
 Open access Book Chapter DOI:10.1007/978-3-642-15205-4_10

Efficient enumeration for conjunctive queries over x-underbar structures
— Source link

Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, Olivier Gauwin

Institutions: French Institute for Research in Computer Science and Automation, Paris Diderot University,
Université libre de Bruxelles, University of Mons

Published on: 23 Aug 2010 - Computer Science Logic

Topics: Conjunctive query, Boolean conjunctive query and Time complexity

Related papers:

 Conjunctive query evaluation by search tree revisited

 Memory lower bounds for XPath evaluation over XML streams

 Query size estimation by adaptive sampling (extended abstract)

 Some connections between bounded query classes and nonuniform complexity

 On Learning Disjunctions of Zero-One Treshold Functions with Queries

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-
4xgaf6isjb

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-15205-4_10
https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-4xgaf6isjb
https://typeset.io/authors/guillaume-bagan-1wpwqnvvvg
https://typeset.io/authors/arnaud-durand-3fwg1iyvl7
https://typeset.io/authors/emmanuel-filiot-4idj8o7943
https://typeset.io/authors/olivier-gauwin-4ault4ie5d
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/paris-diderot-university-13uqxj32
https://typeset.io/institutions/universite-libre-de-bruxelles-2us6zg8h
https://typeset.io/institutions/university-of-mons-h9cv56le
https://typeset.io/conferences/computer-science-logic-2yvt1sre
https://typeset.io/topics/conjunctive-query-2ymk43fa
https://typeset.io/topics/boolean-conjunctive-query-3n2h8rmv
https://typeset.io/topics/time-complexity-2n3x3lor
https://typeset.io/papers/conjunctive-query-evaluation-by-search-tree-revisited-3npgr2oqwm
https://typeset.io/papers/memory-lower-bounds-for-xpath-evaluation-over-xml-streams-3fadm9m83f
https://typeset.io/papers/query-size-estimation-by-adaptive-sampling-extended-abstract-1z5ub9l0du
https://typeset.io/papers/some-connections-between-bounded-query-classes-and-1omwscvox4
https://typeset.io/papers/on-learning-disjunctions-of-zero-one-treshold-functions-with-3fieqxlz8n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-4xgaf6isjb
https://twitter.com/intent/tweet?text=Efficient%20enumeration%20for%20conjunctive%20queries%20over%20x-underbar%20structures&url=https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-4xgaf6isjb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-4xgaf6isjb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-4xgaf6isjb
https://typeset.io/papers/efficient-enumeration-for-conjunctive-queries-over-x-4xgaf6isjb

HAL Id: hal-00489955
https://hal.archives-ouvertes.fr/hal-00489955

Submitted on 7 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Enumeration for Conjunctive Queries over
X-underbar Structures

Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, Olivier Gauwin

To cite this version:
Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, Olivier Gauwin. Efficient Enumeration for
Conjunctive Queries over X-underbar Structures. 19th EACSL Annual Conference on Computer
Science Logic, Aug 2010, Brno, Czech Republic. pp.80-94, 10.1007/978-3-642-15205-4_10. hal-
00489955

https://hal.archives-ouvertes.fr/hal-00489955
https://hal.archives-ouvertes.fr

Efficient Enumeration for Conjunctive Queries over

X-underbar Structures

Guillaume Bagan1, Arnaud Durand2, Emmanuel Filiot3, and Olivier Gauwin4

1 INRIA Lille – Mostrare
2 ELM, CNRS FRE 3233 – Université Paris Diderot

3 Université Libre de Bruxelles
4 Université de Mons – UMONS

Abstract. We investigate efficient enumeration algorithms for conjunctive queries

for databases over binary relations that satisfy the X property. Tree-like relations

such as XPath axes or grids are natural examples of such relations. We first show

that the result of an n-ary conjunctive query Q over an X structure S can be enu-

merated with a delay in O(n·|S|·|Q|) between two consecutive n-tuples. Then,

we consider acyclic conjunctive queries and show that such queries admit an enu-

meration algorithm with delay O(|Q| · |D|) and a preprocessing in O(|Q| · |S|)
where D is the domain of S. The delay can even be improved to O(n·|D|) with a

slightly more expensive preprocessing step. As an application of our method, we

also show that any n-ary XPath acyclic conjunctive query Q over an unranked

tree t can be enumerated with a preprocessing and delay O(|Q|·|t|). In the sec-

ond part of the paper, we consider conjunctive queries with possible inequalities

(6=) between variables. In this case, we show that query evaluation is NP-hard

and, unless P = NP, these queries do not admit enumeration algorithms with

a combined polynomial time delay. However, we also show that hardness relies

only on the number ℓ of variables that appear in inequalities. We propose efficient

enumeration procedures for acyclic and general conjunctive queries whose delay

is exponential in ℓ but polynomial (even quasi-linear) in |Q| and |S|.

1 Introduction

Querying is a core task in database processing. Given a relational structure S, an n-

ary query retrieves n-tuples of elements in the domain of S. For XML databases, the

structure S is a tree modeling an XML document, and an n-ary query selects n-tuples

of nodes of this tree.

Query computing can be seen as a generation process. In this case, one tries to out-

put selected tuples one after the other, without duplicates, while minimizing the delay

between successive answers. Good enumeration algorithms then carry additional infor-

mation on the problem: it shows that the query is not only tractable but that the result

can be obtained step by step in a very regular way. A nice feature is that enumera-

tion permits to start a pipeline process, and thus allow tasks based on querying to start

processing answers without waiting for the whole evaluation to be done.

More precisely, an enumeration algorithm is the process of generating one after the

other the tuples of a given query Q(S) for some given order < [4]. In particular, the

enumeration process does not generate duplicates. The so-called preprocessing is a pre-

liminary step performed before the enumeration phase. The delay of such an algorithm

is the maximum between (i) the time to get the first tuple after preprocessing (ii) the

maximal interval of time between the generation of two consecutive solutions for <.

In [13], a tractability frontier is established for conjunctive queries defined using

XPath axes as predicates. This dichotomy relies on the X property (see Section 2 for a

definition): if a structure S has the X property w.r.t. some total order < on the domain

D of the structure, then it can be checked in PTIME combined complexity whether the

result of a conjunctive query Q over S is empty or not. If Q is an n-ary query, then the

proof provides an evaluation algorithm with time complexity O(|D|n · |S| · |Q|). This

holds for any conjunctive queries using unary and binary predicates, not only XPath

expressions. For all conjunctive queries based on XPath axes combinations that do not

have the X property, checking whether Q selects some tuples on S is NP-complete.

Based on the aforementioned dichotomy, we investigate enumeration of conjunctive

queries over X structures, by providing enumeration algorithms (see Fig. 1) and hard-

ness results. Enumeration complexity of query problems, in particular on tree structures

and on tree-like queries, has deserved some attention recently [3, 7, 4]. However grids

also have the X property, hence new tools are needed for such kind of structures.

Prior to this investigation, we show that deciding whether a structureS is X for some

order on its domain is NP-hard when S contains two binary relations. If S contains only

one binary relation, the problem is known to be in PTIME. 5

Our first algorithm enumerates answers of an n-ary conjunctive query Q over an X

structure S without preprocessing and with a delay in O(n·|S|·|Q|). The method relies

on the computation of maximal arc-consistent pre-valuations proposed in [13]. We then

turn to acyclic n-ary conjunctive queries (ACQS) Q over X structures S, and propose

an algorithm with preprocessing O(|Q| · |S|) and delay in O(|Q| · |D|), where D is the

domain of S. We first reason on a conceptually simpler notion of tree-shaped queries,

namely tree patterns. ACQS are then mapped to tree patterns. With a slightly more

expensive preprocessing in O(|Q|·|D|2), this delay can be reduced to O(n·|D|). This is

to be compared with Yannakakis’ algorithm [18] turned into an enumeration algorithm

in [4], which computes all answers Q(S) of an acyclic conjunctive query Q over an

arbitrary structure S with delay O(|Q|·|S|), hence in total time O(|Q|·|S|·|Q(S)|).
The set of XPath axes does not have the X property (only some combinations of

them have it). However we show that the main ideas of the enumeration algorithm for

ACQS over X can also be applied to ACQS over XPath axes. Given an unranked tree

t and an ACQ Q over XPath axes, Q(t) can be enumerated with a preprocessing and

delay O(|Q|·|t|), where |t| is the number of nodes. This is particularly relevant to XML

processing as XPath has become one of the main query language for XML. Moreover,

as XML documents can be very large in practice, even a square in the size of the tree

for preprocessing and delay would not be feasible.

It is a natural question to ask whether the delay can be made polynomial in the

size of the query only (and independent of the size of the X structure) in the case of

conjunctive or even acyclic conjunctive queries. While this is still an open question, we

obtain hardness results and tight algorithms when allowing inequalities in predicates.

5 personal communication with Pavol Hell and Arash Rafiey. To be published.

2

Source Queries Structures Preprocessing Delay

[13] CQ X O(1) O(|D|n ·|Q|·|S|)
Section 3 CQ X O(1) O(n·|Q|·|S|)

Section 5 CQ(6=) X O(1) O(ℓO(ℓ) ·|Q|·n·|S|·log |D|)
[4] ACQ all O(1) O(|Q|·|S|)

Section 4 ACQ X O(|Q|·|S|) O(|Q|·|D|)
Section 4 ACQ X O(|Q|·|D|2) O(n·|D|)
Section 4 ACQ (XPath axes) tree t O(|Q|·|t|) O(|Q|·|t|)

Section 5 ACQ (6=) X O(|Q|·|S|) O(ℓO(ℓ) ·|Q|·|D|·log |D|)

Fig. 1. Enumeration algorithms for n-ary queries Q over structures S with domain D. ℓ is the

number of variables used in inequalities, while |t| denotes the number of nodes of the tree t.

For conjunctive queries with inequalities over X structures, satisfiability is NP-hard,

even when the query restricted to X predicates is acyclic. As a consequence, these

queries may not be enumerated with a polynomial delay, in terms of combined com-

plexity. However, we propose an enumeration algorithm for such queries without pre-

processing, and with a delay in O(ℓO(ℓ) ·|Q|·n·|S|·log |D|) where the blowup is only

in the number ℓ of distinct variables in inequalities. In the acyclic case, when allowing

a preprocessing phase in O(|Q|·|S|), we obtain a delay in O(ℓO(ℓ) ·|Q|·|D|·log |D|).

Related work. Enumeration of acyclic conjunctive queries has been studied in [4].

It is shown that the result of such a query can be enumerated with a delay linear in

|S| · |Q| (dependency on |Q| is exponential when inequalities are allowed). They also

formulate conditions on free variables to have a delay depending on |Q| only. Monadic

second order queries on structures of bounded treewidth are considered in [7, 3] where

enumeration algorithms are exhibited with a delay depending on |Q| (non elementarily)

and on the size of each tuple.

For acyclic conjunctive queries, Koch [16] provides an enumeration algorithm with

preprocessing in O(|S| · |Q|) (for computing Θ) and delay O(|D|), where |D| is the

domain size. For tree structures and tree-like queries over child/descendant axes, the

delay can be improved to O(1) with the algorithm TwigStack [5]. However in both

works, all variables are considered as free. In our work, variables can be existentially

quantified, so that it may be an exponential number of valuations (in the size of the

domain) for a single answer tuple. However we can still achieve a polynomial delay

between two successive tuples.

Conjunctive queries over child/descendant axes are considered in [6] for the class

of graphs. No enumeration algorithms are provided, but query evaluation algorithms.

In the case of tree-like queries over graphs the time complexity is O(|Q| · |D| · |E| +
|Q(S)|), where |V | is the size of the domain and |E| is the number of edges in the graph.

However it is exponential in the number of variables in the case of graph queries. In [9],

XPath dialects that can define n-ary queries are introduced. No enumeration algorithm

is given, but a fragment that corresponds to union of ACQS over trees t is defined, for

which evaluation is in time O(n·|Q|·|t|2 ·|Q(t)|).

3

2 X Structures

We consider relational structures over binary relational symbols only6. Formally let σ

be a signature {R1, . . . , Rm} of binary relational symbols Ri (equality = is part of

the language too). A (finite) σ-structure S consists of a finite domain D together with

an interpretation of σ-symbols Ri as binary relations RS
i on D (when it is clear from

the context we do not distinguish a symbol from its interpretation). Let R be the set

{RS
1 , . . . , R

S
m}. The size |D| of a domain D is its cardinality. The size of a σ-structure

S over D, is |S| = |D| +
∑

R∈R |R|, where |R| = |{(v, v′) ∈ D × D | R(v, v′)}|
Given two binary relations R1 and R2 of R, one defines the relations R1 ◦R2, R1∩R2,

R1 ∪ R2 and R−1
1 for the composition, intersection, union and inverse in the standard

way. Given a set A ⊆ D, we denote by R(A) the set {b | ∃a ∈ A. R(a, b)}.

The computation model used in this paper is a {+}-RAM with uniform cost mea-

sure as in [3, 4]. It takes σ-structure as input (with each tuple in a distinct input register)

and uses, during the computation, register contents and addresses always bounded by

O(D) (hence the correspondence with logarithmic cost is immediate).

The X property [14]. A binary relation R over D has the X property w.r.t. a total

order < on D iff for all elements v0, v1, v2, v3 of D the following holds:

(X property) R(v0, v1) ∧R(v2, v3) =⇒ R(min(v0, v2),min(v1, v3))

A binary relation having the X property is also called an X relation. We say that a

set of binary relations R over D has the X property if there is a total order < on D

such that all relations of R have the X property w.r.t. <. Similarly, a structure has the X

property if its relations have the X property. We call it an X structure.

Example 1. Over tree structures, XPath axes define classical binary relations such as

child, parent, descendant, ancestor, next-sibling, etc. There is no order < on the set of

nodes such that all XPath axes are X w.r.t. to the same <. However, such orders exist

when considering some subsets of axes. For instance, {child, next-sibling} are X for

the order induced by a breadth-first left to right traversal of the tree. A complete list of

subsets of tree relations (XPath axes) having the X property is established in [13].

Example 2. The n × n-grid graph G = (V,E) with V = {1, ..., n}2 and for all

i, i′, j, j′ ∈ {1, ..., n}, ((i, j), (i′, j′)) ∈ E if and only if {|i− i′|, |j − j′|} = {0, 1}, is

X for the lexicographic extension of the natural ordering < on {1, ..., n}.

Lemma 1. The class of X relations is closed by composition, intersection, and inverse

(even for the same order). However, it is not closed by union and complement (even for

different orders).

Proof. Closure by composition, intersection and inverse are easy to check. For union,

suppose that v0 < v1 and consider the relations R1 = {(v0, v1)} and R2 = {(v1, v0)}.

Both have the X property w.r.t. <, but not R1 ∪ R2 (for both linear orders on v0, v1).

For complement, consider the identity relation {(v0, v0), (v1, v1)}, its complement is

exactly R1 ∪R2. ⊓⊔

6 To ease notations, we do not consider unary relation symbols, but all the results of the paper

carry over to a signature with both binary and unary relation symbols.

4

Sorted representation of X relations. In this paper, for X structures, we assume that

the order < is given and that comparison can be done in O(1). Relations are given by

sets of pairs of elements and the domain D is given as a list of elements sorted accord-

ing to <. To perform some operations more efficiently, we use the following so-called

sorted representation for a relation structure S. Every element u of D is represented

by an integer iu ∈ {1, . . . , |D|}. Moreover, we require that iu <N iv iff u < v. Ev-

ery relation R is represented by two arrays A and A−1 of size |D| such that for all

iu ∈ {1, . . . , |D|}, A[u] is the sorted (increasing) list (for <) of successors of u in R,

and A−1[u] is the increasing list of successors of u in R−1. In other words, A is an

adjacency list representation of R, viewed as a directed graph with vertex set D. We

also require that the list is doubly-linked, so that we can traverse the list in both orders.

Lemma 2. For every structure S with some total order < on its domain D, whose

domain and relations are represented by a sorted list and lists of pairs of elements

respectively, one can compute a sorted representation of S in time O(|S|).

Proof. One first renames the elements of D and S into integers. We do it such that for

all iu, iv ∈ {1, . . . , |D|}, iu <N iv iff u < v. This can be done in O(|S|) since D is

assumed to be given as a sorted list of elements (for <). Then for each relation R, one

has to construct two arrays A and A−1 of size |D| such that for all u ∈ D, A[iu] is the

sorted list of successors of u in R. It is known that A can be computed in O(|R|) by

applying two times the following algorithm: for all iu from 1 to |D| and for all iv such

that R(u, v), append iu to A[iv]. Applying this algorithm a second time on A results

in sorted lists of successors for each u. This is done in O(|R|). One can compute A−1

similarly. ⊓⊔

Given a subset A ⊆ D, we show that, for X structures, this representation allows us

to compute R(A) and R−1(A) efficiently.

Lemma 3. For every X relation R over a set D in sorted representation, and every set

A ⊆ D given as a list, R(A) and R−1(A) can be computed in time O(|D|).

Proof. See Algorithm 1. The set A can be sorted in O(|D|) as we know that there are

at most |D| integers in A with maximal value |D|. The assumed orders on v and w

elements ensure that each element v ∈ A and w ∈ R(A) is processed only once. The X

property allows to skip w elements lower than w elements already processed. Note that

the algorithm computes a sorted set. Since R−1 is also X for <, one can apply the same

algorithm on the representation of R−1. ⊓⊔

Thanks to Lemma 3, we obtain the following proposition:

Proposition 1. The composition of two binary relations over D can be computed in

time O(|D|2), whenever one of them is X. In other terms, the product of two n × n

Boolean matrices is computable in linear time when one of them satisfies the X property.

Proof. One first computes a sorted representation inO(|R1|+|R2|) = O(|D|2) (Lemma

2). For R1 ◦ R2, R1(R2(v)) (for v ∈ D) can be computed in time O(|D|) according

to Lemma 3, so R1 ◦ R2 can be computed in time O(|D|2). For R2 ◦ R1, we have:

R2 ◦ R1 = (R−1
1 ◦ R−1

2)−1. Inverting a relation can be done in O(|D|2), and X rela-

tions are closed under inverse (Lemma 1). ⊓⊔

5

Algorithm 1 Computing R(A)

procedure IMAGE(R,A)

sort A

S ← empty list; max← −∞
for v ∈ A w.r.t. < increasing do

for w ∈ R(v) w.r.t. < decreasing do

if w ≤ max then

exit inner for-loop

S.append(w)

max← max(R(v))

sort S

return S

Finding X orders. In this part, one considers the problem of checking whether, for a

given relationR, there exists an order for whichR satisfies the X property. This problem

has been considered under different angles in the CSP literature (see for example [15]).

X-ENUMERATION(n)

Input: a finite domain D and R1, . . . , Rn ⊆ D2

Question: does there exist a common X-enumeration for R1, . . . , Rn (i.e. a total order

< on D such that R1, . . . , Rn are X for <)?

We prove that deciding whether two relations are X for some total order is NP-

complete. Hardness is proved by reduction from BETWEENNESS [17, 11].

Proposition 2. The problem X-ENUMERATION(2) is NP-complete.

Proof. Given a linear order, one can check in polynomial time whether the two rela-

tions are X with respect to this order, thus proving easiness. The hardness is proved by

reduction from the NP-complete problem named BETWEENNESS [17, 11].

BETWEENNESS

Input: a finite set A and a collection I of ordered triples (a, b, c) of distinct elements

from A

Question: is there a betweenness ordering f of A for I , that is, a one-to-one function

f : A → {1, 2, ..., |A|} such that for each (a, b, c), either f(a) < f(b) < f(c) or

f(c) < f(b) < f(a)?

Let A be a finite set and I ⊆ A3. Let |I| = m. One constructs m copies A1, ..., Am

of A (with A = A1) and two relations S and R as follows.

– relation S is (the graph of) a bijection from Ai to Ai+1 for i < m.

– let ti = (a, b, c) be the ith triple of I (for some arbitrary enumeration of the triples),

then construct R(ai, bi) and R(bi, ci) where ai, bi, ci belong to Ai and are the

unique elements related to, respectively, a, b and c by a S-path of length i− 1.

6

Let ≺ be a linear ordering of elements of
⋃n

i=1 Ai and suppose that S and R are X

for ≺. By construction of relation S, for each i < m and all xi, yi in Ai, their images

xi+1 and yi+1, by S, are such that :

xi ≺ yi ⇐⇒ xi+1 ≺ yi+1. (1)

If not, suppose we have xi ≺ yi and xi+1 ≻ yi+1 then, since S(xi, xi+1) and

S(yi, yi+1) holds but not S(xi, yi+1), relation S would not be X for ≺. Similarly, for

xi ≻ yi and xi+1 ≺ yi+1 the same conclusion holds. It follows that ≺ preserves

the ordering of A in its various copies (note however that this does not imply that

elements of distinct copies always compare the same i.e. that Ai ≺ Ai+1). Now, an

easy calculation shows that in each copy Ai of A, since relation R is X for ≺ then

ai ≺ bi ≺ ci or ci ≺ bi ≺ ai. Hence, the betweenness property holds for I and the

successor function associated to ≺ on A.

For the converse, suppose that I satisfies the betweenness property for some func-

tion f . Let ≺ be the linear order that extends the successor f . Now extend ≺ on all

copies of A such that Equivalence 1 is preserved. Assume also that the copies are or-

dered in the following way : A1 ≺ A2 ≺ ... ≺ An. In that case, it is easily checked that

S is X for ≺. Also, since for all triples ti = (a, b, c), it holds that f(a) < f(b) < f(c)
or f(c) < f(b) < f(a), it also holds that ai ≺ bi ≺ ci or ci ≺ bi ≺ ai. Hence, again

by easy calculation, R is X. ⊓⊔

For the case of one binary reflexive relation, it has been shown [8] that one can

check in polynomial time whether R has an X enumeration. Recently, Hell and Rafiey

(personal communication) proved that the problem X-ENUMERATION(1) is in P.

3 Conjunctive queries over X structures

Queries. An n-ary query Q over a structure S = (D,R) is a mapping from S to 2D
n

.

The set Q(S) is also called the answer set over S. Conjunctive queries are defined in the

normal way [1]. In particular, an n-ary conjunctive query over S is a query defined by

an existential first-order formula without negation nor disjunction, with n free variables

and using relations from R as predicates. A 0-ary conjunctive query is called a Boolean

conjunctive query. We recall that all the relations considered in this paper are binary.

We write vars(Q) for the variables occurring in Q, and varsfree(Q) for the n free ones.

We also write R(x, y) ∈ Q if R(x, y) appears in Q. Throughout this paper, we assume

that formulas defining conjunctive queries are in prenex normal form. The body of Q is

obtained fromQ by removing its quantifiers. The size of a conjunctive queryQ, denoted

by |Q|, is the number of symbols of its first-order formula.

Pre-valuations and valuations. Given a conjunctive query Q over a structure S =
(D,R), we say that Θ is a pre-valuation for Q if it is a total functionΘ : vars(Q) → 2D

assigning a nonempty set of elements of D to each variable of Q. A pre-valuation Θ

is arc-consistent on S iff for each binary predicate R(x, y) of Q, for each v ∈ Θ(x),
R(v, w) is true for some w ∈ Θ(y), and for each w ∈ Θ(y), R(v, w) is true for some

v ∈ Θ(x).

7

A valuation θ is a total function θ : vars(Q) → D assigning an element of D to each

variable of Q. A valuation is consistent if it satisfies the body of Q. Conjunctive queries

define n-ary queries in the following sense: Q(S) is the set of tuples (θ(x1), . . . , θ(xn))
such that θ satisfies Q and varsfree(Q) = {x1, . . . , xn}. The minimum valuation θ in Θ

w.r.t. some total order < on D is written min< Θ and given by: θ(x) = min< Θ(x) for

all x ∈ vars(Q). Valuations are ordered according to the lexicographical extension of

<. The following properties will be the basis of our enumeration algorithm.

Lemma 4 (Gottlob, Koch, Schulz [13]). Let S be a structure and Q a conjunctive

query on S.

1. the unique subset-maximal arc-consistent pre-valuation of Q on S can be computed

in time O(|S|·|Q|).
2. if all the relations in S are X w.r.t. the same order <, then for any arc-consistent

pre-valuation of Q on S, the corresponding minimum valuation is consistent.

This lemma provides a procedure to decide whether Q(S) = ∅ for every n-ary

conjunctive queryQ over an X structureS, in time O(|S|·|Q|). It suffices to compute the

subset-maximal arc-consistent pre-valuation Θ of Q on S, and check that Θ(x) 6= ∅ for

all x ∈ varsfree(Q). Equivalently, when Q has no free variable (i.e. n = 0), evaluating

Q on S can be done in time O(|S|·|Q|).
In [13], a first evaluation algorithm is proposed for n-ary queries Q(x1, . . . , xn)

over X structures. It consists in enumerating all tuples (u1, . . . , un) ∈ Dn, and for each

of them, check the satisfiability ofQ(u1, . . . , un) where free variables are interpreted by

u1, . . . , un respectively. This algorithm outputs the answers of Q on S in time O(|D|n·
|S|·|Q|). However the delay may be O(|D|n ·|S|·|Q|).

In this section, we explain how to extend this algorithm into an enumeration algo-

rithm without preprocessing, and a delay in O(n·|S|·|Q|). The core idea is to consider

distinct domains D1, . . . , Dn for the free variables x1, . . . , xn of Q. This allows us to

update these domains, in order to avoid duplicate answers and to ensure the enumeration

of all answers in lexicographical order w.r.t. <.

In the sequel we will consider arc-consistent pre-valuations for S restricted to do-

mains defined by D = (D1, . . . , Dn), with Di ⊆ D for all 1 ≤ i ≤ n. To define

this formally, we introduce fresh unary relation symbols D̃i, and consider the signature

σ′ = σ ⊎ D̃1 ⊎ . . . ⊎ D̃n. Consider the query Q′ = Q ∧ D̃1(x1) ∧ . . . ∧ D̃n(xn) and

the σ′-structure S′ that is similar to S, but extends it by interpreting D̃i in the follow-

ing way: D̃i

S′

= Di. Then we define pvmax(Q,S,D) as the unique subset-maximal

arc-consistent pre-valuation for Q′ over S′, i.e. pvmax(Q,S,D) = pvmax(Q
′, S′). The

computation of pvmax(Q,S,D) can still be performed in O(|S|·|Q|). The next lemma

ensures that the subset-maximal arc-consistent pre-valuation on some domains D keeps

all the answers in D1 × . . .×Dn. Let ansSQ(D) = (D1 × . . .×Dn) ∩Q(S) be the set

of answers of Q on S using only values compatible with D.

Lemma 5. Let Θ = pvmax(Q,S,D). Then ansSQ(D) = ansSQ(Θ(x1)× . . .×Θ(xn)).

Proof. As pvmax(Q,S,D) ⊆ D1×. . .×Dn, we have ansSQ(pvmax(Q,S,D)) ⊆ ansSQ(D).

Conversely, suppose that (x1, . . . , xn) ∈ ansSQ(D) \ ansSQ(pvmax(Q,S,D)). Consider

8

(DΘ
1 , . . . , D

Θ
n) = pvmax(Q,S,D). Then the pre-valuation (DΘ

1 ∪{x1}, . . . , DΘ
n ∪{xn})

is arc-consistent, and bigger than pvmax(Q,S,D), which contradicts its maximality. ⊓⊔

We now present Algorithm 2, our enumeration algorithm. This algorithm outputs

all elements of Q(S) in lexicographical order w.r.t. < (the order of X relations) for the

chosen order on the free variables of Q.

Algorithm 2 Enumeration algorithm for conjunctive queries over X structures

procedure MAIN(Q,S,<)

2: (D,R)← S; τ ← FIRST(D,Q)

while τ 6= ⊥ do output(τ); τ ← NEXT(τ,D,Q)

4: function FIRST(D,Q)

Θ ← pvmax(Q,S, (D, . . . ,D))
6: if Θ 6= (∅, . . . , ∅) then return min< Θ else return ⊥

function NEXT((v1, . . . , vn), D,Q)

8: j ← n− 1
repeat

10: Θ ← pvmax(Q,S, ({v1}, . . . , {vj}, D
>
vj+1

, D, . . . ,D)); j ← j − 1
until Θ 6= (∅, . . . , ∅) or j < 0

12: if Θ 6= (∅, . . . , ∅) then return min< Θ else return ⊥

We first use pvmax on the whole domainD for all free variables, and get a first answer

(v1, . . . , vn) by taking the minimum valuation. Then we exclude vn from the domain of

xn, and all smaller elements, by running pvmax on the domains ({v1}, . . . , {vn−1}, D>
vn
),

where D>
vi

= {v ∈ D | v > vi}. If no answer is returned, we run pvmax on

({v1}, . . . , {vn−2}, D>
vn−1

, D), and so on. Proposition 3 shows that the solution re-

turned by the function next is indeed the next answer in Q(S) in lexicographical order.

This proves the correctness of Algorithm 2.

Proposition 3. For all tuples of elements (v1, ..., vn) ∈ Dn, the successor of (v1, ..., vn)
by <lex, if it exists, is min

0≤j<n
min
<

pvmax(Q,S, ({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D)).

Proof. Let succlex denote the next solution in lexicographical order, that is to say:

succlex(v1, . . . , vn) = min<{(v′1, . . . , v
′
n) ∈ Q(S) | (v′1, . . . , v

′
n) >lex (v1, . . . , vn)}.

We have, for every 0 ≤ j < n,

min< ans({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D)

= min< ans(pvmax(Q,S, ({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D)))

= min< pvmax(Q,S, ({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D))
The first equality is by Lemma 5, and the second by Lemma 4. Thus,

succlex(v1, . . . , vn) = min0≤j<n min< ans({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D)

= min0≤j<n min< pvmax(Q,S, ({v1}, ..., {vj}, D>
vj+1

, D, ..., D))
The first equality is due to the lexicographical order, and the second to the equalities

above. ⊓⊔

We call pvmax at most n times between two successive answers, i.e. Algorithm 2 has

a delay in time O(n·|S|·|Q|).

9

Theorem 1. Let S be an X structure and Q an n-ary conjunctive query over S. Then

Q(S) can be enumerated without preprocessing, and with a delay in O(n · |S| · |Q|)
between two successive answers.

4 Acyclic conjunctive queries over X structures

A conjunctive query Q is acyclic if it admits a join-tree [1], or equivalently (for binary

relations) if the following undirected graph GQ is acyclic: GQ = (VQ, EQ) with VQ =
vars(Q) and EQ is the set of edges s.t. {x, y} ∈ EQ iff R(x, y) occurs in Q for some

R. In this section, we present an enumeration algorithm for ACQS over X relations

(ACQS(X)). It works with a preprocessing O(|Q|·|S|) and a delay O(|Q|·|D|), where

Q is the query and D the domain. Then we show that when paying a preprocessing in

time O(|D|2 · |Q|), one can reduce the delay to O(n · |D|), where n is the arity of the

query. As the associated graph GQ of an ACQ Q over a binary signature is nothing else

than a forest, we define a notion of tree-like queries into which ACQS over a structure

S can be naturally encoded (in linear-time), while preserving X properties of relations.

4.1 Tree patterns

Definition 1. A tree pattern over a binary signature σ and a countable set of variables

V is an ordered binary tree whose nodes are labeled in V ∪ σ ∪ σ× σ. It is inductively

defined by terms generated by the following grammar:

T ::= x | R(T ′) | (R,R′)(T1, T2) where x ∈ V and R,R′ ∈ σ

Moreover, the variables occurring at the leaves are all pairwise distinct.

The semantics of tree patterns over σ is given by means of ACQS over σ. Intuitively,

every inner-node corresponds to an existentially quantified variable, every leaf to a free

variable, and every branching to a conjunction. Therefore to define the semantics in

terms of ACQS, one needs to introduce a new bound variable for every inner-node. We

denote by varsfree(T) the variables occurring in T (necessarily at the leaves). For any

variable x and fresh variables y, z, x′ 6∈ varsfree(T), we denote by QT,x the CQ:

QT,x =

x = y if T = y

∃x′ R(x, x′) ∧QT ′,x′ if T = R(T ′)
∃y∃z R(x, y) ∧R′(x, z) ∧QT1,y ∧QT2,z if T = (R,R′)(T1, T2)

The ACQ QT associated with a tree pattern T is defined by QT = ∃x·QT,x , for any

variablex 6∈ varsfree(T) (the choice of the variable does not matter as equivalence is pre-

served when choosing another variable). E.g. let T = (R1, R2)((R3, R4)(x1, x2), x3).
Then QT (x1, x2, x3) = ∃x∃yR1(x, y) ∧R3(y, x1) ∧R4(y, x2) ∧R2(x, x3), for some

variables x, y. Since the variables of T are all distinct, QT is acyclic. We extend the no-

tion of answer set to tree patterns naturally. For a structure S over σ, T (S) = QT (S).
The size of a tree pattern is its number of nodes.

We now show that for any tree pattern T and any X σ-structure S with domain D,

T (S) can be enumerated with a preprocessingO(|S|+ |D|·|T |) and a delay O(|D|·|T |).

10

Let x 6∈ varsfree(T), and consider the ACQ QT,x as defined before. For all a ∈
D, we denote by QT,a the ACQ QT,x where each occurrence of x is replaced by a.

We denote by T (S, a) the answer set QT,a(S). Clearly, T (S, a) ⊆ T (S). Informally,

T (S, a) is the set of tuples that can be obtained by mapping the root of T to a.

We denote by Sub(T) the set of subtrees (subterms) of T . The first step of the

algorithm is to compute a mapping sat : Sub(T) → 2D such that for all T ′ ∈ Sub(T)
and for all a ∈ D, a ∈ sat(T ′) iff T ′(S, a) 6= ∅. Informally, sat(T ′) is the set of

elements such that there exists a solution of T ′ in S that can be obtained when mapping

the root of T ′ to a. This mapping can be computed efficiently:

Lemma 6. For every tree pattern T over σ and every X σ-structure S over a domain

D given in sorted representation, sat can be computed in time O(|D|·|T |).

Proof. The mapping sat can be computed inductively in a bottom-up manner, as

sat((R1, R2)(T1, T2)) = R−1
1 (sat(T1)) ∩R−1

2 (sat(T2))
sat(R1(T1)) = R−1

1 (sat(T1))
sat(x) = D

The result follows by Lemma 3 and since intersection can be computed in O(|D|). ⊓⊔

Similar techniques have also been used to evaluate XPath (unary) queries [12].

Let T be a tree pattern over a binary signature σ, and let x1, . . . , xn be the vari-

ables occurring at the leaves of T in left-to-right order (i.e. from the left-most leaf

to the right-most leaf). Given an X σ-structure S for some total order < on the do-

main D, we define an algorithm that enumerates T (S) in lexicographic order with

respect to x1, . . . , xn and <. We denote by <lex this order. For all A ⊆ D, we let

T (S,A) =
⋃

a∈A T (S, a). Let T ′ ∈ Sub(T) and u ∈ T ′(S). The tuple u defines the

set B(u, T ′, S) = {a ∈ D | u ∈ T ′(S, a)}. Informally, B(u, T ′, S) is the set of nodes

from which we can obtain u.

Lemma 7. If T = (R1, R2)(T1, T2), then for all A ⊆ D:

T (S,A) =
⋃

u∈T1(S,R1(A))

{u} × T2(S,R2(R
−1
1 (B(u, T1, S)) ∩A))

Proof. Let w ∈ T (S,A). By definition of T (S,A), there is a ∈ A such that w ∈
T (S, a). Therefore there exists a1, a2 ∈ D such that w can decomposed into u and

v, (a, a1) ∈ R1, (a, a2) ∈ R2, u ∈ T1(S, a1) and v ∈ T2(S, a2). Clearly, a1 ∈
R1(A), and a1 ∈ B(u, T1, S). Therefore a ∈ R−1

1 (B(u, T1, S)) ∩ A, and a2 ∈
R2(R

−1
1 (B(u, T1, S)) ∩ A). Therefore v ∈ T2(S,R2(R

−1
1 (B(u, T1, S)) ∩ A).

Conversely, let us take two tuples u and v such that u ∈ T1(S,R1(A)) and v ∈
T2(S,R2(R

−1
1 (B(u, T1, S))∩A)). Therefore there exists a2 ∈ R2(R

−1
1 (B(u, T1, S))∩

A) such that v ∈ T2(S, a2). There is a ∈ A ∩ R−1
1 (B(u, T1, S)) such that (a, a2) ∈

R2. There is also a1 ∈ B(u, T1, S) such that (a, a1) ∈ R1. Since a1 ∈ B(u, T1, S),
u ∈ T1(S, a1). Moreover, a1 ∈ R1(A) since (a, a1) ∈ R1 and a ∈ A. Therefore we

have found a, a1, a2 such that a ∈ A, (a, a1) ∈ R1, (a, a2) ∈ R2, u ∈ T1(S, a1) and

v ∈ T2(S, a2). In other words, u.v ∈ T (S, a) ⊆ T (S,A). ⊓⊔

11

�������
�������
�������
�������

�����
�����
�����
�����

R2(R
−1
1

(A1) ∩ A)A1 = B(u, T1, S)

R1(A) ∩ sat(T1)

A ∩ sat(T)

Fig. 2. Branching management for tree patterns enumeration

Similar lemmas hold when T is a single variable node, or the root of T is branching-

free. In particular, T (S,A) = A if T is a variable. We now have the main ingredient of

a recursive enumeration algorithm that we illustrate for the case T = (R1, R2)(T1, T2):
for each tuple u ∈ T1(S,R1(A)) enumerated recursively in lexicographic order, we

have to compute the set A1 = B(u, T1, S), and then the set A2 = R2(R
−1
1 (A1) ∩ A).

Then we recursively enumerate the tuples v of T2(S,A2) in lexicographic order. In-

stead of computing the set A1 once u has been computed, A1 can be computed recur-

sively when applying the enumeration algorithm on T1. This is because B(w, T, S) =
R−1

1 (B(u, T1, S)) ∩ R−1
2 (B(v, T2, S)), where w = u.v. The enumeration algorithm

is therefore defined by a recursive procedure that outputs the next tuple w of T (S,A)
and outputs the set B(w, T, S). However it might be the case that A2 is empty. In

this case, one has to enumerate the tuples of T1(S,R1(A)) until there is a tuple u

such that R2(R
−1
1 (B(u, T1, S)) ∩ A) 6= ∅. This can lead to an unbounded delay be-

tween two consecutive tuples. Therefore we add one more constraint on the sets to

ensure the following invariant: at each recursive call of the procedure, we must have

A 6= ∅ and A ⊆ sat(T). Hence we are sure that there is at least one tuple in

T (S,A). If A ⊆ sat(T), when we call the procedure on T1, instead of calling it on

T1, S, R1(A), we call it on T1, S, R1(A) ∩ sat(T1). Since ∅ 6= A and A ⊆ sat(T),
R1(A) ∩ sat(T1) 6= ∅ and the invariant is satisfied. Similarly, for the right subtree, we

call the procedure on T2, S, A2 ∩ sat(T2). This is depicted on Fig. 2.

If the root of T is branching-free, the enumeration works similarly. When T is

reduced to a single node labeled by a variable x, the algorithm enumerates all elements

a of A w.r.t. the order < on D and for each element returns a and {a} (i.e. B(a, x, S)).
The enumeration algorithm (Algorithm 3) is presented in a Python-like style, which

allows us to write it in a very concise and readable way. In particular, we define an

enumerator ENUM(T,A) that enumerates T (S,A). The instruction yield passes its ar-

gument to the parent enumerator call, which outputs the yielded values and freezes

the computation by storing the evaluation context. Therefore, when an instruction for

(u,B) ∈ ENUM(T,A) is executed, it passes through the loop each time ENUM(T,A)
yields a new element. In other words, ENUM(T,A) is evaluated in a by-need lazy fash-

ion. This comes without extra cost in time complexity.

Lemma 8 (Completeness and Soundness). Given a tree pattern T and an X structure

S for some total order < on its domain D and a subset A ⊆ D, ENUM(T,A) enumer-

ates all elements of T (S,A) in lexicographic order, and only those tuples. Moreover for

each enumerated tuple u, it yields the set B(u, T, S).

12

Algorithm 3 Enumeration algorithm for tree patterns over X structures

function MAIN(T, S,<) ⊲ T :tree pattern, S:X structure for some order < on its domain D

2: compute a sorted representation for S

compute the function sat
4: for (u, B) ∈ ENUM(T,sat(T)) do

output u

6: function ENUM(T,A)

if T = (R1, R2)(T1, T2) then

8: for (u1, B1) ∈ ENUM(T1, R1(A) ∩ sat(T1)) do

for (u2, B2) ∈ ENUM(T2, R2(R
−1
1 (B1) ∩A) ∩ sat(T2)) do

10: yield (u1.u2, R
−1
1 (B1) ∩R−1

2 (B2))

if T = R1(T1) then

12: for (u1, B1) ∈ ENUM(T1, R1(A) ∩ sat(T1)) do

yield (u1, R
−1
1 (B1))

14: if T = x then

for a ∈ A w.r.t. < do

16: yield (a, {a})

Lemma 9. Given a tree pattern T and an X structure S for some total order < on

its domain D and a set A ⊆ D such that A 6= ∅ and A ⊆ sat(T), ENUM(T,A)

enumerates T (S,A) with preprocessing in O(|S| + |D|·|T |) and delay in O(|D|·|T |).

Proof. The first two steps (lines 2 and 3) are obtained by Lemma 2 and Lemma 6. This

gives the preprocessing step.

For the delay, the proof is very similar for the cases of two consecutive tuples and

first tuple, we do it for two consecutive tuples only. It is done by induction on T . If T is

a leaf labeled x, then it is clear that all elements of A can be enumerated with a delay

O(|D|). Since |T | = 1, we get the result. If T = (R1, R2)(T1, T2), by Lemma 8, we

know that exactly all tuples of T (S,A) are enumerated in lexicographic order. Let us

take two consecutive tuples u <lex v such that u, v ∈ T (S,A). Those two tuples can

be decomposed into u = u1.u2 and v = v1.v2 where u1 is matched by T1, u2 by T2, v1
by T1 and v2 by T2. We consider two cases:

If u1 = v1 and u2 <lex v2, then let A2 = R2(R
−1
1 (B1) ∩A) ∩ sat(T2) where B1

is the set returned at line 8. We know by Lemma 8 that B1 = B(u1, T1, S). We prove

that A2 6= ∅ and A2 ⊆ sat(T2) (in order to apply the induction hypothesis). It is clear

that A2 ⊆ sat(T2). By Lemma 8, u1 ∈ T (S,R1(A)), therefore there exists a ∈ A and

a1 ∈ R1(A) such that (a, a1) ∈ R1 and u1 ∈ T (S, a1). Moreover, a1 ∈ B(u1, T1, S).
Since A ⊆ sat(T), there exists a2 such that (a, a2) ∈ R2 and a2 ∈ sat(T2). In

particular, a2 ∈ A2 and A2 6= ∅. Moreover, A2 ⊆ sat(T2), therefore T (S,A2) 6= ∅.

Since by Lemma 8 the tuples are enumerated in lexicographic order, the tuple v2 is the

successor of u2 in the set T2(S,A2). Therefore by induction hypothesis, v2 is obtained

after u2 with a delay O(|D| · |T2|). A fortiori, v1.v2 = u1.v2 is obtained with a delay

O(|D|·|T2|) = O(|D|·|T |).
Suppose that u1 <lex v1. It is clear that R1(A) ∩ sat(T1) 6= ∅, since A 6= ∅

and A ⊆ sat(T1). Therefore T1(S,R1(A)) 6= ∅. Since by Lemma 8 the tuples are

13

enumerated in lexicographic order, v1 is necessarily the successor of u1 in the set

T1(S,R1(A)). By induction hypothesis, it is obtained after a delay O(|D| · |T1|). We

let B1 be the set returned at line 8 after v1 has been computed. By Lemma 8, we

know that B1 = B(v1, T1, S). Similarly as the previous case, one can show that the

set A2 = R2(R
−1
1 (B1) ∩ A) ∩ sat(T2) is non-empty and satisfies A2 ⊆ sat(T2).

Therefore T2(S,A2) 6= ∅ and v2 is necessarily the first element of T2(S,A2). By hy-

pothesis, this first element can be obtained with a delay O(|D| · |T2|). In order to give

the overall delay to output u2.v2 after u1.v1, one finally needs to give the time com-

plexity to compute the set A2. Since we have first computed a sorted representation of

S, by Lemma 3 all operations can be done in O(|D|). The overall delay is therefore

O(|D|·|T1|+ |D|·|T2|+ |D|) = O(|D|·|T |).
Finally, if the root of T is branching-free, the proof similar and easier than for binary

branching. ⊓⊔

Therefore one obtains the following theorem:

Theorem 2. For every tree pattern T and every X-structure S for some total order <

on its domain D, T (S) can be enumerated with preprocessing O(|S| + |T | · |D|) and

delay in O(|T |·|D|).

As a matter of fact, the delay mentioned in the previous theorem can be reduced to

O(n · |D|), where n is the number of free variables, with the cost of a preprocessing

in O(|T | · |D|2). This is done by transforming the tree pattern in a full binary tree:

the branching-free paths are replaced by a unique edge. The source of this edge is

then labeled by a relational predicate interpreted by the composition of all the relations

occurring along the path. Therefore one changes the pattern and the structure on which

its relational symbols are interpreted. As we have to perform the composition of X

relations, the time complexity of this reduction is O(|T |·|D|2) (Prop. 1). The resulting

tree pattern is a binary tree of size O(n). Then we can apply Algorithm 3.

Theorem 3. For every tree pattern T with n (free) variables and every X-structure S,

T (S) can be enumerated with a preprocessing O(|T |·|D|2) and a delay in O(n·|D|).

Remark 1. Note that Algorithm 3 also works for any kind of structure over binary pred-

icates (if we remove the computation of a sorted representation). The complexity of the

preprocessing and delay depends on the following operations: computing R(A) and

R−1(A) for any relation R and subset A of the domain. In the general case of ACQS

over an arbitrary structure where the (binary) relations are represented as pairs of ele-

ments, R(A) and R−1(A) can be computed in O(|R| + |A|) = O(|S|). This results in

an enumeration algorithm with preprocessing and delay O(|S|·|T |).

4.2 From ACQS to tree patterns

Given an acyclic conjunctive query Q and an X structure S, one first transforms Q and

S into a tree pattern TQ and a structure S′ with the same domain such that |S′| =
O(|Q| · |S|) and Q(S) = TQ(S

′). Then we apply the enumeration algorithm for tree

patterns. The transformation works on the labeled (directed) graph HQ of Q defined by

14

HQ = (VQ, EQ, λ) where VQ = vars(Q), EQ = {(x, y) | R(x, y) ∈ Q for some R}
and for all (x, y) ∈ EQ, λ(x, y) = {R | R(x, y) ∈ Q}. Since Q is acyclic, this graph is

acyclic as well (acyclicity in this case being defined without considering the orientation

of edges). Therefore it is a forest, but it is not a tree pattern for one (or more) of the

following reasons: (i) there might be several disconnected components, (ii) edges are

labeled by several relational symbols, (iii) a vertex may have several incoming edges,

(iv) a free variable may not be a leaf, (v) the branching is arbitrary.

Suppose first that there is only one connected component. The first step is to choose

a particular vertex that will be the root of the tree pattern. Then we have to adapt the

orientation of the edges so that the unique path from the root to any vertex consists

of edges that have the same orientation. This is done by taking the inverse of some

relations (which remains X) that are badly oriented. For instance, when changing the

orientation of an edge (x, y) to (y, x), we change all its labels R ∈ λ(x, y) by a new

relation symbol R−1 that will later be interpreted by the inverse of RS . The second

step is to replace multiple labels by a single relational symbol that will denote the

intersection of relations. For instance, if (x, y) is labeled by the following predicates

{R1, . . . , Rk} ⊆ σ, we replace it by a new relational symbol (R1 ∩ · · · ∩ Rk) that

will later be interpreted as
⋂

i R
S
i . Finally, free variables may not be necessarily at the

leaves. Let x such that x is free but not a leaf. We replace x by some new variable x1 in

the query and add ∃x1 · I(x1, x) where I is a new relational symbol interpreted by the

identity relational (which is X for any order). In the graph, it amounts to create a new

vertex, to rename the vertex x by x1 and to connect x1 to x by an edge labeled I . By

this transformation, all the free variables are at the leaves, but there are still leaves that

are not free variables. We apply the following transformation exhaustively: if (x, y) is

an edge labeled R ∈ σ and every variable reachable from y is bound, then we remove

the subtree t rooted at y and replace R by a new relational symbol (R ∩ t). It will be

interpreted by {(u, v) ∈ RS | v ∈ Qt(S)}, where Qt is the unary query represented

by t, where y is considered as free (it can be evaluated in time O(|D| · |Q|) by using

the same algorithm as in Lemma 6 and it is easy to see that the resulting relation is still

X). Applying this transformation exhaustively results in a tree whose leaves are all free

variables. The resulting graph is almost a tree pattern, but its branching may be more

than binary. Again we can duplicate some of its vertices to make it binary, by using the

identity relational symbol I . The last step to get a tree pattern is to put the labels of the

edges into their source node.

If there are several disconnected components, one first transforms each of them into

a tree pattern, and create a new element connected to the roots of each tree pattern by

a relation C interpreted for some r ∈ D as CS = {(r, d) | d ∈ D} (it is X). The

branching is not binary but we can apply the same technique as before to get a binary

tree.

The syntactical construction of the tree pattern can be done in time O(|Q|). We

have to compute a new structure S′ in which every new introduced relational symbols

is interpreted. This structure has the same domain as S. We assume that S is in sorted

representation (done via a processing in O(|S|)). As shown by the construction, the

interpretation of the new relation symbols is the result of taking intersection or inverse

of X relations, as well as evaluating a unary acyclic conjunctive query over X relations,

15

R3, R
′

4

x y

R1 ∩R−1
2

φ ≡ ∃x1∃x2∃x3. R1(x1, x2) ∧ R2(x2, x1) ∧ R3(x2, x) ∧R4(x2, y) ∧R5(y, x3)

R′

4 is interpreted as {(u, v) | R4(u, v) ∧ ∃w. R5(v, w)}.

Fig. 3. Tree pattern resulting from the translation of the ACQ φ.

which can again be done in O(|D| · |Q|). The new relational symbols are interpreted

by relations of size O(|S|) at most. Moreover, we have introduced at most O(|Q|)
new relational symbols. Therefore |S′| = O(|S| · |Q|). Finally, S′ can be computed

in time O(|Q| · |S|), as taking the intersection of two relations R1, R2 can be done in

O(|R1| + |R2|), taking the inverse is done in constant time (for sorted representation),

and evaluating a unary query over S is in O(|D|·|Q|).

We provide an example in Fig. 3.

The complexity of this transformation depends on the complexity of intersection

and inverse of relations, as well as evaluation of unary queries.

Lemma 10. For every acyclic conjunctive query Q over an X σ-structure S, one can

construct in time O(|S|·|Q|) a tree pattern TQ over a signature σ′ and an X σ′-structure

S′ with same domain such that |TQ| = O(|Q|), |S′| = O(|S|·|Q|) and TQ(S) = Q(S′).

As a corollary of Theorem 2, Theorem 3 and Lemma 10, we obtain

Theorem 4. For every n-ary acyclic conjunctive query Q over an X σ-structure S,

Q(S) can be enumerated with a preprocessing O(|S| · |Q|) and a delay O(|Q| · |D|).
This delay reduces to O(n·|D|) with a preprocessing in O(|D|2 ·|Q|).

Remark 2. The translation of ACQS to tree patterns also works for the general case of

ACQS over an arbitrary structure of binary relations. Its complexity depends on the time

needed to compute intersection and inverse of relations, as well as the time to evaluate

unary queries. The latter is known to be in O(|S|·|Q|) [18], the former remains the same

as the case of X. Therefore by Remark 1, we get an enumeration algorithm for general

ACQS over a binary structure with a preprocessing O(|S|·|Q|) and a delay O(|S|·|Q|)
(similar to that of [4]). Considering X relations, this delay reduces to O(|D|·|Q|).

16

child = fc ◦ ns∗ parent = child−1

descendant = child+ ancestor = descendant−1

descendant-or-self = descendant ∪ It ancestor-or-self = descendant-or-self−1

following-sibling = ns+ preceding-sibling = following-sibling−1

following = ancestor-or-self ◦ ns+◦ preceding = following−1

descendant-or-self

Fig. 4. XPath axes

4.3 Enumeration of acyclic conjunctive XPath n-ary queries

In this section, we show that the ideas developed in the enumeration algorithm of ACQ

(X) can be adapted to an enumeration algorithm for ACQS over XPath axes interpreted

on unranked trees. The case of XPath axes however differs in that the relations are

not explicitly represented. Unranked trees is the widely accepted model of XML doc-

uments. In such trees, the nodes are labeled by elements of a finite alphabet Σ, sibling

nodes are ordered, and a node may have an arbitrary number of children. We view un-

ranked trees as a structure over the signature σunr = {(laba)a∈Σ , fc, ns} where for

all a ∈ Σ, laba is a unary predicate that denotes the nodes labeled a, fc is a binary

predicate that relates a node and its first-child, and ns is a binary predicate that relates

a node and its next-sibling. For any unranked tree t, we let Dom(t) be its set of nodes

and |t| = |Dom(t)| its number of nodes.

XPath axes are listed in Fig. 4 together with their semantics by means of expressions

over inverse, union, composition and iteration .∗ and .+ of the relations fc, ns and It the

identity relation on Dom(t). XPath axes are not X, and only some subsets of them are

X, as shown in [13]. However as we will show, ACQS over XPath axes still enjoy good

enumeration properties, mainly because of the following fact:

Lemma 11 (Gottlob, Koch, Pichler [12]). For all unranked trees t, all XPath axes χ,

and all sets A ⊆ Dom(t), χ(A) can be computed in time O(|t|).

In the context of XPath queries, it is important to consider the unary predicates

laba that test the labels of the nodes. We can slightly extend the tree patterns with

optional unary predicates laba attached to the nodes of the tree pattern. They just restrict

the domain of the variables (bound and free) of the associated ACQ. As the unary

predicates can be integrated into the binary relations, Algorithm 3 can also be used for

tree patterns with both unary and binary predicates.

Consider now a tree pattern T over the XPath axes and the unary predicates laba,

a ∈ Σ, and an unranked tree t (represented by a σunr-structure). We can choose an

arbitrary total order on the nodes and apply Algorithm 3 directly on t (without con-

sidering line 2). In contrast to ACQ (X) however, the predicates that appear in T are

not explicitly represented in the σunr-structure t (otherwise its size would be O(|t|2).

Thanks to Lemma 11 and the fact that XPath axes are closed under inverse, tree patterns

over XPath axes can be enumerated with a preprocessing and delay O(|T |·|t|).

When going from ACQS to tree patterns over XPath axes, we apply the same con-

struction as for ACQ (X). As XPath axes are closed under intersection and inverse, the

resulting tree pattern is a tree pattern over XPath axes. Therefore we do not need to

precompute the interpretation of the axes and we can apply the enumeration algorithm

as done for tree patterns over XPath axes. We obtain the following complexity:

17

Theorem 5. For every ACQ Q over the XPath axes and the unary predicates (laba)a∈Σ

and all unranked tree t represented as a structure over ns and fc, Q(t) can be enumer-

ated with a preprocessing and delay in O(|Q|·|t|).

5 Conjunctive queries with inequalities

In this section, one considers conjunctive queries over X structures where in addition

6= is allowed in the signature. Note that a conjunctive query with such inequalities is

acyclic if the query obtained by ignoring inequalities is acyclic. In other words, inequal-

ities play no role in defining acyclicity. We first show that even in the case of acyclic

conjunctive queries, such queries are hard to evaluate for combined complexity. The

proof is by reduction from POSITIVE 1-3 SAT [11].

Proposition 4. The problem of checking whether a Boolean conjunctive query with

inequalities is true on an X structure is NP-complete for combined complexity. The

result remains true even if the query restricted to the X predicates is acyclic.

Proof. Let us consider the following well-known NP-complete problem [11].

POSITIVE 1-3 SAT

Input: a positive 3-CNF formula ϕ

Question: is there a model ofϕ such that each clause is satisfied by exactly one variable?

Membership to NP is straightforward. We prove hardness by reduction from the

problem POSITIVE 1-3 SAT. Letϕ be a positive 3-CNF formula over variablesx1, ..., xn.

Let c1, ..., cm be an enumeration of its clauses. For i ≤ n, let o(i) be the number of oc-

currences of xi in ϕ.

First, one builds an ordering ≺ and an X structure S for ≺ as follows. Structure S

has for domain D the disjoint union of sets D1,...,Dn, C1,..., Cm that we now construct.

For each variable xi, subdomainDi contains two elements x0
i and x̄0

i with x0
i ≺ x̄0

i . Let

us consider an enumeration of clauses of ϕ and let cj = xj1 ∨ xj2 ∨ xj3 , j ≤ m, be the

jth clause. Suppose, that the rth, sth and tth occurrences of respectively xj1 , xj2 and

xj3 appears in cj . One will denote the clause by cj = xr
j1
∨ xs

j2
∨ xt

j3
. One constructs a

subdomain Cj containing the following elements in that order:

xr
j1

≺ xs
j2

≺ xt
j3

≺ αj ≺ x̄r
j1

≺ x̄s
j2

≺ x̄t
j3

≺ βj ≺ γj.

The ordering between sets is depicted by:

D1 ≺ . . . ≺ Dn ≺ C1 ≺ . . . Cm

It remains to describe relations on D. For each variable xi, one introduces a relation

nexti which is made of two paths starting respectively from x0
i and x̄i

0 and joining the

different occurrences of xi and x̄i. More precisely :

– for all 0≤k<o(i), nexti(x
k
i , x

k+1
i) and nexti(x̄

k
i , x̄

k+1
i)

18

It is easy to check that the relations nexti are X for ≺. Finally, a relation C is

introduced that maps for all j ≤ m, xr
j1

, xs
j2

, xt
j3

to αj and x̄r
j1

, x̄s
j2

, x̄t
j3

to βj and γj .

Here again, this relation is X for ≺.

We now construct the following query Q:

(∃xj
i)

j=0,...,o(i)
i=1,...,n (∃ajbjcj)j=1,...,m

∧n

i=1 Di(x
0
i) ∧

∧n

i=1

∧
0≤j<o(i) nexti(x

j
i , x

j+1
i)∧∧

cj=xr
j1

∨xs
j2

∨xt
j3

C(xr
j1
, aj) ∧ C(xs

j2
, bj) ∧ C(xt

j3
, cj)∧

aj 6= bj ∧ aj 6= cj ∧ bj 6= cj

The formula states that there exists an assignment of variables (those chosen as x
j
i

are set to true, the variables y
j
i are set to false) such that, for each i, following the path

to each clause ends in three distinct elements aj , bj and cj whose only interpretation

can be αj , βj and γj . This means that only one over the three paths corresponds to a

positive variable. Note that the structure and the formula have comparable sizes. Note

also, that once restricted to X predicates, the constructed formula is acyclic. ⊓⊔

In contrast with the preceding result, we show that the hardness only relies roughly

on the number of variables involved in at least one inequality.

Theorem 6. Let S be an X structure for some order <, let Q be an n-ary conjunctive

(resp. acyclic conjunctive) query with inequalities with at most ℓ variables involved in

at least one inequality. Then, Q(S) can be enumerated with a delay O(ℓO(ℓ)·|Q|·n·|S|·
log |D|) (resp. a delay O(ℓO(ℓ)·|Q|·|D|·log |D|) and preprocessing cost in O(|Q|·|S|)).

Proof. The bound is obtained by partial application of techniques related to the color

coding method of [2]. We will construct h = O(ℓℓ · log |D|) conjunctive (resp. acyclic

conjunctive) queries Qi, i = 1, . . . , h, on some X-structures Si for order < such that

Q(S) =
⋃

i≤h Qi(Si). Is it known (see for example [4]) that if each predicate of a

union of size h can be enumerated by a bounded delay algorithm for some delay k and

w.r.t. the same order, here <lex, then the union can be enumerated by a bounded delay

algorithm with delay O(h·k) for this same order. Hence the result will follow.

More precisely, the body of Q can be written as Q0 ∧
∧

(i,j)∈I xi 6= xj for some

set of pairs I , where Q0 is acyclic (if Q is acyclic) and free of inequalities. We write

{x1, . . . , xℓ} for the variables appearing in inequalities (some of them may be free in

Q), and [ℓ] for {1, . . . , ℓ}.

Let λ : D −→ [ℓ], be a proper ℓ coloring of D. Let (S, λ) be the extension of S by

the coloring λ with each color i encoded by a new monadic predicate Ui. Obviously, if

two elements have two different colors in a proper coloring then they are distinct. Let

us consider query Q′ whose body is: Q0 ∧
∧

(i,j)∈I

∧ℓ
k=1 ¬(Uk(xi) ∧ Uk(xj))

Claim. One can enumerate the elements ofQ′(S, λ) with delayO(ℓℓ·|Q|·|S|). Moreover,

if Q is acyclic then the delay can be improved to O(ℓℓ ·|Q|·|D|).

Proof (of the claim). Since the interpretation is taken on a structure where the col-

oring is proper, then the number of possible colorings for x1, ..., xℓ compatible with∧
(i,j)∈I

∧ℓ
k=1 ¬(Uk(xi) ∧ Uk(xj)) is bounded by ℓℓ. The query Q′ is equivalent to a

19

disjunction of conjunctive queries Qf of body Q0 ∧Uf(1)(x1)∧ · · · ∧Uf(ℓ)(xℓ) for all

functions f : [ℓ] → [ℓ] such that f(i) 6= f(j) for all (i, j) ∈ I . Each Qf is acyclic if Q0

is acyclic. The result follows from Theorem 1 and 4. ⊓⊔

It is known (see [2] and also [10]) that there exists an ℓ-perfect family Λ of size

2O(ℓ) · log |D| of hash functions from D to [ℓ], i.e. Λ is such that for every C ⊆ D

with |C| = ℓ, there exists λ ∈ Λ such that λ(c) 6= λ(c′) for all distinct c, c′ ∈ C (i.e.

the restriction of λ to C is one-to-one). The following holds: Q(S) =
⋃

λ∈Λ Q′(S, λ).
Clearly, if a tuple a = (a1, . . . , an) ∈ Q′(S, λ) for some λ ∈ Λ then a ∈ Q(S).
Conversely, let a ∈ Q(S) and A be a satisfying assignment of variables of Q such that

the free variables of Q are assigned to a. Let bi be the assignment of xi, i = 1, ..., ℓ in A.

Then, it holds that
∧

(i,j)∈I bi 6= bj . As λ is an ℓ-perfect family, there exists λ ∈ Λ such

that all distinct elements among b1, ..., bℓ have distinct images (i.e. colors) by λ. Then

a ∈ Q(S, λ). Then, the theorem follows by enumerating the union
⋃

λ∈Λ Q′(S, λ). ⊓⊔

Conclusion. As a conclusion, we would like to address some further questions. First,

we would like to characterise the complexity of the enumeration algorithms in terms

of amortized delay, which we conjecture is smaller than the worst-case delay. Another

question is to see whether the delays are tight. Finally, we will investigate the general-

ization to relations of arbitrary arity, as the X notion can be extended to n-ary relations.

Acknowledgments. We thank Joachim Niehren for fruitful discussions. This work was

partially supported by the project ANR ENUM (ANR-07-BLAN-0327).

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

2. N. Alon, R. Yuster, and U Zwick. Color-coding. Journal of the ACM, 42(4):844–856, 1995.

3. G. Bagan. MSO queries on tree decomposable structures are computable with linear delay.

In Computer Science Logic, LNCS 4646, pp 208–222. Springer, 2006.

4. G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay

enumeration. In CSL, LNCS 4646, pp 208–222. Springer, 2007.

5. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching.

In Proceedings of the ACM SIGMOD, pp 310–321, 2002.

6. F. Bry, T. Furche, B. Linse, and A. Schröder. Efficient evaluation of n-ary conjunctive queries

over trees and graphs. In Workshop on Web Information and Data Mining, 2006.

7. B. Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied

Mathematics, 2007.

8. T. Feder, P. Hell, J. Huang, and A. Rafiey. Adjusted interval digraphs. Electronic Notes in

Discrete Mathematics, 32:83 – 91, 2009.

9. E. Filiot, J. Niehren, J.-M. Talbot, and S. Tison. Polynomial time fragments of XPath with

variables. In ACM Symposium on Principles of Database Systems, pp 205–214. 2007.

10. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer

Science. Springer, 2006.

11. M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of

NP-Completness. W.H. Freeman and Co, San Francisco, 1979.

12. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM

Transactions on Database Systems, 30(2):444–491, 2005.

20

13. G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. Journal of the ACM,

53(2):238–272, 2006.

14. W. Gutjahr, E. Welzl, and G. Woeginger. Polynomial graph-colorings. Discrete Applied

Mathematics, 35:29–45, 1992.

15. P. Hell and J. Nešetřil. Colouring, constraint satisfaction, and complexity. Computer Science

Review, 2(3):143 – 163, 2008.

16. Christoph Koch. Processing queries on tree-structured data efficiently. In ACM Symposium

on Principles of Database Systems, pp 213–224, 2006.

17. J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114, 1979.

18. M. Yannakakis. Algorithms for acyclic database schemes. In Proceeding of VLDB, pp 82–94.

IEEE Computer Society, 1981.

21

