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Efficient Erasure Correcting Codes

Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman

Abstract—We introduce a simple erasure recovery algorithm for code is the minimum Hamming distance between two distinct
codes derived from cascades of sparse bipartite graphs and analyzecodewords. A linear code of block length dimensionk, and
the algorithm by analyzing a corresponding discrete-time random minimum distancel overF, is called ar{n, k. d],-code.

process. As a result, we obtain a simple criterion involving the frac- Li d b dt liably t it inf f
tions of nodes of different degrees on both sides of the graph which Inéar codes can be used fo refiably transmit information

is necessary and sufficient for the decoding process to finish suc-from a sender to a receiver: the sender first encodes the de-
cessfully with high probability. By carefully designing these graphs sired word into a codeword and transmits the codeword over

we can construct for any given rateR and any given real number  the transmission channel. Depending on the nature of the errors
¢ a family of linear codes of rate R which can be encoded in time ;13,556 on the codeword through the channel, the receiver then

proportional to In(1/¢) times their block length ». Furthermore, . . . .
a codeword can be recovered with high probability from a portion applies appropriate algorithms decodethe received word. In

ofits entries of length(1 + €) Rn or more. The recovery algorithm ~ this paper, we assume that the receiver knows the position of
also runs in time proportional to n1n(1/€). Our algorithms have each received symbol within the stream of all codeword sym-

been implemented and work well in practice; various implementa- hols. We adopt as our model of errors #rasure channelin-

tion issues are discussed. troduced by Elias [4], in which each codeword symbol is lost
Index Terms—Erasure channel, large deviation analysis, low- with a fixed constant probability in transit independent of all
density parity-check codes. the other symbols. Elias [4] showed that the capacity of the era-

sure channel i$ — p and that a random linear code can be used
to transmit over the erasure channel at any fate 1 — p.

It is easy to see that a code of minimum distarcis ca-
pable of recoveringl — 1 or fewer erasures. Furthermore, a
LINEAR error-correcting code of block length and closer look reveals that this task can be done in ti{e?®).

dimensionk over a finite fieldF,—an [n, k],-code for The code is optimal with respect to recovering erasures if it can
short—is ak-dimensional linear subspace of the standard vect@cover from any set of coordinates of the codeword, i.e., if
spaceF}. The elements of the code are called codewords. #o—- 1 = n — k. Such codes are called minimum-distance sep-
the codeC there corresponds ancoding magEnc which is  arable (MDS) codes. A standard class of MDS codes is given
an isomorphism of the vector spadéf; andC. A sender, who by Reed-Solomon (RS) codes [16]. The connection of these
wishes to transmit a vector @f elements irfF, to a receiver, codes with polynomial arithmetic allows for encoding and de-
uses the mappingnc to encode that vector into a codewordcoding in timeO(n log® nloglog n) (see, [3, Ch. 11.7] and [16,
Therate k/n of the code is a measure for the amount of re@. 369]). However, for small values ef, quadratic time algo-
information in each codeword. The minimum distance of théhms are faster than the theoretically, asymptotically fast al-
gorithms for the RS-based codes, and for larger values of
the O(log? n log log n) multiplicative overhead in the running
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including a simple linear time decoding algorithm and the uge Erasure Codes via Bipartite Graphs

of irregula.rity. We explaip the general construction_along With \we define a codé(B) with k message bitandjk redundant

the encoding and decoding algorithms fully in Section Il. s \wheren < 4 < 1, by associating these bits with a bipartite
Our encoding and decoding algorithms are almost Symmﬁ?'aphB.l Following standard terminology, we refer to thé

rical. Both are very simple, computing exactly one exclusive-g&qundant bits asheck bits The graphB hask left nodes and

operation for each edge in a randomly chosen bipartite grapj). right nodes, corresponding to the message bits and the check

As in many similar applications, the graph is chosen 10 s respectively. Hence, in the following, we refer to the left

sparse, which immediately implies that the encoding anfhqes of a bipartite graph as its message bits and to the right

decoding algorithms are fast. Unlike many similar applicationggges as its check bits.

the graph is not regular; instead, it is quite irregular with a e encoding of (B) is determined by setting each check

cargfully chosen degree sequence. We dgscribe the deching,ﬁllfo be thesd (XOR) of its neighboring message bits I# (see

gorithm as a process on the graph in Section II-B. Our main tagly 1(a)). Thus, the encoding time is proportional to the number

is a model that characterizes almost exactly the performance,p dges inB, and our codes agystematie

the decoding algorithm as a function of the degree sequence ofyr main contribution is the design and analysis of the bi-

the graph. In Section Ill, we use this tool to model the progreggtite graph so that the repetition of the following simplistic

of the decoding algorithm by a set of differential equationgecoding operation recovers all the missing message bits.
The solution to these equations can then be expressed as

polynomials in one variable with coefficients determined bflgorithm 1 (Erasure Decoding)
the degree sequence. The positivity of one of these polynomiéi&en the value of a check bit and all but
on the interval(0, 1] with respect to a parametérguarantees ~ One of the message bits on which it de-
that, with high probability, the decoding algorithm can recover Pends, set the missing message bit to be
almost all the message symbols from a loss of upddraction ~ theé XORof the check bit and its known
of the codeword symbols (see Proposition 2). The completeMessage bits.
success of the decoding algorithm can then be demonstrated by
combinatorial arguments. See Fig. 1(b) for an example of this algorithm, and Fig. 2 for
Our analytical tools allow us to almost exactly characterizz:n example of full recovery.
the performance of the decoding algorithm for any given de- We introduce methods for the design of sparse random graphs
gree sequence. Furthermore, they also help wesigngood where repetition of this operation recovers all the message bits
irregular degree sequences. In Section 1V, we describe, givewith high probability if a random subset ¢t — ¢)5k of the
parametee > 0, a degree sequence for which the decoding message bits have been lost fréif3).
successful with high probability for an erasure fractéahat is To produce codes that can correct erasures of check bits as
within e of 1— R. Although these graphs are irregular, with somevell as message bits, we cascade codes of the {il): we
nodes of degre&/«, the average node degree is ohlyl/e). first useC(B) to produce3k check bits for the originat mes-
This is one of the central results of the paper, i.e., a code withge bits, we then use a similar code to prodsfdecheck bits
encoding and decoding times proportionahtin(1/¢) that can for the 8k check bits o’(B), and so on (see Fig. 3). At the last
recover from an erasure fraction that is witkinf optimal. level, we may use a more conventional erasure correcting code
In Section V, we discuss issues concerning practical implg.g., an RS code, if the alphabet size is large enough).

mentations of our algorithms. This section includes methods forFormally, we construct a family of cod€$B,), . .., C(B,,)
finding good degree sequences based on linear programmiingm a family of graphsBy, ..., B,,, where B; has3'k left
and timings of the implementations. In the last section, we sumedes ang3*+k right nodes. We selech: so that3™*1k is
marize the main results of this paper, and discuss recent develighly /. We end the cascade with an erasure correcting
opments following the publication of a preliminary version [13]code C of rate 1 — 3 with 3™*+1k message bits for which

we know how to recover from the random loss®ffraction

of its bits with high probability. We then define the code

Il. GRAPH CODES C(Bo, By, ..., By, C) to be a code witlk message bits and
m—+1
In this section we introduce a new class of codes. Special sub- i Bk + B2 )(1— B) = kB/(1 - B)
classes of these codes turn out to be almost MDS in the fol-

i=1

lowing sense: afin, k],-code in this subclass is capable of re- _ _ _

covering the message from a random set(df+ ¢) coordinate check bits formed by using(Bo) to produlceﬁk check bits for
places with high probability, whereis a small real number. A thek message bits, usirf B;) to form 3k check bits for the
more precise statement is provided later in Section I1I. The ad-k bits produced b¥’(B;—1), and finally usingC' to produce
vantages Qf these cpdes are that they have Ilnear time enCOdIrlg/e will use the word bit in a rather loose form, mostly to derauierdinate

and decoding algorithms, and that the alphabetgizan be ar- positions

bitrary. For simplicity, in the following we assume that the sym- 2Herein lies one of the differences of our codes compared to Gallager’s low-
bols are bits, i.e., tha;t - 2. density parity-check codes: in the latter, the coordinate places of the codeword

Wi lain th I . fth d I itself are identified with the left nodes, and the right nodes define constraints on
e explain the overall construction of the codes, as well as i{ase words. That is, Gallager allows only those words such that for any right

troduce simple and efficient encoding and recovery algorithmde, thexor of its adjacent left nodes is zero.
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computes the sum
modulo 2 of its

neighbors 1 ON
c K (_B c

message
bits

(a) )

Fig. 1. (a) A graph defines a mapping from message bits to check bits. (b} Bits;, andc; are used to solve fors.

an additionalk3™*2 /(1 — ) check bits for the3™+1k bits all nodes on the left that were erased but have not been decoded
output byC(B,,). AsC(By, B1, ..., B, C) hask message thus far, all the nodes on the right, and all the edges between
bits andk3/(1 — ) check bits, it is a code of rate— /3. these nodes. Recall that the decoding process requires finding a
check bit on the right such that only one adjacent message bit is
missing; this adjacent bit can then be recovered. In terms of the
decoded in quadratic time (an assumption which is certainly true
ubgraph this is equivalent to finding a node of degree one on
for RS codes), the cod¥ By, ..., B,,, ') can be encoded and
the right, and removing it, its neighbor, and all edges adjacent to
decoded in time proportional to the number of edges in all th[
itS neighbor from the subgraph. We refer to this entire sequence
C(B;)3
of events hereafter as one step of the decoding process. We re-
We begin by using the decoding algorithm f0rto decode peat this step until there are no nodes of degree one available on
erasures that occur within its corresponding message bits. Ifthe right. The entire process is successful if it does not halt until
corrects all the erasures, then the algorithm now knows all takknodes on the left are removed, or equivalently, until all edges
check bits produced b§( B,,,), which it can then use to correctare removed. It is simple to show that the result of this process
erasures in the inputs & B,,,). As the inputs to eacli(B;) is independent of the order in which nodes are removed; subse-
were the check bits af(B;_; ), we can work our way back up quently, in the analysis, we may freely assume that the nodes of
the recursion until we use the check bits produced ;) to degree one are chosen uniformly at random at each step.
correct erasures in the originalmessage bits. If we show that The graphs that we use are chosen at random from a set of
C can correct a randoi(1 — ¢) fraction of erasures with high sparse bipartite graphs with a carefully chosen degree sequence.
probability, and that eacfi( B;) can correct a rando(1 — ¢)  In contrast with many applications of random graphs in com-
fraction of erasures of its message bits with high probabilitputer science, our graphs are not regular.
then we have shown th@t By, Bi, ..., B, C)isaratel — 3 We refer to edges that are adjacent to a node of degoee
code that can correct a randgtfiL —¢') fraction of erasures with the left (right) asedges of degreeon the left (right). Each of our
high probability, for some’. Details can be found in the proofdegree sequences is specified by a pair of ve¢tars. . ., A,,,)
of Theorem 2. and(p1, ..., pm), Where\,; is the initial fraction of edges on the
For the remainder of this section and much of the next sectideft of degree andp; is the initial fraction of edges on the right
we only concern ourselves with finding grapBsso that the of degreej. Note that we specify graphs in terms of fractions of
decoding algorithm can corre@t1 — ¢) fraction of erasures in edgesand noinodesof each degree, as this form turns out to be

Remark 1: Assuming that the cod€é’ can be encoded and

the message bits 6 B), given all of its check bits. more convenient. The sequenceandp give rise to generating
polynomialsA(z) = >, hiz'~" andp(z) = 3, piz’~". The
B. The Graph Process and Degree Sequences unusual choice of*~* rather tham:* has to do with the analysis

of the decoding, as described below. Using these functions, one
an succinctly describe many important parameters of the graph.
of instance, it |s easy to see that the average left degreé
the graph is which is ————. If E' is the number

)\
3if the alphabet size is too small for the corresponding RS code to exist, W? d %: /2 h. th hf )‘(m) db f lof d fd
can continue the cascade until the graph has roudfiiynodes and use arandom Of €dges in the graph, then the number of left nodes of degree

linear code with conventional erasure decoding. i is EA; /i, and hence the number of left nodesHs _, A; /i.

We now relate the decoding proces<C¢B) to a process on
a subgraph oB, so that hereafter we can use this simpler termj-
nology when describing the process. This subgraph consist
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Fig. 2. All stages of the recovery. (a) Original graph. (b) Graph induced by the set of lost nodes on the left. (c)—(f) Recovery process.

Hence, the average degreefisdivided by this quantity. By a  Note that, as the decoding process evolves, in the corre-

similar reasoning, the polynomidl(z) = f(f A(t)dt/a, has sponding subgraptB’ of B remaining after each step the

the property that itéth coefficient is the fraction of left nodes matching remaining onB’ still corresponds to a random

of degreel. (Analogous assertions hold of course fdx).) permutation. Hence, conditioned on the degree sequence of the
For a given pai\(z) andp(z) of degree sequences, we will"émaining subgraph after each step, the subgraph that remains

be interested in constructing a random bipartite graph Wwith!S umfprm over all subgraphs W'th this degree sequence. The

nodes on the left andk nodes on the right which has this de£volution of the degree sequence is therefore a Markov process,

gree distribution. We will implicitly assume that the number& fact we make use of below. _

work out, i.e., thaBk, EX; /i, andEp; /i are integers for all, !n the next two sections, we develop techniques for the anal-

and we assume thétfol p(z) de = fol M) dz. In this case, it YSIS of the process for general degree sequences.

is easy to see that such graphs exist (say by induction). Later, in

Section V-C, we will carry out a procedure to uniformly sample lll. L ARGE DEVIATION AND ANALYSIS OF THE DECODING

graphs (with multiedges) from the set of graphs with given de- We analyze the decoding algorithm (Algorithm 1) by viewing

gree sequencesandp. it as a discrete random process. We model the evolution of the
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—® Encoding easy to compute the conditional expectation of these random

o— o "o 7T o variables. This is done in the next subsection. What we need is
® | @ Conventional .i atool that asserts that these random variables do not deviate too
® ' ®  code ° much from their expected value over the lifetime of the process.
° ' ° This is a typical example of a so-called large deviation result
o / T which we derive in this subsection. We assume that the reader
PS is familiar with basic concepts such as (super- and sub-)martin-
° gales [19]. For this argument, we follow [26] rather closely.

The evolution of the number of edges of different degrees on
the graphs considered is a typical example of a discrete-time
random process. L& denote a probability space asda mea-
surable space. discrete-time random processers? with state
spaceS is a sequenc€) = (Qo, @1, ...) of random vari-
ablesQ;: @ — S. To everyw € {2 corresponds @alization
(Qo(w), Q1(w), ...) of the process. Thkistory of the process
Fig. 3. The code levels and directions of encoding and decoding process. UP t0 timet is the sequencél, = (Qo, Q1, ..., Q). For a
real-valued measurable functigrdefined onS+ := | J,; 5,

. . ) ) the random variablg(H,;) is denoted by;.
main parameters of this system by a system of differential equayye say that a functiofi: R’ — R satisfies a Lipschitz con-

tions. These parameters include the number of edges ofdiﬁ‘eramon onD C R’ if there exists a constait > 0 such that
right and left degrees, as well as the total number of edges and -

the average degrees of the bipartite graph on both sides. We need J
a result which makes sure that these parameters are sharply con- [f(w) = I S LY Jui — vil
centrated around the solutions of the system of equations, in the i=1
sense that the variation in the parameters are small compai@dall », v € D.
with the total number of steps. For the sake of keeping the tech+or a sequence of real-valued random variatigs taking
nical discussion at an acceptable level, we do not aim for tbaly a countable number of values, we say thiat = O(f(m))
best possible results on the quality of the sharpness of the caiith probability 1, if
centration.
In the first part of this section, we state a general large de- sup{z|Pr(X,, = z) # 0} = O(f(m)).

viation result W.h'Ch we will prove in Appgndlx A. Slmllar " The following theorem summarizes the large deviation result we
sults were obtained by Kurtz [8] who studied Markov jump pro

. need later. Its proof can be found in Appendix A.
cesses, and have been used previously by many researchers, see
[5], [7], [17], [18], [20], [26] and the references therein. We use Theorem 1:Let (Q(™),,~ be a sequence of discrete time
aversion due to Wormald [26] which has the advantage of beirgndom processes
directly applicable to our situation. (m) (m)  (m)

Next we set up the appropriate system of differential equa- QM =(Qy Q1 )
tions,. {;md solve thgm e?<plicitly. This provides us with a.concreg—;/er a probability spac® with state spacs,, and
condition on the bipartite graph for successful decoding. How-
ever, we can only make limited use of the large deviation result, H™ = (Qé’")’ o ng))
as this only guarantees continuation of the recovery process as
long as the number of edges in the induced subgraphs is a def-themth history up to timef. Let d be a positive integer.
stant fraction of the original number of edges. To prove that th®r 1 < ¢ < d and all positive integers: let y-™): St —
process ends successfully, we need a combinatorial argumBrge a measurable function such thgt ™ ()| < Cm for
which proves that the random graph obtained at this stage of e € S, and for some constar¥’ (independent of, m,
decoding has reasonable expansion properties, with high préb-Furthermore, leff1, ..., fa be functions fromR*** to R.
ability. This expansion property suffices to show that once tiUppose
number of edges remaining becomes sufficiently small, the de- i) there exists a constadt’ such that for alin, for all ¢ <
coding process is completed. m, and for alli < d

-4———— Decoding

Y;(—ii,lnl) - Y;(77 m) < C/

A. Large Deviation
For analyzing our erasure decoding algorithm we need to whereYt("”m) — U(i,m)(Ht(i: m)).

keep track of nodes of degree one on the right side of the bi- ii) for all ¢ and uniformly over al(m, ¢) with ¢ < m we

partite graph as the algorithm proceeds. As the erasures occur” o

quires tools from probability theory. We may regard the number E (Yt(j’l’") —ym™ Ht)

of edges of different degrees on the left and the right sides of the

randomly on the left side, it is not surprising that the analysis re-
1,m d,m
graph as random variables that evolve over time. It is relatively =fi (t/m’ Yt( )/m, S Yt( )/m);
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iii) for eachi < d, the functionf; is continuous and satisfies - h @
a Lipschitz condition onD, whereD is some bounded i ' F
connected open set containing the intersection 1 / o A ' J
{(t, z1, ..., zq)|t > 0} with some open neighborhood P - = a | i
{(0, 21, ..., za)|Pr(Y™

= z;m|l < ¢ < d) # 0for somem}.

Then the following holds.

a) For(0, (1, ..., C4) € D, the system of differential equa-
tions Fig. 4. Description of the differential equations.
dzi

= fil7, 21, -+, 2a), i=1,...,d S
dr random node of degree one on the right is chosen, and the cor-

has a unique solution if? for z;: R — R passing through responding node on the left and all of its adjacent edges are
2 (0) = ¢,1 <i < d deleted. (If there is no such node, the process necessarily stops.)
b) There is a constantsuch that The probability that the edge adjacen(t;o the node of degree one
(8) ‘ 5/6 on the right has degreeon the left is¢;" /e, and in this case
Pr (Yt > mzit/m) + em ) we losei edges of degreg see Fig. 4(a). Hence, we have

< dm?3exp (—/m/2) 0 0 9
7 7 "
for 0 < ¢t < om and for each, wherez;(t) is the so- B ('C“fl — L Ht) T e
lution in &) with ¢; = E(Y ")/m, ande = o(m)is for i = 1,..., d, whered is the maximum degree on the
the supremum of thoseto which the solution can be ex- |eft-hand side.
tended. Abusing the notation slightly, we set
il;
B. The Differential Equations fils, by, oo ba) = ==

We begin with the initial random graph, with % left nodes wherec = 3~ /;, and see that Condition ii) of Theorem 1 is
and 3k right nodes. Suppose that the graph is given by thgitisfied for these functions. Furthermore, fixing- 0, we fur-
degree distribution paiA(x) and p(x), as explained in Sec- ther see that these functions satisfy Condition iii) in the domain
tion 1I-B, and suppose that the total number of edges in the graphdefined by the inequalitied < s < §+7,0 < ¢; < 147, for
is E. As was explained above, the average node degreethe alli =1, ..., d, andn < ¢ < § + 7. Now Theorem 1 implies
left initially satisfieSa;1 = >, Ai/i, and similarly the average that with high probability we have
node degree,. on the right initially satisfies,t = >, p; /4. i 5

In the application of Theorem 1, each time stezp:cor{esponds /:§ '= EL(t/E)+O(E /6)
to recovering one node on the left-hand side. Furthermore, th@iformly for all En < t < (6 + n)E, wheref;(r) form the
parametefn corresponds to the total numhBrof edges. Let  solution to
be the fraction of erasures in the message. Initially, just prior () iti(7)
to time 0, each node on the left is removed with probability P o(7)
1 — & (because the corresponding message bit is successfully
received), and thus the initial subgraph®fontainssk nodes for: =1, ..., d.
on the left. If the process terminates successfully, it runs until These differential equations are solved by definingp that
time 6k = E&/a,. We denote by the scaled timé/E. Hence, dx/dr = —x/e(r). The value ofz in terms ofr is then
7 runs from0 to é/a,. 4

Let G be the graph obtained after a random deletiofilof L= eXP(—/O ds/e(s)).

6)k nodes on the left. We |&p, be thetth edge removed in the I ‘ _
graphG. We defineGG; to be the graph obtained after removin%iy(il;;);t';u;:jn?nﬁé Ta]:i)r:gd;i/e Té;)(x()l ):bs‘cxczrnNeig Eﬁ;{j x:_l

Q1, ..., Q, all left nodes they are connected to, and all edgegs
coming out of these nodes. If the process has already stoppedaf ~ ands;(r = 0) = 6Ai. Hen@” = &A; and
timet — 1, we setG; = G,_; for convenience. Li(x) = o\’ 2
We denote byt;"” the number of edges of left degraat time Since/;(x) goes to zero as goes toé/a,, = runs over the
t, and byRﬁZ) the number of edges of right degreat timet. jnterval (0, 1].
Let £ be the total number of edges in the original graph. We To discuss the evolution of the right-hand side, first note that
let 47 == £V/E andr{” := R}” /E represent the fraction IRY, —RY| < d, whered is the maximum degree on the left.
of edges (in terms of) of degree: on the left and right, re- This is because a left node is connected to at mioistht nodes
spectively, at time. We denote by, the fraction of the edges and one of the right neighbors has been used to recover the left
remaining at time, that is,e; = 3, 557’) =5 7}(7’)- node. Hence, Condition i) of the theorem is satisfied. Note that
First we note thatﬁgfﬁl — £§Z)| < ¢ for all ¢ andt, so Con- when we remove a node of degreen the left, we remove the
dition i) in Theorem 1 is satisfied. Recall that at each step,ame edge of degree one from the right, along with the 1

)
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other edges adjacent to this node. Hence the expected numbdén Appendix B we will solve the set of differential equations
of other edges deleted is — 1, wherea;, = ziz$>/et. The given by (3) and (4) with the initial condition (5). Here is the
right endpoints of these— 1 other edges on the right-hand sideesult.

are randomly distributed. If one of these edges is of degree

on the right, we losg edges of degreg and gainj — 1 edges
of degreej — 1, see Fig. 4(b). The probability that an edge he%g\lj:tlons given by (3) and (4) with the initial condition (5) we

degreegj on the right isjust}(j)/et. Then, for: > 1, we have
E(RD. _ RO () _ o) o= 1) ri(e) = (@)l = 14 p(1 = EX(w))] ©)
Rt—l—l Ry’ | Hy ) =7y . , .
ct wherez is defined viadz/dr = —xz/e(7).
(We assume that,(¢) is defined for all positive, and is0 for

sufficiently largei.) The case = 1 plays a special role, as we - o _ _
must take into account that at each step an edge of degree orfaroposition 2: Let B be a bipartite graph with message bits

Proposition 1: For the solution to the system of differential

This immediately gives rise to the following result.

on the right is removed. This gives that is chosen at random with edge degrees specified(by
( 1) andp(z). Let§ be fixed so that
L ¢y _ (@ _ (W) \%—
E(Rm Ry ‘Ht)—(7 — 7 ) P p(1—6Mz))>1—z,  forze(0,1].

rallnp > 0 there is somé such that for allk > ko, if
e message bits @f(B) are erased independently with prob-
ability 6, then with probability at least — k2/3 exp(—v/k/2)

Let i, be the maximum degree of a node on the right. Abusnfﬁ
the notation slightly, we set

a—1 . . . .
Gu(T 1, ) == 1 ) the recovery algorithm terminates with at mgtmessage bits
e erased.
Gi(T, 71y o ) = (g — ”)'L(a - 1)7 forl<i<p Proof: Let E be the number of edges in the graph. Then
e FE = kas, whereqy is the average degree of the nodes in the left
g (1, 1y ) = (2 — 1) (a—1) 1 side of the graph, which is a constant for fix@cndp. (Note
R e thata, = > \;/i.) Let u := n/as. By (6) and the preceding

wheree = Y. r; anda := Y jf;/e. Fixing anyn > 0, discussions, with probability at least- k?/2 exp(—/k/2) the
we see as in the case of the left-hand side evolution, that theésnber of nodes of degree one on the right is

funct_lon_s satisfy a Lipschitz condlt_lon, aslongas t/E > 7. SA(@)[w — 1+ p(1 — 6A(x))] + O(k>/6)
Application of Theorem 1 thus yields that almost surely,

Wi .
have for « € (1, 1], whereny = exp(— [3 ds/e(s)). By our as-

sumption, this number is positive (for large enoughwhich
Rgi) _ Ery(t/E) + O(E*/) proves the assertion. O

The foregoing proposition does not prove that the decoding

uniformly for all nE' < ¢ < (6 + n)E, wherer;(r) form the process terminates successfully recovering all the missing nodes

solution to on the left-hand side. To do this, we need a combinatorial argu-
dri(T) i(a(r) — 1) . ment which says that random graphs are good expanders. This
=7 — T —_—, for 1 3 X
dt (riga(r) = 7il7) e(r) ore > 3) means that any small enough subset of left nodes has many right
and neighbors. The exact statement is given in the proof of the fol-
dr -1 i
761l(7) — (ra(r) — TI(T))(a(T() : ) L 4 lowing result.
T ear Lemma 1: Let B be a bipartite graph with left nodes chosen

Our key interest s in the progressionqf ) as a function of at random with edge degrees specifiedMfy) and p(x), such
7. As long asr1(7) > 0, so that we have a node of degree onthat\(z) hasA; = A2 = 0. Thenthere is somg > 0, such that,
on the right, the process continues; whefir) = 0 the process with probability 1 — O(k=3/2), the recovery process restricted
stops. Hence we would like (7) > 0 until all nodes on the left to the subgraph induced by amfraction of the left nodes ter-
are deleted and the process terminates successfully. minates successfully.

We proceed with the determination f(1), the expected Proof: Let.S be any set of nodes on the left of size at most
fraction of edges of right degree one at tifiebecause each nk, wheren will be chosen later. Let be the average degree of
node on the left is deleted randomly just prior to tithevith  these nodes. If the number of nodes on the right that are neigh-
probability 1 — 6, and the graph is a random graph over thod®ors ofS is greater than|.S| /2, then one of these nodes has only
with the given degree sequence, to the nodes on the right ibise neighbor inS|, and so the process can continue. Thus, we
as though each edge is deleted with probability 6. Hence, only need to show that the initial graph is a good expander on
an edge whose right incident node had degrbefore the dele- small sets.
tion stage remains in the graph and has degedterwards with Let £, denote the event that a subset of sizef the nodes

probability (7_1)&'(1 — §)’~%. Thus on the left has at mosis/2 neighbors. We first boun®r(&,),
and then sunPr(&,) over all values o& no larger thamk. Fix

ri(1) = Z P <m - 1) 5]’(1 — 5)"l—i_ (5) any subsef of the left nodes of size, and any subset of the

— J—1 right nodes of sizes/2. There arg*) ways of choosing, and
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(a"j’/“Q) ways of choosing’. The probability thal” contains all ~ For large enoughk, Condition (7) is satisfied faf’ instead of
theas neighbors of the vertices ifi is (as/23k)**. Hence, we & (by continuity). Hence, invoking Proposition 2, for any> 0
have and any of the graphB, in the cascade our decoding algorithm
os stops with less thank/2’ nodes uncorrected, with probability
Pr(&,) < <k> < Pk ) <£> ) 1 — O(exp(—k")) for some positivey. Now Lemma 1 applies
s/ \as/2) \ 20k and shows that, for small enoughthe recovery process ends

successfully with probability —O((27 /k)?/2). The probability

that our algorithm fails on at least one of the graphs is thus at

)(a/2_1)5 52\ /2 most_ (27 /k)*2, wherej runs from0 to log(k)/2. This is
“=(%)

S
Pr(&) < - equal toO(k—3/%), which shows the assertion. O
k k

where ¢ is a constant (depending ofi and a). Since the  Fordesigning graphs that lead to good codes, it is thus neces-
graph does not have nodes of degree one or two, we have gl to fulfill condition (7). It is sometimes desirable to use the

Note that(}) < (ne/k)*, hence we have

Pr(&;) = Pr(&;) = 0. Choosingy < 1/(2¢2) yields “dual condition”
nk ka2 L SAL—p(y)) <l-y (8)
sc 3c 1
> Pr(E) <y <7> S i > 5 for y € [0, 1), which is obtained from (7) by substituting:=
=1 s=3 s=t p~1(1 — z). Note thatp has an inverse of0, 1], as it is mono-
=0 <L> tonically increasing.
kVk In the following section we use this theorem to analyze de-

which shows that, with high probability, the original graph is afoding properties of codes obtained from regular graphs.

expander on small subsets. O

. Lo IV. CAPACITY-ACHIEVING CODES
The above proof shows that the main contribution for the error

probability comes from nodes of degree three on the left. For!n this section we will construct for any erasure probabjiity
the same reason, it is easy to see that nodes of degree two {@iMilies of codes with I|n_ear time erasure decoding algorithms
lead to a constant error probability. We leave the details of tHf2at can correct any-fraction of erasures and whose rates come

argument to the reader. arbitrarily close to the capacity — p of the erasure chan.nel. .
Altogether we obtain the main theorem of this section. N other words, we construct codes that are close to optimal in
) terms of their erasure recovery rate, and have linear time en-
Theorem 2:Letk be an integer, and suppose that coding and decoding algorithms. We do this by finding an in-
C=C(Bi, ..., Bm, C) finite family of solutions to the differential equations of Sec-

tion Il in which § is close tol — R, whereR is the rate.
is a cascade of bipartite graphs as explained in Section I, wher¢.et B be a bipartite graph witlt left nodes and3k right
B, hask left nodes. Suppose that eaBhis chosen at random nodes. We describe our choice for the left and right degree se-
with edge degrees specified Byz) and p(z), such that\(z) quences of3 that satisfy condition (7). LeD be a positive in-
hasA; = A2 = 0, and suppose thatis such that teger that is used to trade off the average degree with how well
the decoding process works, i.e., how close we can make
p1—Mx)) > 1~ Y B = 1 — R and still have the process finish successfully most
forall0 < z < 1. Then, if at most &-fraction of the coordinates of the time.
of an encoded word iéi are erased independently at random, our The left degree sequence is described by the following trun-
erasure decoding algorithm terminates successfully with pratated heavy tail distribution. Léf (D) = >°2| 1/i be the har-
ability 1 — O(k—3/4), and does so iD(k) steps. monic sum truncated dP, and thusH (D) ~ ln(D). Then, for
Proof: At each level of the cascade, the number dlli =2, ..., D+ 1, the fraction of edges of degréen the
edges equals the average degree of the nodes on the Igfitis given by
tlmef, the numbgr of the nodes. The average degree is always A == 1/(H(D)( — 1)).
1/ [, A(t) dt, which is a constant. Hence, the total number of
edges in the cascade (up to the last laye€)(is), which shows The average left degree equalst (D)(D +1)/D. Recall that
that the recovery process need§t) steps (see Remark 1).  We require the average right degreeo satisfya, = a,/3. The
Next we bound the probability that there is sojnguch that right degree sequence is defln_ed by the Poisson distribution with
the fraction of left nodes lost on the left side of the graphis Meana,: for all < > 1 the fraction of edges of degreéen the
larger thand’ := & + 1/v/k. We use a version of the Chernofffight equals
bounds given in [19, Problem 4.7(c), p. 98]. According to that, o—i—1
for any j, the probability that there are more erasures than Pi =TT
8(k/27) + (k/27)%* is upper-bounded byxp(—2./k/27), (=D
which is smaller tharxp(—2+v/k). The required probability is wherea is chosen to guarantee that the average degree on the
certainly at most equal to the sum of these probabilities (unioight is «,.. In other words¢ satisfieswe® /(e® — 1) = a,..
bound), which islog(k) exp(—v/k)/2. (Note that there are Note that we allowp; > 0 for all i > 1, and hence(x) is
log(k)/2 suchj’s.) not truly a polynomial, but a power series. However, truncating
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the power serieg(x) at a sufficiently high term gives a finite . 6%
distribution of the edge degrees for which the next lemma is £
still valid. E 2%
We show that wheid = 3(1 — 1/D), then condition (7) is T 4w
satisfied, i.e.p(1 — 6A(z)) > 1 —z on (0, 1], where §= |
. g e e | I
Mz) = Nzt -
( ) 212 E ln'.l. - - | I
and 2 1% 4 | i
o) = 3 pia. 1 0.
i 3 4 5 6 7 #  Average left degree

Note that\(z) is the expansion of In(1 — ) truncated at the

_ _ palz—1) Fig. 5. Erasure decoding of irregular graphs: left degree versus the overhead
Dthterm, and scaled so th&(tl) L. Furtherp(a:) ¢ " beyond optimal value needed to recover (raté /2).

Lemma 2: With the above choices fai(x) and\(x) we have

p(1 = 6M(x)) > 1 —=zon(0, 1]if 6 < /(1 +1/D). which is obviously true. By the aforementioned expansion prop-
Proof: Sincep(x) increases monotonically in, we have gty of the subgraph a8, induced by the set of unrecovered left
p(1—8XNz)) > p(1+61In(1—2)/H(D)) = (1—z)*/HD) nodes, we see that the process terminates successfully]

As a; = H(D)(1 + 1/D) anda, = a,/$3, we obtain Not_e that the degree of eac_h left node in this modified con-
struction of B is at most three bigger than the average degree of
ad/H(D)=(1-e"*)(14+1/D)5/8<6(1+1/D)/B<1 each left node in the construction Bf described at the begin-

which shows that the right-hand side of the above inequality i' g of th!s SeC“F’“- We can use this opservation and the lemma
larger than — & on (0, 1]. ] above to immediately prove the following.

A problem is that Lemma 1 does not apply to this system Theorem 3 ForanyR with 0 < R <1, anye With 0<e<
and sufficiently large block length, there is a linear code

because there are nodes of degree two on the left. Indeed, &md decoding alaorithm th ith orobabil Z3/4
ulations demonstrate that for these choices\@f) and p(x) and a decoding algorithm that, with proba |ﬂ.ty— O(n );

a small number of nodes often do remain. To overcome tﬁf‘sa,ble to correct a randofl — R)(1 — e)-fraction of erasures
problem, we make a small change in the structure of the gra'BH'me pr(?portlonal tovIn(1/e). .

B. Lety := 8/D?*. We split the3k right nodes ofB into two Proof. _SEt D - D/_d to get a one level code W'th_
distinct sets, the first set consisting @f — )k nodes and the the properties described in Lemma 3._Then cascade versions
second set consisting o nodes. The graph is then formed of these codes as described in Section Il to get the entire
by taking the union of two graph#3; and Bs. By is formed as cr?del. fAS was pomtedhou; ar?ovle, the average degreef
described up to this point between théeft nodes and the first the eg nodbes In each of t € layers IS gpper-bounded by
set of (8 — )k right nodes.B; is formed between the left 5+ 2i=1 1/¢ <4 +1n(1/c), which is proportional tdn(1/c).
nodes and the second set-gf right nodes, where each of theHence_, the total_number of edges in the bipartite layers pf the
k left nodes has degree three and fieedges are Connectedgraph is proportional te In(1/¢), which proves the assertion

randomly to theyk right nodes. on the decoding time.
y ek g Using Lemma 3 and the same analysis as in the proof of The-

Lemma 3:Let B be the bipartite graph described abovesrem 2, we can show that the code constructed above can re-
Then, with probabilityl — O(k~3/?), the decoding process cover, with probabilityl — O(n=%/4), all the message bits, if
terminates successfully when started on a subgraptB of a randomé-fraction of the codeword is missing, whefie =
induced byék of the left nodes and affk of the right nodes, 3(1 — 1/D). Noting that3 = 1 — R, we obtain the result. O
where§ = 3(1 — 1/D).

Proof: In the analysis of the process, we may thinkif Fig. 5 shows the running time of the encoding/recovery al-

as being held in reserve to handle nodes not already dealt wigfithms (as multiples of the block length) versus the overhead

using B; . First, using the same method as in Lemma 1 we C&qeded to_ recover. For instance, for sufficiently lmene can
prove that there is somesuch that a sef of s < nk left nodes construct in this wayn, k|,-codes that have encoding/recovery

in the graphB, expands to a set of at leat/2 nodes on the algorithms running in time-7r, which can recover a codeword

right, with probabilityl — O(1/k%/2). (Note that all nodes on 7o @ random set of.002% of its coordinates.
the left have degree three in this graph.) Combining Proposition
2 and Lemma 2, we see that the recovery process start&d on V. PRACTICAL CONSIDERATIONS

terminates with less thayk nodes on the left unrecovered, with . . . . .
ak The discussions in the preceding sections have been of a more

probability 1 — O(exp(—£%®)) for some positive:: note that the : :

ratio of the number of left nodes to the number of right nOd%:rS(])edoer: tcliceasli, rr?g(]je\r/iE:?r:]eaa%g\(/:g(ﬁle:?igjr::al:k?gvci\éer;,sasatzigrssgd

in the graphB, equalsj3(1 — 1/D?), hence the condition in . esighed v L : o
in practical situations, it is important to describe possible im-

Lemma 2 translates to

plementations. We start with modifying our construction by al-
6§ <B(1—=1/DYH/(1+1/D) =p(1—-1/D) lowing erasures to also occur on the right-hand side. An analysis



578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

of this type provides us with some insight in how to design caBurthermore, up to lower order terms, the fraction of left nodes
caded versions of our codes with much fewer levels, and fasterecovered at time equals
decoding algorithms for the end level. Next, we show how to use , ,
. . : - . (8'+(1—6")a)
a linear programming approach to design bipartite graphs which San - / Ay) dy
give rise to very good codes. Finally, we briefly discuss some of ¢ 0 ’
our implementations. A preliminary report on the results of this
section appeared in [9]. We will prove this lemma later in Appendix C. We immedi-
ately obtain the condition

A. Fraction of Left Nodes Unrecovered p(1— 6NE + (1 — 8)a)) > 1 —a, e (0,1 (9)

So far we have assumed in our analysis that in each layer, of .
the cascade all the check bits are received when trying to F8[ s.uccessful Qecodlng. . . .
cover the message bits. The reason we made this assumptio ‘ts's_ no/t possible to satisfy th'e above inequality foraallg
that in the original construction the cascading sequence of bipgIL 1] if & > 0, for any value of: for z = 0 the left-hand side

y R . .
tite graphs is completed by adding a standard erasure-correcf?rqga.ISp(l — OA(&)) Wh_'Ch Is strictly less tha_ﬂ. There is an
code at the last level. IntUitive reason for this: the subgragh on which the process

There are some practical problems with this. One annoyansct(%Irts has edges of degree one on the left; these edges can only

is that it is inconvenient to combine two different types o orrect the left nodes they are connected to, and cannot help any

; ; other node on the left.
codes. A more serious problem is that standard erasure-cor: : . . .
) o .. .. However, it turns out to be an interesting question to see what
recting codes take quadratic time to encode and decode (if the :
L ] . . . . fraction of the left nodes can be recovered when a fraction

alphabet size is large enough; otherwise, cubic running tim . Lo : .
! : of the right nodes is missing. The answer to this question can
will do). Suppose the message is mapped to a codeword twjce . ) .
) ) .~ . pe used to design cascading codes where the decoding process
its length. In order to have the combined code run in Ime%ﬁoves from riaht to left bootstrapping UD to recover a hiaher
time, this implies that the last graph in the cascading sequernce 9 bping up g

hasvZ left nodes, wheré is the number of nodes associate nd higher fraction of nodes at each successive decoded layer

: .- : e . of the graph until in practice it is able to recover all of the first
with the original message, i.e., there &@¢€log(k)) graphs in {message) layer (see Fig. 6).

the sequence. In the analysis, we assume that an equal frac Lo}z P the()) and (p) vectors, condition (9) can be used to

of the nodes in each level of the graph are received. However ; R
. ) L . . C{J‘mpute the smallest value effor which the condition is still
there is variance in this fraction at each level, with the wors

expected fractional variance at the last level /. Thus, if valid. The second part of Lemma 4 then gives the fraction of
unrecovered nodes on the left at this value:of

a message of lengthb 536 is stretched to a codeword of length
131072, then just because of the variancelgi/k = 0.063,
we expect to have to receiue063 times the message length o
the codeword in order to recover the message. In this subsection, we describe a heuristic approach that
A solution to this problem is to use many fewer levels dfas proven effective in practice to find a good right degree
graphs in the cascade, and to avoid using a standard erasureggfitience given a specific left degree sequence. The method
recting code in the last level. That is, for the last layer, we coHSe€s linear programming and the differential equation analysis
tinue to use a randomly chosen graph. We have tried this ideaSection lll. Recall that a necessary condition for the process
with the last graph chosen from an appropriate distribution, afticomplete is thap(1 — éA(z)) > 1 — z on (0, 1]. We first
it works quite well. For example, using only three levels ofiescribe a heuristic for determining for a givew) repre-
graphs we can re|iab|y recover a message of |eﬁ@ﬂ’36 from Senting the left degree sequence and a valué vanether there
a random portion of lengt7 700 (i.e., 1.033 times the optimal iS an appropriatg(x) representing the right degree sequence
of 65 536) of a block-length ofL31 072. satisfying this condition. We begin by choosing a aét of
To design the graph for this solution, we need to ana|yze tﬁ@SitiVE integers which we want to contain the degrees on the
decoding process when a random portion of both the messé&igdt-hand side. To find appropriaje,,, m € M, we use the
bits and the check bits are missing. The following result givé®ndition given by Theorem 2 to generate linear constraints
the expected fraction of right nodes of degree one with resp&gat thep; must satisfy by considering different values :af
to the number of edges in the graph, and estimates the fractfc#f €xample, by examining the conditionzat= 0.5, we obtain

of left nodes unrecovered at each step of the algorithm. ~ the constrainip(1 — 6A(0.5)) > 0.5, which is linear in the
coefficients ofp(x).

Lemma 4: Suppose each node on the left is missing with \ve generate constraints by choosingfamultiples of1/N
probability 6 and each node on the right is missing with probr;. some integetV'. We also include the constraings, > 0
ability &'. The fractionr, («) of edges of right degree one aq, 5y 1, ¢ 7. We then use linear programming to determine
a with respect to the number of edges in the original grébh ¢ g jitaple 5, exist that satisfy our derived constraints. Note
equals that we have a choice for the function we wish to optimize; one

choice that works well is to minimize the sumgifl — §A(z))+
ri(z) = 6(1 = 8N + (1 - 8)) x — 1 on the values of chosen to generate the constraints. The
Jr =1+ p(1 — 86X + (1 —8)x))]. bestvalue fob for given NV is found by binary search.

fB. Computing Degree Sequences Using Linear Programming
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Fig. 6. Bootstrapping strategy.
Given the solution from the linear programming problem, TABLE |

we can check whether the computed satisfy the condition CLOSE TOOPTIMAL CODES FORDIFFERENT RATES AND AVERAGE
LEFT DEGREES
p(1 —é6A(z)) > 1 —=xon(0, 1].

Due to our discretization, there are usually soommflict Average Rate
! I disc ; y s ' Degree || 172 | 2/3 | 3/4 | 4/5 | 9/10
subintervalsin which the solution does not satisfy this in-
. . 5.70 1.036 | 1.023 | 1.016 | 1.013 | 1.006
equality. Choosing large values for the tradeoff paraméter 682 1024 | 1013 [ 1010 | 1.007 | 1.004
results in smaller conflict intervals, although it requires more 301 1014 | 1008 71:007 1005 | 1.002

time to solve the linear program. For this reason we use small
values of N during the binary search phase. Once a value for _
§ is found, we use larger values of for that specific§ to the corresponding average degreeds

obtai_n s_maII conflict intervals_. In the last ste_p, we get rid of the Az) = 0.43003422 + 023733122 + 0.007979z13
conflict intervals by appropriately decreasing the value’ of

47 mo1E9,,.48
This always works sincg(1 — §A(x)) is a decreasing function +0.1194932™ +0.0521537

of 6. +0.079630z'°" + 0.073380z"%
We ran the linear programming approach on left degree p(z) =0.713788x° + 0.1224942"° + 0.1637182"°°.
sequences of the form, 5,9, ..., 2 + 1 for codes with

_ Note that, in contrast to the examples above, the maximum
rates1/2, 2/3, 3/4, 4/5, 9/10 and average left degreés/0, ngqe degrees in these graphs are much smaller. This makes them

6.82, 8.01. These results are gathered in Table | which showgqre practical for smaller values bithan the codes giving rise
how much of the codeword is sufficient to recover the enting Taple 1.

message as a fraction of the message length as the message
length goes to infinity. Since these graphs do not have nodes®f Implementations and Timings

degree two on the left, Theorem 2 implies that with high proba- In this subsection, we report on some of the implementa-

bility the corresponding codes recover the entire message frﬂmns of our codes. In all these examples a message consisting of
the portion of the codeword indicated in the table, provide ‘ P g 9

the messaae lenath is larae enoudh. However. as the maximu‘rlwg 000 packets was encoded into a vector of 1 280 000 packets,
9 9 9 gn- ' ancgheach packet consisted of 256 bytes. The cascade consisted
T

degrees in the examples we haye founq are rather large (ab&u ree layers: a first layer consisting of 640K nodes on the
30000), these codes are rather impractical. left, and 320K nodes on the right, a second layer consisting of

One major disadvantage of the approach given above is thabk nodes on the left and 160K nodes on the right, and a third
we need to fix the left-hand side of the graph. To overcome thig er consisting of 160K nodes on the left and on the right. The
difficulty, we use the dual condition (8). We can now use thigqge distributions of the graphs used in the first and the second
condition and the linear programming approach to solve for thger were the heavy tail/Poisson distribution discussed in Sec-
bestA given p, then use the original condition to solve for thgjon |v. The edge distribution in the third layer was different,
besty given thisA, and so on. We have tried this strategy angng used some of the analysis of Section V-A: the edge distri-
it gives good results, although at this point we have not provggtion on the left was a “double heavy tail” distribution, given
anything about its convergence to a (possibly optimal) pair gf, A(z) == A(z?), where}\ is the edge distribution function of
probability distributions. the heavy tail distribution.

For example, we found that the following pair of degree se- To chose an appropriate random bipartite graphvith £
guence functions yiel@%, k],-codes which are able to recoveredgesk nodes on the left, andk nodes on the right, the pro-
from a random set of.01% coordinates, with high probability; gram started with a bipartite gragh with E nodes on both the
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EA0K of using sparse bipartite graphs for constructing codes is not new
[6], [25], the construction of the graphs in each of the layers is
novel. We obtained the construction by analyzing a simple de-
coding algorithm. The analysis used results asserting the sharp
concentration of parameters in a discrete random process around
T their means. Using this, we established a simple condition that
the degree sequences of the left- and right-hand sides of the bi-
partite graphs had to satisfy in order for the process to finish

Heawy Tail

Heavy Tail successfully. We designed a family of capacity-achieving codes
160K on the erasure channel with linear time encoding and decoding
algorithms. We should point out that our model of computation,
Dauible as it stands, is that of a random-access machine with unit cost.
Heeavy However, our construction can be modified using prefetching
Tail strategies to yield linear time algorithms for random-access ma-
i chines with logarithmic cost. The modification is quite similar
160K to that given in [24]

Fig. 7. Cascade for example.
g P VIl. FURTHER DEVELOPMENTS

The appearance of the first version of this paper as an extended
abstractin[13]inspired newdevelopmentswhichwewouldlike to
briefly commentoninthis section. First, the analysis of this paper
was simplified in [9] by using proper martingale arguments. Nev-
ertheless, since we feel that the approach outlined in this paper

m._ S
permutation) between the two setsiBfnodes onB’. This in- 8” partl_cular, Theorem 1.) may haye other applications, we opted
for leaving the analysis in its original form. One of the main re-

QUced a ra}ndom b|part|te. graph & |(perhaps with multiedges) sults of this paper is the fact that properly chosenirregular graphs
in the obvious manner with the desired degree structure. In €x-
?erform alot better than regular graphs, and that the only param-

periments, it tuned out that the existence of multiedges is noef”%rs that determine the asymptotic performance are the fractions

serious problem. This can be explained by the observation th . . : .

. . odes of various degrees. This observation together with the
one can analyze the process for random multigraphs instead o . : . .

: ) . new analysis were combined in [10] to study irregular low-den-
random graphs and that this analysis turns out to yield essen- . . : .
) : ; : Sity parity-check codes on the binary-symmetric channel, with
tially the same results as the one carried out in Section IIl.

A schematic description of the code is given in Fig. 7. The aS|mpIe hard-decisiondecoding algorithms going back to Gallager

o . YE'B].4 This paper appears to have been influential. First, the idea
?:ﬁg\e d:sgéegsf ttgg 1”888 ?::;2'Zggﬁh&éﬁﬂ.fhieg?fg'rr;%?rlggé c())f using irregular codes was taken up and extended by other re-
! wasexecu ! ' imewl ' zl-lrchers (see, e.g., [14]). Second, the main “concentration the-

X . S
Ios; pattern. Fig.8shows Iength oyerhead statistics: the horizont m” of [10] was extended to a large class of channel models in
axisrepresentsandthe vertical axis representsthe percentage 0

left- and right-hand sides, with each node®f representing
an edge slot. Each node on the left-hand sid&ofvas associ-
ated with a node on the left side 6%, so that the distribution of
degrees is given by\q, ..., A,,), and similarly for the right.
The program then chooses a random matching (i.e., a rand

. . a Jandmark paper by Richardson and Urbanke [22], which first
times wherg1 + ) times the length of the message was need% Ig)eared in 1998. Based on their approach, they developed the

to completely recover the message, based on the 1000 trials, . . . : .
ensity evolution” algorithm, a numerical procedure to approxi-

compliance with the resuits of Section lil, wesee thatthe Paraifls e the threshold of noise belowwhich the beliefpropagation al-
eters are sharply concentrated around their mean value.

On a DEC-alpha machine with 300 MHz and 64-Mbyte RA orithn? is asymptotically successful. Several months later, their

. i thod was further extended in [21] in which sequences of codes
the encoding took 0'5.8 CPU-seconds, and the decoding t gre constructed for which the belief propagation algorithm had
0.94 s, on average. This corresponds to a throughput of roug IB

erformance extremely close to the Shannon capacity, beating

280 Mbit/s. : :
. turbo codes [2] by a wide margin for modest block lengths.
On a Pentium Pro at 200 MHz and 64-Mbyte RAM, the en- Another main result of this paper was to show that there

coding took 0.58 s, while the decoding took 1.73 s, on average o :
. : e families of degree sequences such that the corresponding
This carresponds to a throughput of roughly 150 Mbit/s. raphs asymptotically meet the capacity of the erasure channel

It should be noted that most of the time in our algorithm i, _. : . : :
. . . i ing our simple erasure-decoding algorithm). Another famil
spentin pointer chasing. The code used was a straightforwar {5 g P gag ) y

ol tation. U f histicated data t q such degree sequences was exhibited in [23]. So far, these
impiementation. Lse ot more sophisticated data types, ant Mgitg,q yean the only known capacity-achieving families of degree
intelligent prefetching strategies would probably speed up t

q derabl Squences, and another example of a communication channel
code consideraply. for which capacity-achieving sequences exist for all rates is yet
to be found.

VI. CONCLUSION

. . . _ “An updated version of this paper appears in [12].
We have introduced in this p-aper.a class of error'correCt'.n@Our erasure decoder turns out to be the belief propagation algorithm for the
codes, based on a cascade of bipartite graphs. Although the iel@sure channel [21].
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Fig. 8. Length overhead statistics.
APPENDIX A For fixedt, define the random variable
PROOF OFTHEOREM 1
_ _ X :=Yign — Y — kf(t/m, Yi/m) — k2 /m.
Recall that a sequence of random variahlgg X1, ... is
called a martingale if Note that
. t Y, 2k +1
.E[AXVZLXVO7 ---7Xi—1]:Xi—17 forallzz 1. Xk+1_Xk:Y;+k+l_Y;+k—f<—, _t) . + )
mom m
The sequence is calledsabmartingalgsupermartingalgif ) ) .
This shows that th&;, form a supermartingale with respect to
E[X;|Xo, ..., Xi1]> X 1(E[Xi[Xo, ..., Xi 1] < Xiq). Hy, ..., Hyi, as
For the proof of our concentration result we need the following
: . > -1 — Xz )= ‘ ) — X4
well-known result, often called Azuma’s inequality [26, Lem- 02 B(Xpr1 — Xi[Hipr) = B( X1 [Hepr) = X
ma 1]. Furthermore, the above equality shows th¥} 1 — X| <
Theorem 4:Let Xy, Xy, ... be a supermartingale with re-

Cs for some constant’;. We can now apply the inequality of
spect to a sequence ofalgebras?; with 7, = {0, Q}, and Theorem 4. As¥o = 0, we obtain

suppose thaky = 0 and|X,+1 — X%| < ¢ for some constant a?
c and fori > 0. Then for alla > 0 we have Pr(X, 2 aC) < exp T ow

Pr(X; > ac) < exp(—a’/2k). forany0 < «. (The parametet will be chosen later.) The lower
tail can be bounded in exactly the same way, using a submatrtin-

Proof of Theorem 1:We modify the proof in [26] slightly gale. This gives for any constast (to be chosen later)

to obtain the error bounds asserted in the theorem. First, note

that by a standard result in the theory of first-order differentigh,. <

t Y, w?
) d resul eon an—m—wfﬁa—ﬂ‘zW+B»—+a@)
equations, there is a unique solution in part a) of the theorem. m.om m
As in [26], we simplify the notation by considering = 1

CYQ
and referring ta/: ™), 21, and/f; asy, z, andf, and so on. The < exp < ) (10)
proof for general is similar.

Let w := [m??], and assume that < ¢ < m —w. We
first demonstrate concentration df,, — Y;. Notice that the

£y = |min{m/w, om/w}].
Lipschitz condition onf and Condition ii) imply that for all
0<k<w

Now letk, := fw, where/ =0, 1, ..., £y and

’
m m

t+k Y

T, .— (yw? + amC2)((1 + Bw/m)* — 1)
ri= B .
t Y 2k +1 We prove by induction od that

m’ m m

for some constant.

2
W:HWM%WWWQDKRW<G>-
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The assertion is obvious for the induction starting at 0, as «a(x) equalsy_ i¢;(x)/e(x), which in terms of the function(x)

2(0) = E(Yy)/m. Define can be written a$ + «A'(z)/A(x). Hence, we obtain fof > 1
!
=Y = Vi, i, Y ) ) = i)+ (e 2
Ay =Y, — mz(ke/m) (x)
As :=ma(keq1 /m) — mz(ke/m) — wf(ke/m, Y, /m). As is verified easily, the explicit solution is given by
T !
Note that ri(z) = Mz)* <—L/ 7Z+1(y))\(y)z))\\((y)) dy + ci> (12)
0 Y

Ve =ma(be/m)l = [Avt A = As| < A+ [ Ao+ As]- (0 gome constants; to be determined from the initial condi-
The inductive hypothesis gives that,| < 7, with probability tions forr;. These equations can be solved recursively, starting
at leastl — £exp(—a?/2w). Further, by (10), we havied; | < with the highest nonzere;, say r,. In this case, we have
yw? /m + aCy with probability at least — exp(—a?/2w). To 7, (z) = pru(x)N (x)/A(x), which givesr,, (z) = ¢, ()" for
boundA; we proceed as follows. By the mean value theoresome constant,. Using induction, it is then easy to prove that
we have that(key1/m) — 2(ke/m) = w2/ (§)/m, wherez’ .

. o . : irif7—1 ;

is the derivative of: and¢ is some real number with,/m < ri(x) = Z( IV 1 e\ (z). (12)

¢ < keyq1/m. Note thatz satisfies the differential equation in J>i ¢

(1), hencez'(§) = f(¢, 2(£)), and by the Lipschitz condition gy ther, since\(1) = 1, one verifies by induction that

on f we obtain

_ g1
[As] < Lu(he/m = €] + Vi /m = 2(©)): =2 (i
j 7
By the continuity ofz and the inductive hypothesis, we see th
for suitable choice of the constaBtwe have

-1 .
T ) m '
|A3|<B<—+—w é) c”_z<z'—1)p’"&'

%Iugging (5) into the last equation we see that

m m>t
for large enoughn. Altogether we obtain (Use(’" ) (i:i) =("h (’;’_—;)) Hence, we obtain far > 1
[Asl + 42| + [ As| < Tera from (12)
=1 -1 .
with probability at least ri(z)= Y (=1 <‘i B 1) <T_ ) )pm(ﬁ)\(ﬂ?))’- 13)
m>j>i

1—£ exp(—a? /2w)—exp(—a? /2w) = 1—(£+1) exp(—a? /2w).
To obtain the formula for, (x), we note that; (x) = e(x) —

Now we chooser = /m. Then 351 7i(z). The sum of the right-hand side of (13) overialt
Té S Trn,/'w 1 equals
< (exp(B) = D((v + Bym*? 4 m*2Co)/(Bm??) S gy () sa@)y (- (T
= O(m*° : j=1 e i1
= O0(m”'®), for all £. mj i<y
Hence, we see that (2) is satisfiedtat %, with probability at = 6A(x).
leastl — m?/3 exp(—{/m/2). Furthermore, as (The inner sum equalsif j = 1, and is zero otherwise.) Hence,
|Y; — ch| < C’m2/3, for all ke <t < k‘g.,.l we have
. _ - -1
we contend thaY; =mz(t/m)+O(m?> ) for all t in the spec- ri(z) =e(r) — 6A(z) + 8A(x Z pm Y (=
ified range, with probability at leagt—m?/3exp(—&/m/2). O ) gzm
m — g
We remark that one can have better choicesfandw in the : <j _q )(5)\(37))1 '
above proof which make the error terms smaller, at the expense ym=t
of making the error probability slightly larger. =zbM(z) — )+ 68Xz Z pm(l = 6A(z
=6A(z)[x — 14+ p(1 — 6A(z ))]
APPENDIX B .
PROOF OFPROPOSITION] This completes the proof. O
We will prove Proposition 1 in this appendix. We start with APPENDIX C
the substitutionz := exp(— [ ds/e(s)). This means that PROOF OFLEMMA 4

d =—d , and this t f far> 1 (3) int . L .
=/ 7/e(r), and this transforms far> 1 (3) into Again, we begin with the initial random graph, with &

Pi(z) = i(—rig1(z) + 7,i(x))a($) -1 left nodes and3k right nodes, and continue to work with the
’ z generating functiond(z) and p(z) from Section Ill. Suppose
where prime stands for derivative with respect to the variablethat each node on the right is removed with probabitity
anda(z) is the average degree of the graph at tim®lote that while nodes on the left are removed with probability The
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new process can now be studied as a process with erasiesher, recall that(»)

on the left only, which runs on the subgraphof the initial
consisting of the1 — §')3n undeleted nodes on the right. Let
\; be the fraction of edges of degreen B with respect to 0
the total number of edges iB. Define 5 similarly. Obviously,
p: = pi, as the number of edges of degieendthe number of
total edges inB are a(1 — & )-factor of those ofB. As for \;,
it is easily seen that

Thus

583

=3, Xz~ Thus

"”Wm_é,)y)dy:;% w
/ W@—éii — &)Y
§ I
Ny
i 0

This is done as follows: an edge of degpeis with probability This implies

1 — & connected to an undeleted node on the right. The proba-
bility that 7 — ¢ of the remaining/ — 1 edges is connected to one
of the deleted nodes on the right is exactiyl a- &' )-fraction of
the above sum. R

The above formula shows thatz) = A& + (1 — §)z).
Invoking Theorem 1 we see that the expected number of edges
of right degree one at time (with respect to the total number
of edges inB) equals

a:)zélZfi-(é’—i—(l—é’)a:)i—f].

Finally

fl@) = fz) +6f = 5212 (& +(1—8)).

By using Theorem 1, this shows that the fraction of nodes unre-

covered at time: is, up to small order terms, equal to

A+ (1= 8)z) [z — 1+ p(1 = A& + (1 = &)x))].
Since the number of edges ihis (1 — &) times the number of
edges inB, the assertion on, (x) follows.

To prove the second part of the proposition, we retain the
tation established earlier, e.g(;) is the fraction of the original
edges remaining at. Let £’ be the number of edges in the orig-
inal graph,N be the number of left nodes in the original graph, (1
and thus the average left node degree;is= F/N. We define
b(x) to be the average node degree among nodes on the left th&]
have at least one edge.at

We definef; to be the fraction of left nodes of degrem the
original graph, and thug; = a; - A;/i. We definef(x) to be
the expected fraction of original left nodes still not recovered at
. We definef to be the fraction of left nodes that have all their [g]
neighbors among the originél fraction of missing right nodes.
We define f(x) to be the expected fraction of left nodes that
have at least one neighboot among the originaé’ fraction of 7]
missing right nodes and that are still not recovereg. at

One can verify thatf(z) = 6f + f(z), and thatf = [
>, fi(8")". Thus, our goal is to deduce a closed-form expres-[g]
sion for f(z). The number of unrecovered left nodes with
at least one neighbor at is equal to the number of edges [10]
remaining atz divided by b(z). The number of edges atis

e(z)E, and thus

no-

(3]
(4]

o e()E [11]
fle) = iy = o @)/
(12]
We now turn tob(x). It can be verified that
e(x) (13]
Wz) = 7——"—.
= ey
(14]
From this it follows thatf () =ag¢- fo y)/y dy. Recall that
e(y) = 6(1 — &y + (1 — &)y), and thus [15]

c(y)/y =61 = N + (1 - &')y).

and completes the proof.

(5 +(1—6")a)
bag - / Ay) dy
0
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