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1 IntroductionGeneralized linear models are based on two fundamental assumptions: the conditional distributionsbelong to an exponential family and a known transform of the underlying regression function islinear. In recent years, various attempts have been made to relax these model assumptions andhence widen their applicability, since a wrong model on the regression function can lead to excessivemodeling biases and erroneous conclusions. Of importance is the varying-coe�cient models, pro-posed by Hastie and Tibshirani (1993), which widen the scope of applications by allowing regressioncoe�cients to depend on certain covariates.A varying-coe�cient model has the form�(u; x) = gfm(u; x)g = pXj=1 aj(u) xj (1.1)for some given link function g(�), where x = (x1; : : : ; xp)T , and m(u; x) is the mean regressionfunction of the response variable Y given the covariatesU = u andX = x withX = (X1; : : : ; Xp)T .Clearly, model (1.1) includes both the parametric generalized linear model (McCullagh and Nelder1989) and the generalized partially linear model (Chen 1988; Speckman 1988; Green and Silverman1994; Carroll, Fan, Gijbels and Wand 1997).A motivation of this study comes from an analysis of environmental data, consisting of weeklymeasurements of pollutants and other environmental factors, collected in Hong Kong from January1, 1994 to December 31, 1995 (Courtesy of Professor T. S. Lau). Of interest is to examine theassociation between the levels of pollutants and the total number of weekly hospital admissions forcirculatory and respiratory problems. It is natural to allow the association to change over time (seeFigure 3(a) below). Such a problem can be tackled by using model (1.1) as follows. The log-link isused,U is the time covariate, andX denotes the levels of pollutants. The conditional distribution ofthe number of weekly hospital admissions given the covariates is modeled as a Poisson distributionwith the mean function given by (1.1). In another context, one is interested in studying how thevariables such as burn area and gender a�ect survival probabilities for di�erent age of burn victims.Detailed analyses of these two data sets will be reported in x3.In the least-squares setting, model (1.1) with the identity link was introduced by Cleveland,Grosse and Shyu (1992) and extended by Hastie and Tibshirani (1993) to various aspects. Re-cently, some new developement has been made to the model (1.1). Kauermann and Tutz (1999)proposed a graphical procedure to diagnose the discrepancy between the parametric model and thesmoothing alternative by using the local likelihood smoothing. Furthermore, a two-step estimationprocedure was proposed by Fan and Zhang (2000) to deal with the situations where coe�cientfunctions admit di�erent degrees of smoothness. An advantage of model (1.1) is that by allowingthe coe�cients faj(�)g to depend on U, the modeling bias can be reduced signi�cantly and the\curse of dimensionality" is avoided.Varying-coe�cient models are a simple and useful extension of classical generalized linear mod-els. This extension admits simple interpretation. The models are particularly appealing in lon-gitudinal studies where they allow one to explore the extent to which covariates a�ect responseschanging over time. See Hoover et al. (1998), Brumback and Rice (1998) and Fan and Zhang(2000) for details on novel applications of the varying-coe�cient models to longitudinal data. Fornonlinear time series applications, see Chen and Tsay (1993) and Cai, Fan and Yao (1998) for1



statistical inferences based on the functional-coe�cient autoregressive models. Cai, Fan and Yao(1998) gave an extensive study on the advantages of the varying-coe�cient model over the para-metric model based on the predictive utility. For applications in �nance and econometrics, we referto the unpublished papers by Hong and Lee (1999) and Lee and Ullah (1999).Estimation of the coe�cient functions in (1.1) is obtained by using local smoothing techniques.By localizing data around u, model (1.1) is approximately a generalized linear model. One can �ndits local maximum likelihood estimate (MLE) using an iterative algorithm. Note that the local MLEfor the varying-coe�cient model is indeed solving the local likelihood equations. Thus, our locallikelihood method can be regarded as a special case of the general local estimation equation methodproposed by Carroll, Ruppert and Welsh (1998). Hence, the bandwidth involved can be selectedby the empirical bias method proposed in that paper. In order to obtain the estimated coe�cientfunctions, we need to solve hundreds of local maximum likelihood problems. The computationcan be expensive, depending on the convergence criterion. Computational burden becomes evenmore severe when a cross-validation method is used to select a smoothing parameter. To reducecomputational costs, we propose a one-step local MLE. The idea is not novel since it was �rstused by Bickel (1975) in the parametric setting, but implementations and insights are. We willshow that computational costs can be reduced signi�cantly and the resulting one-step estimator isdemonstrated, both asymptotically and empirically, to be as e�cient as the fully iterative MLE.Associated with inferences on the varying-coe�cient models are the standard errors of theestimated coe�cient functions. Consistent estimates are derived. Our simulation studies show thatthe estimated standard errors are very accurate for most applications. Another important issuearises regarding whether some of the coe�cient functions in model (1.1) are actually varying, orwhether some of covariates are statistically signi�cant. A nonparametric maximum likelihood ratiotest is proposed and its null distribution is estimated by using a conditional bootstrap method.Our simulation shows that the resulting testing procedure performs well.One of our goals is to estimate e�ciently the coe�cient functions faj(�)g in model (1.1) by usinga nonparametric method. Our methods are directly applicable to situations in which one can notspecify fully the conditional log-likelihood function `(v; y), but can model the relationship betweenthe mean and variance by Var(Y jU = u; X = x) = �2V fm(u; x)g for a known variance functionV (�) and unknown �. In this case, one needs only to replace the log-likelihood function `(v; y) bythe quasi-likelihood function Q(�; �), de�ned by @@�Q(�; y) = y��V (�) . It is assumed throughout thispaper that the conditional log-likelihood function `(v; y) is known and linear in y for �xed v. Thisassumption is satis�ed for the canonical exponential family, which is the focus of this paper.The paper is organized as follows. x2 discusses estimation methods and inference tools, andpresents some asymptotic properties of the one-step and local MLEs. In particular, formulasfor consistent standard errors of the estimated coe�cient functions are derived, a nonparametricmaximum likelihood ratio test is proposed, and strategies are given for the implementation of aone-step estimator. In x3, we study some �nite sample properties of the one-step and local MLEsusing two simulated examples. Furthermore, our methodology is illustrated through analysis ofthe aforementioned environmental and survival datasets. Finally, technical proofs are given in theAppendix. 2



2 Modeling ProceduresFor simplicity, we consider only the case that u is one-dimensional. Extension to multivariate uinvolves no fundamentally new ideas. However, implementations with u having more than twodimensions may have some di�culties due to the \curse of dimensionality."2.1 Local MLEWe will use a local linear modeling scheme, though general local polynomial methods are alsoapplicable. The local linear �ttings have several nice properties such as high statistical e�ciency (inan asymptotic minimax sense), design adaptation (Fan 1993) and good boundary behavior (Ruppertand Wand 1994; Fan and Gijbels 1996). Suppose that aj(�) has a continuous second derivative.For each given point u0, we approximate aj(u) locally by a linear function aj(u) � aj + bj (u� u0)for u in a neighborhood of u0. Based on a random sample f(Ui; Xi; Yi)gni=1, we use the followinglocal likelihood method to estimate the coe�cient functions`n(a;b) = 1n nXi=1 `24g�18<: pXj=1(aj + bj(Ui � u0))Xij9=; ; Yi35 Kh(Ui � u0); (2.1)where Kh(�) = K(�=h)=h, K(�) is a kernel function, h = hn > 0 is a bandwidth, a = (a1; : : : ; ap)Tand b = (b1; : : : ; bp)T . Note that aj and bj are dependent on u0, and so is `n(�; �). Maximiz-ing the local likelihood function `n(a; b) gives estimates ba(u0) and bb(u0). The components inba(u0) give an estimate of a1(u0); : : : ; ap(u0). For simplicity of notation, we denote � = �(u0) =(a1; : : : ; ap; b1; : : : ; bp)T and write the local likelihood function (2.1) as `n(�). Likewise, the localMLE is denoted by b�MLE = b�MLE(u0).2.2 One-step local MLEThe local MLE can be costly to compute. This is particularly the case for the varying-coe�cientmodels. In order to obtain the estimated functions fbaj(�)g, one needs to maximize the local like-lihood (2.1) for usually hundreds of distinct values of u0, with each maximization requiring aniterative algorithm. Moreover, the computational expense further increases with the number ofcovariates p. To ameliorate this expense, we propose to replace the iterative local MLE by theone-step Newton-Raphson estimator, which has been frequently used in parametric models (Bickel1975; Lehmann 1983). We prove Theorem 2 below that the one-step local MLE does not lose anystatistical e�ciency provided that the initial estimator is good enough.Let `0n(�) and `00n(�) be the gradient and Hessian matrix of the local log-likelihood `n(�). Givenan initial estimator b�0 = b�0(u0) = �ba(u0)T ; bb(u0)T�T , one-step of the Newton-Raphson algorithmproduces the updated estimator,b�OS = b�0 � n`00n �b�0�o�1 `0n �b�0� ; (2.2)3



thus featuring the computational expediency of least-squares local polynomial �tting. In univariategeneralized linear models, Fan and Chen (1999) carefully studied properties of the local one-stepestimator. In that setting, the least-squares estimate serves a natural candidate as an initialestimator, however, in the multivariate setting, it is not clear how an initial estimator can beconstructed.Note that `00n(b�0) can be nearly singular for certain u0, due to possible data sparsity in certainlocal regions, or when the bandwidth is too small. Seifert and Gasser (1996) and Fan and Chen(1999) explored the use of the ridge regression as an approach to handling such problems in theunivariate setting. We extend their ideas in x3.2.3 Sampling propertiesWe now derive the asymptotic distributions of the local MLE b�MLE and the one-step estimatorb�OS. We demonstrate that the one-step estimator performs as well as the local MLE as long as theinitial estimator b�0 is reasonably accurate.De�ne �k = R ukK(u) d u and �k = R ukK2(u) du. Let H = diag(1; h) 
 Ip with 
 denotingthe Kronecker product. Let fU(�) denote the marginal density of U ,�(u) = E n�(U; X)XXT jU = uo ; (2.3)and �(u; x) = [g1fm(u; x)g]2 VarfY jU = u; X = xg (2.4)with g1(s) = g00(s)=g0(s) and g0(�) being the canonical link. Note that �(u; x) = V fm(u; x)g forthe canonical exponential family with the canonical link function. The asymptotic properties ofb�MLE and b�OS are described in the following theorems, with conditions and proofs discussed in theAppendix.Theorem 1. Suppose that Conditions (1) { (7) in the Appendix hold and that h = hn ! 0 andn h!1 as n!1. Thenpn h "Hnb�MLE(u0)� �(u0)o� h22(�2 � �21) � (�22 � �1 �3) a00(u0)(�3 � �1 �2) a00(u0)�+ op(h2)#D�! N �0; ��1���1� (2.5)with �(u0) given by (2.3),� = fU(u0) � 1 �1�1 �2 � 
 �(u0) and � = fU(u0) � �0 �1�1 �2 � 
 �(u0): (2.6)4



Furthermore, if K(�) is symmetric,pn h "baMLE(u0)� a(u0)� h2 �22 a00(u0) + op(h2)# D�! N (0; �(u0)) ; (2.7)where �(u0) = �0 ��1(u0)=fU(u0): (2.8)Note that the bias and variance expressions in Theorem 1 can be deduced from the generaltheorem from Carroll, Rupport and Welsh (1998). However, the main di�erence here is that weestablish the results in terms of asymptotic normality, while they established them for the generalcase using conditional expections.Theorem 2. Under the assumptions in Theorem 1, then b�OS has the same asymptotic distributionas b�MLE, provided that the initial estimator b�0 satis�esH �b�0 � �� = Op nh2 + (n h)�1=2o : (2.9)As a consequence, the fully iterative MLE and the one-step estimate share the same asymptoticproperties provided that (2.9) is ful�lled, which provide the theoretical basis for the use of theone-step approach in practice. The asymptotic mean squared error (MSE) of the two estimatorsbaj;MLE(u0) and baj;OS(u0) is MSE = h44 �22 na00j (u0)o2 + �0 �2jj(u0)n h fU(u0) ;when K(�) is symmetric, where �2jj(u0) is the j-th diagonal element of ��1(u0). Then, the MSE isof order n�4=5 if the optimal bandwidth [�0 �2jj(u0)=f�22 (a00j (uo))2 fU (u0)g]1=5n�1=5 is used.2.4 Standard errorsSince the local likelihood (2.1) is a weighted likelihood function of a parametric generalized linearmodel, the covariance matrix of b�MLE can be estimated from conventional techniques. Let qj(s; y) =�@j=@sj� ` �g�1(s); y	 andb�(u0) = � 1n nXi=1 q2 24 pXj=1fbaj(u0)Xij + bbj(u0)(Ui � u0)g; Yi35 Kh(Ui � u0)� XiXi (Ui � u0)=h�
2 ;(2.10)5



where A
2 denotes AAT for a matrix or vector A. Then, the covariance matrix of b�MLE can beestimated as b��(u0) = b�(u0)�1 b�(u0) b�(u0)�1; (2.11)whereb�(u0) = hn nXi=1 q21 24 pXj=1fbaj(u0)Xij + bbj(u0)(Ui � u0)g; Yi35 K2h(Ui � u0) � XiXi (Ui � u0)=h�
2 :In the implementation in x3, a ridge regression technique is employed and hence the matrix b�(u0)in (2.11) is slightly modi�ed to re
ect this change.The explicit formula for the asymptotic covariance matrix in (2.8) provides an alternative es-timate of the asymptotic covariance matrix of a(u0) (not full vector b�MLE) �(u0). Therefore, adirect estimate of �(u0) is e�(u0) = �0 b�S(u0)�1, where b�S(u0) is the p� p upper corner submatrixof b�(u0) given by (2.10).2.5 Hypothesis testingWhen �tting a varying-coe�cient model, one naturally asks whether the coe�cient functions areactually varying or whether any particular covariate is signi�cant in the model. For simplicity ofdescription, we only consider the �rst hypothesis testing problemH0 : a1(u) � a1; � � � ; ap(u) � ap; (2.12)though the technique also applies to other testing problems. A useful procedure is based on thenonparametric likelihood ratio test statisticT = 2f`(H1)� `(H0)g; (2.13)where `(H0) and `(H1) are respectively the log-likelihood functions computed under the null andalternative hypotheses.For parametric models, the likelihood ratio statistic follows asymptotically a �2-distributionwith degrees of freedom f � r, where r and f are the number of parameters under the null andalternative hypotheses. For the nonparametric alternative, the e�ective number of parameters ftends to in�nite. Thus, the test statistic will be asymptotically normal, independent of the valuesa1; � � � ; ap. For the rigorous justi�cation, we refer to the paper by Fan, Zhang and Zhang (1999)who considered sieve likelihood ratio tests in a general setting and demonstrated that the Wilks'type of phenomenon holds for a large variety of nonparametric problems. This in turn suggeststhat we can use the following conditional bootstrap to construct the null distribution of T . Let fbajgbe the MLE under the null hypothesis. Given the covariates (Ui; Xi), generate a bootstrap sampleY �i from the given distribution of Y with the estimated linear predictor b�(Ui; Xi) = Ppj=1 bajXijand compute the test statistic T � in (2.13). Use the distribution of T � as an approximation to the6



distribution of T . This method is valid since the asymptotic null distribution does not depend onthe values of fajg (Fan, Zhang, and Zhang, 1999).Note that the above conditional bootstrap method applies readily to the Poisson and Bernoullidistributions, since in these cases the distribution of Y does not involve any dispersion parameters.It is really a simulation approximation to the conditional distribution of T given observed covariatesunder the particular null hypothesis: H0 : aj(u) = baj (j = 1; � � � ; p). As pointed out above, thisapproximation is valid under both H0 and H1 as the null distribution does not asymptoticallydepend on the values of fajg. In the case where model (1.1) involves a dispersion parameter (e.g.,the Gaussian model), the dispersion parameter should be estimated based on the residuals fromthe alternative hypothesis. This is again due to the Wilks type of results demonstrated by Fan,Zhang and Zhang (1999).For testing the hypothesis such as ap(�) = 0, the above conditional bootstrap idea contin-ues to apply. In this case, the data should be generated from the mean function gfm(u; x)g =Pp�1j=1 baj(u) xj, where baj(�) is an estimate under the alternative hypothesis.2.6 Implementation of one-step local MLESuppose that we wish to evaluate the functions ba(�) at grid points uj ; j = 1; : : : ; ngrid. Our ideaof �nding initial estimators is as follows. Take a point ui0 , usually the center of the grid points.Compute the local MLE b�MLE(ui0). Use this estimate as the initial estimate for the point ui0+1and apply (2.2) to obtain b�OS(ui0+1). Now, use b�OS(ui0+1) as the initial estimate at the point ui0+2and apply (2.2) to obtain b�OS(ui0+2) and so on. Likewise, we can compute b�OS(ui0�1), b�OS(ui0�2),etc. In this way, we obtain our estimates at all grid points.There are a couple of possible variations to the above technique. The �rst one is to calculate afresh local MLE as a new initial value after iterating along the grid points for a while. For example,if we wish to evaluate the functions at 200 grid points and are willing to compute the local maximumlikelihood at �ve distinct points. A sensible placement of these points is u20; u60; u100; u140 andu180. Use for example b�MLE(u60) along with the idea in the last paragraph to compute b�OS(ui) fori = 40; : : : ; 79. In our implementation, this modi�ed technique is used.Another useful modi�cation is to use a two-step method. We use the scenarios given in the lastparagraph as an illustration. After obtaining b�MLE(u60), say, we apply (2.2) to obtain b�OS(u61).Regarding b�OS(u61) as an initial value, we use (2.2) to obtain a \two-step" estimator b�TS(u61). Now,use b�TS(u61) as an initial value for the grid point u62 and iterate (2.2) twice to obtain b�TS(u62) andso on. This implementation requires approximately twice as much e�ort to compute the estimates asthe one-step method. However, our empirical studies show that there are no signi�cant di�erencesbetween the two procedures. See x3 for details.The theoretical basis for the above \one-step" and the \two-step" procedures is as follows.When the grid points are su�ciently �ne, b�MLE(ui0) will be very close to b�MLE(ui0+1). Indeed,when the grid span is of order Onh2n + (n hn)�1=2o which usually is true for most applications,b�MLE(ui0) satis�es the condition given in Theorem 2. Therefore, b�OS(ui0+1) is as e�cient as thefully-iterative local MLE at the point ui0+1. Using the same reasoning, b�OS(ui0+2) is as e�cient asthe local MLE at the point u = ui0+2 and so on. The same arguments are still applicable for thetwo-step estimator. A refresh start is needed because of stochastic error accumulation as iterationsalong grid points march on. 7



Based on the above theoretical considerations, we suggest a very simple rule of thumb forchoosing the number of grid points: ngrid = maxf200; IQR2=h2g, where IQR is the interquantilerange of U1; � � � ; Un. In such a way, approximation errors between estimates at two consecutive gridpoints are of order O(h2), satisfying the critical condition (2.9).3 Simulations and ApplicationsIn this section, we �rst discuss how to implement the one-step procedure for the Bernoulli andPoisson models. We then illustrate the performance of the proposed one-step method and compareit with the two-step estimator and the fully-iterative local MLE. The performance of estimator ba(�)is assessed via the square-Root of Average Square Errors (RASE)RASE2 = n�1grid pXj=1 ngridXk=1 fbaj(uk)� aj(uk)g2; (3.1)where fuk ; k = 1; : : : ; ngridg are the grid points at which the functions faj(�)g are estimated.In the following two simulated examples, the covariates X1 and X2 are standard normal randomvariables with correlation coe�cient 2�1=2 and U is uniformly distributed over [0; 1], independent of(X1; X2). Three bandwidths will be employed to represent widely varying degrees of smoothness.Over this range of bandwidths, we compare the performances among the one-step, the two-stepand the fully iterative local MLE methods. The Epanechnikov kernel K(u) = 0:75(1� u2)+ andngrid = 200 are used.3.1 Logistic RegressionFor a Bernoulli distribution, the one-step estimator is given byb�OS = b�0 + �Hn;0; Hn;1Hn;1; Hn;2��1 �vn;0vn;1� ; (3.2)where Hn;j = Pni=1Kh(Ui � u0)bpi0(1 � bpi0)(Ui � u0)jXiXTi , j = 0; 1; 2, bpi0 satis�es logit (bpi0) =Ppj=1 nbaj;0 + bbj;0(Ui � u0)oXij , and vn;j =Pni=1Kh(Ui � u0)(Yi � bpi0)(Ui � u0)jXi, j = 0; 1. Thetwo-step estimator b�TS is obtained by iterating the equation (3.2) twice and the local MLE isobtained by iterating equation (3.2) until convergence.In practice, the matrix in (3.2) can be singular or nearly singular when the local data are sparse.To attenuate this di�culty, one may follow the idea of ridge regression (Seifert and Gasser 1996;Fan and Chen 1999). Then an issue arises on how to choose the ridge parameters. Note that thek-th diagonal element of Hn;j (j = 0 and 2) is approximately of orderE �X2k jU = u0� bp0(1� bp0) hj�1 Z ujK(u) du N with bp0 = exp(baT0X)1 + exp(baT0X) ; (3.3)8



where N = n h fU(u0) and X = 1nPni=1Xi. The parameter N can be intuitively understood as thee�ective number of local data points. This motivates us to use the ridge parameterrj;k =  1n nXi=1X2ik! bp0(1� bp0)hj�1 Z ujK(u) dufor the k-th diagonal element of Hn;j . Using such a ridge parameter will not alter the asymptoticbehavior and will prevent the matrix from becoming nearly singular when N is small. However, ita�ects and indeed ameliorates the �nite-sample properties of estimators for small-sample sizes.Example 1. Take X = (1; X1; X2)T and the coe�cient functions in (1.1) are given bya0(u) = exp(2u� 1); a1(u) = 8u(1� u); and a2(u) = 2 sin2(2�u): (3.4)Figure 1(a) depicts the marginal distributions for the ratios of the overall RASE de�ned in (3.1),using three bandwidths h = 0:1, 0:2 and 0:4. It is evident that the performance of the one-step,the two-step and the fully iterative estimators are comparable for a wide range of bandwidths. Asexpected, the performance of the two-step estimator is closer to that of the local MLE. Figures1(b){(d) give the estimate of the coe�cient functions from a typical sample. The typical sampleis selected in such a way that its RASE-value is the median in the 400 RASE-values. Table 1summarizes the simulation results with � and � denoting the mean and standard deviation of theTable 1. Bivariate summary of simulation results for logistic regression modelMLE One-step Two-stepn h � � � � �� � � ��0.10 2.2278 2.0874 1.8537 0.9759 0.8656 2.1244 1.5315 0.8274400 0.20 1.0669 0.4491 1.0576 0.4378 0.9991 1.0669 0.4491 1.00000.40 0.9454 0.1600 0.9447 0.1593 1.0000 0.9454 0.1600 1.00000.075 1.2451 0.6639 1.1644 0.3767 0.8342 1.2256 0.5301 0.9656800 0.15 0.7280 0.2573 0.7234 0.2459 0.9993 0.7280 0.2573 1.00000.30 0.7433 0.1009 0.7429 0.1005 1.0000 0.7433 0.1009 1.0000RASE in 400 simulations. Here, �� indicates the correlation coe�cient between the RASE of theMLE and the RASE of the one-step (or two-step) method. Note that the correlation coe�cientsare close to one which indicates that the one-step and two-step methods follow closely the MLE.Note also that the larger the bandwidths, the larger the correlation coe�cients. This is due to thefact that a larger bandwidth implies more local data points, which makes the asymptotic theorymore relevant. As expected, the correlation coe�cients for the two-step method are larger thanthose of the one-step method, since the former is closer to the MLE.We now test the accuracy of our standard error formula (2.11). The standard deviation, denotedby SD in Table 2, of 400 estimated baj(u0), based on 400 simulations, can be regarded as the truestandard errors. The average and the standard deviation of 400 estimated standard errors, denotedby SDa and SDstd, summarize the overall performance of the standard error formula (2.11). Table2 presents the results at the points u0 = 0:25, 0.50 and 0.75. It suggests that our standard errorformula somewhat underestimates the true standard deviation, though the di�erence is within twostandard deviations of the Monte Carlo errors. The bias becomes smaller as the number of localdata points n hn goes up (see the last two situations). This is consistent with our asymptotic theory.9



Table 2. Standard deviations of estimators for logistic regression modelba0(u) ba1(u) ba2(u)n h u SD SDa (SDstd) SD SDa (SDstd) SD SDa (SDstd)0.25 0.3185 0.2673 (0.0470) 0.4890 0.4069 (0.0776) 0.5082 0.3986 (0.0893)400 0.2 0.50 0.3410 0.2782 (0.0451) 0.5413 0.4330 (0.0809) 0.4135 0.3568 (0.0591)0.75 0.4315 0.3542 (0.0776) 0.5372 0.4542 (0.0996) 0.5809 0.4431 (0.0969)0.25 0.2294 0.2051 (0.0231) 0.3424 0.3201 (0.0447) 0.3317 0.2956 (0.0403)400 0.3 0.50 0.2570 0.2315 (0.0315) 0.3931 0.3538 (0.0527) 0.3490 0.3122 (0.0431)0.75 0.2850 0.2686 (0.0423) 0.3929 0.3581 (0.0557) 0.3788 0.3328 (0.0500)0.25 0.2418 0.2214 (0.0214) 0.3638 0.3460 (0.0501) 0.3804 0.3486 (0.0532)800 0.15 0.50 0.2249 0.2196 (0.0233) 0.4040 0.3569 (0.0512) 0.3124 0.2812 (0.0356)0.75 0.3146 0.2928 (0.0478) 0.4209 0.3804 (0.0667) 0.3987 0.3781 (0.0631)Next, we conduct a simulation study to see whether the asymptotic null distribution of the teststatistic T de�ned in (2.13) depends on the values of fajg under H0 (see (2.12)) and the limitingconditional null distributions are dependent on the covariate values. To this end, we computethe unconditional null distribution of T with n = 400, via 1000 Monte Carlo simulations, for 5di�erent sets of values of fajg. These sets of parameters are quite far apart. The resulting 5densities are depicted in Figure 1(e) (thick curves). They are very close, which suggest that theasymptotic null distribution is not very sensitive to the values of fajg. To validate our conditionalbootstrap method, �ve typical data sets were selected from our previous 400 simulations. Theestimated conditional bootstrap null distributions, based on 1000 bootstrap samples, are plottedas thin curves in Figure 1(e). Six empirical percentiles for �ve di�erent sets of values of fajg andcovariates are listed in Table 3. Both Figure 1(e) and Table 3 shows that they are very closeTable 3. Six empirical percentiles for logistic model10 25 50 75 90 95Conditional bootstrap7.9579 10.7189 14.2569 18.2625 22.2566 24.99038.2450 11.0170 14.6601 18.4897 22.4177 25.58298.0004 10.9871 14.2667 18.0413 22.5517 25.16618.7738 11.4311 14.8061 18.5209 22.7029 25.37818.7906 11.4672 14.9130 18.6168 22.3256 24.7104Unconditional bootstrap7.6381 10.7167 14.5487 18.6276 22.2205 24.45977.3478 10.1290 13.9934 17.9622 21.8270 24.44297.7238 11.3849 14.6151 18.4796 22.5899 24.72708.8042 11.3762 14.8076 18.7571 22.0560 25.15508.7865 11.3472 14.5975 18.5198 23.1476 25.8297to the true null distribution. This demonstrates empirically that our bootstrap method gives areasonably good approximation to the true null distribution even when the data were generatedfrom an alternative model (3.4).To examine the power of the proposed test, we consider the following null hypothesisH0 : aj(u) = �j ; j = 0; 1; 2; versus H1 : aj(u) 6= �j ; for at least one j:10



The power functions are evaluated under a sequence of the alternative models indexed by �H1 : aj(u) = aj0 + �(a0j (u)� aj0); j = 0; 1; 2 (0 � � � 0:8);where fa0j (u)g are given in (3.4) and aj0 = Efaj(U)g. Figure 1(f) depicts the �ve power func-tions based on 1000 simulations for the sample size n = 400 at �ve di�erent signi�cance levels:0:5; 0:25; 0:10; 0:05, and 0:01. When � = 0, the special alternative collapses into the null hypoth-esis. The powers at � = 0 for the above �ve signi�cance levels are respectively 0:532, 0:281, 0:101,0:047 and 0:012. This shows that the conditional bootstrap method gives the right levels of test.The power functions increase rapidly as � increases. This in turn shows that the test proposed inx2.5 works well.3.2 Poisson regressionFor a Poisson model with the canonical link, by straightforward calculation, the one-step estimatoris given similarly to (3.2) but now Hn;j = Pni=1Kh(Ui � u0)b�i0(Ui � u0)jXiXTi , j = 0; 1; 2,b�i0 = exp hPpj=1fbaj0 + bbj0(Ui � u0)gXiji, and vn;j = Pni=1Kh(Ui � u0)(Yi � b�i0)(Ui � u0)jXi,j = 0; 1. Using the same arguments as in the previous section, the ridge parametersrj;k =  1n nXi=1X2ik! b�0 hj�1 Z ujK(u) du with b�0 = exp �baT0X� (3.5)are employed to alleviate the possible singularity of matrix Hn;j (j = 0 and 2) in (3.2).Example 2. The conditional distribution of Y given covariates U; X1 and X2 is taken to bePoisson with the following linear predictor�(u; x) = 5:5 + 0:1fa0(u) + a1(u) x1 + a2(u) x2g;where the coe�cient functions a0(u); a1(u) and a2(u) are the same as those in Example 1. Thecoe�cients 5.5 and 0.1 are chosen so that the range of simulated data is close to that of theenvironmental data in x3.3.Figure 2 and Table 4 summarize the result for n = 200. It shows again that the one-step, two-Table 4. Bivariate summary of simulation output for Poisson regression modelMLE One-step Two-stepn h � � � � �� � � ��0.075 0.3632 0.0692 0.3468 0.0562 0.8691 0.3632 0.0692 1.0000200 0.15 0.3220 0.0510 0.3202 0.0504 0.9925 0.3220 0.0510 1.00000.30 0.5852 0.0425 0.5835 0.0426 0.9990 0.5852 0.0425 1.00000.075 0.2309 0.0352 0.2279 0.0347 0.9866 0.2309 0.0352 1.0000400 0.15 0.2581 0.0325 0.2571 0.0322 0.9942 0.2581 0.0325 1.00000.30 0.5603 0.0292 0.5581 0.0293 0.9988 0.5603 0.0292 1.0000step and the iterative local MLE have comparable performance. A typical estimated function with11



bandwidth h = 0:15 is presented in Figures 2(b){(d). Because of di�erent noise-to-signal ratios, thefunctions here are indeed estimated better than those given in Example 1. Similar to Example 1,we summarize the performance of our estimated standard error formula (2.11) in Table 5. Clearly,Table 5. Standard deviations of estimators for Poisson regression modelba0(u) ba1(u) ba2(u)n h u SD SDa (SDstd) SD SDa (SDstd) SD SDa (SDstd)0.25 0.0105 0.0092 (0.0013) 0.0148 0.0118 (0.0024) 0.0156 0.0126 (0.0026)200 0.15 0.50 0.0094 0.0088 (0.0011) 0.0148 0.0112 (0.0022) 0.0150 0.0118 (0.0024)0.75 0.0100 0.0088 (0.0011) 0.0142 0.0112 (0.0023) 0.0151 0.0119 (0.0023)0.25 0.0094 0.0085 (0.0012) 0.0130 0.0106 (0.0021) 0.0136 0.0107 (0.0022)400 0.075 0.50 0.0093 0.0083 (0.0011) 0.0127 0.0104 (0.0022) 0.0130 0.0105 (0.0021)0.75 0.0090 0.0081 (0.0011) 0.0137 0.0101 (0.0022) 0.0133 0.0102 (0.0022)our estimated standard errors are very close to the true ones.Similar to Example 1, the procedure of testing hypothesis is applied to this example. Bothunconditional and conditional estimated densities of T are displayed in Figure 2(e). Six empiricalpercentiles are listed in Table 6. The corresponding power functions are presented in Figure 2(f).Table 6. Six empirical percentiles for Poisson model10 25 50 75 90 95Conditional bootstrap12.1646 15.1401 18.6981 22.6260 26.1432 28.849411.7506 14.5010 18.0994 22.3809 26.1237 29.493611.7946 14.7005 18.3495 22.2918 26.0064 29.216511.4662 14.6917 18.2475 22.4623 27.0587 29.688711.9894 14.7869 18.5571 22.3593 26.7014 29.7923Unconditional bootstrap11.9492 14.7920 18.5509 22.3383 26.7474 28.809411.1599 14.7156 18.7054 22.2915 26.6170 28.983111.4378 14.8132 18.4080 22.3890 26.5858 29.481611.8238 14.6817 18.5090 22.7050 26.4776 29.381411.8365 14.9721 18.7674 22.9402 26.5929 28.9815The same conclusions as those in Example 1 can be drawn for the Poisson regression model. Inparticular, the test has the correct levels of signi�cance. See the power functions in Figure 2(e) at� = 0.3.3 Real-data examplesExample 3. We illustrate in this example our proposed procedure via an application to theenvironmental data set mentioned in the introduction. Of interest is to study the associationbetween levels of pollutants and number of total hospital admissions for circulatory and respiratoryproblems on every Friday from January 1, 1994 to December 31, 1995 and to examine the extentto which the association varies over time. The covariates are taken as the levels of pollutantssulfur dioxide X2 (in �g=m3), nitrogen dioxide X3 (in �g=m3) and dust X4 (in �g=m3). Sincethe admissions \events" occur at certain points in time, it is reasonable to model the number ofadmissions as a Poisson process and use the Poisson regression model with the mean �(t; x) givenby logf�(t; x)g = a1(t) + a2(t) x2 + a3(t) x3 + a4(t) x4: (3.6)12



A multifold cross-validation method is used to select a bandwidth. We partition the data intoQ groups | the jth group consisting of data points with indicesdj = f20k + j; k = 1; 2; � � �g; j = 0; � � � ; Q� 1:For each j, the j-th group of data is deleted and model (3.6) is �tted for the remaining data. Thenthe deviance (McCullagh and Nelder 1989, p.34) or the sum of squares of Pearson's residuals iscomputed. This leads to two cross-validation criteriaCV1(h) = Q�1Xj=0 Xi2dj 2 hyi logfyi=by�dj (Ui; Xi)g � fyi � by�dj (Ui; Xi)gi ;and CV2(h) = Q�1Xj=0 Xi2dj8<:yi � by�dj (Ui; Xi)qby�dj (Ui; Xi) 9=;2 ;where by�dj (Ui; Xi) is a �tted value with the data in dj deleted. In the implementation, we chooseQ = 20. Figure 3(b) depicts the cross-validation functions CV1(h) and CV2(h) which give theoptimal bandwidth h = 0:1440� 105. To see how sensitive the above partition is to the CV curves,the data set is randomly partitioned into 20 groups, and then cross-validation scores are computedbased on the same procedure described above. The results are depicted in Figure 3(c), which, inconjunction with Figure 3(b), shows that the cross-validation functions is not very sensitive to thepartition. The estimated coe�cient functions based on the one-step procedure are summarizedin Figure 4 since the results based on both the one-step and the fully iterative methods are veryclose. They describe the extent to which the association between the pollutants and the number ofhospital admissions vary over time. The �gure shows clearly that the coe�cient functions vary withtime. The two dashed curves are the estimated function plus/minus twice the estimated standarderrors. They give us an idea of the pointwise con�dence intervals with bias ignored.A question arises whether or not the data are highly correlated. To check for the serial corre-lation, Pearson's residuals are computed. The time series plot of the residuals is given in Figure5(a) and the plot of the corresponding autocorrelation coe�cients against time lag is presented inFigure 5(b). There is no pattern in Figure 5(a). Thus, Figure 5(a) together with Figure 5(b) leadto the conclusion that there is no evidence that the data are serially correlated.We now apply the procedure proposed in x2.5 to testing whether the coe�cients are actuallytime varying. The MLE under the null hypothesis is (5:4499; �0:0025; 0:0015; �0:0005) withan estimated standard deviation (0:0195; 0:0006; 0:0006; 0:0005). The test statistic (2.13) isT = 389:41. Based on 1000 bootstrap replications, the sample mean and sample variance of T �are 26.64 and 48:40, respectively. The distribution of T is approximated by a �2 distribution withdegrees of freedom 27 (see Figure 6). The p-value is close to zero, which strongly rejects the nullhypothesis. Therefore, it suggests that the varying-coe�cient model gives a much better �t thanthe parametric model.Now we use our testing approach proposed in x2.5 to check whether there is any covariate that13



can be deleted from the model. We start withX4 since the parametric Poisson model concludes thatthe dust level (X4) is not statistically signi�cant. To examine if the variable X4 is signi�cant in thevarying-coe�cient model, we apply the idea in x2.5 to testing the hypothesis: the function a4(�) iszero. The maximum likelihood ratio test statistic is T = 20:1847. Based on 1000 bootstrap samples,the p-value is 0:321 (the sample mean and variance of T � are 17:7352 and 37:1976, respectively).Therefore, the variable X4 can be dropped from the varying-coe�cient model. After deleting thevariable dust level (X4), we apply the same procedure as above to test whether X3 is statisticallysigni�cant in the varying-coe�cient model. That is to test H0 : logf�(t; x)g = a1(t) + a2(t) x2against H1 : logf�(t; x)g = a1(t) + a2(t) x2 + a3(t) x3. As a result, the maximum likelihoodratio test statistic is T = 39:7473 and the p-value is 0:039 (the sample mean and variance of T �are 27:5071 and 39:5808, respectively), based on 1000 bootstrap samples. Therefore, the variablenitrogen dioxide (X3) is signi�cant at the signi�cant level 0:05. By the same token, the variablesulfur dioxide (X2) is signi�cant too.Example 4. Now we apply the methodology proposed in this paper to analyze the data set:Burns data, collected by General Hospital Burn Center at the University of Southern California.The binary response variable Y is 1 for those victims who survived their burns and 0 otherwise, andcovariates X1=age, X2=sex, X3 = log(burn area+1) and binary variable X4 =Oxygen (0 if oxygensupply is normal, 1 otherwise) are considered. We are interested in studying how burn areas andthe other variables a�ect survival probabilities for victims at di�erent age groups. This naturallyleads to the following varying-coe�cient modellogitfp(x1; x2; x3; x4)g = a1(x1) + a2(x1) x2 + a3(x1) x3 + a4(x1) x4: (3.7)Figure 7 presents the estimated coe�cients for model (3.7) via the one-step approach with band-width h = 65:7882, selected by a cross-validation method.A natural question arises whether the coe�cients in (3.7) are actually varying. To see this, weconsider the parametric logistic regression modellogitfp(x1; x2; x3; x4)g = �0 + �1 x1 + �2 x2 + �3 x3 + �4 x4 (3.8)as the null model. As a result, the MLE of (�0; � � � ; �4) in model (3.8) and its standard deviationare (23:2213; �6:1485; �0:4661; �2:4496; �0:9683) and (1:9180; 0:6647; 0:2825; 0:2206; 0:2900),respectively. The test statistic T proposed in x2.5 is 54:9601 with p-value 0:000, based on 1000bootstrap samples (the sample mean and variance of T � are 5:9756 and 10:7098, respectively).This implies that the varying-coe�cient logistic regression model �ts the data much better thanthe parametric �t. It also allows us to examine the extent to which the regression coe�cients varyover di�erent ages.To examine whether there is any gender gap for di�erent age groups or if the variable X4 a�ectsthe survival probabilities for di�erent age of burn victims, we consider testing hypothesis H0 :both a2(�) and a4(�) are constant under model (3.7). The corresponding test statistic T is 3:2683with p-value 0:7050, based on 1000 bootstrap samples. This in turn suggests that the coe�cientfunctions a2(�) and a4(�) are independent of age and indicates that there are no gender di�erencesfor di�erent age groups.Finally, we examine whether both covariates sex and Oxygen are statistically signi�cant in model14



(3.7). The likelihood ratio test for this problem is T = 11:2727 with p-value 0:0860, based on 1000bootstrap samples (the sample mean and variance of T � are 5:2867 and 9:7630, respectively). Bothcovariates sex and Oxygen are not signi�cant at level 0.05. This suggests that gender and oxygendo not play a signi�cant role in determining the survival probability of a victim.Appendix: ProofsBefore we present the proofs of the theorems, we �rst impose some regularity conditions. To thisend, let us recall that qj(s; y) = �@j=@sj� ` �g�1(s); y	. Note that qk(s; y) is linear in y for �xed ssuch that q1[gfm(u; x)g; m(u; x)] = 0 and q2[gfm(u; x)g; m(u; x)] = ��(u; x); (A.1)where �(u; x) is de�ned in (2.4). Note that we use the same notation as in x2.Conditions:(1) The function q2(s; y) < 0 for s 2 < and y in the range of the response variable.(2) The functions fU(u), �(u), V (m(u; x)), V 0(m(u; x)) and g000(m(u; x)) are continuous at thepoint u = u0. Further, assume that fU(u0) > 0 and �(u0) > 0.(3) K(�) has a bounded support.(4) a00j (�) is continuous in a neighborhood of u0 for j = 1; : : : ; p.(5) E �jXj3 jU = u	 is continuous at the point u = u0.(6) E(Y 4 jU = u; X = x) is bounded in a neighborhood of u = u0.Condition (1) guarantees that the local likelihood function (2.1) is concave. It is satis�ed forthe canonical exponential family with a canonical link. Note that Condition (2) implies that q1(�; �),q2(�; �), q3(�; �), �0(�; �) and m0(�; �) are continuous.Proof of Theorem 1: Recall that b�MLE maximizes (2.1). Let �(u0; u; x) = Ppj=1faj(u0) +a0j(u0)(u� u0)g xj , and�� = 
�1n ��1 � a1(u0); : : : ; �p � ap(u0); h(�p+1 � a01(u0)); : : : ; h(�2p � a0p(u0))�T ;where 
n = (n h)�1=2. It can easily be seen that Ppj=1faj + bj(Ui � u0)gXij = �(u0; Ui; Xi) +
n ��T Zi, where Zi = �XTi ; ((Ui � u0)=h)XTi �T . Then, the local likelihood function `n(�) de�nedin (2.1) becomes̀n(�) = 1n nXi=1 ` hg�1 n�(u0; Ui; Xi) + 
n ��T Zio ; YiiKh(Ui � u0);15



which is a function of ��, denoted by `n(��). Letb�� = 
�1n �b�1 � a1(u0); : : : ; b�p � ap(u0); h �b�p+1 � a01(u0)� ; : : : ; h �b�2p � a0p(u0)��T :Then b�� maximizes `n(��) since b� maximizes (2.1). Equivalently, b�� maximizes the followingnormalized function`�n(��) = nXi=1 h`ng�1 ��i(u0) + 
n ��T Zi� ; Yio� `ng�1 (�i(u0)) ; Yioi K f(Ui � u0)=hg ;where �i(u0) = �(u0; Ui; Xi).We remark that Condition (1) implies that `�n(�) is concave in ��. Using the Taylor expansionof ` �g�1(�); y	, we have`�n(��) = WTn �� + 12 ��T �n �� + 
3n6 nXi=1 q3 f�i; Yig ���T Zi�3 K f(Ui � u0)=hg ; (A.2)where Wn = 
n nXi=1 q1 f�i(u0); Yig ZiK f(Ui � u0)=hg ; (A.3)�n = 
2n2 nXi=1 q2 f�i(u0); Yig Zi ZTi K f(Ui � u0)=hg ;and �i is between �i(u0) and �i(u0) + 
n ��T Zi. Note that(�n)ij = (E�n)ij +Op hfVar(�n)ijg1=2i :Now the mean in the above expression equalsE(�n) = h�1E hq2 f�(u0; U; X); m(U; X)g K f(U � u0)=hg ZZT i :By a Taylor series expansion of �(u; x) with respect to u around ju� u0j < h and the �rst resultin (A.1), we have �(u; x) = �(u0; u; x) + h2 (u� u0)22 �00u(u0; x) + o(h2);16



where �00u(u; x) = (@2=@u2)�(u; x) =Ppj=1 a00j (u) xj, which implies thatq1f�(u0; u; x); m(u; x)g = �(u; x) h2 (u� u0)22 �00u(u0; x) + o(h2); (A.4)and q2f�(u0; u; x); m(u; x)g = ��(u; x) + o(1): (A.5)Then, using the second equality of (A.1) and (A.5), we obtainE(�n) ! � fU(u0) � 1 �1�1 �2 � 
 �(u0) = ��; (A.6)where �(u0) is given in (2.3) and � is de�ned in (2.6). Similar arguments show that Varf(�n)ijg =O �(n h)�1	. Therefore, �n = �� + op(1): (A.7)Since K(�) is bounded, q3(�; �) is linear in Y1 and E(jY1j jU1; X1) < 1, the expected value of theabsolute value of the last term in (A.2) is bounded byO �n 
3nE���q3(�1; Y1)X31K f(U1 � u0)=hg ���� = O(
n) (A.8)by Condition (5). Therefore, the last term in (A.2) is of order Op(
n). This, in conjunction with(A.2), (A.6) and (A.7), implies that`�n(��) = WTn �� � 12 ��T ��� + op(1):An application of the quadratic approximation lemma (see, for example, Fan and Gijbel 1996,p.210) leads to b�� = ��1Wn + op(1); (A.9)if Wn is a sequence of stochastically bounded random vectors. The asymptotic normality of b��follows from that of Wn. Hence, it remains to establish the asymptotic normality of Wn.Note that the random vector Wn is a sum of i.i.d. random vectors. In order to establish itsasymptotic normality, it su�ces to compute the mean and covariance matrix of Wn and check theLyapounov condition. To this end, by (A.4), we haveE(Wn) = n 
nE [q1 f�(u0; U; X); m(U; X)g ZK f(U � u0)=hg]= h2 fU(u0)2 
n ��2�3 � 
 �(u0) a00(u0) f1 + o(1)g : (A.10)17



Similarly, by (A.10) and the de�nition of q1(�; �), one hasVar(Wn) = h�1E hq21 f�(u0; U; X); Y )g ZZT K2 f(U � u0)=hgi= fU(u0) � �0 �1�1 �2 � 
 �(u0) f1 + o(1)g = �+ o(1); (A.11)where � is de�ned in (2.6). By the Cram�er-Wold device, in order to derive the asymptotic normalityof Wn, it su�ces to show that for any unit vector d 2 <2p,ndT Var(Wn)do�1=2 ndT Wn � dT E(Wn)o D�! N(0; 1): (A.12)This, conjunction with (A.9), (A.10), and (A.11), implies thatb�� � (n h5)1=22 ��1 fU(u0) ��2�3 � 
 �(u0) a00(u0) f1 + o(1)g D�! N �0; ��1���1� : (A.13)Therefore, the assertion in (2.5) holds true. To prove (A.12), we need only to check Lyapounov'scondition for that sequence. To do so, let �i = q1 f�i(u0); Yig dT ZiK f(Ui � u0)=hg. Then,dT Wn = 
n Pni=1 �i. It su�ces to show that n 
3nEj�1j3 ! 0 as n ! 1. Similar to (A.8),one can show that n 
3nEj�1j3 = O(
)! 0. If K(�) is symmetric, then �1 = 0, so that (2.7) holdstrue. This completes the proof of the theorem.Proof of Theorem 2: Recall that`n(�) = 1n nXi=1 `8<:g�10@ pXj=1(aj + bj (Ui � u0))Xij1A ; Yi9=;Kh(Ui � u0):For any e� satisfying H �e� � �� = Op �h2 + (n h)�1=2�, one can easily show thatH�1 `00n �e�� H�1 = H�1 `00n(�)H�1 + op(1)= 1n nXi=1 q2 neZTi �; Yio H�1 eZi eZTi H�1Kh(Ui � u0) + op(1); (A.14)where eZi = �XTi ; (Ui � u0)XTi �T . By computing the mean and variance of H�1 `00n(�)H�1, weobtainH�1 `00n �e�� H�1 = E "q2 neZT�; Y o � 1(U � u0)=h�
2 
 XXT Kh(U � u0)#+ op(1)18



= E "q2 neZT�; m(U; X)o � 1(U � u0)=h�
2 
 XXT Kh(U � u0)#+ op(1)= �� + op(1); (A.15)where � is de�ned in (2.6). Recall that b�OS = b�0�n`00n �b�0�o�1 `0n �b�0� (see (2.2)). By the Taylorexpansion, we have `0n �b�0� = `0n(�) + `00n �e��� �b�0 � �� ;where e�� lies between � and b�0 and hence satis�es H �e�� � �� = Op �h2 + (n h)�1=2�. Then,some algebraic computations show thatH �b�OS � �� = H �b�0 � ���H n`00n �b�0�o�1 H H�1 `0n �b�0�= �I�H n`00n �b�0�o�1 HH�1 `00n �e��� H�1� H �b�0 � ���H n`00n �b�0�o�1 H H�1 `0n(�): (A.16)Therefore, by (A.15) and (A.16), we haveH �b�OS � �� = ��1H�1 `0n(�) f1 + op(1)g+ op �h2 + (n h)�1=2� ;which, in conjunction with (A.3), (A.9), (A.12) and (A.13), implies thatpn hH �b�OS � �� = ��1Wn + op(1) = b�� + op(1): (A.17)Therefore, b�OS has the same asymptotic distribution as b�MLE.ReferencesBickel, P.J. (1975), \One-step Huber estimates in linear models," Journal of the American Statis-tical Association, 70, 428-433.Brumback, B. and Rice, J. (1998), \Smoothing spline models for the analysis of nested and crossedsamples of curves," Journal of the American Statistical Association, 93, 961{976.Cai, Z., Fan, J. and Yao, Q. (1998), \Functional-coe�cient regression models for nonlinear timeseries," tentatively accepted by Journal of the American Statistical Association.Carroll, R.J., Fan, J., Gijbels, I. and Wand, M.P. (1997), \Generalized partially linear single-indexmodels," Journal of the American Statistical Association, 92, 477-489.19



Carroll, R.J., Ruppert, D. and Welsh, A.H. (1998), \Local estimating equations", Journal of theAmerican Statistical Association, 93, 214-227.Chen, H. (1988), \Convergence rates for parametric components in a partly linear model," TheAnnals of Statistics, 16, 136-146.Chen, R. and Tsay, R.S. (1993), \Functional-coe�cient autoregressive models," Journal of theAmerican Statistical Association, 88, 298-308.Cleveland, W.S., Grosse, E. and Shyu, W.M. (1992), \Local regression models," in StatisticalModels in S (Chambers, J.M. and Hastie, T.J., eds), 309{376, Paci�c Grove, California:Wadsworth & Brooks.Fan, J. (1993), \Local linear regression smoothers and their minimax," The Annals of Statistics,21, 196{216.Fan, J. and Chen, J. (1999), \One-step local quasi-likelihood estimation," Journal of the RoyalStatistics Society, Series B, to appear.Fan, J. and Gijbels, I. (1996), Local Polynomial Modeling and Its Applications, London: Chapmanand Hall.Fan, J. and Zhang, J. (2000), \Functional linear models for longitudinal data," Journal of theRoyal Statistical Society, Series B, to appear.Fan, J. and Zhang, W. (2000), \Statistical estimation in varying-coe�cient models," The Annalsof Statistics, to appear.Fan, J., Zhang, C. and Zhang, J. (1999), \Sieve likelihood ratio statistics and Wilks phenomenon,"Technical Report, Department of Statistics, UCLA.Green, P.J. and Silverman, B.W. (1994), Nonparametric Regression and Generalized Linear Mod-els: A Robust Penalty Approach, London: Chapman and Hall.Hastie, T.J. and Tibshirani, R.J. (1993), \Varying-coe�cient models (with discussion)," Journalof the Royal Statistical Society, Series B, 55, 757-796.Hong, Y. and Lee, T.-H. (1999), \Inference and forecast of exchange rates via generalized spectrumand nonlinear times series models," Manuscript.Hoover, D.R., Rice, J.A., Wu, C.O. and Yang, L.P. (1998), \Nonparametric smoothing estimatesof time-varying coe�cient models with longitudinal data," Biometrika, 85, 809{822.Kauermann, G. and Tutz, G. (1999), \On model diagnostics using varying coe�cient models",Biometrika, 86, 119-128.Lee, T.-H. and Ullah, A. (1999), \Nonparametric bootstrap tests for neglected nonlinearity intime series regression models," Manuscript.Lehmann, E.L. (1983), Theory of Point Estimation, Paci�c Grove, California: Wadsworth &Brooks/Cole.McCullagh, P. and Nelder, J.A. (1989), Generalized Linear Models, 2nd ed, London: Chapmanand Hall. 20



Ruppert, D. and Wand, M.P. (1994), \Multivariate weighted least squares regression," The Annalsof Statistics, 22, 1346{1370.Seifert, B. and Gasser, Th. (1996), \Finite-sample variance of local polynomial: Analysis andsolutions," Journal of the American Statistical Association, 91, 267-275.Speckman, P. (1988), \Kernel smoothing in partial linear models," Journal of the Royal StatisticalSociety, Series B, 50, 413-436.Wand, M.P. and Jones, M.C. (1995), Kernel Smoothing, London: Chapman and Hall.

21



Performance comparisons
1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

OS                TS                 OS                 TS                   OS                 TS(a)
Estimated curves with h = 0:2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b)Estimated curves with h = 0:2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c)
Estimated curves with h = 0:2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

(d)Estimated densities of T
0 5 10 15 20 25 30 35 40

0

0.02

0.04

0.06

0.08

0.1

0.12

(e)
Simulated power functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta(f)Figure 1: Simulation results for Example 1 with sample size 400. (a) The boxplots for the ratiosof RASE of the one-step and two-step local likelihood approaches to that of the local MLE of a(u),using bandwidths (from left to right) h = 0:10, 0:20 and 0:40. (b), (c) and (d) Typical estimates ofa0(u), a1(u) and a2(u), respectively, with bandwidth h = 0:2. Solid curve | true function; dashedcurves (from shortest to longest dash) are the one-step, two-step and local MLE, respectively. (e)The estimated densities of T for unconditional null distributions (thick curves) and for conditionalnull distributions (thin curves). (f) The power functions of the test statistic T .22



Performance comparisons
1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 

OS               TS                  OS                 TS                   OS                 TS(a)
Estimated curves with h = 0:15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

(b)Estimated curves with h = 0:15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

2

2.5

(c)
Estimated curves with h = 0:15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

(d)Estimated densities of T
0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(e)
Simulated power functions

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta(f)Figure 2: Simulation results for Example 2 with sample size 200. The caption is similar to Figure1. 23



0 10 20 30 40 50 60 70 80 90 100
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6
lo

g
(N

u
m

b
e

r 
o

f 
a

d
m

is
s
io

n
s
)

time(a) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
340

360

380

400

420

440

460

480

500

520

540

h/105

C
V

(h
) (b) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

340

360

380

400

420

440

460

480

500

520

540

h/105

C
V

(h
) (c)Figure 3: (a) The scatterplot of log transformation of environmental data set studied in x3.3. Thecurve is the estimate of a1(t) + a2(t) �x1 + a3(t) �x2 + a4(t) �x3, where �xj is the average pollutantlevel xj . (b) The plot of the cross-validation functions CV1(h) (solid line) and CV2(h) (dashdotline) against bandwidth. (c) The same as those in (b), but the cross-validation is based on randompartitions of the data set.

0 20 40 60 80 100
5

5.2

5.4

5.6

5.8

6

6.2
  Coefficient function a1(t)

(a)

c
o

e
ff
ic

ie
n

t 
fu

n
c
ti
o

n

0 20 40 60 80 100
−0.01

−0.005

0

0.005

0.01
  Coefficient function a2(t)

c
o

e
ff
ic

ie
n

t 
fu

n
c
ti
o

n

(b)

0 20 40 60 80 100
−0.01

−0.005

0

0.005

0.01
  Coefficient function a3(t)

c
o

e
ff
ic

ie
n

t 
fu

n
c
ti
o

n

(c)
0 20 40 60 80 100

−0.01

−0.005

0

0.005

0.01
  Coefficient function a4(t)

c
o

e
ff
ic

ie
n

t 
fu

n
c
ti
o

n
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