m,J ,J c). The computation time is given by T 2

4 (224) = 2226.8M
(Equation (17)).

Let us compare our new method using mixed coordinate systems with the
traditional method using a single coordinate system. If we use Jacobian coordi-
nates and addition-subtraction with the window method as above, the computa-
tion time for elliptic curve exponentiation is approximately 2588.1M . If we use
our new modified Jacobian coordinates instead of the Jacobian coordinates, the
computation time of elliptic curve exponentiation is improved to approximately
2352.5M . We thus see that the use of modified Jacobian coordinate J m, to-
gether with a clever use of mixed coordinate systems, with a computation time
of at most 2226.8M , gives a very significant improvement.

5 Implementation

5.1 Elliptic Curves

Elliptic curves E/IFp with order divisible by a prime of at least 160-bits are
secure if the trace of E ([24]) is equal to neither 0 nor 1 ([15,23]). Here we
implement two elliptic curves with 160-bit, 192-bit and 224-bit key size.
Elliptic curve E1 (160-bit key size)

– a field of definition IFp1 : p1 = 2160 − 2933



62 H. Cohen, A. Miyaji, and T. Ono

– an elliptic curve E1: y2 = x3 + a1x + b1, where
a1 = 260304558782498478937947576884532782721650322528
b1 = 173536372521665652625298384589688521814433548352,

#E1(IFp1) = 3 · 5 · 157 · q1, where q1 is a prime
q1 = 620595175087432237029165529381611169224913337

– a point P1: (x1, y1) ∈ E1(IFp1) with order q1, where
x1 = 1274 10436 88184 50369 80533 90568 22189 38631 36302 30379
y1 = 572 21905 85804 38390 03353 99912 01426 54787 42865 52166

Elliptic curve E2 (192-bit key size)

– a field of definition IFp2 : p2 = 2192 − 3345
– an elliptic curve E2: y2 = x3 + a2x + b2, where

a2 = 4297310835543015216800382740563318937925360220792632159597
b2 = 2864873890362010144533588493708879291950240147195088106398,

#E2(IFp2) = 52 · q2, where q2 is a prime
q2 = 251084069415467230553431576922046178864919281484010333019

– a point P2: (x2, y2) ∈ E2(IFp2) with order q2, where
x2 = 523 46903 86238 76826 11193 52046 88411 23614 71708 15234
y2 = 23 91039 55423 03027 66388 76206 81604 62176 43806 46680

Elliptic curve E3 (224-bit key size)

– a field of definition IFp3 : p3 = 2224 − 1025
– an elliptic curve E3: y2 = x3 + a3x + b3, where

a3 = 12404576574124969701442337182895859753361802999610504592418729761688
b3 = 9703580062017113395483118602749180613516894281953378592456586991002,

#E3(IFp3) = 69 · q3, where q3 is a prime
q3 = 390723864741313620212565436043762777712823516673432244734573782061

– a point P3: (x3, y3) ∈ E3(IFp3) with order q3, where
x3 = 24976530810051270927037584984009121071093885269663350011731968108524
y3 = 8413026773932359434461208205958660967289659936639233132193427828113

5.2 The Running Time

We present the running times of elliptic curve exponentiation over our 160-bit
and 192-bit field of definition using our methods. We compare each strategy of
Section 3.4 with the traditional method using a single coordinate. Our modulo
arithmetic uses the GNU MP Library GMP ([7]), so as to make easy comparisons
possible, since GMP may well be the most popular multiprecision library. The
platform is an UltraSPARC (143 MHz/Solaris 2.4). Table 2 shows the running
times. We see that our new strategy gives a very significant improvement.

6 Conclusion

In this paper, we have introduced modified Jacobian coordinates J m, which offer
the fastest doubling of all known coordinate systems. The new modified Jacobian



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 63

160 bit key 192 bit key 224 bit key

field operations (µsec)

160/192/224 bit addition 0.59 0.64 0.71

160/192/224 bit multiplication 6.50 8.93 12.00

160/192/224 bit squaring 5.35 7.22 9.01

reduction (320/384/448 → 160/192/224 bit) 2.37 2.77 2.62

160/192/224 bit inverse 166 213 261

elliptic curve operations (msec)

addition (t(A + A)) 0.203 0.257 0.314

addition (t(J c + J c)) 0.130 0.171 0.215

addition (t(J + J )) 0.144 0.191 0.239

doubling (t(2J m)) 0.079 0.103 0.127

doubling (t(2J )) 0.094 0.122 0.148

elliptic curve exponentiation (msec)

mixed coordinates (case 1) 16.17 24.93 35.73

mixed coordinates (case 2) 16.66 25.54 37.53

single coordinate (Jacobian coordinate) 18.66 28.79 41.86

single coordinate (projective coordinate) 20.33 30.17 44.79

Table 2. Times for elliptic curve operations (UltraSPARC)

coordinates improve the computation time of 160-bit elliptic curve exponentia-
tion to approximately 1708.2M even with the traditional method which uses a
single coordinate system: the use of modified Jacobian coordinates reduces the
computation time of the best known method by 9%.

Furthermore we have proposed a new method using mixed coordinate sy-
stems, which divides elliptic curve exponentiation into three parts, and in each
part we choose the optimal system. For these choices we have presented three
cases according to the relative speed of inversion to multiplication over IFp. We
have seen that the use of modified Jacobian coordinates together with a clever
use of mixed coordinate systems, having a computation time of at most 1610.2M ,
gives a very significant improvement. Our new strategy with modified Jacobian
coordinates reduces the computation time of the best known method by more
than 14%.



64 H. Cohen, A. Miyaji, and T. Ono

References

1. D. V. Chudnovsky and G. V. Chudnovsky “Sequences of numbers generated by
addition in formal groups and new primality and factorization tests” Advances in
Applied Math., 7 (1986), 385–434.

2. H. Cohen, “A course in computational algebraic number theory”, Graduate Texts
in Math. 138, Springer-Verlag, 1993, Third corrected printing, 1996.

3. H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponentiation”, Advan-
ces in Cryptology-Proceedings of ICICS’97, Lecture Notes in Computer Science,
1334 (1997), Springer-Verlag, 282–290.

4. G. Frey and H. G. Rück, “A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves”, Mathematics of computation, 62(1994),
865-874.

5. “Proposed federal information processing standard for digital signature standard
(DSS)”, Federal Register, 56 No. 169, 30 Aug 1991, 42980–42982.

6. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Trans. Inform. Theory, IT-31 (1985), 469–472.

7. Torbjorn Granlund, The GNU MP LIBRARY, version 2.0.2, June 1996.
ftp://prep.ai.mit.edu/pub/gnu/gmp-2.0.2.tar.gz

8. Jorge Guajardo and Christof Paar “Efficient algorithms for elliptic curve cryp-
tosystems”, Advances in Cryptology-Proceedings of Crypto’97, Lecture Notes in
Computer Science, 1294 (1997), Springer-Verlag, 342–356.

9. G. Harper, A. Menezes and S. Vanstone, “Public-key cryptosystems with very
small key lengths”, Advances in Cryptology-Proceedings of Eurocrypt’92, Lecture
Notes in Computer Science, 658 (1993), Springer-Verlag, 163–173.

10. IEEE P1363 Working Draft, June 16, 1998.
11. D. E. Knuth, The art of computer programming, vol. 2, Seminumerical Algorithms,

2nd ed., Addison-Wesley, Reading, Mass. 1981.
12. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48

(1987), 203–209.
13. N. Koblitz, “CM-curves with good cryptographic properties”, Advances in

Cryptology-Proceedings of CRYPTO’91, Lecture Notes in Computer Science, 576
(1992), Springer-Verlag, 279–287.

14. K. Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems by using a signed
binary window method”, Advances in Cryptology-Proceedings of Crypto’92, Lecture
Notes in Computer Science, 740 (1993), Springer-Verlag, 345–357.

15. A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to
logarithms in a finite field”, Proceedings of the 22nd Annual ACM Symposium on
the Theory of Computing (1991), 80–89.

16. V. S. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology-
Proceedings of Crypto’85, Lecture Notes in Computer Science, 218 (1986),
Springer-Verlag, 417–426.

17. F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtraction chains”, Theoretical Informatics and Applications 24 No.6
(1990), 531–544.

18. S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance”, IEEE Trans. Inf. Theory, IT-24
(1978), 106–110.

19. J. Pollard, “Monte Carlo methods for index computation (mod p)”, Mathematics
of Computation, 32 (1978), 918–924.



Efficient Elliptic Curve Exponentiation Using Mixed Coordinates 65

20. R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems”, Communications of the ACM, 21 No. 2 (1978),
120–126.

21. T. Satoh and K. Araki “Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves”, Commentarii Math. Univ. St. Pauli., vol.
47 (1998), 81-92.

22. R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchange with
elliptic curve systems”, Advances in Cryptology-Proceedings of Crypto’95, Lecture
Notes in Computer Science, 963 (1995), Springer-Verlag, 43–56.

23. I. A. Semaev “Evaluation of discrete logarithms in a group of p-torsion points of an
elliptic curve in characteristic p”, Mathematics of computation, 67 (1998), 353-356.

24. J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag,
New York, 1986.

25. N. P. Smart “The discrete logarithm problem on elliptic curves of trace one”, to
appear in J. Cryptology.

26. Jerome A. Solinas ”An improved algorithm for arithmetic on a family of elliptic
curves”, Advances in Cryptology-Proceedings of Crypto’97, Lecture Notes in Com-
puter Science, 1294 (1997), Springer-Verlag, 357–371.

27. E. D. Win, A. Bosselaers and S. Vandenberghe “A fast software implementa-
tion for arithmetic operations in GF(2n)”, Advances in Cryptology-Proceedings of
Asiacrypt’95, Lecture Notes in Computer Science, 1163 (1996), Springer-Verlag,
65–76.


	Introduction
	The coordinate Systems
	The Addition Formulas in Affine Coordinate
	The Addition Formulas in Projective coordinates
	The Addition Formulas in Jacobian and Chudnovsky Jacobian coordinates

	A new Strategy for Elliptic Curve Exponentiation
	The modified Jacobian Coordinates
	Using Mixed Coordinates
	Use of Mixed Coordinate Systems
	Precomputed Points in Affine Coordinates
	Precomputed Points in Chudnovsky Jacobian Coordinates

	Time Comparisons Depending on the Ratio I/M
	The Case of k = 160 Bits
	The Case of k = 192 Bits
	The Case of k = 224 Bits

	Implementation
	Elliptic Curves
	The Running Time

	Conclusion
	References

