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Abstract: The speed up of group operations on elliptic curves is proposed using a new type
of projective coordinate representation. These operations are the most common computations
in key exchange and encryption for both current and postquantum technology. The boost this
improvement brings to computational efficiency impacts not only encryption efforts but also attacks.
For maintaining security, the community needs to take note of this development as it may need to
operate changes in the key size of various algorithms. Our proposed projective representation can
be viewed as a warp on the Jacobian projective coordinates, or as a new operation replacing the
addition in a Jacobian projective representation, basically yielding a new group with the same algebra
elements and homomorphic to it. Efficient algorithms are introduced for computing the expression
Pk + Q where P and Q are points on the curve and k is an integer. They exploit optimized versions
for particular k values. Measurements of the numbers of basic computer instructions needed for
operations based on the new representation show clear improvements. The experiments are based on
benchmarks selected using standard NIST elliptic curves.

Keywords: postquantum technology; projective coordinate; Jacobian projective coordinates

1. Introduction

Secure Internet-based communications rely on public-key cryptography, which allows
entities to communicate without the need for sharing confidential material in advance.
Elliptic curve cryptography (ECC), proposed in 1985, is still a predominant type of public-
key cryptography [1]. ECC is commonly used for encrypted emails, online banking,
secure e-commerce websites, digital signatures, and other data transfer applications where
the size of the storage space for public keys is an issue. Breaching these applications
would have significant effects on society. The adoption of ECC has been accelerated by
recommendations from an array of standardization entities, including NIST, IETF, and ANSI
(NIST, 2016). Compared to competitors like RSA and Elgamal, elliptic curve cryptography
introduced some of the most efficient public key cryptosystems (PKC) for desirable security.
While there are known quantum and classical attacks that breach cryptographic protocols
based on supersingular isogeny graphs (SIGs), the supersingular isogeny Diffie–Hellman
(SIDH) technique is based on elliptic curves and has no known quantum-based attacks [2].

Quantum computer developments menace to break classic elliptic curve and factoring
techniques for public-key cryptography. Supersingular isogeny Diffie–Hellman (SIDH) key
exchange is one of the postquantum cryptographic algorithms that can offer secure key
exchanges between communicating entities over insecure communication channels [3,4].
The core operations for SIDH are the computation of the isogeny and of its kernel. Basically,
Velu’s formula is used to compute the isogeny, and the P + k[Q] formula is used to compute
the kernel, where P and Q are points on the curve and k is the secret key that is generated
by both parties [5]. The complexity of SIDH relies on the difficulty of finding isogenies
other than computing the scalar multiplication in the kernel formula. Thus, speeding
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up elliptic curve (EC) computations will not only benefit the applications that rely on
ECC, but also has an effective impact on the postquantum cryptosystem SIDH. Moreover,
attacks are not necessarily limited to independent calculations and might also be based on
analyzing hardware behaviors such as with the side-channel attack (SCA). As attackers
analyze electrical power consumption patterns, which differ between performing point
addition or point doubling, they can recover the secret key. Therefore, the development
criteria for EC algorithms and systems can include aspects other than speed. For instance,
the addition in the Montgomery coordinate system [6] is resistant to such attacks, being
similar to doubling. A drawback of the Montgomery coordinate system is that it is slower
than other coordinate systems such as projective and Jacobian [7].

Here, we provide effective algorithms supporting improvements to EC systems in
several ways, both in terms of speed-up and resistance to side-channel attacks.

Unlike with other coordinate systems, the original affine operations with the Weier-
strass elliptic curve form [7] require computing an inverse each time we perform point
doubling or addition, i.e., at every iteration of common fast EC scalar multiplication algo-
rithms. In general, finding inverses is much slower than big integer multiplication. Thus,
as commonly done with projective approaches, a main goal of our work is to eliminate
inverses. Our first contribution is to compensate the previous abscissa x and ordinate y
equations in the higher doubling orders formulas and find a better common factor between
all slope’s denominators in order to result in a single inverse for each algorithm. In addi-
tion, we apply a term regrouping step (referred to as labeling) to minimize the number of
multiplications. By using these methods, we contribute an efficient way to compute higher
doubling orders with an algorithm involving a single inverse. Moreover, we follow the
same steps to find intermediate scalar multiplication algorithms, multiplying an EC point
P with scalars up to 34P.

We contribute a new coordinate system using only x and y coordinates and performing
a single inverse along the secret key size. The new coordinate system is shown to have
competitive properties when compared with other coordinate systems. It can also be seen
as a set of new and efficient operators in the Jacobian coordinate space, or on a warped
version thereof. Subsequently, we introduce two different competing general scalar EC
multiplication algorithms and compare between them using multiple coordinate systems
illustrating the strengths of the new proposal.

2. Background

The most popular forms of public-key cryptography for current applications have
increasingly been based on elliptic curves (ECs) [8,9]. With elliptic curve cryptography
(ECC), messages and secrets are mapped to points on an elliptic curve, and specific point-
doubling and point-addition operations define transitions between points. Scalar point
multiplication uses such a sequence of point-doubling and point-addition operations to
optimize repeated addition:

Q = [k]P = P + P + ... + P︸ ︷︷ ︸
k

.

Cryptosystems based on ECs rely on the difficulty of solving the elliptic curve discrete
log (ECDL) problem. Namely, for elliptic curves with points P of large order and large k
numbers, given the points Q and P in the previous equation, it is hard to determine the
scalar multiple k. However, with the expected emergence of quantum computers [10], in the
near future, cryptosystems whose security relies on the difficulty of ECDL will no longer be
safe, since the scalar multiple may be easily recovered using Shor’s algorithm [11]. Other
quantum resilient schemes have been proposed. Furthermore, postquantum cryptosystems
such as supersingular isogeny Diffie–Hellman (SIDH) are slow techniques, and speeding
up their elliptic curve computation is a significant goal.

The core operation for ECC is the scalar multiplication [k]P whose computation speed
is seen as key to improving ciphers. For instant, in [12] Eisentrager et al. proposed a
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method for computing the formula S = (2P + Q). Their improved procedure saved a field
multiplication, when compared to the original algorithm. Later, Ciet et al. [13] introduced
a faster method for computing the same formula when a field inversion costs more than six
field multiplications. Furthermore, they introduced an efficient method for computing point
tripling. A mixed-powers system of point doubling and tripling for computing the scalar
multiplication was represented later by Dimitrov et al. [14]. In [15], Mishra et al. presented
an efficient quintuple formula (5P) and introduced a mixed-base algorithm with doubling
and tripling. A further development was introduced by Longa and Miri [16] by computing
an efficient method for tripling and quintupling mixed with a differential addition. They
proposed an efficient multibase nonadjacent representation (mbNAF) to reduce the cost.
In [16], the same authors presented a further optimization in terms of cost for computing
the form dP + Q. They succeeded in implementing the previous forms of mixed double-
and-add algorithm by using a single inversion when applying a new precomputation
scheme. More recently, Purohit and Rawat [17] used a multibase representation to propose
an efficient scalar multiplication algorithm of doubling, tripling, and septupling, restricted
on a non supersingular elliptic curve defined over the field F2m . In addition, they compared
their work with other existing algorithms to achieve a better representation in terms of cost.
Therefore, speeding up the scalar multiplication computation in parallel with reducing the
cost is a critical task. We present a new methodology to compute elliptic curve operations
with more general forms of the type mP + nQ, where m and n are small integers, aiming
for a faster implementation with the lowest cost among currently known algorithms using
only one inversion.

Among all applications based on EC, the highest benefit from our work concerns
the postquantum cryptosystem, supersingular isogeny Diffie–Helman (SIDH). Its main
weakness is the slow elliptic curve computation speed. For elliptic curve schemes, the com-
putation speed-up also favors attacks, which can however be compensated by increasing
the size of the key. Isogeny-based cryptography also utilizes points on an elliptic curve,
but its security is instead based on the difficulty of computing isogenies between elliptic
curves. An isogeny can be thought of as a unique algebraic mapping between two elliptic
curves that satisfy the group law. An algorithm for computing isogenies on ordinary curves
in subexponential time was presented by Childs et al. [18], rendering the use of cryptosys-
tems based on isogenies on ordinary curves unsafe in the presence of quantum computers.
However, there is no known algorithm for computing isogenies on supersingular curves in
subexponential time.

The core operations for SIDH is computing the isogeny using Velu’s formula, and its
kernel using the P + k[Q] formula, where P and Q are points on the curve and k is the secret
key [5]. This operation must be performed in both phases of SIDH. First, this happens
in the key generation phase, where the point is known in advance. In this case, one can
construct a lookup table that contains all doubles of point Q and reuse any of them when it
is needed. Second, in the key exchange phase, where the point Q is variable, we can apply
our mixed-base representation (up to 32) in order to speed up the calculations, given that
all mixed-base formulas are implemented with a single inversion.

According to Gutub, there are various ways to apply elliptic curves in applications
of cryptography [19]. He studied how the algorithm utilized for calculating nP from P
was based on the binary representation of n, in efficient and practical hardware implemen-
tations [19]. That is, the binary algorithm scanned the bits of n and doubled the point Q
for a number of k-times [19]. Gutub further highlighted how the extra operation of point
addition (Q + P) was essential, being performed in every case that a particular bit of n was
found [19].
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2.1. Weierstrass Elliptic Curve

This section represents the equations of the original work that we compare our algo-
rithm with. We consider elliptic curves over Zp, where p > 3. Such a curve, in the short
Weierstrass form in the affine plan, is the set of all pairs (x, y) ∈ Zp which fulfill:

y2 ≡ x3 + a · x + b (mod p) (1)

For P = (xP, yP) and Q = (xQ, yQ), one can compute P + Q by using the following
equations, where the computation of λ differs based on two disjoint cases [20].

In the case of an addition where P 6= Q:

λ =

(
yQ − yP

xQ − xP

)
mod p (2)

xR = λ2 − xP − xQ mod p

In the case of computing 2 ∗ P (doubling of order one) where P has coordinates
(x1, y1):

λ =

(
3x2

1 + a
2y1

)
mod p (3)

x2 = λ2 − 2x1 mod p (4)

y2 = λ(x1 − x2)− y1 mod p (5)

where λ is the slope of the tangent through P, and x2 and y2 are the affine coordinates
after doubling P one time. While a two-dimensional projective space can also be used for
computations in the Weierstrass form, here, we focus on computations in the affine plan.

2.2. Projective

Projective coordinates are another way of representing an elliptic curve. The elliptic
curve Γ can be described by another equation, in the projective space P2. That is, the poly-
nomial defines a curve in the projective space P2, which is also known as a Weierstrass
Equation [21]:

Γ : Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3

According to Smart [21], a definition of a projective n-dimensional space Pn over a
field F is:

• the set of (n + 1)− tuples (x0, . . . , xn) ∈ Fn+1

• where at least one xi per tuple does not equal 0, and;
• where an equivalence relation between two tuples (x0,1, ..., xn,1) and (x0,2, ..., xn,2) in

Pn holds if ∃U ∈ F such that ∀i, xi,1 = Uxi,2.

We note that a more general definition would replace the third condition with:
∀i, xi,1 = gi(U)xi,2 for some bijective function gi.

The equivalence class of {U(x0, . . . , xn), U ∈ F} is denoted by [x0, . . . , xn], where
these x0, . . . , xn are known as the homogeneous coordinates of that point [21]. Projective
coordinates are useful in cases where there is a need to eradicate the performance of costly
inversion operations [19].

Higuchi and Takagi [22] and Okeya et al. [23] noted how randomized projective co-
ordinates on a Montgomery-form elliptic curve are effective in securing systems against
side-channel attacks. For example, Okeya et al. [23] recommended a scalar multiplica-
tion method that does not incur a higher computational cost for randomized projective
coordinates of the Montgomery form of elliptic curves.
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Homogeneous projective coordinates correspond to the two-dimensional space through
the substitution x = X/Z and y = Y/Z, so that the general Weierstrass form equates to:

E : Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3.

Jacobian projective coordinates [24–26] are obtained by substituting x = X/Z2 and
y = Y/Z3, so that the general Weierstrass form equates to:

E : Y2 + a1XYZ + a3YZ3 = X3 + a2X2Z2 + a4XZ4 + a6Z6.

With the use of a projective coordinates approach, the attacker is unable to predict the
appearance of a specific value when the projective coordinates are randomized [22,23].

Specifically, Higuchi and Takagi [22] proposed a fast addition algorithm on an elliptic
curve over GF(2n) using projective coordinates:

x = X/Z y = Y/Z2

According to Higuchi and Takagi [22], the above projective coordinates have less
multiplications than the previously known fastest algorithm [27].

3. Affine Recomputation of Multistage Doubling

When computing a scalar multiplication of elliptic curve points P using fast algorithms
inspired from Horner’s rule, it is common to need operations of the type kP, that we refer
here as the kth-order double of P.

In this section, we illustrate how to find a higher-order double independently, without
going through all the steps that are required for the original affine coordinates algorithm.

We refer to 2kP as the kth double of P, and to kP as the kth-order double of P. We
denote by Nxk and Nyk the numerators of the x and y coordinates of the kth-order double

(kP), which are denoted xk and yk, respectively. Namely, we rewrite xk =
Nxk
U2

k
and yk =

Nyk
U3

k
,

where k is the order of the desired double, and Uk denotes the corresponding added
projective parameter.

When we compute 4P, first we find Nx2 and Ny2 as the numerators of x2 and y2, the x
and y coordinates of the first double (2P), respectively.

For this, substitute the value of λ in Equation (3) in both equations of x and y coordi-
nates, then multiply the transformed Equations (4) and (5) with (2y1)

2, for denominators
with U2 = 2y1. The obtained Nx2 and Ny2 expressions are,

Nx2 =
(

3x2
1 + a

)2
− 2x1(2y1)

2 mod p (6)

Ny2 =
(

3x2
1 + a

)(
x1(2y1)

2 − Nx2

)
− 2y2

1 (2y1)
2 mod p (7)

We replace the variables x2 and y2 in the second double slope, getting:

λ4 =
3x2

2 + a
2y2

mod p

λ4 =

3
(

Nx2
U2

2

)2
+ a

2
Ny2
U3

2

mod p
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Note that U2 is the denominator of the (2P) slope λ2 = λ. Now, we eliminate the

inverses by amplifying the fraction of λ4 with U4
2

U4
2

,

λ4 =
3N2

x2
+ aU4

2
2Ny2U2

mod p (8)

For simplicity, we consider,

W4 = 3N2
x2
+ aU4

2 mod p (9)

q4 = 2Ny2 mod p

The new denominator of the obtained slope λ4 is:

U4 = q4U2 mod p (10)

Then, we substitute the new slope equation in the x4 and y4 equations,

x4 = λ2
4 − 2x2 mod p

x4 =

(
W4

U4

)2
− 2

Nx2

U2
2

mod p

Eliminating the inverses in the x4 equation by bringing to a common denomina-
tor and amplifying the obtained fraction with the value of U2

4 where we recall from
Equation (10) that,

U4 = (2y1) q4

We get,

U2
4 x4 = W2

4 − 2Nx2 q2
4 mod p

x4 =
W2

4 − 2Nx2 q2
4

U2
4

mod p (11)

where to match
x4 =

Nx4

U2
4

mod p (12)

We obtain:
Nx4 = W2

4 − 2Nx2 q2
4

The same steps are applied in order to find and simplify y4

y4 = λ4(x2 − x4)− y2 mod p

y4 =
W4

U4

(
Nx2

U2
2
− Nx4

U2
4

)
−

Ny2

U3
2

mod p

Then, we amplify y4 by U3
4

U3
4 y4 = W4

(
Nx2 q2

4 − Nx4

)
− Ny2 q3

4 mod p

y4 =
W4
(

Nx2 q2
4 − Nx4

)
− Ny2 q3

4

U3
4

mod p (13)
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where to match

y4 =
Ny4

U3
4

mod p (14)

We obtain
Ny4 = W4

(
Nx2 q2

4 − Nx4

)
− Ny2 q3

4

Furthermore, these equations can be generalized for any doubling order. By using this
form, one can compute Nxn and Nyn and then replace all the variables in the equation that
are related to the order of the desired double in order to perform any advanced double
directly (direct doubling). Computing the previous Wn’s, Un’s, Nxn ’s, and Nyn ’s is required
but having the Nxn and Nyn formulas, the computations can be done smoothly.

Here is the general form that performs any doubling:

Wn = 3N2
xn/2

+ aU4
n/2 mod p (15)

qn = 2Nyn/2 mod p

Un = qnUn/2 mod p (16)

xn =
W2

n − 2Nxn/2 q2
n

U2
n

mod p (17)

xn =
Nxn

U2
n

mod p (18)

Nxn = W2
n − 2Nxn/2 q2

n (19)

yn =
Wn
(

Nxn/2 q2
n − Nxn

)
− Nyn/2 q3

n

U3
n

mod p (20)

yn =
Nyn

U3
n

mod p (21)

Nyn = Wn

(
Nxn/2 q2

n − Nxn

)
− Nyn/2 q3

n (22)

where n is the order of the double and n/2 is assigned to the previous power of 2 double.

Numerical Examples

In this section, we use the cyclic group of points on the next elliptic curve E, where the
order of E is 19 [20]:

E : y2 ≡ x3 + 2 · x + 2 mod 17 (23)
It is described by the following equations [20]:

2P = (5, 1) + (5, 1) = (6, 3)
3P = 2P + P = (10, 6)
4P = (3, 1)
5P = (9, 16)
6P = (16, 13)
7P = (0, 6)
8P = (13, 7)
9P = (7, 6)

10P = (7, 11)

11P = (13, 10)
12P = (0, 11)
13P = (16, 4)
14P = (9, 1)
15P = (3, 16)
16P = (10, 11)
17P = (6, 14)
18P = (5, 16)
19P = O

As we see, it goes from the primitive element P = (5,1) to 19P, which represents the
identity element, then flips to P again as it is the characteristic of any cyclic group. We use
this curve in all our numerical example sections at the end of each algorithm.
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Let P = (5,1) to exemplify our direct doubling algorithm. First, we compute Nx1 and
Ny1 that are related to the point 2P = (6,3), then we apply another four iterations in order to
compute the point 32P mod 17 that is equivalent to the point 13P = (16,4).

Nx2 = (3x2
1 + a)2 − 2x1(2y1)

2 mod p

Nx2 = (3(5)2 + 2)2 − 2(5)(2(1))2 mod 17

Nx2 = 13− 6 mod 17

Nx2 = 7

Ny2 = (3x2
1 + a)(x1(2y1)

2 − Nx2)− 2y2
1 (2y1)

2 mod p

Ny2 = (3(5)2 + 2)((5)(2(1))2 − 7)− 2(1)2 (2(1))2 mod 17

Ny2 = 9(3− 7)− 8 mod 17

Ny2 = 7

where U2 = 2y1 = 2.
Now, we start the first iteration to find the variables Nx4 , Ny4 , W4, q4, and U4 that are

related to the point 4P.

W4 = 3N2
x2
+ aU4

2 mod p

W4 = 3(7)2 + 2(2)4 mod 17

W4 = 9

q4 = 2Ny2 mod p

q4 = 2(7) mod 17

q4 = 14

U4 = q4U2 mod p

U4 = 14(2) mod 17

U4 = 11

Then, we substitute these values in the x4 and y4 equations, and we get,

x4 =
W2

4 − 2Nx2 q2
4

U2
4

mod p

x4 =
92 − 2(7)(14)2

2
mod 17

x4 =
6
2

mod 17

x4 = 3

where the inverse of two is nine and Nx4 = 6.

y4 =
W4(Nx2 q2

4 − Nx4)− Ny2 q3
4

U3
4

mod p
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y4 =
9(7(14)2 − 6)− 7(14)3

113 mod 17

y4 =
5
5

mod 17

y4 = 1

where the inverse of five is seven and Ny4 = 5.
Now, the inputs for the next iteration are ready in order to compute the point 8P.

W8 = 3N2
x4
+ aU4

4 mod p

W8 = 3(6)2 + 2(11)4 mod 17

W8 = 14

q8 = 2Ny4 mod p

q8 = 2(5) mod 17

q8 = 10

U8 = q8U4 mod p

U8 = 10(11) mod 17

U8 = 8

Then, we substitute these values in the x8 and y8 equations, and we get,

x8 =
W2

8 − 2Nx4 q2
8

U2
8

mod p

x8 =
142 − 2(6)(10)2

82 mod 17

x8 =
16
13

mod 17

x8 = 13

where the inverse of 13 is 4 and Nx8 = 16.

y8 =
W8(Nx4 q2

8 − Nx8)− Ny4 q3
8

U3
8

mod p

y8 =
14(6(10)2 − 16)− 5(10)3

83 mod 17

y8 =
14
2

mod 17

y8 = 7

where the inverse of two is nine and Ny8 = 14.
Now, we substitute with the new values of Nx, Ny, and U in the next iteration equations

in order to compute the point 16P.

W16 = 3N2
x8
+ aU4

8 mod p

W16 = 3(16)2 + 2(8)4 mod 17
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W16 = 1

q16 = 2Ny8 mod p

q16 = 2(14) mod 17

q16 = 11

U16 = q16U8 mod p

U16 = 11(8) mod 17

U16 = 3

Then, we substitute these values in the x16 and y16 equations, and we get,

x16 =
W2

16 − 2Nx8 q2
16

U2
16

mod p

x16 =
12 − 2(16)(11)2

32 mod 17

x16 =
5
9

mod 17

x16 = 10

The inverse of nine is two and Nx16 = 5.

y16 =
W16(Nx8 q2

16 − Nx16)− Ny8 q3
16

U3
16

mod p

y16 =
1(16(11)2 − 5)− 14(11)3

33 mod 17

y16 =
8

10
mod 17

y16 = 11

The inverse of 10 is 12 and Ny16 = 8.
Now, we substitute with the new values of Nx, Ny, and U in the last iteration equations

in order to compute the desired point 32P.

W32 = 3N2
x16

+ aU4
16 mod p

W32 = 3(5)2 + 2(3)4 mod 17

W32 = 16

q32 = 2Ny16 mod p

q32 = 2(8) mod 17

q32 = 16

U32 = q32U16 mod p

U32 = 16(3) mod 17

U32 = 14
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Then, we substitute these values in the x32 and y32 equations, and we get,

x32 =
W2

32 − 2Nx16 q2
32

U2
32

mod p

x32 =
(16)2 − 2(5)(16)2

(14)2 mod 17

x32 =
8
9

mod 17

x32 = 16

where the inverse of nine is two and Nx32 = 8. Further,

y32 =
W32(Nx16 q2

32 − Nx32)− Ny16 q3
32

U3
32

mod p

y32 =
16(5(16)2 − 8)− 8(16)3

(14)3 mod 17

y32 =
11
7

mod 17

y32 = 4

where the inverse of seven is five and Ny32 = 11.

4. Intermediate Operations

As it is important to calculate the binary multiplicative 2n for points Q to compute a
large degree isogeny, we enhance the algorithm by finding the intermediate steps such as
3P, 5P, 7P, etc.

In [28], Subramanya Rao worked on Montgomery curves and found an efficient
technique to find point tripling. Simply, we optimize an application of a single double
to some point P, then perform a point addition. This technique could be applied to all
intermediate steps. We present a set of general forms through which we represent the
interstitial points up to 31P.

4.1. Fast 2nQ + P

As mentioned earlier in the background section, the complexity of the SIDH cryp-
tosystem relies on computing isogenies between points on the elliptic curve. Thus, we
performed a further optimization in term of the kernel equation P + [k]Q. As we succeeded
to perform an advanced exponent of a point on a curve with a single inverse, it would have
required an extra inverse for a differential point addition. Therefore, in this section, we
introduce an optimization for mixing our advanced doubling equations with the addition
and perform it with a single inverse.

The following equations have some variables such as Nx, Ny, and U that have to be
replaced with the variables related to each double.

We substitute the value of th x and y coordinates of the point 2nP in Equations (18)
and (21), respectively, in the addition slope equation in (2).

λn =

Nyn
U3

n
− y1

Nxn
U2

n
− x1

mod p

Multiplying with U3
n to eliminate the inverses,

λn+m =
Nyn − y1U3

n

Nxn Un − x1U3
n

mod p (24)
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Wn+m = Nyn − y1U3
n mod p (25)

qn+m = Nxn − x1U2
n mod p (26)

Un+m = Unqn+m mod p (27)

Substituting λn+m in the equations for xn+m and yn+m,

xn+m = (
Wn+m

Un+m
)2 − x1 −

Nxn

U2
n

mod p

Multiplying with U2
n+m,

xn+m =
W2

n+m − x1U2
n+m − Nxn q2

n+m

U2
n+m

mod p (28)

xn+m =
Nxn+m

U2
n+m

mod p

Now, we find yn+m,

yn+m =
Wn+m

Un+m
(x1 −

Nxn+m

U2
n+m

)− y1 mod p

Multiplying with U3
n+m,

yn+m =
Wn+m(x1U2

n+m − Nxn+m)− y1U3
n+m

U3
n+m

mod p (29)

yn+m =
Nyn+m

U3
n+m

mod p

Numerical Examples

Let P = (5,1), then we apply our 2nP + P algorithm to compute the new x and y
coordinates. In this example, we apply 22P + P in order to find the point 5P. We consider the
values previously computed in the numerical example of Section 3 for the point 4P where

Nx4 = 6
Ny4 = 5
U4 = 11
We substitute these values in Equations (28) and (29) and we get,

W5 = Ny4 − y1U3
4 mod p

W5 = 5− 1(11)3 mod 17

W5 = 0

q5 = Nx4 − x1U2
4 mod p

q5 = 6− 5(11)2 mod 17

q5 = 13

U5 = U4q5 mod p

U5 = 11(13) mod 17

U5 = 7
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x5 =
W2

5 − x1U2
5 − Nx4 q2

5
U2

5
mod p

x5 =
(0)2 − 5(7)2 − 6(13)2

(7)2 mod 17

x5 =
16
15

mod 17

x5 = 9

where the inverse of 15 is 8 and Nx5 = 16.

y5 =
W5(x1U2

5 − Nx5)− y1U3
5

U3
5

mod p

y5 =
0(5(7)2 − 16)− 1(7)3

(7)3 mod p

y5 =
14
3

mod 17

y5 = 16

where the inverse of three is six and Ny5 = 14.

4.2. Another General Forms

In Section 4.1, we illustrated the importance of computing the intermediate equations
for the overall speed-up of our algorithms. Table 1 lists our general forms that we illustrated
to implement all the points up to 31P.

As it is known, the nonadjacent form (NAF) aims to reduce the number of one bit in
the binary representation and thus reduce the number of operations; here, we likewise
present in Table 2 the mathematical structure that we relied on for representing all points
up to 31P with the fastest and most efficient possible form.

Table 1. Intermediate Algorithms General Forms.

Forms Algorithms

2nP + P

Wn+m = Nyn − y1U3
n

qn+m = Nxn − x1U2
n

Un+m = Unqn+m

xn+m =
W2

n+m−x1U2
n+m−Nxn q2

n+m
U2

n+m

yn+m =
Wn+m(x1U2

n+m−Nxn+m )−y1U3
n+m

U3
n+m

Wn+m = Nyn − 8N4
ym

qn+m = Nxn − 4Nxm N2
ym

2nP + 2P Un+m = Unqn+m

xn+m =
W2

n+m−4Nxm N2
ym q2

n+m−Nxn q2
n+m

U2
n+m

yn+m =
Wn+m(4Nxm N2

ym q2
n+m−Nxn+m )−8N4

ym q3
n+m

U3
n+m
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Table 1. Cont.

Forms Algorithms

W2n = 3N2
xn + aU4

n
q2n = 2Nyn

2(nP)
U2n = Unq2n

x2n =
W2

2n−2Nxn q2
2n

U2
2n

y2n =
W2n(Nxn q2

2n−Nx2n )−Nyn q3
2n

U3
2n

W2n+1 = Ny2n − y1U3
2n

q2n+1 = Nx2n − x1U2
2n

2(nP) + P
U2n+1 = U2nq2n+1

x2n+1 =
W2

2n+1−x1U2
2n+1−Nx2n q2

2n+1
U2

2n+1

y2n+1 =
W2n+1(x1U2

2n+1−Nx2n+1 )−y1U3
2n+1

U3
2n+1

Table 2. Structure and Cost for All Intermediate Algorithms.

Algorithms Structure Number of Multiplications

3P 2P + P 19

5P 4P + P 28

6P 4P + 2P 26

7P/9P 8P ± P 38

10P 2(5P) 38

11P 2(5P) + P 51

12P 2(6P) 36

13P 2(6P) + P 49

14P/18P 2(7/9P) 48

15P/17P 16P ± P 48

19P 2(9P) + P 61

20P 2(10P) 46

21P 2(10P) + P 61

22P 2(11P) 62

23P/25P 2(12P) ± P 59

24P 2(12P) 46

26P 2(13P) 59

27P 2(14P) − P 71

28P 2(14P) 58

29P 2(15P) − P 71

30P 2(15P) 58

31P 32P − P 58

5. Extraction of Coordinates (EiSi Coordinates)

The EiSi coordinate system can be seen as a modified version of either the affine or
Jacobian spaces with different operators. Each point PA = (NxA : NyA : UA) is represented
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in affine coordinates as (NxA /U2
A, NyA /U3

A). The EiSi space operators also offer faster
arithmetic. Similar to the previous projective techniques, this form of elliptic curve is
represented with a single inversion at the last iteration.

Let PA and PB be points on an elliptic curve then, in affine space,

(XA : YA) + (XB : YB) = (XC : YC)

At the first iteration, we consider UA = UB = 1, then we get,

(NxA : NyA) + (NxB : NyB) =

(
Nxc

U2
c

:
Nyc

U3
c

)
where (in case of doubling),

NxC =
(

3x2
A + a

)2
− 2xA(2yA)

2 mod p (30)

NyC =
(

3x2
A + a

)(
xA(2yA)

2 − NxA

)
− 2y2

A (2yA)
2 mod p (31)

Uc = 2yA mod p (32)

Additionally, in case of adding two points after the first iteration, where the base point
will be changed, we illustrate a modified version of the point addition algorithm. Let PA
and PB be a point on the elliptic curve where (NxA : NyA : UA) and (NxB : NyB : UB) are the
projective EiSi points representation, respectively. Then, we get,

(NxA : NyA : UA) + (NxB : NyB : UB) = (NxC : NyC : UC)

In the case P1 6= ±P2 (addition),

WC = NyB U3
A − NyA U3

B mod p (33)

qC = NxB U2
A − NxA U2

B mod p (34)

UC = UAUBqC mod p (35)

NxC = W2
C − NxA U2

Bq2
C − NxB U2

Aq2
C mod p (36)

NyC = WC(NxA U2
Bq2

C − NxC )− NyA U3
Bq3

C mod p (37)

In the case PA = PB (higher-order doubling), let P1 = PA. Then, as proved in
Section 3, recursively

Wn = 3N2
xn/2

+ aU4
n/2 mod p (38)

qn = 2Nyn/2 mod p (39)

Un = qnUn/2 mod p (40)

Nxn = W2
n − 2Nxn/2 q2

n mod p (41)

Nyn = Wn(Nxn/2 q2
n − Nxn)− Nyn/2 q3

n mod p (42)

We rewrite our algorithms to receive Nxn , Nyn , and Un instead of the xn and yn
values. By applying this method, we manage to dispense with computing the inverse at
each iteration.

Since all algorithms start with finding the Nx2 and Ny2 values that are related to the
point 2P, we note some adjustments to these algorithms in terms of their inputs, then
we get:

Nx2 = (3N2
xin

+ aU4
in)

2 − 8Nxin N2
yin

mod p (43)

Ny2 = (3N2
xin

+ aU4
in)(4Nxin N2

yin
− Nx2)− 8N4

yin
mod p (44)
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U2 = 2Nyin Uin mod p (45)

where Nxin , Nyin , and Uin are the inputs that represent the point (X1 : Y1) at the first
iteration where Uin equals one and Nx2 , Nx2 , and U2 are the outputs that represent the
point 2P.

Numerical Example

In this section, we use the same cyclic group introduced in Section 3 and consider some
of the values previously computed in the previous numerical examples sections in order to
illustrate how our new coordinate system finds point doubling and addition correctly with
a single inverse along the key size.

Assume we have a key size of four bits that represents the number 1010 = (1010)2.
Then, we apply the left-to-right algorithm in order to compute the new x and y coordinates
for the point 10P = (7,11).

First, as we scan from left to right we process the second one-bit. Each one-bit is
represented by a doubling and addition while each zero-bit is only represented by a
doubling. Thus, we double in order to find the point 2P.

As in Section 3, we consider the values,
U2 = 2
Nx2 = 7
Ny2 = 7
Then, we scan the next bit from the left which appears to be 1. Another double-and-add

operation is applied and we get 2(2P) + P = 5P.
KEY: 1 0 1 . . .
Operations: 2P 5P . . .
As in Section 4.1, we consider the values for 5P as well,
U5 = 7
Nx5 = 16
Ny5 = 14
Note: Nx2 , Ny2 , Nx5 , and Ny5 are computed with no inversion operation.
Now, we scan the last bit which appears to be 0. The doubling operation is applied

and we get 2(5P) = 10P = (7,11).
KEY: 1 0 1 0
Operations: 2P 5P 10P

W10 = 3N2
x5
+ aU4

5 mod p

W10 = 3(16)2 + 2(7)4 mod 17

W10 = 11

q10 = 2Ny5 mod p

q10 = 2(14) mod 17

q10 = 11

U10 = q10U5 mod p

U10 = 11(7) mod 17

U14 = 9

Nx10 = W2
10 − 2Nx5 q2

10 mod p

Nx10 = (11)2 − 2(16)(11)2 mod 17
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Nx10 = 6

Ny10 = W10(Nx5 q2
10 − Nx10)− Ny5 q3

10 mod p

Ny10 = 11((16)(11)2 − 6)− (14)(11)3 mod 17

Ny10 = 12

At the end of the last iteration, the inverse function is applied in order to find the
affine coordinates for the point 10P.

x10 =
Nx10
U2

10
= 6

13 = 7

y10 =
Ny10
U3

10
= 12

15 = 11 where 13−1 = 4 and 15−1 = 8.

6. Fast Multiplication with Mixed-Base Multiplicands

Here follows the description of a few algorithms that can integrate the fast repeated-
doubling techniques mentioned so far by applying mixed base multiplicands. With the
algorithm mP + nQ, one can compute multiplications with scalars up to 31. One can divide
m’s binary representation into blocks of five bits. In case an obtained block represents one
of the unimplemented scalar multiplications, such blocks may be reduced in length.

6.1. Double-and-Add Extensions

In Sections 3 and 4, it was shown how to compute all intermediate exponents and mix
the doubling with a differential addition with a single inverse. The left-to-right algorithm
starts scanning from the left the next one-bit considering that the most significant bit is
one. Then, it decides whether it applies doubling or doubling and addition depending on
the data being read. For instance, if the first two one-bits represent the binary equivalent
(101)2 which is 510, the algorithm multiplies the base by four because it was shifted to the
left by two bits. Since the last bit scanned is a one, it also applies a differential addition to
the point being doubled with the base point. Thus, the implementation is 4Q + Q. Figure 1
shows a practical example for calculating Q47. This technique computes Q47 with only four
inverses, instead of the eight inverses when performing the original equations. However,
by applying our EiSi coordinate system, one can compute the whole key with a single
inverse as for the projective technique.

Figure 1. Left-to-Right Proposed Algorithm.

In Line 1 of the pseudocode of the double-and-add extensions in Algorithm 1, we apply
the DoubleAndAddKnapsack function taking as parameter the counter l that specifies the
current bit location, and the base point P to be added at the end. Otherwise, we apply the
DoubleKnapsack function that computes the shifting to the left by multiplying the D value
with 2l .
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Algorithm 1: Double-and-Add Extensions

procedure MultiplyL2RKnapsack(k, P) do
if |k| ≤ 0 or k|k|−1 == 0 then return O;
;
D := P;
for (int i := |k| − 2; i ≥ 0; ) do

l := 0;
do

i −−;
l ++;

while (ki == 0 and i ≥ 0);
if ki == 1 then

1 D := DoubleAndAddKnapsack(D, l, P);
else

2 D := DoubleKnapsack(D, l);
end

end
return D;

end

6.2. Fast Multiplication with Base-32 Multiplicands

Here, we mention a simple special case of an algorithm based on base-32 represen-
tations of the multiplicands. Then, for a multiplier of the form qr32 the computation is
implemented as,

32(qP) + rP mod p

For the scalar 10,150 = 27A616, the obtained algorithm is equivalent to:

(32(9P) + 29P)(32) + 6P mod p

As noted in the above equation, and similar to the Montgomery curve, the key is
indistinguishable and cannot be recognized by a side-channel attack since the algorithm
applies point doubling and addition at each iteration regardless of the key bit value.
In addition, by applying direct-doubling algorithms, we benefit from the reduced number
of point additions, which in fact costs more than point doubling. Moreover, as noted in
Section 5, the EiSi coordinate system operates in two modes. The first is when it receives
affine x and y coordinates, while the other deals with Nx, Ny, and U as inputs. The
base-32 multiplicands algorithm increases the use of the first mode, which costs fewer
multiplications. Thus, we consider a base-32 multiplicands algorithm as one of the most
efficient algorithms.

7. Results and Experiments

Simulation experiments were performed with a Java implementation of the proposed
algorithms. We applied the algorithms on large parameters defined in the standard curves
P-521, P-384, P-256, and P-224 from the National Institute of Standards and Technology
(NIST). In addition, we picked 10 different keys that were randomly generated with an
appropriate size for the x and y coordinates of each curve. Each algorithm was executed
multiple times and then we computed the average time taken to increase the accuracy of
the calculations. Experimentally, our software implementation was tested on a BeagleBone
Black (BBB) System kit [29]. The BBB was equipped with a minimum set of features to
allow the user to experience the power of the processor [29]. This system is equipped with
one of the ARM Cortex-A8 family, AM3358/9 processor [29].
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7.1. Functions Description and Properties

In this section, we list the important functions that were used in our software imple-
mentation and their properties. Since the EiSi curve receives and returns two different
forms of inputs and outputs, (x,y) or (Nx:Ny:U), we clarify among these characteristics
these details.

7.1.1. doubling2nN

This special function was designed to receive and return an EiSi point. Basically, it
receives the number of doublings of a point and then builds the equation for implementing
this doubling. For example, if one wants to compute the point 6P, it requires finding the
point 2P then 4P in order to fulfill the constructional equation for 6P, which is 2P + 4P.

7.1.2. adv_addN2N_N and adv_subN2N_N

These functions receive and return EiSi points. Briefly, they perform point addition
and subtraction between two EiSi points.

7.1.3. remi_point

This function receives an affine point and return an EiSi point. In addition, it receives
the number of doublings of a point and then builds the equation for implementing this
doubling. Mainly, it is used in the base-32 multiplicands algorithm specifically for comput-
ing the remainders, where all of them are based on the same base point. It differs from the
doubling2nN function, where all the doubling algorithms operators and labels are depen-
dent. Basically, the point 4P cannot be computed without finding the point 2P. Moreover,
the point 8P cannot be computed without finding the point 2P then 4P. For example, if one
wants to compute the third double for the base point 8P = (13,7), it is represented in EiSi
coordinates as (16:14:8). The remi_point will compute the Nx, Ny, and U values for the
point 2(8P) then 4(8P) then return the EiSi point of 8(8P) = 7P mod 19 that is represented as
(0:14:2).

7.1.4. remi_func

This function works as a control for the remi_point function. The remi_func has archi-
tectures of all the doubling algorithms and how they are implemented. Essentially, it has
flags to be checked to avoid repeating any previously computed operations. Figures 2 and 3
show practical examples printed from our implementation debug page.

Figure 2. Computing the point 24P by using remi_func and remi_point functions.
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29P = 32P− 3P
Found 2P
Found 4P
Found 8P
Found 16P
Found 32P
Found 3P
Found 29P
Output = (7, 11)

11P = 8P + 3P
Found 11P
Output = (13, 10)

Figure 3. Computing the point 29P by using remi_func and remi_point functions.

As we notice in Figure 2, at the second block the 2P parameters were not recomputed
and similarly at the third block for 8P. Furthermore, in Figure 3, at the last block, we notice
that 8P and 3P were previously computed and we only had to perform a point addition.

7.2. Our Work vs. Original

In this section, we compare our algorithms in terms of number of multiplications for
our work, base-32 multiplicands and double-and-add, with the original affine algorithm.
We implemented the original affine equations with two different algorithms, right-to-left
and left-to-right. Table 3 shows the huge differences in the number of multiplications
and inversions between these algorithms and our work. On colored background one can
see the best results for each benchmark, and they correspond to the Base 32 version of
our technique.

Table 3. Our Work vs. Original Algorithms Measurements.

NIST Curve Algorithm
Number of Operations

Mult. Inv.

P-521

RL (original) 658,514 1059

LR (original) 478,056 778

DA 9162 1
Base 32 7921 1

RL (original) 355,788 775

P-384
LR (original) 259,177 569

DA 6714 1
Base 32 5890 1

RL (original) 162,131 519

P-256
LR (original) 115,340 378

DA 4466 1
Base 32 4007 1

RL (original) 123,461 450

P-224
LR (original) 88,921 332

DA 3921 1
Base 32 3529 1
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As we notice in Table 3, there is a great difference in the number of multiplications
and inversions between our work and the original algorithm as our work is faster by
approximately 35 up to 83 times for the key sizes of 224 bits and 521 bits, respectively, when
comparing with RL and 25 up to 60 times in the case of LR. Obviously, all these differences
are caused by the number of inverse operations that the original algorithm requires for
each point doubling or addition operation. Figure 4 translates this difference in a chart
where our work appears as a straight line along the x-axis.

Figure 4. Our work vs. Original algorithms in Terms of Number of Multiplications: blue and red
lines are superposed.

7.3. Eisi Coordinates vs. Others

Here, we compare our work with the other coordinate systems, projective and Jacobian.
Table 4 shows a comparison of these algorithms in terms of the number of additions, sub-
tractions, multiplications, divisions, modulo operations, maximum levels of parallelization,
and elapsed time for implementing them on the NIST standard curves P-521, P-384, P-256,
and P-224.

Table 4. EiSi Coordinates vs. Other Coordinates Measurements.

NIST Curve Algorithm
Number of Operations

Time ms
Mult. Div. ALUs Mod. MaxLs

P-521

Projective 14,900 315 4211 17,899 9390 1035

Jacobian 13,312 301 4197 15,821 8862 884
Base 32 7921 296 6518 12,290 7123 778

DA 9162 301 7848 18,528 9924 951

Projective 10,901 226 3078 13,107 6871 554

Jacobian 9752 222 3075 11,587 6491 480
P-384

Base 32 5890 227 4833 9113 5224 421
DA 6714 222 5746 13,556 7267 508

Projective 7236 145 2043 8714 4564 286

Jacobian 6488 147 2046 7708 4316 261
P-256

Base 32 4007 150 3277 6210 3463 227
DA 4466 147 3820 9028 4833 266

Projective 6356 127 1796 7656 4010 234

Jacobian 5697 127 1796 6773 3790 215
P-224

Base 32 3529 132 2886 5472 3041 193
DA 3921 127 3354 7931 4243 218
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As we notice in Table 4, our work which is represented in the last two algorithms
is more efficient when it comes to number of multiplications (see entries with colored
background). Clearly, the base-32 multiplicands algorithm is the optimal algorithm in
this case. Moreover, when we compare by the maximum levels of parallelization, we find
that our work outperforms the other coordinates algorithms as well through the base-32
multiplicands algorithm which makes it the optimal algorithm in terms of both factors.
Nevertheless, the double-and-add algorithm which represents the original EiSi coordinates
appears to be the least efficient in terms of maximum levels; however, together with our
direct-doubling technique we outperform all other algorithms in all aspects. Figures 5 and 6
contain graphs that show the comparisons between our work and the other coordinates
algorithms in terms of number of multiplications and maximum levels of parallelization
with different key sizes.

Figure 5. Our Work vs. Other Coordinates Algorithms in Terms of Number of Multiplications.

Figure 6. Our Work vs. Other Coordinates Algorithms in Terms of Number of Maximum Number of
Levels.

As can be seen in Figures 5 and 6, all algorithms are graphed as straight lines of
varying slopes, which gives us the opportunity to apply a straight-line equation to any
algorithm to predict the expected values, whether it is the number of multiplications or
the maximum levels of parallelization at the level of a larger key size. Table 5 lists all the
equations related to each algorithm.

Table 5. List of Algorithms’ Linear Equations.

Algorithm Equation: Number of Mult. Equation: Number of MaxLs

Base 32 y = 14.777x + 220.37 y = 13.762x− 52.445

DA y = 17.658x− 48.287 y = 19.139x− 60.183

Jacobian y = 25.656x− 70.992 y = 17.089x− 52.485

Projective y = 28.795x− 121.85 y = 18.131x− 69.095
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Predictably, we apply the equations in Table 5 on two key sizes of the prime numbers
of 751 and 1013. Table 6 lists the expected number of multiplications and maximum number
of levels.

Table 6. Expected number of Multiplications and Maximum Levels with Key of Sizes 751 and 1013.

Algorithm
Expected Number of Mult. Expected Number of MaxLs

751 1013 751 1013
Base 32 11,317 15,189 10,282 13,888
DA 13,212 17,839 14,313 19,327

Jacobian 19,196 25,918 12,781 17,258

Projective 21,503 29,047 13,547 18,297

As it can be seen in Table 6, our work represented in the base-32 multiplicands algo-
rithm maintains its place as the optimal algorithm in terms of number of multiplications
and maximum levels of parallelization. Likewise, we find that the Jacobian algorithm
outperforms the projective algorithm in terms of the same factors, which led us to an-
other comparison between base-32 multiplicands algorithm and the Jacobian coordinates
algorithm to monitor if the difference in performance shrank with the size of the key or
continued to increase. Despite the slope values in the straight-line equations that show the
differences, we computed the delta value, ∆, which was the difference between the y-axis
values along the key size. Table 7 shows the comparison between these two algorithms in
terms of the same two factors, where

∆i = yn − ym (46)

where i represents the key size and n and m represent the algorithms labels.

Table 7. ∆ Values for Base 32 vs. Jacobian.

Key Size
Number of Mult. Number of MaxLs

Base 32 vs. Jacobian Base 32 vs. Jacobian

224 2168 749

256 2481 853

384 3862 1267

521 5391 1739

751 7879 2499

1013 10,729 3370

We conclude from the ∆ values from Table 7 that our results in both cases showed that
the improvement scaled with the size of the input.

7.4. Number of Multipliers Comparison

After the tests and comparisons have proven the efficiency of our algorithms and
their superiority against other coordinate systems algorithms, in this section we specify the
number of multiplication units each algorithm requires to achieve their maximum levels of
parallelism. Table 8 shows the number of multipliers per algorithm in the case of a key size
of 521.

As it can be seen in Table 8, the appropriate number of multipliers to achieve the
highest level of parallelism varies among algorithms. In addition, we note that if we reduce
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the number of multipliers a little, we may get a very close result in terms of maximum
levels of parallelization. Thus, it led us to another close comparison in which we monitored
the behavior of each algorithm in comparison with the others in multiple cases where
the number of multipliers was uniform. Table 9 shows another comparison between our
optimal algorithm specified in the previous sections compared to the Jacobian algorithm,
in terms of the maximum levels (MaxLs) at specific numbers of multipliers.

Table 8. The Number of Multipliers Appropriate to Achieve the Highest Level of Parallelism.

Algorithm Number of MaxLs Multipliers

DA 9920 3

Base 32 7133 3

Projective 9370 6

Jacobian 8862 4

Table 9. Maximum Levels at Different Numbers of Multipliers.

Multipliers Algorithm Number of MaxLs

1
Base 32 7982
Jacobian 13,011

2
Base 32 7134
Jacobian 8864

3
Base 32 7133
Jacobian 8863

4
Base 32 7133
Jacobian 8862

As it can be seen in Table 9, our algorithms outperform the Jacobian algorithm in
all levels, starting from a single multiplier, where the base-32 algorithm appears to be
63% more efficient, up to four multipliers, where Jacobian reaches its peak while being
24% slower than the base 32 algorithm. In the two-multiplier case, the performance of
both algorithms improves significantly as the difference in efficiency becomes almost 24%
with the advantage remaining for our work. We also note that the base-32 and Jacobian
algorithms become highly ineffective as they continue to increase by one parallel level
by increasing the number of multiplication units each time until they reach their peak.
At the end, and in all cases, whether we use fewer or more multipliers, the efficiency of
our algorithm clearly outweighs the work of other coordinate systems algorithms. Figure 7
shows the graphical representation of the relationship of the number of multipliers with
the maximum levels of parallelism.

Figure 7. Maximum Levels for Different Number of Multipliers.
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8. Discussion

In 2022, NIST released its report on algorithms resistant to quantum computer attacks,
with supersingular isogeny key encapsulation, SIKE, as one of the candidates [2]. The orga-
nization clarified in its latest report the advantages of the algorithm in terms of security
and key shortness, and in return, its biggest flaw was its performance. Since the SIDH
algorithm is based on elliptic curve calculations, our proposal in this paper becomes of great
importance and support for this algorithm in the field of quantum computer attacks. Later
that year, Castryck and Decru presented an efficient key-recovery attack on the SIDH, based
on a “glue-and-split” theorem exploiting the knowledge of the starting curve [30]. A short
time later, Damien Robert published a paper claiming to break SIDH in a polynomial time
even with a random starting curve [31]. Nevertheless, Fouotsa proposed a countermeasure
to the Castryck–Decru attack by applying a mask to the torsion-point images where the
attack cannot be valid [32]. Simply, they applied a scalar multiplication a where a ∈ Z/BZx

to the points p and q. Thus, there will be an impact on performance to maintain security,
which makes our contribution more relevant for the application.

9. Conclusions

This research proposed optimization methods for computing scalar multiplication
in elliptic curves over a prime field, in the short Weierstrass form in the affine plane.
The report started by describing a methodology for direct repeated point doubling with
a high order, as well as point addition of the form nP + mQ by using a single inversion.
These new algorithms were shown to be significantly faster than the original equations.
In addition, we developed optimized equations for repeated doubling of higher order than
available with comparable current existing algorithms (up to 31).

The second part introduced a new coordinate system, EiSi, with fast algorithms shown
to be offering the lowest cost when using only a single inverse. In fact, EiSi shared the
same Jacobian space but with different operators. Parallelization opportunities were also
highlighted. The evaluation of our implementation indicated that the proposed equations
outperformed the other coordinate systems and also provided a significant speed-up when
realized in hardware. Moreover, EiSi with the direct repeated doubling technique was
proven more efficient in all aspects evaluated, namely the number of multiplications,
maximum levels of parallelization, and estimated time.

The base-32 multiplicands algorithm was one of the multiplicands family of algorithms
proposed. This algorithm was characterized by its speed and by the low number of parallel
levels required to implement it, namely just three multipliers. In addition, the operators
of this algorithm kept the key bit values indistinguishable, as they continued the point
doubling and addition process according to the Montgomery procedure, making them sim-
ilarly resistant to side-channel attacks. The base-32 multiplicands algorithm outperformed
other coordinates algorithms in all evaluated aspects.
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