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Following the calculation of optimal energy transfer in thermal environment in our first paper

[J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quan-

tum dynamics and leading-order “classical” hopping kinetics are compared in the seven-site Fenna-

Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is

due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-

Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO

model, we observe that higher-order corrections lead to negligible changes in the trapping time or

in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model

and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of

integrated flux, we can identify significant differences in branching probabilities of the energy trans-

fer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the

quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum co-

herence can significantly change the distribution of energy transfer pathways in the flux network with

the efficiency nearly the same. The quantum-classical comparison of the average trapping time with

the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy trans-

fer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO

model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S.

Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network

analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and

network structure as the seven-site FMO model but leads to a more disperse distribution of energy

transfer pathways. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762839]

I. INTRODUCTION

Natural photosynthesis is of particular interest due to its

essential role as the energy source for life on earth. In the pro-

cess of biological evolution over billions of years, photosyn-

thetic systems have developed optimal and robust strategies of

converting solar energy to chemical energy. In the early stage

of photosynthesis, solar energy is collected by pigments and

transferred through light-harvesting protein complexes to the

reaction center for the subsequent charge-separation. The en-

ergy conversion from photons to electrons is fast, robust, and

nearly perfect in efficiency, although the overall efficiency of

photosynthesis is low. Understanding the mechanism of effi-

cient energy transfer in natural light-harvesting systems can

help develop low-cost and highly efficient man-made solar

energy apparatus, including photovoltaic devices and artificial

photosynthesis.1

For a long time, energy transfer was considered as an in-

coherent process described by hopping kinetics with Forster

rate constants. The Forster rate theory has been a prevailing

theoretical technique. In spite of the widespread success of

a)Dedicated to the memory of Professor Robert J. Silbey.
b)E-mail: jianshu@mit.edu.

the Forster rate approach, recent experimental advance has

shown evidence of long-lived quantum coherence in several

natural light-harvesting systems, e.g., Fenna-Matthews-Olson

(FMO)2, 3 and phycocyanin 645.4 A full quantum dynamic

framework becomes necessary for studying coherent energy

transfer. Many theoretical techniques have been developed

to serve this purpose.5–30 With temporal-spatial correlation

for the protein environment, the generalized Bloch-Redfield

(GBR) equation,5–9 the hierarchy equation,10–14 and other

methods16 have successfully predicted the long-lived quan-

tum coherent phenomenon. Alternatively, the Haken-Strobl-

Reineker (HSR) model and its generalization17–19 have at-

tracted much attention due to its simplicity, although the

bath noise is classical.6, 20, 21, 23–26 Recently, quantum-classical

mixed methods have been also applied to the dynamics of

energy transfer.28–30 Different theoretical methods have been

tested in the simple two-site system11 and other complex

systems,27 mainly focusing on the reliability of theoretical

predictions.

However, a systematic and comprehensive investiga-

tion is still needed to distinguish hopping kinetics and full

quantum dynamics, with the goal of quantifying nontrivial

quantum effects, e.g., long-range quantum coherence, in a

complex energy transfer network. Throughout this paper, the

0021-9606/2012/137(17)/174111/12/$30.00 © 2012 American Institute of Physics137, 174111-1
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long-range quantum coherence is defined in the local site ba-

sis and excludes the contribution from the two-state quantum

dynamics. Here, we will propose a quantum-classical com-

parison strategy, and apply it to the seven-site FMO system

with two different descriptions of baths: the classical white

noise (the HSR model) and the quantum Debye noise. Be-

cause of their simplicity, quantum dynamics under these two

bath models can be computed exactly and thus can be used for

a reliable quantum-classical comparison. Although the addi-

tional eighth site in the new eight-site FMO model can modify

quantum dynamics, the seven-site model is a good example to

explore interesting and relevant quantum phenomena, and it is

also consistent with our previous paper.6 In Appendix C, we

will present a short summary on the eight-site FMO model.

Here, we will use the leading-order kinetics: a hopping net-

work with Fermi’s golden rule rate, which is the leading-order

expansion to quantum dynamics. With a dipole-dipole inter-

action between two chromophores, Fermi’s golden rule rate

becomes Forster rate of energy transfer. In the standard fash-

ion, such hopping kinetics is considered as a “classical” de-

scription of energy transfer. In this paper, we will explore en-

ergy transfer in FMO using exact quantum dynamic equations

and using Fermi’s golden rule rate (i.e., Forster rate) to quan-

tify the difference between full quantum dynamics and “clas-

sical” hopping kinetics. This difference includes nontrivial

quantum effects, e.g., multiple-site coherence. Although we

will focus on the well-studied FMO system, one main goal of

this paper is to present a quantum-classical comparison pro-

cedure, which is not restricted to a specific light-harvesting

system but is applicable to dissipative quantum networks in

general. A systematic kinetic mapping of quantum dynamics

including high-order corrections was described in a review

paper for the classical noise20 and will be described for the

quantum noise in a forthcoming publication.31

In the first paper of this series,6 we applied the HSR

model and the GBR equation approach to optimize energy

transfer with intermediate values for various bath parameters,

such as reorganization energy, bath relaxation rate, tempera-

ture, and spatial correlation. In particular, we found an opti-

mal temperature for efficient energy transfer in the seven-site

FMO model. Our results have been verified by the hierarchic

equation.32 The optimization behavior has been found in other

conditions such as the spatial arrangement.8 The site energy

optimization for the new eight-site FMO model is shown in

the third paper of this series.9 To interpret the optimization

behavior, we have proposed the concept of trapping-free sub-

space, and determined the asymptotic scalings in the weak

and strong dissipation limits.33 Since two-site quantum coher-

ence is included in Fermi’s golden rule rate, “classical” hop-

ping kinetics can predict the optimization behavior in many

light-harvesting systems, as we will show in this paper. There-

fore, the quantum-classical comparison reported in this paper

is essential for identifying the contribution of nontrivial quan-

tum effects to optimal energy transfer. Specifically, we will

investigate two quantities: the trapping time and the branch-

ing probability. The former is directly related to the energy

transfer efficiency as shown in our first paper,6 whereas the

latter is a new concept constructed by directional population

flux for each two-site pair in the energy transfer network.34–36

The study of these two quantities can be straightforwardly ex-

tended to other energy transfer networks or generally open

quantum systems. A key advantage of natural photosynthesis

compared to its artificial counterpart is the robustness against

environmental variation and self-protection against damages.

Here, the quantum-classical comparison is combined with the

stability analysis of energy transfer to quantify the robustness

in FMO. Our study thus provides a new approach to under-

stand the biological role of nontrivial quantum effects exclud-

ing the two-site coherence, different from other theoretical pa-

pers on time-dependent behaviors of quantum coherence and

entanglement.37

The paper is organized as follows: In Sec. II, we review

the quantum dynamic framework for light-harvesting energy

transfer. In Sec. III, we use the leading order of kinetic map-

ping to define “classical” hopping kinetics, and introduce the

concept of the integrated population flux and the branching

probability. In Secs. IV and V, we apply the HSR model and

compare the trapping times and the branching probability in

the flux networks of FMO calculated from the classical hop-

ping kinetics and full quantum dynamics. The sensitivity of

parametric dependence for the trapping time is evaluated us-

ing classical hopping kinetics. The robustness of energy trans-

fer is explored by removing one donor site of FMO together

with a quantum-classical comparison. In Sec. VI, we apply

the Debye spectral density for the protein environment. The

trapping time and the flux network are computed quantum

mechanically using the hierarchy equation and classically us-

ing Fermi’s golden rule rate. In Sec. VII, we conclude and dis-

cuss our results of quantum-classical comparison and robust-

ness analysis. The necessary mathematical formulation is pro-

vided in Appendixes A and B. A short summary of the eight-

site FMO model is given in Appendix C with emphasis on the

quantum-classical comparison and the flux network analysis.

II. LIOUVILLE DYNAMICS AND TRANSFER
EFFICIENCY

In this section, we review the theoretical framework of

exciton dynamics, following the same notation as introduced

in a previous review paper20 and the first paper of this three-

part series.6

For each local chromophore (site) of the exciton system,

a two-level truncation is reliable for the lowest electronic ex-

citation. In consistence with low light absorption in natural

light-harvesting systems, we consider the situation of single

excitation, and then energy transfer dynamics can be stud-

ied in the subspace of single-excitation quantum states. Thus,

we introduce a tight-binding Hamiltonian in the site ({|n〉})

representation,38

H =
∑

n

εn|n〉〈n| +
∑

m#=n

Jmn|m〉〈n|, (1)

where εm is the excitation energy at chromophore site m

and Jmn is the electronic coupling strength between the mth

and nth sites. The system investigated in this paper is the

FMO protein complex with seven bacteriochlorophyll (BChl)

sites.2, 3, 39–44 To be consistent, we use the particular Hamilto-

nian model in our first paper.6 The possibility of the eighth site
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in FMO has been addressed recently,45 and the optimization

of energy transfer regarding the new FMO model is studied in

the third paper of this series.9

For an exciton system, the time evolution of the re-

duced density matrix ρ(t) is governed by the Liouville

equation,20, 38, 46, 47

ρ̇(t) = −[Lsys + Ltrap + Ldecay + Ldissp]ρ(t). (2)

The four Liouville superoperators L on the right-hand side of

the above equation correspond to four distinct dynamic pro-

cesses, which are discussed as follows. For an isolated system,

the system Liouville superoperator Lsys is given by the com-

mutator of the system Hamiltonian, Lsysρ = i[H, ρ], and its

explicit form in the Liouville space is

[Lsys]mn,kl = i(Hmkδn,l − Hlnδm,k). (3)

For conciseness, we neglect the reduced Planck constant ¯

throughout this paper.

The irreversible population depletion of the exciton sys-

tem originates from exciton decay by the electron-hole re-

combination and energy trapping at the reaction center.6, 20

The Liouville superoperators of these two processes are di-

agonal: [Ldecay]mn = kd;mn = (kd,m + kd,n)/2, and [Ltrap]mn

= kt ;mn = (kt,m + kt,n)/2, where kd, n and kt, n are phenomeno-

logical decay and trapping rate constants at site n, re-

spectively. Here, [L]mn = [L]mn,mn represents the diagonal

element. In practice, we often assume a homogeneous decay

process with kd; n = kd. In the FMO system, BChl 3 is the trap

site connecting to the reaction center, kt; n = ktδn, 3, and the

trapping rate is set to be kt = 1 ps−1.

In addition to the above three dynamic processes, the ex-

citation energy transfer is modulated by fluctuations due to

the interaction between the exciton system and the protein

environment. On the microscopic level, Ldissp is evaluated us-

ing the explicit system-bath Hamiltonian. Within this descrip-

tion, the linearly coupled harmonic bath, HSB =
∑

n|n〉〈n|Bn,

is widely applied, with Bn the linear quantum operator of

bath.38, 46, 47 The dissipative dynamics of system is then fully

determined by the bath spectral density J(ω). For simplicity,

we ignore the spatial correlation of bath in this paper and

discuss its effect in the future. Next, we can apply quantum

dynamic methods, e.g., the Redfield equation, the general-

ized Bloch-Redfield equation,5–9 and the Forster equation, un-

der various approximations. For a Gaussian bath whose time

correlation function can be represented as a linear combina-

tion of exponentially decaying functions, the hierarchy equa-

tion approach can provide a reliable prediction of quantum

dynamics.10–12

Alternatively, we can view the system-bath inter-

action as a time-dependent fluctuation on the system

Hamiltonian,10, 17–19, 48 i.e., H(t) = H + δH(t), with 〈δH(t)〉

= 0. The dissipative dynamics can be fully determined if all

the time-averaged moments of δH(t) are resolved, which is

usually an unfeasible task. In the extremely high temperature

limit, δH(t) behaves classically and the relevant second-order

moment becomes real. One example of this approximation is

the HSR model where a classical white noise, 〈δεm(t)δεn(0)〉

= Ŵ*δm, nδ(t), is assumed on site energies.17, 18 The dissi-

pation Liouville superoperator becomes diagonal in the site

representation, [Ldissp]mn = (1 − δm,n)Ŵ∗, where Ŵ* is the

pure dephasing rate. Since the HSR model can be rigorously

solved, it serves as the simplest model to examine our kinetic

mapping of quantum dynamics.

A key quantity of excitation energy transfer is the energy

transfer efficiency q, which is the ratio of energy trapping at

the reaction center. The mathematical definition of q is given

by

q =

∫ ∞

0

dtTr{Ltrapρ(t)} =
∑

n

kt ;nτn, (4)

where τ n is the mean residence time at site n, τn

=
∫ ∞

0
dtρn(t). For an arbitrary vector X in Liouville space

(e.g., the density matrix ρ), its trace is defined as Tr{X}

=
∑

nXnn. In nature, spontaneous energy decay occurs on the

time scale of nanosecond, much slower than the picosecond

energy transfer process. The condition of kd ≈ 1 ns−1 ≪ kt

allows us to simplify the transfer efficiency to6, 20

q ≈
1

1 + kd〈t〉
, (5)

where 〈t〉 =
∑

nτ n(kd = 0) is the mean first passage time to

the trap state in the absence of decay (i.e., the average trap-

ping time). The comparison of transfer efficiencies calculated

from Eqs. (4) and (5) has been examined in our first paper,6

and their excellent agreement over a broad range of Ŵ* proves

the reliability of Eq. (5). In this paper, we will ignore the en-

ergy decay process and focus on the average trapping time 〈t〉.

Following the formal solution of Eq. (2), the average trapping

time,

〈t〉 = Tr{L−1ρ(0)}kd=0, (6)

is determined by the Liouville superoperator L = Lsys

+ Ltrap + Ldissp and the initial condition ρ(0) = ρ(t = 0). For

the FMO system, BChl 1 and BChl 6 connected to the base-

plate are considered as two initial sites for energy transfer.12

In our calculation, we consider two initial conditions at either

BChl 1 (ρ1(0) = 1, initial condition I) or BChl 6 (ρ6(0) = 1,

initial condition II).

III. KINETIC MAPPING, FLUX NETWORK, AND
BRANCHING PROBABILITY

A. Kinetic mapping

In our first paper, we have demonstrated the generality

of optimal energy transfer by the competition of quantum co-

herence and bath-induced relaxation.6 A remaining question

is to identify contributions of nontrivial quantum effects. To

do this, we systematically map the energy transfer process to a

kinetic process. With the Markovian approximation, the quan-

tum kinetic equation reads20

Ṗm = −
∑

n#=m

(

kQ
mnPm − kQ

nmPn

)

− kt,mPm, (7)

where Pm = ρmm is the population at site m. The effective

quantum kinetic rate kQ
mn can be formally derived following

the Laplace transformation, as shown in Appendix A. In the
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HSR model, the kinetic mapping is solved in a recent feature

paper,20 following an alternative stationary approximation for

quantum coherence ρmn(t). In a general quantum network, the

kinetic mapping in a rigorous non-Markovian form will be

left in a forthcoming paper.31 In short, we can always formu-

late a time-convolution expression as the rigorous quantum

kinetic equation for an arbitrary bath. For a Markovian noise,

the δ-function in the rate kernel of the time-convolution ex-

pression leads to a master equation (7). While the rate kernel

is complex in a quantum noise, it is reduced to a real function

in a classical noise, leading to an equally distributed popula-

tion over different sites in equilibrium. However, the formal

derivation using the Laplace transformation in Appendixes A

and B is sufficient for understanding quantum-classical com-

parison in this paper. Equation (7) can be organized into a

matrix form as Ṗ = −(KQ + Kt )P , where [P]m = Pm is the

population vector. The two rate matrices, KQ and Kt, are de-

fined as [KQ]m,n(#=m) = −kQ
m,n, [KQ]n,n =

∑

m(#=n) k
Q
m,n, and

[Kt]m, n = δm, nkt; n. The average trapping time can be alterna-

tively defined as

〈t〉 =
∑

n

τn =
∑

n

[

(KQ + Kt )
−1P (0)

]

n
(8)

which is exactly the same as that in Eq. (6).

In this kinetic mapping, the leading order term repre-

sents the “classical” hopping behavior in the site basis, and

higher-order corrections represent nontrivial quantum coher-

ent effects. In practice, the full quantum kinetic rates KQ are

difficult to evaluate exactly whereas the leading-order hop-

ping rates KC can be calculated using Fermi’s golden rule

expression.31 For the “classical” hopping kinetics, the rate

equation (7) and the trapping time in Eq. (8) remain the

same after the replacement of the classical rate matrix KC.

To distinguish quantities calculated by full quantum dynam-

ics and by classical hopping kinetics, we denote the quantum

results by {τQ
n , 〈t〉Q} and the classical results by {τC

n , 〈t〉C}.

The difference between the two trapping times is attributed

to higher-order quantum corrections, e.g., multi-site quantum

coherence.

B. Integrated population flux

To further reveal the difference between quantum and

classical energy transfer, we construct the flux network de-

fined by directional population flows.34–36 For a classical ki-

netic network, the integrated population flux FC
mn is defined

by the net population flow from site n to site m,

FC
mn = kC

mnτ
C
n − kC

nmτC
m =

∫ ∞

0

kC
mnP

C
n (t) − kC

nmP C
m (t)dt.

(9)

The quantum population flux FQ
mn can be similarly defined

by replacing the classical residence time τC
n and the hopping

rate kC with the quantum residence time τQ and the effective

quantum rate kQ from the kinetic mapping. Alternatively, we

will rewrite FQ
mn in terms of the coherence decay time, τQ

mn

=
∫ ∞

0
dtρmn(t). As derived in detail in Appendix B, the quan-

tum integrated population flux is given by

FQ
mn = kQ

mnτ
Q
n − kQ

nmτQ
m = 2Im

[

Jmnτ
Q
nm

]

. (10)

Equations (9) and (10) will be used in this paper to cal-

culate the population fluxes in the leading-order hopping

kinetics and in full quantum dynamics, respectively, and

their difference will reveal nontrivial quantum effects that

cannot be revealed by the average trapping time 〈t〉 or

efficiency.

C. Basic properties of flux network

The concept of the integrated population flux is im-

portant in understanding network structure and dynamics.

The classical flux was introduced in the study of enzy-

matic networks.34, 35 Its quantum mechanical counterpart

share many of the basic properties:

! Integrated flux accounts for the net population transfer

in energy transfer processes. It vanishes for an equilib-

rium system because of the detailed balance condition

and is an intrinsic property of non-equilibrium steady

state (NESS) systems. Light-harvesting energy trans-

fer is an irreversible NESS process driven by absorbed

photons to the reaction center and is therefore charac-

terized by the integrated flux.
! The flux is a conserved quantity which is normal-

ized to unity for every absorbed photon. For a one-

dimensional chain system, the flux is unit for every

link, both in classical kinetics and in quantum dynam-

ics. As a result, the integrated flux is a unique quantity

to characterize the topology of an energy transfer net-

work and to compare the quantum and classical flows

in the network.
! The conservation of the integrated flux applies both

globally and locally. For any state on the network, the

sum of fluxes is zero,
∑

mFmn = 0, so that the sum of

fluxes into the state is identical to the sum of fluxes out

of the state. As a result, we can define the branching

probability,

qmn =
Fmn

∑

m′,Fm′n>0 Fm′n

, (11)

to describe the normalized probability of n → m from

the starting point n. The complete set of qmn then char-

acterizes the flow pattern on the network. In the rest

of this paper, the integrated population flux Fmn will

be used interchangeably with the branching probabil-

ity qmn.
! In a kinetic network, the integrated population flux

Fmn and the residence time τ n can be simultaneously

solved by imposing the flux conservation relationship

(i.e., the flux balance approach).34, 35 This flux method

can significantly reduce the computational cost for a

large-scale network. As shown in the study of FMO

in this paper, we will use the sign and magnitude of

Fmn to quantify the reaction pathways in an irreversible

network.
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FIG. 1. The average trapping time 〈t〉 vs. the pure dephasing rate Ŵ* in the

HSR model of the seven-site FMO for (a) the initial population at BChl 1,

and (b) the initial population at BChl 6. The solid curves are calculated from

full quantum dynamics, whereas the dashed curves are calculated from the

leading-order “classical” kinetics. In each figure, the lower pair of curves

correspond to the seven-site FMO model, while the upper pair corresponds

to the six-site FMO model after the removal of BChl 4.

IV. QUANTUM-CLASSICAL COMPARISON IN THE
HAKEN-STROBL-REINEKER MODEL

A. Trapping time

For the HSR model, the quantum dynamics of the seven-

site FMO system has been solved in our first paper.6 Follow-

ing the kinetic mapping, the “classical” hopping rate between

sites m and n is given by20, 49

kC
mn = kC

nm =
2Ŵmn

Ŵ2
mn + '2

mn

|Jmn|
2, (12)

where the site energy difference is 'mn = εm − εn and the

overall dephasing rate is Ŵmn = Ŵ∗
mn + kt ;mn. In Appendix A,

we further prove that Eq. (12) can be recovered from Fermi’s

golden rule rate under a classical white noise. Next, we cal-

culate the trapping time in both full quantum dynamics and

classical hopping kinetics. In Ref. 20, we have proven that

〈t〉Q and 〈t〉C are the same for the two-site system in the HSR

model. Thus, the difference between these two trapping times

arises from multi-site quantum coherence.

In Fig. 1, we plot the average quantum trapping time 〈t〉Q

and the classical counterpart 〈t〉C as functions of the pure de-

phasing rate Ŵ* with the two initial conditions for the seven-

site FMO system. We observe that the values of 〈t〉 computed

from the two different methods are close. For example, the

relative difference between 〈t〉Q and 〈t〉C is 2% under the op-

timal condition of Ŵ∗
opt = 175 cm−1 for the initial population

at BChl 1, while the difference becomes less than 1% under

Ŵ∗
opt = 195 cm−1 for the initial population at BChl 6. Overall,

the relative trapping time difference is always less than 10%

for Ŵ* ! 30 cm−1.

Our result shows that full quantum dynamics and hop-

ping kinetics lead to similar behaviors in the trapping time

and energy transfer efficiency around the optimal condition.

In the HSR model, energy transfer in the seven-site FMO is

controlled by the downhill pathway from BChl 6 to BChl 3,

which does not need long-range exchange assisted by multi-

site quantum coherence.43 More importantly, the trapping

time is the sum of residence time at all the sites so that the can-

cellation from different sites can reduce the quantum effect.

Unlike the classical white noise, a quantum colored noise at a

finite temperature complicates the quantum-classical compar-

ison, which will be discussed in Sec. VI.

B. Flux network

In this subsection, we present the quantum-classical com-

parison of the population flux for the seven-site FMO sys-

tem in the HSR model. For the two-site system in the HSR

model, we can prove that Eqs. (9) and (10) lead to the same

result, consistent with the result of the trapping time. In the

over-damped limit, i.e., Ŵ* ≫ |J|, quantum dynamics reduces

to classical hopping kinetics, and the two definitions become

identical for multi-site networks. Apart from this limit, we

compare the results obtained with Eqs. (9) and (10), and use

their difference to define the higher-order contribution, e.g.,

multi-site quantum coherence in the HSR model.

Figure 2 presents relevant population fluxes (>0.05)

calculated by full quantum dynamics (FQ
mn) and hopping

FIG. 2. The flux networks of FMO under the optimal pure dephasing rate in the HSR model of the seven-site FMO for (a) initial population at BChl 1

(Ŵ∗
opt = 175 cm−1), and (b) initial population at BChl 6 (Ŵ∗

opt = 195 cm−1). For each population flux, the upper number is obtained from full quantum dynamics,

whereas the lower number is obtained from the leading-order hopping kinetics.
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kinetics (FC
mn), with two initial conditions in FMO. For each

initial condition, its respective optimal pure dephasing rate

Ŵ∗
opt is used. Both quantum and classical flux networks show

two identical dominating pathways: 1 → 2 → 3 (path A) and

6 → (5, 7) → 4 → 3 (path B). This result is consistent with

2D electronic spectroscopy.43 With initial condition II, path

A is nearly negligible whereas with initial condition I, path

B contributes significantly with F
Q
34 = 0.40 (FC

34 = 0.56). As

shown in Sec. V, the two-pathway structure in FMO helps

maintain its high efficiency even if one donor is removed.

Compared to results of the average trapping time, the

quantum-classical difference of fluxes is much larger. For the

branching probability from BChl 1 to BChl 3, the weak elec-

tronic coupling J13 leads to a small value of FC
31 = 0.053 in

the hopping picture with initial condition I. On the other hand,

multi-site quantum coherence allows the long-range popu-

lation transfer through interconversion between various off-

diagonal elements of the density matrix.31, 47 This quantum

tunneling effect enhances the quantum branching probability

more than twice, F
Q
31 = 0.123. For the entire network, we in-

troduce the weighted relative difference between classical and

quantum branching probabilities as

χF =
2
∑

m#=n

∣

∣FQ
mn − FC

mn

∣

∣

∑

m#=n

∣

∣F
Q
mn + FC

mn

∣

∣

. (13)

The result is χF = 26% for initial condition I and χF = 7% for

initial condition II. Both values are significantly larger than

those for the trapping time (≤2%). The comparison of popu-

lation fluxes quantifies the contribution of multi-site quantum

coherence in the HSR model.

The quantum-classical comparison of branching proba-

bilities clarifies the structure of various energy transfer path-

ways. For the first path of 1 → 2 → 3, our Hamiltonian shows

that BChl 2 is the energy barrier along the transfer pathway.

As we discussed, the quantum tunneling effect is relevant, as-

sisting energy transfer. For the second pathway of 6 → (5, 7)

→ 4 → 3, the energy downhill structure allows quick energy

transfer even in the classical hopping picture, and quantum ef-

fect is less relevant. The weighted relative flux difference χF

is much larger in initial condition I than that in initial condi-

tion II, consistent with energy structures of these pathways.

V. ROBUSTNESS OF ENERGY TRANSFER IN THE
HAKEN-STROBL-REINEKER MODEL

A. Stability against the variation of system/bath
parameters

The leading-order kinetic network provides a simple es-

timate of the parametric dependence of the average trapping

time and can explain the robustness of energy transfer via the

insensitivity to changes in dephasing rate, trapping rate, and

system Hamiltonian. Within the kinetic network, estimation

based on the magnitudes of the hopping rate and trapping rate

yields the average trapping time on the order of picosecond

time scale, 〈t〉 ∼ 10 ps. In comparison with the average de-

cay rate on the nanosecond time scale, kd = 1 ns−1, the av-

erage trapping rate is much faster and therefore the efficiency

is close to one, q ∼ 1. The small ratio of the trapping time

and decay time, kd〈t〉 ∼ 0.01, suggests that significant drop

in energy transfer efficiency will result from a change of two-

order’s magnitude in the trapping time. According to Eq. (12),

changes of two-order’s magnitude in Ŵ* and kt or changes of

one-order’s magnitude in the J and ' disorders are needed to

produce this drop, based on simple estimation. Although the

above simple estimation can deviate from the rigorous quan-

tum dynamics, our method reveals that FMO can resist a large

change in dephasing rate, trapping rate, and system Hamilto-

nian, mainly because of the time scale separation between the

decay process (Ldecay) and the other three dynamic processes

(Lsys, Ldissp, and Ltrap).

B. Robustness against the loss of a BChl
chromophore

Over the course of evolution, the FMO complex has

achieved robustness such that the high energy transfer effi-

ciency is retained even if one or two chromophores do not

function properly.50 We investigate this feature by taking out

one non-trapping site off the seven-site FMO network and

then calculating the average trapping time under the optimal

condition. As shown in Table I, removal of BChl 4 causes

a noticeable increase in the average trapping time while re-

moval of any other site do not have major effects and some

can even enhance the transfer efficiency. The flux distribu-

tion in Fig. 2 indicates that BChl 4 is the bottleneck of the

dominant pathway 6 → (5, 7) → 4 → 3, where all fluxes in

this pathway converge to site 4 before arriving at the trap site.

However, even with BChl 4 removed, the increase in the aver-

age trapping time (or equivalently the decrease in efficiency)

is moderate. This phenomenon is due to the two major path-

ways in the energy transfer network of FMO. Without multi-

ple pathways in energy transfer networks, a linear-chain sys-

tem exhibits much stronger response since the single pathway

would be blocked after the removal of a donor. In addition,

the trapping time decreases 12% –20% (see Table I) in full

quantum dynamics than in classical hopping kinetics, which

demonstrates that the quantum coherence can help the FMO

system further resist the damage on BChl 4. Next, we plot

the relation of 〈t〉−Ŵ* in Fig. 1 using both quantum dynam-

ics and hopping kinetics for the FMO system with BChl 4

removed. Our results show that the quantum trapping time is

consistently smaller than the classical result when BChl 4 is

removed, verifying the robustness of energy transfer due to

multi-site quantum coherence.

TABLE I. The quantum (〈t〉Q) and classical (〈t〉C) trapping times of FMO

with the removal of one non-trapping site under the respective optimal de-

phasing rate for two initial conditions in the HSR model. As a comparison,

the results for the complete seven-site model are shown in the last column.

Complete

Site removed 1 2 4 5 6 7 FMO

〈t〉C(initial conditionI) (ps) 10.57 15.32 9.60 10.61 9.38 10.30

〈t〉Q(initial conditionI) (ps) 10.32 12.41 9.17 9.84 9.13 10.10

〈t〉C(initial conditionII) (ps) 7.47 7.61 16.12 7.98 7.78 8.72

〈t〉Q(initial conditionII) (ps) 7.51 7.72 14.31 7.80 7.63 8.66
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VI. QUANTUM-CLASSICAL COMPARISON IN A
QUANTUM NON-MARKOVIAN BATH

In Secs. IV and V, we have explored the energy transfer

dynamics in the seven-site FMO model using the HSR model

for the bath. Our flux network analysis has revealed the long-

range energy transfer from BChl 1 to BChl 3 due to multi-

site quantum coherence. However, the classical white noise

in the HSR model misses the other two crucial factors in a

general quantum non-Markovian bath: the time-correlation of

bath and the quantum detailed balance in equilibrium. Thus,

we will apply the quantum Debye noise to further identify the

higher-order corrections using the quantum-classical compar-

ison technique.

In a general quantum network, the leading-order hopping

rate is the same as Fermi’s golden rule rate, which becomes

the Forster rate if the dipole-dipole interaction Jmn is applied.

In detail, Fermi’s golden rule rate is written as

kC
m#=n = 2|Jmn|

2Re

∫ ∞

0

dtei'nmte−[gmn(t)+kt ;mnt] (14)

and

gmn(t) = 2(1 − cmn)

∫ ∞

0

dω
J (ω)

ω2

× [coth(βω/2)(1 − cos ωt) + i sin ωt], (15)

where β = 1/kBT, J(ω) is the bath spectral density, and cmn is

the bath spatial correlation between sites m and n. The nega-

tive correlation cmn(#= m) = −1 is used in the spin-boson model,

and the zero spatial correlation cmn = δm, n is considered in

this paper. Consistent with our first paper,6 we use the Debye

spectral density,

J (ω) = *(ω)
2λ

π

ωD

ω2 + D2
, (16)

with *(ω) the step function, λ the reorganization energy,

and D the Debye frequency. The real bath spectral density

of the protein environment in FMO is more complicated

with high-frequency signature of local vibrational modes. The

approximate Debye spectral density, however, can predict rea-

sonably well for the light spectra of FMO. Besides, quan-

tum dynamics is extremely difficult to be calculated rigor-

ously for a complex bath spectral density. Therefore, we will

keep the simple Debye spectral density in this paper. With-

out trapping, the ratio of forward and backward hopping rate

constants satisfies the detailed balance condition, kC
mn/kC

nm

= exp[−β(εn − εm)]. The hopping rates from Eq. (14) are

then used to compute the trapping time and population fluxes

in “classical” kinetics.

Applying the Matsubara expansion,38 the bath time cor-

relation function C(t) of the Debye spectral density follows:

C(t) =

∞
∑

j=0

(

f r
j + if i

j

)

e−νj t , (17)

where the zeroth decay rate is ν0 = D and all the other

decay rates are the Matsubara frequencies ν j ≥ 1 = 2π j/β.

The coefficients f r
j and f i

j can be determined accordingly.12

For the exponentially decaying bath, quantum dynamics

can be reliably solved by the hierarchy equation approach

in principle.10–13 Here, we use the explicit form shown in

Ref. 12, with the trapping Liouville superoperator Ltrap in-

cluded for both the reduced density matrix and auxiliary

fields. To reduce the computation cost, the high-temperature

approximation, coth(βω/2) ≈ 2/βω, is applied so that all

the Matsubara frequencies ν j ≥ 1 are ignored in Eq. (17). To

be consistent, the same approximation is used in computing

hopping rates. The high-temperature approximation will not

cause a significant difference in our calculation at room tem-

perature (T = 300 K). Our quantum computation is truncated

up to the 10th hierarchic order. Due to instability of Liouville

superoperators, τQ is evaluated by the time integral of ρ(t)

for λ ≥ 15 cm−1. The resulting trapping time and population

fluxes correspond to full quantum dynamics.

A. Trapping time

Here, we study the quantum-classical comparison with

the change of λ by fixing T = 300 K and 1/D = 50 fs.

The dependence on other parameters can be explored sim-

ilarly. Figure 3 presents the results of the trapping time

computed using both quantum dynamics (〈t〉Q) and hopping

kinetics (〈t〉C) with two distinct initial conditions in the seven-

site FMO model. We observe that 〈t〉Q and 〈t〉C are still close,

0.1% and 11% under the physiological reorganization energy

λ = 35 cm−1, for the initial conditions I and II, respec-

tively. Full quantum dynamics does not necessarily lead to

a faster energy transfer process. With initial condition I, 〈t〉Q

is smaller than 〈t〉C for λ > 34 cm−1; with initial condition

II, 〈t〉Q is larger than 〈t〉C in the complete range of λ. The lat-

ter behavior is consistent with a recent calculation of energy

transfer rate in the two-site system.11

To understand our quantum-classical comparison, we

need to clarify higher-order corrections to the leading-order

hopping kinetics in a quantum network at finite temperatures.

(1) As shown in the HSR model, the first effect arises from

multi-site quantum coherence, which facilitates the barrier-

crossing energy transfer. This effect is beyond the Fermi

FIG. 3. The average trapping time 〈t〉 of the seven-site FMO vs. the reorga-

nization energy λ of the Debye spectral density for (a) the initial population

at BChl 1, and (b) the initial population at BChl 6. The other bath parame-

ters are given in text. The solid curves are results of full quantum dynamics,

whereas the dashed curves results of the leading-order hopping kinetics. In

each figure, the lower pair of curves (black) correspond to the seven-site FMO

model, while the upper pair (red) corresponds to the six-site FMO model with

the removal of BChl 4.
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FIG. 4. The flux networks of the seven-site FMO under the physiological condition (λ = 35 cm−1, 1/D = 50 fs, and T = 300 K) of the Debye spectral density

for (a) initial population at BChl 1, and (b) initial population at BChl 6. For each population flux, the upper number is obtained using full quantum dynamics

whereas the lower number is obtained using the leading-order “classical” hopping kinetics.

golden rule rate (or the second-order truncation in a gen-

eral manner) and arises from direct interconversion of vari-

ous off-diagonal elements of the reduced density matrix. The

multi-site quantum coherence, including tunneling, interfer-

ence, and delocalization, has been discussed before6, 12, 20, 51

and is now identified in the quantum-classical comparison.

In a sense, our systematic expansion and flux network anal-

ysis provides quantitative measures to describe these effects.

To distinguish from the two-site quantum coherence inher-

ent in the Fermi’s golden rule rate, we will use the con-

cept of the multi-site quantum coherence to define nontriv-

ial quantum effects throughout this paper. (2) The second

effect comes from the non-Markovian bath. Without instan-

taneous bath relaxation, the system is retained in its pre-

vious state, slowing down energy transfer. In the second-

order truncation method, a non-Markovian memory kernel

can be still extracted, but the underlying Born approxima-

tion cannot capture the full contribution of bath relaxation.

Following the Laplace transformation, we can prove that

the results of τ and 〈t〉 are the same, calculated by Fermi’s

golden rule rate or the second-order non-Markovian mas-

ter equation in the local basis. Hence, our comparison dis-

tinguishes higher-order effects of bath relaxation exclud-

ing the Born approximation. A systematic approach of in-

cluding bath relaxation in electron transfer has been shown

in Ref. 52. (3) Other than the above two effects, a more

subtle quantum-classical difference results from the steady-

state population distribution. Without trapping, hopping ki-

netics always imposes Pn(t → ∞) ∝ exp (− βεn). Instead, the

quantum steady-state distribution is evaluated by ρ(t → ∞)

∝ TrB{exp (− βHtot)}, which arises from the rigorous quan-

tum Boltzmann distribution with the consideration of both

system and bath.53 The steady-state population of the low-

est energy trap site can be decreased, implying a lower prob-

ability of energy being trapped (energy transfer efficiency).

The interplay of these three effects suggests that quantum en-

ergy transfer can be much more complicated, compared to the

leading-order hopping kinetics. The identification of various

higher-order effects for the trapping time and transfer effi-

ciency will be studied in our forthcoming papers.

B. Flux network

For the physiological condition of λ = 35 cm−1,12 we

compare the quantum and classical flux networks, as shown

in Fig. 4. Similar to the study of the HSR model, the flux net-

work analysis clarifies the contribution of higher-order correc-

tions, especially multi-site quantum coherence. In the seven-

site FMO model, with the barrier-crossing pathway under ini-

tial condition I, the quantum and classical trapping times are

nearly the same but the detailed flux networks can be quite

different: 6 → (5, 7) → 4 → 3 is the major path with a

ratio of FC
34 = 75% in “classical” hopping kinetics, whereas

3 ← 1 → 2 → 3 dominates in quantum dynamics with

F
Q
31 + F

Q
32 = 71%. The branching probability from BChl 1 to

BChl 3 differs by three times, F
Q
31/F

C
31 = 3.06, and the overall

quantum-classical flux difference is χF = 32%. The switch

of the major energy transfer path results from the quantum

tunneling effect of multi-site quantum coherence. With the

downhill pathway under initial condition II, the flux network

structure is the same for both hopping kinetics and quantum

dynamics, with a smaller difference of χF = 7%.

C. Robustness against the removal of BChl 4

To complete the quantum-classical comparison for our

quantum dynamic network, we study the stability of FMO af-

ter the removal of BChl 4. As shown in Fig. 3, the change of

the trapping time 〈t〉 is small enough to sustain a highly effi-

cient energy transfer. Consistent with the HSR model, quan-

tum dynamics always leads to a smaller trapping time than

hopping kinetics. This behavior can be interpreted by replac-

ing the removal of BChl 4 with an infinite energy barrier,

ε(BChl4) = ∞, so that the quantum tunneling effect is very

important. As shown by the flux network analysis, BChl 4 is
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no longer the bottleneck site under initial condition I, and the

trapping time 〈t〉Q is unaffected by the removal of BChl 4 over

a broad range of reorganization energy. The stability analysis

thus reflects the multi-site quantum coherence feature of the

original energy transfer network.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we continue our investigation of efficient

energy transfer in light-harvesting systems and compare the

prediction of the trapping time and the population flux calcu-

lated by full quantum dynamics and by “classical” hopping

kinetics. The classical white noise (the HSR model) and the

quantum Debye noise are used to model the protein environ-

ment. The quantum dynamics under the quantum Debye noise

is solved by the hierarchy equation, which compares well to

the GBR equation used in our first paper.6 Relative to the rig-

orous results of quantum dynamics, hopping kinetics is con-

sistently calculated by Fermi’s golden rule rate. In principle,

full quantum dynamics can be mapped to an equivalent ki-

netic network of population transfer by a systematic expan-

sion. We have extended the systematic expansion from the

HSR model20 to a general quantum dynamic network, which

will be shown in a forthcoming paper.31 In this mapping, the

leading-order hopping rate is equivalent to Fermi’s golden

rule (i.e., the Forster rate for the dipole-dipole interaction)

and is taken as the “classical” hopping limit. Therefore, our

quantum-classical comparison is capable of systematically il-

lustrating nontrivial quantum effects using higher-order cor-

rections beyond the second-order truncation with the Born

approximation. Our result is different from a previous ap-

proach based on factorizing the Liouville operator of various

dynamic processes.22 In the HSR model, higher-order effects

originate purely from multi-site quantum coherence (direct in-

terconversion of off-diagonal density matrix elements).20 For

a quantum bath model such as the Debye spectral density,

there exist additional contributions from bath relaxation (non-

Markovianity excluding the Born approximation)52 and the

finite temperature effect.31

Our investigation of the average trapping time demon-

strates that hopping kinetics compares well with full quan-

tum dynamics, and that the Forster rate can reliably predict

optimal energy transfer in the seven-site FMO model. Two

initial conditions, BChl 1 and BChl 6, are used in our study,

while the initial condition is shifted to BChl 8 in the eight-

site model.9 For both the HSR model and the Debye spectral

density, the quantum and classical trapping times are close,

differing a few percentages over a broad range of parameters

around the optimal and physiological conditions. In the local

site basis, the energy difference (') between two neighbor-

ing levels is several times larger than their electronic coupling

(J). The study in our first paper suggests that an intermediate

dissipation strength (Ŵ) is necessary for the optimal energy

transfer. A crude estimation on the kinetic expansion parame-

ter, J2/('2 + Ŵ2) < 1, indicates that quantum-classical differ-

ence can be treated as a small correction to the leading-order

“classical” kinetics in the overall dynamic behavior, i.e., the

trapping time and the transfer efficiency.

However, nontrivial quantum coherent effects can be fun-

damentally important in the detailed behavior of the energy

transfer process. A better measurement of nontrivial quan-

tum effects involves off-diagonal coherence (ρmn(#= m)) of the

reduced density matrix. In this paper, we propose a new

measure, the integrated population flux (or equivalently the

branching probability), which is defined using the decay time

of the off-diagonal density matrix elements ρmn in full quan-

tum dynamics. The flux thus defined obeys the conservation

law and is a unique measure of non-equilibrium energy flow

in quantum networks. Through the flux network analysis, we

are able to extract the two major energy transfer pathways,

1 → 2 → 3 (path A) and 6 → (5, 7) → 4 → 3 (path B), in

the seven-site FMO model. Here, the energy transfer through

path A crosses a barrier at BChl 2; path B is a downhill struc-

ture, thus becoming the dominant pathway in hopping kinet-

ics. With the initial population at BChl 1 and the physio-

logical condition of the Debye spectral density for the bath,

the quantum tunneling effect switches the dominant pathway

from path B to path A. The trapping time and flux network

with the initial population at BChl 6 are much less affected

due to its downhill structure. The quantum-classical compari-

son of the flux network thus characterizes multi-site quantum

coherence for various network structures, and this coherence

becomes more pronounced with the decrease of temperature.

As discussed in Appendix C, the two-pathway energy trans-

fer structure can be found in the eight-site FMO model but the

weight of the two pathways is changed due to the change of

the Hamiltonian and the presence of the eighth BChl. It is thus

our main contribution in this paper to propose the quantum-

classical comparison technique and the flux network analysis

to reveal the nontrivial quantum effects, which are not signif-

icant in the FMO system but can be substantial in LH2 and

other light-harvesting systems.

Using the leading-order “classical” kinetics, we present

a simple estimation on the stability of energy transfer against

the change of internal and external parameters. The time scale

separation of energy trap and decay processes, kd〈t〉 ∼ 0.01,

is a key factor for FMO. Based on the estimation of hopping

rate, a noticeable change in the transfer efficiency requires a

dramatic change in the trapping time, which in turn requires

one or two orders of magnitude change in various parameters.

To induce a permanent damage in FMO, we remove the bot-

tleneck site, BChl 4, and explore the modified trapping time in

both quantum dynamics and “classical” kinetics. We observe

that the multiple pathways help FMO sustain a less dramatic

change in the trapping time, thus ensuring the robustness of

quantum energy transfer.

Our analysis is based on a physically motivated kinetic

mapping of quantum dynamics. The quantum coherence has

been discussed in the framework of the long-lived quantum

beat and entanglement.37 Complementary to these studies, we

provide a quantitative measurement rather than a qualitative

description for nontrivial higher-order quantum effects. Us-

ing the two-pathway FMO as our model system, we reveal

the contribution of multi-site quantum coherence and its de-

pendence on the pathway structure. Our approach can be eas-

ily applied to other light-harvesting systems and artificial de-

vices. Specifically, multi-site quantum coherence can lead to
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various phenomena, e.g., quantum interference between vari-

ous energy transfer pathways, quantum phase modulation of

a closed transfer loop, and long-range energy exchange by

quantum tunneling.20 To systematically study these nontriv-

ial quantum behaviors as well as the bath relaxation effect,52

we need to develop a more detailed partition procedure based

on our kinetic mapping technique.31 Our study is limited in

the initial condition with pure populations, and a more gen-

eral case with initial coherence will be extended in the future.

For the FMO system, different Hamiltonian models have been

applied in theoretical and experimental studies.44, 45 The vari-

ation of the Hamiltonian will lead to different results, e.g.,

the site energy of the additional eighth BChl can be opti-

mized close to the experimental value,9 but our quantum-

classical comparison strategy is applicable in general to these

new models. As a demonstration, the calculation of the eight-

site model is summarized in Appendix C, where the general-

ity of our methodology should not be confused with model-

dependent results.
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APPENDIX A: QUANTUM EFFECTIVE
KINETIC RATE MATRIX

In this appendix, we will provide a formal approach of ki-

netic mapping, and prove that the leading-order hopping rate

of the HSR model can be recovered from Fermi’s golden rule

rate with a classical white noise.

For a kinetic network satisfying the master equation (7),

the integrated residence time is calculated by the Laplace

transform

P̂ (z = 0) = [K + Kt ]
−1P (t = 0), (A1)

where P̂ (z) =
∫ ∞

0
dte−ztP (t) and τn = [P̂ (z = 0)]n. For a

quantum dynamic network, we will generate its kinetic map-

ping by the constraint of the same integrated residence time

P̂ (z = 0). The Liouville equation, ρ̇(t) = −Lρ(t), is rewrit-

ten as

ρ̇P (t) = −Lsys;PCρC(t) − Ltrap;P ρP (t),
(A2)

ρ̇C(t) = −Lsys;CP ρP (t) − [Lsys;C + Ldissp;C + Ltrap;C]ρC(t),

where the indices P and C represent diagonal population el-

ements and off-diagonal coherence elements of the density

matrix in the local site basis. The reduced density matrix ρ

is separated into two block elements, ρP and ρC. Each Liou-

ville superoperator (Lsys, Ltrap, and Ldissp), is also separated

into the block-matrix form. In the HSR model, the dissipa-

tion Liouville superoperator is described by the pure dephas-

ing constant Ŵ*, i.e., Ldissp;C = Ŵ∗. In general, the influence

of Ldissp;C can be described by a time-convolution form, i.e.,

Ldissp;CρC(t) =
∫ t

0
M(t − τ )ρC(τ )dτ . The time-nonlocal dis-

sipation kernel M(t) can be formally expressed in terms of

projection operators. Applying the Laplace transform, we ob-

tain a closed form for the population vector,

ρ̂P (z) = {z − Lsys;PC[z + Lsys;C + M̂(z = 0)

+Ltrap;C]−1
Lsys;CP + Ltrap;P }−1

× ρP (t = 0), (A3)

where ρ̂P (z) and M̂(z) are the population vector and the dis-

sipation Liouville superoperator in the Laplace z-domain, re-

spectively. To derive the above equation, we presume zero ini-

tial quantum coherence, ρC(t = 0) = 0. With two identities,

P = ρP and Kt = Ltrap;t , the integrated residence time vector

from the full quantum dynamics is given by

P̂ (z = 0) = {−Lsys;PC[Lsys;C + M̂(z = 0)

+Ltrap;C]−1
Lsys;CP + Kt }

−1P (t = 0). (A4)

Comparing Eqs. (A1) and (A4), we obtain the quantum ki-

netic rate matrix as

KQ = −Lsys;PC[Lsys;C + M̂(z = 0) + Ltrap;C]−1
Lsys;CP ,

(A5)

which includes the leading-order “classical” hopping rates

and higher-order corrections from multi-site quantum co-

herence. The effective quantum rate is given by k
Q
mn(#=m)

= −[KQ]mn.

In the leading order, we ignore the off-diagonal elements

ofLsys;C , i.e.,Lsys;C ≈ L
(0)
sys;C → i'mn. With the explicit form

of Lsys in Eq. (3), this simplification allows us to obtain the

“classical” hopping rate kC
mn( #= kQ

mn) in Eq. (12) for the HSR

model. In a forthcoming paper,31 we will demonstrate the

mapping procedure for the general quantum dynamic net-

work. The leading-order hopping rate is given by Fermi’s

golden rule rate in Eq. (14). For a classical white noise de-

scribed by J(ω) = (βŴ*/2π )ω, we ignore the constant imagi-

nary part of g(t) and arrive at

g(t) ≈ 2

∫ ∞

0

dω
(βŴ∗/2π )ω

ω2

2

βω
(1 − cos ωt) = Ŵ∗t (A6)

and

kC
m#=n = 2|Jmn|

2Re

∫ ∞

0

dτe−(Ŵmn+i'mn)τ

= 2|Jmn|
2 Ŵmn

Ŵ2
mn + '2

mn

, (A7)

which recovers the result in the HSR model.
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APPENDIX B: DERIVATION OF QUANTUM
INTEGRATED POPULATION FLUX

The integrated population flux FC
mn in a classical kinetic

network is defined in Eq. (9). The corresponding quantity,

FQ
mn, in a quantum kinetic network is similarly defined using

kQ and τQ. Since the quantum effective rate kQ is difficult to

be exactly determined, we will rewrite FQ
mn using the time in-

tegration of coherence. Applying the Laplace transform to the

second equation of Eqs. (A2) and setting the Laplace variable

to be zero (z = 0), we obtain

−Lsys;CP ρ̂P (0) = [Lsys;C + M̂(z = 0) + Ltrap;C]ρ̂C(0),

(B1)

where the condition of zero initial quantum coherence

(ρC(t = 0) = 0) is used. The above equation be further re-

arranged, giving

KQP̂ (0) = Lsys;PC ρ̂C(0) (B2)

with the help of KQ defined in Eq. (A5). The nth vector ele-

ment on the both sides of this equation is written as
∑

m(#=n)

[

kQ
mnτ

Q
n − kQ

nmτQ
m

]

= i
∑

m(#=n)

(

JnmτQ
mn − Jmnτ

Q
nm

)

, (B3)

where the coherence decay time τQ
mn =

∫ ∞

0
dtρmn(t) is intro-

duced. Since the indices, m and n, are arbitrary in the above

summation, we obtain the quantum population flux as

FQ
mn = kQ

mnτ
Q
n − kQ

nmτQ
m = 2Im

[

Jmnτ
Q
nm

]

, (B4)

with two identities, Jnm = J ∗
mn and τQ

nm = [τQ
mn]∗.

APPENDIX C: SUMMARY OF QUANTUM-CLASSICAL
COMPARISON AND FLUX NETWORK ANALYSIS FOR
THE EIGHT-SITE FMO MODEL

Since the last year, the crystal structure of FMO has been

revisited and a new eight-site model has been proposed.45

The additional eighth BChl is considered as the initial site

for energy transfer in FMO. Quantum dynamics in the orig-

inal seven-site model is modified, leading to different ob-

servations. In the third paper of this series,9 we explained

the suppressed oscillation in the eight-site FMO model and

proposed an optimal equally spaced ladder structure for the

8 → (1, 2) → 3 pathway. Our methodology of quantum-

classical comparison and flux network analysis is however

general and model independent. Here, we provide a short

summary of our calculation for the eight-site model for the

completeness.

Applying the Hamiltonian of the eight-site model from

Ref. 45, which can be found in the third paper of this series,9

we perform the quantum (hierarchic equation) and classical

(Fermi’s golden rule rate) calculations described in Sec. VI.

The bath is modeled by the Debye spectral density with the

same set of parameters (λ = 35 cm−1, 1/D = 50 fs, and

T = 300 K). The high-temperature approximation is used to

reduce the numerical cost. The resulting two trapping times

are 〈t〉C = 4.05 ps and 〈t〉Q = 4.69 ps, with the relative differ-

ence of ∼14% between quantum dynamics and hopping ki-

netics. Compared to the result of the initial condition at BChl

1 in the seven-site FMO model, the difference of 〈t〉Q is less

than 5%, indicating the stability of energy transfer efficiency

against the change of the Hamiltonian. Next, we construct the

flux network using both quantum and classical approaches.

As shown in Fig. 5, the two major energy transfer pathways,

8 → 1 → 2 → 3 and 6 → (5, 7) → 4 → 3, are determined by

relevant net population flows (>0.1), and the overall structure

of the flux network is kept the same under quantum and classi-

cal descriptions. The average difference between the two flux

networks is χF ≈ 20%, slightly larger than the difference of

the trapping time. Compared to the case of the initial con-

dition at BChl 1 in the seven-site model, the energy transfer

in the eight-site model is more dispersed in the network, and

the probabilities of the two pathways are closer (F32 ≈ F34).

A small but unidirectional inter-path energy flow can be ob-

served from the first pathway, 8 → (1, 2) → 3, to the second

pathway, 6 → (5, 7) → 4 → 3. These two phenomena are re-

lated to the Hamiltonian used in the eight-site model: (1) the

average energy level of the first pathway is higher than that

of the second pathway; (2) the coupling between the trap site,

J34 ≈ 2J32, prefers the second pathway, especially in the clas-

sical description; (3) the additional eighth site allows more

FIG. 5. The flux networks of the eight-site FMO under the physiological condition (λ = 35 cm−1, 1/D = 50 fs, and T = 300 K) of the Debye spectral density

using (a) full quantum dynamics and (b) the leading-order classical kinetics.
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chances of inter-path energy flows and further increases the

dispersibility. One the other hand, quantum-classical compar-

ison also reveals a noticeable change in the weights of the two

pathways (χF ≈ 20%). Quantum mechanically, the multi-site

quantum coherence allows a long-range direct energy trans-

fer from BChl 8 to BChl 2. The increase of quantum branch

probability from BChl 2 to BChl 3 compared to the classical

value results from the interplay of multi-site quantum coher-

ence and solvent relaxation effect.

In a summary, we apply the quantum-classical compar-

ison and the flux network analysis to a new eight-site FMO

model. The basic two-pathway energy transfer structure can

be still observed in the eight-site FMO model. Because of the

change in the Hamiltonian, the detailed results of quantum-

classical difference and non-trivial quantum effects are modi-

fied accordingly. Interestingly, energy transfer becomes more

dispersed in the eight-site FMO model, which may help the

system resist damages.
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