
Efficient Energy-Optimal Routing for Electric Vehicles

Martin Sachenbacher
Technische Universität München

Department of Informatics
Boltzmannstraße 3

85748 Garching, Germany
sachenba@in.tum.de

Martin Leucker
Universität zu Lübeck

Institut für Softwaretechnik
Ratzeburger Allee 160

23562 Lübeck, Germany
leucker@isp.uni-luebeck.de

Andreas Artmeier
Julian Haselmayr

Technische Universität München
Department of Informatics

Boltzmannstraße 3
85748 Garching, Germany

{artmeier,haselmay}@in.tum.de

Abstract

Traditionally routing has focused on finding shortest paths in
networks with positive, static edge costs representing the dis-
tance between two nodes. Energy-optimal routing for electric
vehicles creates novel algorithmic challenges, as simply un-
derstanding edge costs as energy values and applying stan-
dard algorithms does not work. First, edge costs can be neg-
ative due to recuperation, excluding Dijkstra-like algorithms.
Second, edge costs may depend on parameters such as vehicle
weight only known at query time, ruling out existing prepro-
cessing techniques. Third, considering battery capacity limi-
tations implies that the cost of a path is no longer just the sum
of its edge costs. This paper shows how these challenges can
be met within the framework of A* search. We show how the
specific domain gives rise to a consistent heuristic function
yielding an O(n2) routing algorithm. Moreover, we show
how battery constraints can be treated by dynamically adapt-
ing edge costs and hence can be handled in the same way as
parameters given at query time, without increasing run-time
complexity. Experimental results with real road networks and
vehicle data demonstrate the advantages of our solution.

Introduction

Due to their efficiency and their ability to run on regen-
erative energy sources, electric vehicles (EV) that are par-
tially or fully powered by batteries will significantly shape
the road traffic of the future. However, because of limited
battery capacities and long recharge times, techniques for
energy-optimized driving and accurate prediction of remain-
ing cruising range are even more important for such EVs
than they are for conventional vehicles.

The goal of energy-efficient driving of EVs creates novel
algorithmic challenges for navigation systems and route
planners. Traditionally, routing has focused on finding short-
est paths in networks with positive, static edge costs that
represent the distance between two nodes. The best known
algorithm for this case is Dijkstra (Dijkstra 1959) with time
complexity O(n2). State-of-the-art route planning combines
this algorithm with graph preprocessing techniques like con-
traction hierarchies (Geisberger et al. 2008), highway hierar-
chies (Sanders and Schultes 2005) and transit vertex routing
(Bast et al. 2007).

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Prototype of our energy-optimal route planner.

However, for energy-optimal EV routing, simply under-
standing edge costs as energy values and applying these
standard algorithms does not work. First, part of the effi-
ciency of EVs results from their ability to recover some
of their kinetic and/or potential energy during deceleration
phases. This so-called recuperation or regenerative brak-
ing means that edge costs can be negative, which excludes
straightforward application of greedy Dijkstra-like algo-
rithms. Second, edge costs may be complex to compute and
may depend on a number of parameters such as vehicle pay-
load, auxiliary consumers, etc. only known at query time.
This rules out existing preprocessing techniques and tech-
niques such as Johnson’s algorithm (Johnson 1977), which is
based on global graph analysis to eliminate negative edges.
Third, considering battery capacity limitations means that
additional energy losses or gains can arise from taking a spe-
cific path; for example, if the battery is already fully charged
when entering a negative edge, recuperation is no longer
possible. This implies that the cost of a path is no longer just
the sum of its edge costs, as some costs cannot be statically
attributed to individual edges. While extensions of the short-
est path problem to incorporate such additional constraints
exist (Joksch 1966), they are in general known to be NP-
complete (Garey and Johnson 1979).

In this paper, we propose a solution for energy-optimal
routing for EVs that meets the above challenges within the
framework of A* search (Hart, Nilsson, and Raphael 1968).

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1402

The key idea of the approach is to exploit domain-specific
knowledge to identify and bound different forms of energy,
which gives rise to a consistent heuristic function and yields
an O(n2) routing algorithm that expands only as few nodes
as necessary. Moreover, we then show how battery con-
straints can be incorporated into this algorithm by dynami-
cally adapting edge costs during the search; thus, they can be
handled in the same way as parameters given at query time,
without increasing the overall run-time complexity. Our so-
lution improves by an order of magnitude upon previously
published results (Artmeier et al. 2010) that presented an
O(n3) algorithm for a simplified version of the problem. We
implemented our approach within a prototypic route plan-
ning system for EVs (see Figure 1).

The remainder of the paper is structured as follows. In the
next section, we introduce the problem of finding the most
energy-efficient path for battery-powered EVs with recuper-
ation in a graph-theoretical context. Then, we use a small
example to present the idea of deriving a consistent heuristic
for energy consumption by distinguishing and establishing
bounds for two different forms of energy. Subsequently, we
propose our algorithmic solution based on A* search and
show how additional, path-related costs can be incorporated
into this framework without compromising complexity and
correctness. Finally, experimental results with a prototypic
implementation using real road networks and vehicle data
demonstrate the effectiveness of our solution.

Energy-optimal paths

We assume that a road network is given as a directed graph
G = (V,E) with |V | = n and |E| = m. Vertices v ∈ V rep-
resent points on the map and edges e ∈ E represent connec-
tions between these points corresponding to road sections.
We assume that for each vertex an elevation z : V → R

+
0 is

given, and for each edge a length l : E → R
+ and a speed

limit s : E → N is given.
A path P is then a sequence of k vertices (v1, v2, . . . , vk)

with (vi, vi+1) ∈ E for i = 1, 2, . . . , k-1. We assume that
along a path, the car is driven at the respective speed limit
of each road section, and when transiting from one sec-
tion (vi, vi+1) to the next one (vi+1, vi+2), adapting from
s(vi, vi+1) to the new (possibly higher or lower) speed
s(vi+1, vi+2) can be regarded as instantaneous.

In addition, we assume that further parameters that influ-
ence the vehicle’s energy consumption, such as its mass and
air drag coefficient, friction coefficients, etc. are available,
albeit not necessarily beforehand.

Given this setting, we now consider the amount of energy
consumed or gained by an EV when passing an edge in the
network. We consider in our model two different forms of
energy that can occur:

Potential energy EP . We assume a function EP (z(a), . . .)
models the potential energy resulting from elevation of a
vertex. When traveling along an edge (a, b) in the path,
the energy cP (a, b) = EP (z(b), . . .)−EP (z(a), . . .) has
to be spent when z(a) ≤ z(b), resp. it can be (partly)
recuperated by the EV when z(a) > z(b).

Energy loss EL. We assume a function EL(l(e), s(e), . . .)
models loss of energy to the environment, for example due
to rolling and aerodynamic resistance or conversion losses
during recuperation, when passing an edge e = (a, b).
We assume this function is linearly increasing in l(e) and
monotonically increasing in s(e). The energy cL(a, b) =
EL(l(e), s(e), . . .) cannot be recuperated by the EV.

For example, in our experiments we used the specific func-
tions

cP (a, b) = mg(z(b)− z(a))

where m is vehicle mass including payload, g is gravita-
tional acceleration, and

cL(a, b) =

{
ηr · cR(a, b)− cP (a, b) if cR(a, b) ≤ 0
1
ηc

· cR(a, b)− cP (a, b) if cR(a, b) > 0

where ηc ∈]0, 1] and ηr ∈ [0, 1] are efficiency factors and
cR(a, b) is the auxiliary term

cR(a, b) = cP (a, b) + frmgl(a, b) +
1

2
ρAcws(a, b)

2l(a, b)

with fr being a friction coefficient, ρ the air density, A the
vehicle’s cross section area, and cw its air drag coefficient.

The functions cP (a, b) and cL(a, b) sum up to an edge
weight function c : E → R, c(a, b) = cP (a, b) + cL(a, b)
that models the amount of energy required to drive the road
section (a, b). We call the weighted graph G = (V,E, c)
energy graph. Due to conservation of energy, no negative
cycles exist in G.

Next, we consider the amount of energy needed by an
EV to travel along a path P in the network. We call such
a mapping from P to R a path cost function. Let P =
(v1, v2, . . . , vk) be a path in G, and P i = (v1, v2, . . . , vi) be
the subpath of P ending in vertex vi (with i ≤ k), P k = P .
A first approach is to just sum the edge costs along the path.
This is accomplished by the path cost function

c(P k) =

{
0 if k = 1,
Δk if k > 1

where Δk = c(P k−1) + c(vk−1, vk). Finding a path P with
minimal cost c(P) is a classic shortest path problem, where
some of the edges can have negative values.

However, a more realistic model has to include the EV’s
battery, which has an initial charge J ∈ R

+. Paths are only
feasible if the charge of the battery does not fall below zero.
If we express infeasibility of paths by infinite costs, the fol-
lowing path cost function takes this constraint into account:

cJ(P
k) =

⎧⎨
⎩
0 if k = 1,
Δk if k > 1 and Δk ≤ J ,
∞ if k > 1 and Δk > J

where Δk = cJ(P
k−1) + c(vk−1, vk). In cJ , the cost of the

path is the sum of the spent (or gained) energy, and infinity
if this exceeds the battery charge along the way.

Finally, we also have to consider that the battery has a
maximum capacity C ∈ R

+, J ≤ C. Recharging (at neg-
ative edges) is thus only possible as long as the battery has

1403

sufficient free capacity (initially, C−J). The following more
refined path cost function considers also this constraint:

cCJ(P
k) =

⎧⎪⎪⎨
⎪⎪⎩
C − J if k = 1,
0 if k > 1, Δk < 0,

Δk if k > 1, 0 ≤ Δk ≤ C,

∞ if k > 1, Δk > C

where Δk = cCJ(P
k−1) + c(vk−1, vk). In cCJ , the cost of

the path is equal to the remaining free battery capacity, and
infinity if the battery charge is exhausted along the way.

Definition 1 (Energy-optimal routing problem) Given an
energy graph G = (V,E, c), two vertices s, t ∈ V , an initial
charge J ∈ R

+ and a maximum capacity C ∈ R
+, J ≤ C,

the energy-optimal routing problem is to find a path P in G
from s to t with minimal path cost cCJ(P).

Such energy-optimal routes correspond to paths which are
feasible to use and where the remaining free battery capacity
is minimal (equivalently, where the remaining battery charge
at the end of the route is maximal).

Computing energy-optimal paths using A*

To simplify the presentation of our approach, we first elab-
orate a solution for the simplified problem without dynamic
edge costs and battery constraints. This solution is then ex-
tended to the general case in the next subsections.

Energy-optimal path as shortest path. Figure 2 shows a
weighted graph, for which we are interested in the shortest
path from source s to destination t. First, we consider only
the solid lines representing the edges E in the graph. The
label of an edge (u, v) denotes its energy costs c(u, v) =
cL(u, v)+cP (u, v) and is given by two values: the first value
cL(u, v) ≥ 0 represents the loss of energy and the second
cP (u, v) = π(v)−π(u) the required energy to overcome the
potential energy difference π(v)−π(u) of u and v. As stated
in the previous section, each vertex u in the graph has an
elevation z(u) resulting in a potential energy EP (z(u) . . .),
which is abbreviated by π(u) and shown next to the label of
each vertex. For example, the potential energy π(x) is 0, and
π(y) is 2. Hence, the energy costs c(x, y) of the edge (x, y)
is 1 + (2− 0).

Ignoring battery constraints, the problem of finding an
energy-optimal path from s to t boils down to finding a
shortest path from s to t, which is typically solved using
Dijkstra’s algorithm (Dijkstra 1959) with worst time com-
plexity O(n2). However, in our setting it is not applicable, as
the potential energy difference of two adjacent vertices can
cause a negative weight; e.g. c(z, t) = 1 + (1 − 4) = −2.
While the Bellman-Ford algorithm (Bellman 1958) works
for graphs with arbitrary weights, its worst time complexity
of O(n3) renders this algorithm an inappropriate solution.

A different approach is to first transform the weight func-
tion c into a positive reduced weight function cΠ using a
so-called potential function Π assigning to each vertex a
potential, as described in (Mehlhorn and Sanders 2008).
In more detail, it is shown that whenever a function Π
statisfies Π(v) − Π(u) ≤ c(u, v) and determining cΠ as

x, 0

y, 2 z, 4

s, 0

t, 1

1+0

2+4

4+1

1+2

3+2

1-3

3+1

2-1

1-3

3+1

Figure 2: A routing example.

cΠ(u, v) = c(u, v) + Π(u) − Π(v) the shortest paths in
(V,E, cΠ) are also shortest paths in (V,E, c) (Mehlhorn and
Sanders 2008).

This idea is taken up in Johnson’s algorithm by applying
the Bellman-Ford algorithm as a preprocessing step to deter-
mine the potential function Π, and then solving the shortest
path problem in (V,E, cΠ) by Dijkstra’s algorithm.

A first, important observation also made in (Neubauer
2010) is that in our specific setting, a potential function Π is
naturally obtained without the need of a preprocessing step:
the potential energy function π implies a potential function
Π, resulting in a positive reduced weight function cΠ.

Lemma 1 π implies a positive reduced weight function cπ

Proof.

cπ(u, v) = c(u, v) + π(u)− π(v)

= cL(u, v) + π(v)− π(u) + π(u)− π(v)

= cL(u, v) ≥ 0

��
Therefore the preprocessing step in Johnson’s algorithm

can be avoided and the problem can be solved in O(n2).
However, Dijkstra’s algorithm has the disadvantage to ex-

pand more vertices than necessary. In this example all ver-
tices are expanded before the shortest path (s, z, t) with path
cost 4 is found.

Our second contribution to the energy-optimal routing
problem is to use A* with a non-trivial heuristic rather than
Dijkstra’s algorithm.

Algorithm 1 shows a slightly modified version of the A*
algorithm (Hart, Nilsson, and Raphael 1968), which deter-
mines a shortest path from s to t. It belongs to the informed
search algorithms which first pursue paths that appear to be
the best routes to t based on the available information. Let
g(v) be the current path costs from s to v and h(v) a heuristic
estimate for the costs of a shortest path from v to t. The algo-
rithm is initialized by setting all path costs to ∞ except for
the source vertex s (line 4). In general g(s) is initialized with

1404

0, and we assume this for the moment as battery constraints
are ignored (in subsequent sections, g(s) is initialized with
C−J ≥ 0 following the cost function cCJ developed in the
previous section.) The initial vertex s is added to the priority
queue Q. In every iteration the vertex u in Q with minimal
g(u) + h(u), i.e., for which the current costs plus the esti-
mated costs is minimal, is removed from Q and expanded.
During the expansion a successor v of u is added to Q if its
new path costs given by g(u) + c(u, v) is smaller than the
so-far known value. Note that line 12 is adapted by an addi-
tional summand ĉ; this summand is required in subsequent
sections but assumed to be 0 in this example. Moreover, to
be able to return the shortest path and not only the mini-
mal weight, the choices for building up a shortes path are
recorded via function p in lines 3 and 14.

In (Hart, Nilsson, and Raphael 1968), it is shown that if a
heuristic is admissible, i.e. never overestimates the remain-
ing costs to reach t, the algorithm terminates correctly when
reaching t. The shortest path (s, . . . , t) from s to t is implic-
itly given by p and returned in line 9.

Moreover, it was shown that if a heuristic h is consistent,
which is defined as

h(u, t) ≤ c(u, v) + h(v, t) and h(t, t) = 0 for all u, v, t

the algorithm terminates correctly in O(n2) steps. In this
case each vertex is expanded at most once. Note that consi-
tency of a heuristic h implies that h is admissible.

Our observation is now that a consistent heuristic is also
naturally given in our domain: As mentioned in the previ-
ous section, the cost function cL is based on some physi-
cal model of the energy consumption along a road segment
EL(s, l, . . .), where s and l denote the speed and length
of the corresponding section. As stated before, it is reason-
able to assume that EL(s, l, . . .) is monotonically increas-
ing in s and linearly increasing in l. Then, we may define
a heuristic function hL in the same way as cL but taking
the minimum smin over all speed limits and the air line dis-
tance between two nodes u and v rather than the possibly
longer edge value l(u, v), when it exists. More precisely,
let hL(u, v) = EL(smin, ‖(u, v)‖, . . .), where ‖(u, v)‖ de-
notes the air line distance of u and v. Then

Lemma 2 Heuristic hL(u, t) is consistent in (V,E, cπ):

Proof. Since hL is linearly increasing in l, hL(u, t) ≤
hL(u, v) + hL(v, t). As hL is monotonic in s and l,
hL(u, v) ≤ cL(u, v), for all u, v, for which cL(u, v) is de-
fined. Thus, hL(u, t) ≤ cL(u, v) + hL(v, t), when cL(u, v)
is defined, showing that hL is consistent. ��

In Figure 2, the respective air line distances are shown as
dotted lines.

For example, for the model described in the previ-
ous section, we get: Let smin be the lowest speed limit
and l′(v, t) the air line distance from v to t. A lower
bound for the energy loss from v to t is then given by
hL(v, t) = frmgl′(v, t) + 1

2ρAcws
2
minl

′(v, t). Then, the
heuristic hL(u, t) is consistent in (V,E, cπ): Obviously the
air line distance l′ is a consistent heuristic for the road
length l: l′(u, t) ≤ l(u, v) + l′(v, t). We write ν(u, v) =
frmg + 1

2ρAcws(u, v)
2 and ν′ = frmg + 1

2ρAcws
2
min for

Algorithm 1: Energy-A* Algorithm
Input: Directed weighted graph G = (V,E, c) with c

representing energy costs, battery capacity C,
battery charge J , source vertex s, destination
vertex t

Output: A shortest path from s to t
1 begin
2 foreach vertex v in V do
3 g(v) ← ∞, p(v) ← null;
4 g(s) ← C − J ;
5 Q ← {s};
6 while Q �= ∅ do
7 choose u from Q with minimal g(u) + h(u, t);
8 if u = t then
9 return p;

10 Q ← Q \ {u};
11 foreach successor v of u do
12 g′ ← g(u) + c(u, v) + ĉ(u, v, g(u));
13 if g′ < g(v) then
14 g(v) ← g′, p(v) ← u;
15 Q ← Q ∪ {v};

convenience. Since smin is a lower bound of s(u, v), also ν′
is a lower bound of ν. Hence, consistency follows immedi-
ately from

hL(u, t) = ν′l′(u, t) ≤ ν′(l(u, v) + l′(v, t))

≤ ν(u, v)l(u, v) + ν′l′(v, t) = cL(u, v) + hL(v, t)

This approach can be simplified by incorporating the po-
tential function π into the heuristic function hL to apply
the A* algorithm on the original graph (V,E, c). The com-
bined heuristic function h is defined for the vertices u and
v by h(u, v) = hL(u, v) + hπ(u, v) where hπ(u, v) =
π(v) − π(u) is the potential energy difference between the
two vertices.

Lemma 3 The heuristic h is consistent in (V,E, c).

Proof. The proof follows immediately from hπ(v, v) =
π(v)− π(v) = 0 and

h(u, t) = hL(u, t) + hπ(u, v) = hL(u, t) + π(t)− π(u)

≤ cL(u, v) + hL(v, t) + π(t)− π(u)

= (cL(u, v) + π(v)− π(u)) + (hL(v, t) + π(t)− π(v))

= c(u, v) + h(v, t)

��
Theorem 4 The A* algorithm with heuristic h finds the en-
ergy optimal route between two vertices in (V,E, c) with
worst time complexity O(n2).

Dynamic Weight Calculation. A* is known to be opti-
mally efficient in the sense that it expands the fewest number
of vertices among all search algorithms having access to the
same heuristics. In addition, a consistent heuristic ensures

1405

that each vertex has to be considered at most once. In our
setting, this property is crucial since edge costs in the en-
ergy graph may be complex to compute and may depend on
a number of varying parameters known only at query time.
For example, the mass m of the EV varies with payload,
and it is not simply a multiplicative factor in the cost func-
tion because it is not part of aerodynamic resistance. As an-
other example, the power demand of auxiliary consumers
like the A/C is not known a priori, as it depends on unpre-
dictable variables such as ambient temperature. In fact, the
requirement to evaluate the weight function only when nec-
essary and as late in the process as possible rules out most
existing preprocessing techniques, such as contraction hier-
archies, that are based on global graph analysis.

Battery Constraints. Let us now study the effect of bat-
tery constraints for the example in Figure 2. If we assume a
fully charged battery at s with J = C = 5, the previously
shortest path (s, z, t) with path cost 4 is no longer feasible.
Although the total costs of the path is below our charge level,
it is not possible for the EV to drive the road section (s, z)
because it would require 6 energy units. Therefore the en-
ergy optimal path is (s, t) with energy costs 5.

Our idea, developed in the following, is to include the
battery constraints into the A* algorithm by modifying the
weight function c. The modified weight function is then de-
pendent on the path cost function g of the A* algorithm.

In our example, the edge (s, z) with cost 6 cannot be used
when J = C = 5, and therefore we dynamically increase
its cost value to be ∞. Analogously, assume we start in z
with C = 5 and J = 4. If the algorithm expands z, the edge
(z, t) offers c(z, t) = −2 energy units for recuperation, but
the battery can only store C − J = 5 − 4 = 1 additional
energy unit. Therefore 1 energy unit is lost due to the battery
constraint.

These effects can be captured by an additional cost func-
tion ĉ, which is added in line 12 in Algorithm 1:

Definition 2 For given weight function c and capacity C the
function ĉ is defined by ĉ : V × V × R → R

(u, v, k) �→
⎧⎨
⎩
−Δ(u, v, k) if Δ(u, v, k) < 0

0 if 0 ≤ Δ(u, v, k) ≤ C

∞ if Δ(u, v, k) > C

with Δ(u, v, k) := k + c(u, v).

This approach, however, extends the A* framework and
therefore its optimality and complexity must be verified for
the combined cost function c+ ĉ.

First, we show that the heuristic h developed in the previ-
ous subsection is still consistent also with respect to c + ĉ,
so that the complexity of Energy-A* remains quadratic:

Lemma 5 Let h be a consistent heuristic for c and ĉ be de-
fined as in Definition 2. Then h is also a consistent heuristic
for the cost function c+ ĉ.

Proof. For 0 ≤ Δ(u, v, k) obviously ĉ ≥ 0 holds. In the
case of Δ(u, v, k) < 0, ĉ equals −Δ(u, v, k) ≥ 0. Thus,
ĉ is non-negative. With consistency of h, we get h(u, t) ≤
c(u, v) + h(v, t) ≤ c(u, v) + ĉ(u, v, g(u)) + h(v, t). ��

Next we show that despite the fact that costs are adjusted
dynamically, Energy-A* still yields a minimal cost solution:

Lemma 6 Algorithm Energy-A* returns a minimal-cost so-
lution.

Proof. Lemma 5 states that every vertex is expanded
at most once. Let k be the path cost value g(u) of u
when it is expanded. We have to prove that ĉ(u, v, k) =
min{ĉ(u, v, k′)|costs k′ for all possible paths from s to u}
holds; i.e. suboptimal paths to u never lead to lower edge
weights for outgoing edges of u. This follows because
ĉ(u, v, k) is monotonically increasing for k. ��

Finally, we show that the minimal cost-solution of A*
computed in quadratic time adheres to the cost-function cCJ

developed in the second section:

Lemma 7 If a vertex u is expanded in Algorithm 1, the path
P = (v1, v2, . . . , vk) (implicitly given by function p) from
s = v1 to u = vk has path cost g(u) = cCJ(P).

Proof. We prove g(u) = cCJ(P) by induction on the path
length k. The base case g(s) = C−J = cCJ(s) follows im-
mediately from the definition of cCJ and the initialization of
the algorithm. Assume g(vk−1) = cCJ(P

k−1) holds. Then,
g(vk) = g(vk−1) + c(vk−1, vk) + ĉ(vk−1, vk, g(vk−1))
= cCJ(P

k−1) + c(vk−1, vk) + ĉ(vk−1, vk, cCJ(P
k−1)) =

cCJ(P) follows from the inductive step and the definitions
of ĉ and cCJ because c(vk−1, vk)+ ĉ(vk−1, vk, cCJ(P

k−1))
equals the cost of the road section (vk−1, vk) as stated in the
definition of path cost function cCJ . ��

Altogether, we obtain the following result:
Theorem 8 The Energy-A* algorithm with heuristic h de-
termines an energy-optimal path in (V,E, c) with worst time
complexity O(n2).

By using Fibonacci heaps, a time complexity of
O(n log n + m) can be realized. This can be advantageous
for real road networks, where the degree of the vertices is
typically bounded by some constant and thus the graph is
sparse (m = O(n)).

Conjecture 9 The Energy-A* algorithm has complexity
O(n log n) for real road networks. ��

Experimental Results

We developed a prototypic software system for energy effi-
cient routing, based on opensource libraries and freely avail-
able data. For a given car type, source address and destina-
tion address, the system computes a route with minimum
energy costs. The data basis consists of geospatial data from
the collaborative OpenStreetMap (OSM) project, and alti-
tude maps of the NASA Shuttle Radar Topographic Mission
(SRTM), which provide digital elevation data with a reso-
lution of about 90m. By combining these two sources, we
created a road network with elevation and cruising speed in-
formation for every point in the network. The costs of road
sections corresponding to energy consumption are then cal-
culated dynamically as needed by the A* algorithm.

We compared the performance of our algorithm against
two instances of the generic shortest-path framework in

1406

(Artmeier et al. 2010). In this work, a generic algorithmic
framework is presented for computing trees of shortest paths
starting from a source node s; because trees of paths are
considered, path constraints can be added in without affect-
ing optimality of the result. Different instances of the algo-
rithmic framework are obtained by specifying an expansion
strategy that determines which vertex to expand next. Two
such strategies were considered; the first one (Dijkstra strat-
egy) selects a vertex with the lowest distance from the source
vertex. This has an exponential worst time complexity in the
presence of negative weights, but was shown to be one of the
best strategies in (Artmeier et al. 2010). The second instance
(Pallottino strategy) implements the algorithm in (Pallottino
1984), a variant of the Bellman-Ford algorithm with a worst
time complexity O(n2m) but with a favorable performance
(Zhan and Noon 1998) in real world road networks.

We evaluated these three algorithms on a section of the
OSM map representing Bavaria, a state of Germany. This
road graph contains 2,423,313 vertices and 4,983,944 edges.
The parameters of our specific electric vehicle model used in
these experiments were cw = 0.42, ηr = ηc = 0.8, A = 2.0
m2, m = 1000 kg and C = 25 kWh. This charge allows
a cruising range of around 150 kilometers. The randomly
selected sampling set of source and targets nodes was di-
vided into 10 sample classes with different air line distances.
Each of the 10 classes consists of k = 100 samples. The ex-
periments were carried out on a Intel Core2 Duo CPU with
2.20 GHz and 2 GB RAM. Table 1 shows the mean runtime
(± standard deviation) in seconds for computing energy-
optimal paths of each sample class. Memory consumption of
the Energy-A* algorithm was found to increase only roughly
linearly with distance.

The results indicate that our Energy-A* algorithm is faster
than the generic framework with the Dijkstra or Pallottino
strategy. Especially for small distances between source and
destination vertex, the improvement is significant. In addi-
tion, our algorithm also leads to fewer node expansions and
thus fewer (potentially expensive) evaluations of the energy
cost function.

Distance Energy-A* Dijkstra Pallottino
(air line) strategy strategy
[0,10] 0.03 ± 0.01 1.55 ± 0.43 4.96 ± 7.52
]10,20] 0.04 ± 0.01 1.60 ± 0.41 5.10 ± 7.29
]20,30] 0.07 ± 0.02 1.55 ± 0.43 5.92 ± 11.44
]30,40] 0.11 ± 0.04 1.62 ± 0.42 5.40 ± 7.97
]40,50] 0.17 ± 0.05 1.59 ± 0.41 8.11 ± 12.88
]50,60] 0.24 ± 0.07 1.70 ± 0.41 9.99 ± 16.53
]60,70] 0.31 ± 0.09 1.66 ± 0.49 7.11 ± 11.59
]70,80] 0.41 ± 0.10 1.62 ± 0.41 6.75 ± 15.71
]80,90] 0.52 ± 0.14 1.62 ± 0.40 7.01 ± 12.51
]90,100] 0.60 ± 0.16 1.65 ± 0.42 5.46 ± 7.98

Table 1: Mean runtimes (± standard deviation) in seconds
for computing energy-optimal paths.

Conclusion

Optimal routing for electric vehicles with rechargeable bat-
teries will become increasingly important in the future. We
formalized this problem in a graph-theoretic context as an
instance of a shortest path problem with additional path-
related costs. We then showed how specific properties of the
energy domain can be exploited to obtain a fast O(n2) rout-
ing algorithm that can handle dynamic and path-related costs
and improves the so far known complexity bound.

It is easy to modify our algorithm to perform energetic
reachability analysis and therefore prediction of the remain-
ing range of vehicles. Further research will also study the
impact of the negative/positive edge ratio in graphs and re-
finements to our vehicle model, in particular including ki-
netic energy. In addition, we plan to extend our approach to
stochastic models in order to be able to calculate the risk of
running out of energy before arriving at the destination.

References

Artmeier, A.; Haselmayr, J.; Leucker, M.; and Sachen-
bacher, M. 2010. The shortest path problem revisited: Opti-
mal routing for electric vehicles. In KI’10.
Bast, H.; Funke, S.; Sanders, P.; and Schultes, D. 2007.
Fast routing in road networks with transit nodes. Science
316(5824):566.
Bellman, R. 1958. On a routing problem. Quarterly of
Applied Mathematics. 16(1):87–90.
Dijkstra, E. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1(1):269–271.
Garey, M., and Johnson, D. 1979. Computers and In-
tractibility: A Guide to the Theory of NP-Completeness. W.
H. Freeman, New York.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierar-
chical routing in road networks. In Proc. WEA’08.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal Ba-
sis for the Heuristic Determination of Minimum Cost Paths.
IEEE Trans. on Sys. Science and Cybernetics 4(2):100–107.
Johnson, D. B. 1977. Efficient algorithms for shortest paths
in sparse networks. Journal of the ACM 24(1):1–13.
Joksch, H. C. 1966. The shortest route problem with con-
straints. J. of Math. Analysis and Applications 14:191–197.
Mehlhorn, K., and Sanders, P. 2008. Data Structures and
Algorithms. The Basic Toolbox. Springer.
Neubauer, S. 2010. Planung energieeffizienter Routen in
Straßennetzwerken. Master’s thesis, Karlsruhe Inst. of Tech.
Pallottino, S. 1984. Shortest-path methods: Complexity,
interrelations and new propositions. Networks 14(2):257–
267.
Sanders, P., and Schultes, D. 2005. Highway hierarchies
hasten exact shortest path queries. In ESA’05.
Zhan, F. B., and Noon, C. E. 1998. Shortest path algorithms:
An evaluation using real road networks. Transportation Sci-
ence 32:65–73.

1407

