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Efficient Erasure Correcting Codes
Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman

Abstract—We introduce a simple erasure recovery algorithm for
codes derived from cascades of sparse bipartite graphs and analyze
the algorithm by analyzing a corresponding discrete-time random
process. As a result, we obtain a simple criterion involving the frac-
tions of nodes of different degrees on both sides of the graph which
is necessary and sufficient for the decoding process to finish suc-
cessfully with high probability. By carefully designing these graphs
we can construct for any given rate and any given real number

a family of linear codes of rate which can be encoded in time
proportional to ln(1 ) times their block length . Furthermore,
a codeword can be recovered with high probability from a portion
of its entries of length(1+ ) or more. The recovery algorithm
also runs in time proportional to ln(1 ). Our algorithms have
been implemented and work well in practice; various implementa-
tion issues are discussed.

Index Terms—Erasure channel, large deviation analysis, low-
density parity-check codes.

I. INTRODUCTION

A LINEAR error-correcting code of block length and
dimension over a finite field —an -code for

short—is a -dimensional linear subspace of the standard vector
space . The elements of the code are called codewords. To
the code there corresponds anencoding map which is
an isomorphism of the vector spaces and . A sender, who
wishes to transmit a vector of elements in to a receiver,
uses the mapping to encode that vector into a codeword.
The rate of the code is a measure for the amount of real
information in each codeword. The minimum distance of the
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code is the minimum Hamming distance between two distinct
codewords. A linear code of block length, dimension , and
minimum distance over is called an -code.

Linear codes can be used to reliably transmit information
from a sender to a receiver: the sender first encodes the de-
sired word into a codeword and transmits the codeword over
the transmission channel. Depending on the nature of the errors
imposed on the codeword through the channel, the receiver then
applies appropriate algorithms todecodethe received word. In
this paper, we assume that the receiver knows the position of
each received symbol within the stream of all codeword sym-
bols. We adopt as our model of errors theerasure channel, in-
troduced by Elias [4], in which each codeword symbol is lost
with a fixed constant probability in transit independent of all
the other symbols. Elias [4] showed that the capacity of the era-
sure channel is and that a random linear code can be used
to transmit over the erasure channel at any rate .

It is easy to see that a code of minimum distanceis ca-
pable of recovering or fewer erasures. Furthermore, a
closer look reveals that this task can be done in time .
The code is optimal with respect to recovering erasures if it can
recover from any set of coordinates of the codeword, i.e., if

. Such codes are called minimum-distance sep-
arable (MDS) codes. A standard class of MDS codes is given
by Reed–Solomon (RS) codes [16]. The connection of these
codes with polynomial arithmetic allows for encoding and de-
coding in time (see, [3, Ch. 11.7] and [16,
p. 369]). However, for small values of, quadratic time algo-
rithms are faster than the theoretically, asymptotically fast al-
gorithms for the RS-based codes, and for larger values of
the multiplicative overhead in the running
time of the fast algorithms (along with a moderate-sized con-
stant hidden by the big-Oh notation) is large. Obviously, one
cannot hope for better information recovery than that given by
RS codes, but faster encoding and decoding times are desirable.
In this paper, we design fast linear-time algorithms for trans-
mitting just below channel capacity. For all , we produce
rate codes along with decoding algorithms
that recover from the random loss of afraction of the trans-
mitted symbols in time proportional to with high prob-
ability, where is the block length. These codes can be encoded
in time proportional to . The fastest previously known
encoding and decoding algorithms [1] with such a performance
guarantee have run times proportional to .

The overall structure of our codes is related to the low-density
parity-check codes introduced by Gallager [6], which have been
the subject of a great deal of recent work (see, for example, [10],
[11], and [15]). We also use some ideas related to the codes
introduced in [25] for error correction. Because we examine the
erasure setting, however, our work includes several innovations,
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including a simple linear time decoding algorithm and the use
of irregularity. We explain the general construction along with
the encoding and decoding algorithms fully in Section II.

Our encoding and decoding algorithms are almost symmet-
rical. Both are very simple, computing exactly one exclusive-or
operation for each edge in a randomly chosen bipartite graph.
As in many similar applications, the graph is chosen to be
sparse, which immediately implies that the encoding and
decoding algorithms are fast. Unlike many similar applications,
the graph is not regular; instead, it is quite irregular with a
carefully chosen degree sequence. We describe the decoding al-
gorithm as a process on the graph in Section II-B. Our main tool
is a model that characterizes almost exactly the performance of
the decoding algorithm as a function of the degree sequence of
the graph. In Section III, we use this tool to model the progress
of the decoding algorithm by a set of differential equations.
The solution to these equations can then be expressed as
polynomials in one variable with coefficients determined by
the degree sequence. The positivity of one of these polynomials
on the interval with respect to a parameterguarantees
that, with high probability, the decoding algorithm can recover
almost all the message symbols from a loss of up to afraction
of the codeword symbols (see Proposition 2). The complete
success of the decoding algorithm can then be demonstrated by
combinatorial arguments.

Our analytical tools allow us to almost exactly characterize
the performance of the decoding algorithm for any given de-
gree sequence. Furthermore, they also help us todesigngood
irregular degree sequences. In Section IV, we describe, given a
parameter , a degree sequence for which the decoding is
successful with high probability for an erasure fractionthat is
within of . Although these graphs are irregular, with some
nodes of degree , the average node degree is only .
This is one of the central results of the paper, i.e., a code with
encoding and decoding times proportional to that can
recover from an erasure fraction that is withinof optimal.

In Section V, we discuss issues concerning practical imple-
mentations of our algorithms. This section includes methods for
finding good degree sequences based on linear programming,
and timings of the implementations. In the last section, we sum-
marize the main results of this paper, and discuss recent devel-
opments following the publication of a preliminary version [13].

II. GRAPH CODES

In this section we introduce a new class of codes. Special sub-
classes of these codes turn out to be almost MDS in the fol-
lowing sense: an -code in this subclass is capable of re-
covering the message from a random set of coordinate
places with high probability, whereis a small real number. A
more precise statement is provided later in Section III. The ad-
vantages of these codes are that they have linear time encoding
and decoding algorithms, and that the alphabet sizecan be ar-
bitrary. For simplicity, in the following we assume that the sym-
bols are bits, i.e., that .

We explain the overall construction of the codes, as well as in-
troduce simple and efficient encoding and recovery algorithms.

A. Erasure Codes via Bipartite Graphs

We define a code with message bitsand redundant
bits, where , by associating these bits with a bipartite
graph .1 Following standard terminology, we refer to the
redundant bits ascheck bits. The graph has left nodes and

right nodes, corresponding to the message bits and the check
bits, respectively. Hence, in the following, we refer to the left
nodes of a bipartite graph as its message bits and to the right
nodes as its check bits.

The encoding of is determined by setting each check
bit to be the (XOR) of its neighboring message bits in(see
Fig. 1(a)). Thus, the encoding time is proportional to the number
of edges in , and our codes aresystematic.2

Our main contribution is the design and analysis of the bi-
partite graph so that the repetition of the following simplistic
decoding operation recovers all the missing message bits.

Algorithm 1 (Erasure Decoding)
Given the value of a check bit and all but

one of the message bits on which it de-
pends, set the missing message bit to be
the XOR of the check bit and its known
message bits.

See Fig. 1(b) for an example of this algorithm, and Fig. 2 for
an example of full recovery.

We introduce methods for the design of sparse random graphs
where repetition of this operation recovers all the message bits
with high probability if a random subset of of the
message bits have been lost from .

To produce codes that can correct erasures of check bits as
well as message bits, we cascade codes of the form: we
first use to produce check bits for the original mes-
sage bits, we then use a similar code to producecheck bits
for the check bits of , and so on (see Fig. 3). At the last
level, we may use a more conventional erasure correcting code
(e.g., an RS code, if the alphabet size is large enough).

Formally, we construct a family of codes
from a family of graphs where has left
nodes and right nodes. We select so that is
roughly . We end the cascade with an erasure correcting
code of rate with message bits for which
we know how to recover from the random loss offraction
of its bits with high probability. We then define the code

to be a code with message bits and

check bits formed by using to produce check bits for
the message bits, using to form check bits for the

bits produced by , and finally using to produce

1We will use the word bit in a rather loose form, mostly to denotecoordinate
positions.

2Herein lies one of the differences of our codes compared to Gallager’s low-
density parity-check codes: in the latter, the coordinate places of the codeword
itself are identified with the left nodes, and the right nodes define constraints on
these words. That is, Gallager allows only those words such that for any right
node, theXOR of its adjacent left nodes is zero.
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Fig. 1. (a) A graph defines a mapping from message bits to check bits. (b) Bitsx , x , andc are used to solve forx .

an additional check bits for the bits
output by . As has message
bits and check bits, it is a code of rate .

Remark 1: Assuming that the code can be encoded and
decoded in quadratic time (an assumption which is certainly true
for RS codes), the code can be encoded and
decoded in time proportional to the number of edges in all the

.3

We begin by using the decoding algorithm forto decode
erasures that occur within its corresponding message bits. If
corrects all the erasures, then the algorithm now knows all the
check bits produced by , which it can then use to correct
erasures in the inputs to . As the inputs to each
were the check bits of , we can work our way back up
the recursion until we use the check bits produced by to
correct erasures in the originalmessage bits. If we show that

can correct a random fraction of erasures with high
probability, and that each can correct a random
fraction of erasures of its message bits with high probability,
then we have shown that is a rate
code that can correct a random fraction of erasures with
high probability, for some . Details can be found in the proof
of Theorem 2.

For the remainder of this section and much of the next section,
we only concern ourselves with finding graphsso that the
decoding algorithm can correct fraction of erasures in
the message bits of , given all of its check bits.

B. The Graph Process and Degree Sequences

We now relate the decoding process of to a process on
a subgraph of , so that hereafter we can use this simpler termi-
nology when describing the process. This subgraph consists of

3If the alphabet size is too small for the corresponding RS code to exist, we
can continue the cascade until the graph has roughly

p
k nodes and use a random

linear code with conventional erasure decoding.

all nodes on the left that were erased but have not been decoded
thus far, all the nodes on the right, and all the edges between
these nodes. Recall that the decoding process requires finding a
check bit on the right such that only one adjacent message bit is
missing; this adjacent bit can then be recovered. In terms of the
subgraph, this is equivalent to finding a node of degree one on
the right, and removing it, its neighbor, and all edges adjacent to
its neighbor from the subgraph. We refer to this entire sequence
of events hereafter as one step of the decoding process. We re-
peat this step until there are no nodes of degree one available on
the right. The entire process is successful if it does not halt until
all nodes on the left are removed, or equivalently, until all edges
are removed. It is simple to show that the result of this process
is independent of the order in which nodes are removed; subse-
quently, in the analysis, we may freely assume that the nodes of
degree one are chosen uniformly at random at each step.

The graphs that we use are chosen at random from a set of
sparse bipartite graphs with a carefully chosen degree sequence.
In contrast with many applications of random graphs in com-
puter science, our graphs are not regular.

We refer to edges that are adjacent to a node of degreeon
the left (right) asedges of degreeon the left (right). Each of our
degree sequences is specified by a pair of vectors
and where is the initial fraction of edges on the
left of degree and is the initial fraction of edges on the right
of degree . Note that we specify graphs in terms of fractions of
edges, and notnodes, of each degree, as this form turns out to be
more convenient. The sequencesand give rise to generating
polynomials and . The
unusual choice of rather than has to do with the analysis
of the decoding, as described below. Using these functions, one
can succinctly describe many important parameters of the graph.
For instance, it is easy to see that the average left degreeof
the graph is which is . If is the number

of edges in the graph, then the number of left nodes of degree
is , and hence the number of left nodes is .
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Fig. 2. All stages of the recovery. (a) Original graph. (b) Graph induced by the set of lost nodes on the left. (c)–(f) Recovery process.

Hence, the average degree isdivided by this quantity. By a
similar reasoning, the polynomial has
the property that itsth coefficient is the fraction of left nodes
of degree . (Analogous assertions hold of course for .)

For a given pair and of degree sequences, we will
be interested in constructing a random bipartite graph with
nodes on the left and nodes on the right which has this de-
gree distribution. We will implicitly assume that the numbers
work out, i.e., that , , and are integers for all,
and we assume that . In this case, it
is easy to see that such graphs exist (say by induction). Later, in
Section V-C, we will carry out a procedure to uniformly sample
graphs (with multiedges) from the set of graphs with given de-
gree sequencesand .

Note that, as the decoding process evolves, in the corre-
sponding subgraph of remaining after each step the
matching remaining on still corresponds to a random
permutation. Hence, conditioned on the degree sequence of the
remaining subgraph after each step, the subgraph that remains
is uniform over all subgraphs with this degree sequence. The
evolution of the degree sequence is therefore a Markov process,
a fact we make use of below.

In the next two sections, we develop techniques for the anal-
ysis of the process for general degree sequences.

III. L ARGE DEVIATION AND ANALYSIS OF THEDECODING

We analyze the decoding algorithm (Algorithm 1) by viewing
it as a discrete random process. We model the evolution of the
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Fig. 3. The code levels and directions of encoding and decoding process.

main parameters of this system by a system of differential equa-
tions. These parameters include the number of edges of different
right and left degrees, as well as the total number of edges and
the average degrees of the bipartite graph on both sides. We need
a result which makes sure that these parameters are sharply con-
centrated around the solutions of the system of equations, in the
sense that the variation in the parameters are small compared
with the total number of steps. For the sake of keeping the tech-
nical discussion at an acceptable level, we do not aim for the
best possible results on the quality of the sharpness of the con-
centration.

In the first part of this section, we state a general large de-
viation result which we will prove in Appendix A. Similar re-
sults were obtained by Kurtz [8] who studied Markov jump pro-
cesses, and have been used previously by many researchers, see
[5], [7], [17], [18], [20], [26] and the references therein. We use
a version due to Wormald [26] which has the advantage of being
directly applicable to our situation.

Next we set up the appropriate system of differential equa-
tions, and solve them explicitly. This provides us with a concrete
condition on the bipartite graph for successful decoding. How-
ever, we can only make limited use of the large deviation result,
as this only guarantees continuation of the recovery process as
long as the number of edges in the induced subgraphs is a con-
stant fraction of the original number of edges. To prove that the
process ends successfully, we need a combinatorial argument
which proves that the random graph obtained at this stage of the
decoding has reasonable expansion properties, with high prob-
ability. This expansion property suffices to show that once the
number of edges remaining becomes sufficiently small, the de-
coding process is completed.

A. Large Deviation

For analyzing our erasure decoding algorithm we need to
keep track of nodes of degree one on the right side of the bi-
partite graph as the algorithm proceeds. As the erasures occur
randomly on the left side, it is not surprising that the analysis re-
quires tools from probability theory. We may regard the number
of edges of different degrees on the left and the right sides of the
graph as random variables that evolve over time. It is relatively

easy to compute the conditional expectation of these random
variables. This is done in the next subsection. What we need is
a tool that asserts that these random variables do not deviate too
much from their expected value over the lifetime of the process.
This is a typical example of a so-called large deviation result
which we derive in this subsection. We assume that the reader
is familiar with basic concepts such as (super- and sub-)martin-
gales [19]. For this argument, we follow [26] rather closely.

The evolution of the number of edges of different degrees on
the graphs considered is a typical example of a discrete-time
random process. Let denote a probability space anda mea-
surable space. Adiscrete-time random processover with state
space is a sequence of random vari-
ables . To every corresponds arealization

of the process. Thehistoryof the process
up to time is the sequence . For a
real-valued measurable functiondefined on ,
the random variable is denoted by .

We say that a function satisfies a Lipschitz con-
dition on if there exists a constant such that

for all .
For a sequence of real-valued random variables taking

only a countable number of values, we say that
with probability , if

The following theorem summarizes the large deviation result we
need later. Its proof can be found in Appendix A.

Theorem 1: Let be a sequence of discrete time
random processes

over a probability space with state space and

be the th history up to time . Let be a positive integer.
For and all positive integers let

be a measurable function such that for
all and for some constant (independent of , ,

). Furthermore, let be functions from to .
Suppose

i) there exists a constant such that for all , for all
, and for all

where ;
ii) for all and uniformly over all with we

have
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iii) for each , the function is continuous and satisfies
a Lipschitz condition on , where is some bounded
connected open set containing the intersection of

with some open neighborhood

for some

Then the following holds.

a) For , the system of differential equa-
tions

has a unique solution in for passing through
, .

b) There is a constantsuch that

for and for each , where is the so-
lution in a) with , and is
the supremum of thoseto which the solution can be ex-
tended.

B. The Differential Equations

We begin with the initial random graph, with left nodes
and right nodes. Suppose that the graph is given by the
degree distribution pair and , as explained in Sec-
tion II-B, and suppose that the total number of edges in the graph
is . As was explained above, the average node degreeon the
left initially satisfies , and similarly the average
node degree on the right initially satisfies .

In the application of Theorem 1, each time step corresponds
to recovering one node on the left-hand side. Furthermore, the
parameter corresponds to the total numberof edges. Let
be the fraction of erasures in the message. Initially, just prior
to time , each node on the left is removed with probability

(because the corresponding message bit is successfully
received), and thus the initial subgraph ofcontains nodes
on the left. If the process terminates successfully, it runs until
time . We denote by the scaled time . Hence,

runs from to .
Let be the graph obtained after a random deletion of

nodes on the left. We let be the th edge removed in the
graph . We define to be the graph obtained after removing

all left nodes they are connected to, and all edges
coming out of these nodes. If the process has already stopped at
time , we set for convenience.

We denote by the number of edges of left degreeat time
, and by the number of edges of right degreeat time .

Let be the total number of edges in the original graph. We
let and represent the fraction
of edges (in terms of ) of degree on the left and right, re-
spectively, at time. We denote by the fraction of the edges
remaining at time, that is, .

First we note that for all and , so Con-
dition i) in Theorem 1 is satisfied. Recall that at each step, a

Fig. 4. Description of the differential equations.

random node of degree one on the right is chosen, and the cor-
responding node on the left and all of its adjacent edges are
deleted. (If there is no such node, the process necessarily stops.)
The probability that the edge adjacent to the node of degree one
on the right has degreeon the left is , and in this case
we lose edges of degree, see Fig. 4(a). Hence, we have

for where is the maximum degree on the
left-hand side.

Abusing the notation slightly, we set

where , and see that Condition ii) of Theorem 1 is
satisfied for these functions. Furthermore, fixing , we fur-
ther see that these functions satisfy Condition iii) in the domain

defined by the inequalities , , for
all , and . Now Theorem 1 implies
that with high probability we have

uniformly for all , where form the
solution to

(1)

for .
These differential equations are solved by definingso that

. The value of in terms of is then

By substituting for , (1) becomes
, and integrating yields . Note that

for , and . Hence, and

(2)

Since goes to zero as goes to , runs over the
interval .

To discuss the evolution of the right-hand side, first note that
, where is the maximum degree on the left.

This is because a left node is connected to at mostright nodes
and one of the right neighbors has been used to recover the left
node. Hence, Condition i) of the theorem is satisfied. Note that
when we remove a node of degreeon the left, we remove the
one edge of degree one from the right, along with the
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other edges adjacent to this node. Hence the expected number
of other edges deleted is , where . The
right endpoints of these other edges on the right-hand side
are randomly distributed. If one of these edges is of degree
on the right, we lose edges of degree, and gain edges
of degree , see Fig. 4(b). The probability that an edge has
degree on the right is just . Then, for , we have

(We assume that is defined for all positive, and is for
sufficiently large .) The case plays a special role, as we
must take into account that at each step an edge of degree one
on the right is removed. This gives

Let be the maximum degree of a node on the right. Abusing
the notation slightly, we set

for

where and . Fixing any ,
we see as in the case of the left-hand side evolution, that these
functions satisfy a Lipschitz condition, as long as .
Application of Theorem 1 thus yields that almost surely, we
have

uniformly for all , where form the
solution to

for (3)

and

(4)

Our key interest is in the progression of as a function of
. As long as , so that we have a node of degree one

on the right, the process continues; when the process
stops. Hence we would like until all nodes on the left
are deleted and the process terminates successfully.

We proceed with the determination of , the expected
fraction of edges of right degree one at time: because each
node on the left is deleted randomly just prior to timewith
probability , and the graph is a random graph over those
with the given degree sequence, to the nodes on the right it is
as though each edge is deleted with probability . Hence,
an edge whose right incident node had degreebefore the dele-
tion stage remains in the graph and has degreeafterwards with
probability . Thus

(5)

In Appendix B we will solve the set of differential equations
given by (3) and (4) with the initial condition (5). Here is the
result.

Proposition 1: For the solution to the system of differential
equations given by (3) and (4) with the initial condition (5) we
have

(6)

where is defined via .

This immediately gives rise to the following result.

Proposition 2: Let be a bipartite graph withmessage bits
that is chosen at random with edge degrees specified by
and . Let be fixed so that

for

For all there is some such that for all , if
the message bits of are erased independently with prob-
ability , then with probability at least
the recovery algorithm terminates with at mostmessage bits
erased.

Proof: Let be the number of edges in the graph. Then
, where is the average degree of the nodes in the left

side of the graph, which is a constant for fixedand . (Note
that .) Let . By (6) and the preceding
discussions, with probability at least the
number of nodes of degree one on the right is

for , where . By our as-
sumption, this number is positive (for large enough), which
proves the assertion.

The foregoing proposition does not prove that the decoding
process terminates successfully recovering all the missing nodes
on the left-hand side. To do this, we need a combinatorial argu-
ment which says that random graphs are good expanders. This
means that any small enough subset of left nodes has many right
neighbors. The exact statement is given in the proof of the fol-
lowing result.

Lemma 1: Let be a bipartite graph with left nodes chosen
at random with edge degrees specified by and , such
that has . Then there is some , such that,
with probability , the recovery process restricted
to the subgraph induced by any-fraction of the left nodes ter-
minates successfully.

Proof: Let be any set of nodes on the left of size at most
, where will be chosen later. Let be the average degree of

these nodes. If the number of nodes on the right that are neigh-
bors of is greater than , then one of these nodes has only
one neighbor in , and so the process can continue. Thus, we
only need to show that the initial graph is a good expander on
small sets.

Let denote the event that a subset of sizeof the nodes
on the left has at most neighbors. We first bound ,
and then sum over all values of no larger than . Fix
any subset of the left nodes of size, and any subset of the
right nodes of size . There are ways of choosing , and
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ways of choosing . The probability that contains all
the neighbors of the vertices in is . Hence, we
have

Note that , hence we have

where is a constant (depending on and ). Since the
graph does not have nodes of degree one or two, we have that

. Choosing yields

which shows that, with high probability, the original graph is an
expander on small subsets.

The above proof shows that the main contribution for the error
probability comes from nodes of degree three on the left. For
the same reason, it is easy to see that nodes of degree two will
lead to a constant error probability. We leave the details of this
argument to the reader.

Altogether we obtain the main theorem of this section.

Theorem 2: Let be an integer, and suppose that

is a cascade of bipartite graphs as explained in Section II, where
has left nodes. Suppose that each is chosen at random

with edge degrees specified by and , such that
has , and suppose thatis such that

(7)

for all . Then, if at most a-fraction of the coordinates
of an encoded word in are erased independently at random, our
erasure decoding algorithm terminates successfully with prob-
ability , and does so in steps.

Proof: At each level of the cascade, the number of
edges equals the average degree of the nodes on the left
times the number of the nodes. The average degree is always

, which is a constant. Hence, the total number of
edges in the cascade (up to the last layer) is , which shows
that the recovery process needs steps (see Remark 1).

Next we bound the probability that there is somesuch that
the fraction of left nodes lost on the left side of the graphis
larger than . We use a version of the Chernoff
bounds given in [19, Problem 4.7(c), p. 98]. According to that,
for any , the probability that there are more erasures than

is upper-bounded by ,
which is smaller than . The required probability is
certainly at most equal to the sum of these probabilities (union
bound), which is . (Note that there are

such ’s.)

For large enough, Condition (7) is satisfied for instead of
(by continuity). Hence, invoking Proposition 2, for any

and any of the graphs in the cascade our decoding algorithm
stops with less than nodes uncorrected, with probability

for some positive . Now Lemma 1 applies
and shows that, for small enough, the recovery process ends
successfully with probability . The probability
that our algorithm fails on at least one of the graphs is thus at
most , where runs from to . This is
equal to , which shows the assertion.

For designing graphs that lead to good codes, it is thus neces-
sary to fulfill condition (7). It is sometimes desirable to use the
“dual condition”

(8)

for which is obtained from (7) by substituting
. Note that has an inverse on , as it is mono-

tonically increasing.
In the following section we use this theorem to analyze de-

coding properties of codes obtained from regular graphs.

IV. CAPACITY-ACHIEVING CODES

In this section we will construct for any erasure probability
families of codes with linear time erasure decoding algorithms
that can correct any-fraction of erasures and whose rates come
arbitrarily close to the capacity of the erasure channel.
In other words, we construct codes that are close to optimal in
terms of their erasure recovery rate, and have linear time en-
coding and decoding algorithms. We do this by finding an in-
finite family of solutions to the differential equations of Sec-
tion III in which is close to , where is the rate.

Let be a bipartite graph with left nodes and right
nodes. We describe our choice for the left and right degree se-
quences of that satisfy condition (7). Let be a positive in-
teger that is used to trade off the average degree with how well
the decoding process works, i.e., how close we can maketo

and still have the process finish successfully most
of the time.

The left degree sequence is described by the following trun-
cated heavy tail distribution. Let be the har-
monic sum truncated at , and thus . Then, for
all the fraction of edges of degreeon the
left is given by

The average left degree equals . Recall that
we require the average right degreeto satisfy . The
right degree sequence is defined by the Poisson distribution with
mean : for all the fraction of edges of degreeon the
right equals

where is chosen to guarantee that the average degree on the
right is . In other words, satisfies .

Note that we allow for all , and hence is
not truly a polynomial, but a power series. However, truncating
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the power series at a sufficiently high term gives a finite
distribution of the edge degrees for which the next lemma is
still valid.

We show that when , then condition (7) is
satisfied, i.e., on , where

and

Note that is the expansion of truncated at the
th term, and scaled so that . Further, .

Lemma 2: With the above choices for and we have
on if .

Proof: Since increases monotonically in, we have

As and , we obtain

which shows that the right-hand side of the above inequality is
larger than on .

A problem is that Lemma 1 does not apply to this system
because there are nodes of degree two on the left. Indeed, sim-
ulations demonstrate that for these choices of and
a small number of nodes often do remain. To overcome this
problem, we make a small change in the structure of the graph

. Let . We split the right nodes of into two
distinct sets, the first set consisting of nodes and the
second set consisting of nodes. The graph is then formed
by taking the union of two graphs, and . is formed as
described up to this point between theleft nodes and the first
set of right nodes. is formed between the left
nodes and the second set of right nodes, where each of the

left nodes has degree three and theedges are connected
randomly to the right nodes.

Lemma 3: Let be the bipartite graph described above.
Then, with probability , the decoding process
terminates successfully when started on a subgraph of
induced by of the left nodes and all of the right nodes,
where .

Proof: In the analysis of the process, we may think of
as being held in reserve to handle nodes not already dealt with
using . First, using the same method as in Lemma 1 we can
prove that there is somesuch that a set of left nodes
in the graph expands to a set of at least nodes on the
right, with probability . (Note that all nodes on
the left have degree three in this graph.) Combining Proposition
2 and Lemma 2, we see that the recovery process started on
terminates with less than nodes on the left unrecovered, with
probability for some positive : note that the
ratio of the number of left nodes to the number of right nodes
in the graph equals , hence the condition in
Lemma 2 translates to

Fig. 5. Erasure decoding of irregular graphs: left degree versus the overhead
beyond optimal value needed to recover (rate= 1=2).

which is obviously true. By the aforementioned expansion prop-
erty of the subgraph of induced by the set of unrecovered left
nodes, we see that the process terminates successfully.

Note that the degree of each left node in this modified con-
struction of is at most three bigger than the average degree of
each left node in the construction of described at the begin-
ning of this section. We can use this observation and the lemma
above to immediately prove the following.

Theorem 3: For any with , any with
, and sufficiently large block length, there is a linear code

and a decoding algorithm that, with probability ,
is able to correct a random -fraction of erasures
in time proportional to .

Proof: Set to get a one level code with
the properties described in Lemma 3. Then cascade versions
of these codes as described in Section II to get the entire
code. As was pointed out above, the average degreeof
the left nodes in each of the layers is upper-bounded by

, which is proportional to .
Hence, the total number of edges in the bipartite layers of the
graph is proportional to , which proves the assertion
on the decoding time.

Using Lemma 3 and the same analysis as in the proof of The-
orem 2, we can show that the code constructed above can re-
cover, with probability , all the message bits, if
a random -fraction of the codeword is missing, where

. Noting that , we obtain the result.

Fig. 5 shows the running time of the encoding/recovery al-
gorithms (as multiples of the block length) versus the overhead
needed to recover. For instance, for sufficiently large, one can
construct in this way -codes that have encoding/recovery
algorithms running in time , which can recover a codeword
from a random set of of its coordinates.

V. PRACTICAL CONSIDERATIONS

The discussions in the preceding sections have been of a more
theoretical, rather than a practical nature. However, as the graph
codes designed via the above mentioned theorems can be used
in practical situations, it is important to describe possible im-
plementations. We start with modifying our construction by al-
lowing erasures to also occur on the right-hand side. An analysis



578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

of this type provides us with some insight in how to design cas-
caded versions of our codes with much fewer levels, and faster
decoding algorithms for the end level. Next, we show how to use
a linear programming approach to design bipartite graphs which
give rise to very good codes. Finally, we briefly discuss some of
our implementations. A preliminary report on the results of this
section appeared in [9].

A. Fraction of Left Nodes Unrecovered

So far we have assumed in our analysis that in each layer of
the cascade all the check bits are received when trying to re-
cover the message bits. The reason we made this assumption is
that in the original construction the cascading sequence of bipar-
tite graphs is completed by adding a standard erasure-correcting
code at the last level.

There are some practical problems with this. One annoyance
is that it is inconvenient to combine two different types of
codes. A more serious problem is that standard erasure-cor-
recting codes take quadratic time to encode and decode (if the
alphabet size is large enough; otherwise, cubic running time
will do). Suppose the message is mapped to a codeword twice
its length. In order to have the combined code run in linear
time, this implies that the last graph in the cascading sequence
has left nodes, where is the number of nodes associated
with the original message, i.e., there are graphs in
the sequence. In the analysis, we assume that an equal fraction
of the nodes in each level of the graph are received. However,
there is variance in this fraction at each level, with the worst
expected fractional variance at the last level of . Thus, if
a message of length is stretched to a codeword of length

, then just because of the variance of ,
we expect to have to receive times the message length of
the codeword in order to recover the message.

A solution to this problem is to use many fewer levels of
graphs in the cascade, and to avoid using a standard erasure-cor-
recting code in the last level. That is, for the last layer, we con-
tinue to use a randomly chosen graph. We have tried this idea,
with the last graph chosen from an appropriate distribution, and
it works quite well. For example, using only three levels of
graphs we can reliably recover a message of length from
a random portion of length (i.e., times the optimal
of ) of a block-length of

To design the graph for this solution, we need to analyze the
decoding process when a random portion of both the message
bits and the check bits are missing. The following result gives
the expected fraction of right nodes of degree one with respect
to the number of edges in the graph, and estimates the fraction
of left nodes unrecovered at each step of the algorithm.

Lemma 4: Suppose each node on the left is missing with
probability and each node on the right is missing with prob-
ability . The fraction of edges of right degree one at

with respect to the number of edges in the original graph
equals

Furthermore, up to lower order terms, the fraction of left nodes
unrecovered at time equals

We will prove this lemma later in Appendix C. We immedi-
ately obtain the condition

(9)

for successful decoding.
It is not possible to satisfy the above inequality for all

if , for any value of : for the left-hand side
equals which is strictly less than. There is an
intuitive reason for this: the subgraphon which the process
starts has edges of degree one on the left; these edges can only
correct the left nodes they are connected to, and cannot help any
other node on the left.

However, it turns out to be an interesting question to see what
fraction of the left nodes can be recovered when a fraction
of the right nodes is missing. The answer to this question can
be used to design cascading codes where the decoding process
moves from right to left bootstrapping up to recover a higher
and higher fraction of nodes at each successive decoded layer
of the graph until in practice it is able to recover all of the first
(message) layer (see Fig. 6).

Given the and vectors, condition (9) can be used to
compute the smallest value offor which the condition is still
valid. The second part of Lemma 4 then gives the fraction of
unrecovered nodes on the left at this value of.

B. Computing Degree Sequences Using Linear Programming

In this subsection, we describe a heuristic approach that
has proven effective in practice to find a good right degree
sequence given a specific left degree sequence. The method
uses linear programming and the differential equation analysis
of Section III. Recall that a necessary condition for the process
to complete is that on . We first
describe a heuristic for determining for a given repre-
senting the left degree sequence and a value forwhether there
is an appropriate representing the right degree sequence
satisfying this condition. We begin by choosing a set of
positive integers which we want to contain the degrees on the
right-hand side. To find appropriate , , we use the
condition given by Theorem 2 to generate linear constraints
that the must satisfy by considering different values of.
For example, by examining the condition at , we obtain
the constraint , which is linear in the
coefficients of .

We generate constraints by choosing formultiples of
for some integer . We also include the constraints
for all . We then use linear programming to determine
if suitable exist that satisfy our derived constraints. Note
that we have a choice for the function we wish to optimize; one
choice that works well is to minimize the sum of

on the values of chosen to generate the constraints. The
best value for for given is found by binary search.
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Fig. 6. Bootstrapping strategy.

Given the solution from the linear programming problem,
we can check whether the computed satisfy the condition

on .

Due to our discretization, there are usually someconflict
subintervalsin which the solution does not satisfy this in-
equality. Choosing large values for the tradeoff parameter
results in smaller conflict intervals, although it requires more
time to solve the linear program. For this reason we use small
values of during the binary search phase. Once a value for

is found, we use larger values of for that specific to
obtain small conflict intervals. In the last step, we get rid of the
conflict intervals by appropriately decreasing the value of.
This always works since is a decreasing function
of .

We ran the linear programming approach on left degree
sequences of the form for codes with
rates and average left degrees

. These results are gathered in Table I which shows
how much of the codeword is sufficient to recover the entire
message as a fraction of the message length as the message
length goes to infinity. Since these graphs do not have nodes of
degree two on the left, Theorem 2 implies that with high proba-
bility the corresponding codes recover the entire message from
the portion of the codeword indicated in the table, provided
the message length is large enough. However, as the maximum
degrees in the examples we have found are rather large (about

), these codes are rather impractical.

One major disadvantage of the approach given above is that
we need to fix the left-hand side of the graph. To overcome this
difficulty, we use the dual condition (8). We can now use this
condition and the linear programming approach to solve for the
best given , then use the original condition to solve for the
best given this , and so on. We have tried this strategy and
it gives good results, although at this point we have not proved
anything about its convergence to a (possibly optimal) pair of
probability distributions.

For example, we found that the following pair of degree se-
quence functions yield -codes which are able to recover
from a random set of coordinates, with high probability;

TABLE I
CLOSE TO OPTIMAL CODES FORDIFFERENT RATES AND AVERAGE

LEFT DEGREES

the corresponding average degree is

Note that, in contrast to the examples above, the maximum
node degrees in these graphs are much smaller. This makes them
more practical for smaller values ofthan the codes giving rise
to Table I.

C. Implementations and Timings

In this subsection, we report on some of the implementa-
tions of our codes. In all these examples a message consisting of
640 000 packets was encoded into a vector of 1 280 000 packets,
and each packet consisted of 256 bytes. The cascade consisted
of three layers: a first layer consisting of 640K nodes on the
left, and 320K nodes on the right, a second layer consisting of
320K nodes on the left and 160K nodes on the right, and a third
layer consisting of 160K nodes on the left and on the right. The
edge distributions of the graphs used in the first and the second
layer were the heavy tail/Poisson distribution discussed in Sec-
tion IV. The edge distribution in the third layer was different,
and used some of the analysis of Section V-A: the edge distri-
bution on the left was a “double heavy tail” distribution, given
by , where is the edge distribution function of
the heavy tail distribution.

To chose an appropriate random bipartite graphwith
edges, nodes on the left, and nodes on the right, the pro-
gram started with a bipartite graph with nodes on both the



580 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Fig. 7. Cascade for example.

left- and right-hand sides, with each node of representing
an edge slot. Each node on the left-hand side ofwas associ-
ated with a node on the left side of, so that the distribution of
degrees is given by and similarly for the right.
The program then chooses a random matching (i.e., a random
permutation) between the two sets ofnodes on . This in-
duced a random bipartite graph on(perhaps with multiedges)
in the obvious manner with the desired degree structure. In ex-
periments, it turned out that the existence of multiedges is not a
serious problem. This can be explained by the observation that
one can analyze the process for random multigraphs instead of
random graphs and that this analysis turns out to yield essen-
tially the same results as the one carried out in Section III.

A schematic description of the code is given in Fig. 7. The av-
erage degree of the nodes in this graph was. The decoding algo-
rithmwasexecuted1000 times,each timewithadifferent random
losspattern.Fig.8showslengthoverheadstatistics: thehorizontal
axis representsandtheverticalaxis represents thepercentageof
times where times the length of the message was needed
to completely recover the message, based on the 1000 trials. In
compliance with the results of Section III, we see that the param-
eters are sharply concentrated around their mean value.

On a DEC-alpha machine with 300 MHz and 64-Mbyte RAM
the encoding took 0.58 CPU-seconds, and the decoding took
0.94 s, on average. This corresponds to a throughput of roughly
280 Mbit/s.

On a Pentium Pro at 200 MHz and 64-Mbyte RAM, the en-
coding took 0.58 s, while the decoding took 1.73 s, on average.
This corresponds to a throughput of roughly 150 Mbit/s.

It should be noted that most of the time in our algorithm is
spent in pointer chasing. The code used was a straightforward C
implementation. Use of more sophisticated data types, and more
intelligent prefetching strategies would probably speed up the
code considerably.

VI. CONCLUSION

We have introduced in this paper a class of error-correcting
codes, based on a cascade of bipartite graphs. Although the idea

of using sparse bipartite graphs for constructing codes is not new
[6], [25], the construction of the graphs in each of the layers is
novel. We obtained the construction by analyzing a simple de-
coding algorithm. The analysis used results asserting the sharp
concentration of parameters in a discrete random process around
their means. Using this, we established a simple condition that
the degree sequences of the left- and right-hand sides of the bi-
partite graphs had to satisfy in order for the process to finish
successfully. We designed a family of capacity-achieving codes
on the erasure channel with linear time encoding and decoding
algorithms. We should point out that our model of computation,
as it stands, is that of a random-access machine with unit cost.
However, our construction can be modified using prefetching
strategies to yield linear time algorithms for random-access ma-
chines with logarithmic cost. The modification is quite similar
to that given in [24].

VII. FURTHER DEVELOPMENTS

The appearance of the first version of this paper as an extended
abstractin[13] inspirednewdevelopmentswhichwewouldliketo
brieflycommenton in thissection.First, theanalysisof thispaper
wassimplified in [9] byusing propermartingale arguments.Nev-
ertheless, since we feel that the approach outlined in this paper
(in particular, Theorem 1) may have other applications, we opted
for leaving the analysis in its original form. One of the main re-
sults of this paper is the fact that properly chosen irregular graphs
perform a lot better than regular graphs, and that the only param-
eters that determine the asymptotic performance are the fractions
of nodes of various degrees. This observation together with the
new analysis were combined in [10] to study irregular low-den-
sity parity-check codes on the binary-symmetric channel, with
simplehard-decisiondecodingalgorithmsgoingbacktoGallager
[6].4 This paper appears to have been influential. First, the idea
of using irregular codes was taken up and extended by other re-
searchers (see, e.g., [14]). Second, the main “concentration the-
orem” of [10] was extended to a large class of channel models in
a landmark paper by Richardson and Urbanke [22], which first
appeared in 1998. Based on their approach, they developed the
“densityevolution”algorithm,anumericalprocedure toapproxi-
mate the thresholdofnoisebelowwhich thebeliefpropagational-
gorithm5 is asymptotically successful. Several months later, their
method was further extended in [21] in which sequences of codes
were constructed for which the belief propagation algorithm had
a performance extremely close to the Shannon capacity, beating
turbo codes [2] by a wide margin for modest block lengths.

Another main result of this paper was to show that there
are families of degree sequences such that the corresponding
graphs asymptotically meet the capacity of the erasure channel
(using our simple erasure-decoding algorithm). Another family
of such degree sequences was exhibited in [23]. So far, these
have been the only known capacity-achieving families of degree
sequences, and another example of a communication channel
for which capacity-achieving sequences exist for all rates is yet
to be found.

4An updated version of this paper appears in [12].
5Our erasure decoder turns out to be the belief propagation algorithm for the

erasure channel [21].
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Fig. 8. Length overhead statistics.

APPENDIX A
PROOF OFTHEOREM 1

Recall that a sequence of random variables is
called a martingale if

for all

The sequence is called asubmartingale(supermartingale) if

For the proof of our concentration result we need the following
well-known result, often called Azuma’s inequality [26, Lem-
ma 1].

Theorem 4: Let be a supermartingale with re-
spect to a sequence of-algebras with , and
suppose that and for some constant

and for . Then for all we have

Proof of Theorem 1:We modify the proof in [26] slightly
to obtain the error bounds asserted in the theorem. First, note
that by a standard result in the theory of first-order differential
equations, there is a unique solution in part a) of the theorem.

As in [26], we simplify the notation by considering
and referring to , , and as , , and , and so on. The
proof for general is similar.

Let , and assume that . We
first demonstrate concentration of . Notice that the
Lipschitz condition on and Condition ii) imply that for all

for some constant.

For fixed , define the random variable

Note that

This shows that the form a supermartingale with respect to
, as

Furthermore, the above equality shows that
for some constant . We can now apply the inequality of

Theorem 4. As , we obtain

for any . (The parameter will be chosen later.) The lower
tail can be bounded in exactly the same way, using a submartin-
gale. This gives for any constant (to be chosen later)

(10)

Now let , where and

Let

We prove by induction on that
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The assertion is obvious for the induction starting at , as
. Define

Note that

The inductive hypothesis gives that with probability
at least . Further, by (10), we have

with probability at least . To
bound we proceed as follows. By the mean value theorem
we have that , where
is the derivative of and is some real number with

. Note that satisfies the differential equation in
(1), hence , and by the Lipschitz condition
on we obtain

By the continuity of and the inductive hypothesis, we see that
for suitable choice of the constantwe have

for large enough . Altogether we obtain

with probability at least

Now we choose . Then

for all

Hence, we see that (2) is satisfied at with probability at
least . Furthermore, as

for all

we contend that for all in the spec-
ified range, with probability at least .

We remark that one can have better choices forand in the
above proof which make the error terms smaller, at the expense
of making the error probability slightly larger.

APPENDIX B
PROOF OFPROPOSITION1

We will prove Proposition 1 in this appendix. We start with
the substitution . This means that

, and this transforms for (3) into

where prime stands for derivative with respect to the variable,
and is the average degree of the graph at time. Note that

equals , which in terms of the function
can be written as . Hence, we obtain for

As is verified easily, the explicit solution is given by

(11)

for some constants to be determined from the initial condi-
tions for . These equations can be solved recursively, starting
with the highest nonzero , say . In this case, we have

, which gives for
some constant . Using induction, it is then easy to prove that

(12)

Further, since , one verifies by induction that

Plugging (5) into the last equation we see that

(Use .) Hence, we obtain for
from (12)

(13)

To obtain the formula for , we note that
. The sum of the right-hand side of (13) over all

equals

(The inner sum equalsif , and is zero otherwise.) Hence,
we have

This completes the proof.

APPENDIX C
PROOF OFLEMMA 4

Again, we begin with the initial random graph, with
left nodes and right nodes, and continue to work with the
generating functions and from Section III. Suppose
that each node on the right is removed with probability,
while nodes on the left are removed with probability. The
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new process can now be studied as a process with erasures
on the left only, which runs on the subgraphof the initial
consisting of the undeleted nodes on the right. Let

be the fraction of edges of degreein with respect to
the total number of edges in. Define similarly. Obviously,

, as the number of edges of degreeand the number of
total edges in are a -factor of those of . As for ,
it is easily seen that

This is done as follows: an edge of degreeis with probability
connected to an undeleted node on the right. The proba-

bility that of the remaining edges is connected to one
of the deleted nodes on the right is exactly a -fraction of
the above sum.

The above formula shows that .
Invoking Theorem 1 we see that the expected number of edges
of right degree one at time (with respect to the total number
of edges in ) equals

Since the number of edges inis times the number of
edges in , the assertion on follows.

To prove the second part of the proposition, we retain the no-
tation established earlier, e.g., is the fraction of the original
edges remaining at. Let be the number of edges in the orig-
inal graph, be the number of left nodes in the original graph,
and thus the average left node degree is . We define

to be the average node degree among nodes on the left that
have at least one edge at.

We define to be the fraction of left nodes of degreein the
original graph, and thus . We define to be
the expected fraction of original left nodes still not recovered at

. We define to be the fraction of left nodes that have all their
neighbors among the original fraction of missing right nodes.
We define to be the expected fraction of left nodes that
have at least one neighbornot among the original fraction of
missing right nodes and that are still not recovered at.

One can verify that , and that
. Thus, our goal is to deduce a closed-form expres-

sion for . The number of unrecovered left nodes with
at least one neighbor at is equal to the number of edges
remaining at divided by . The number of edges at is

, and thus

We now turn to . It can be verified that

From this it follows that Recall that
, and thus

Further, recall that . Thus

Thus

This implies

Finally

By using Theorem 1, this shows that the fraction of nodes unre-
covered at time is, up to small order terms, equal to

and completes the proof.
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