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Abstract

This paper deals with statistical inferences based on the varying-coefficient models proposed
by Hastie and Tibshirani (1993). Local polynomial regression techniques are used to estimate
coefficient functions and the asymptotic normality of the resulting estimators is established.
The standard error formulas for estimated coefficients are derived and are empirically tested. A
goodness-of-fit test technique, based on a nonparametric maximum likelihood ratio type of test,
is also proposed to detect whether certain coefficient functions in a varying-coefficient model
are constant or whether any covariates are statistically significant in the model. The null distri-
bution of the test is estimated by a conditional bootstrap method. Our estimation techniques
involve solving hundreds of local likelihood equations. To reduce computational burden, a one-
step Newton-Raphson estimator is proposed and implemented. We show that the resulting
one-step procedure can save computational cost in an order of tens without deteriorating its
performance, both asymptotically and empirically. Both simulated and real data examples are
used to illustrate our proposed methodology.
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1 Introduction

Generalized linear models are based on two fundamental assumptions: the conditional distributions
belong to an exponential family and a known transform of the underlying regression function is
linear. In recent years, various attempts have been made to relax these model assumptions and
hence widen their applicability, since a wrong model on the regression function can lead to excessive
modeling biases and erroneous conclusions. Of importance is the varying-coeflicient models, pro-
posed by Hastie and Tibshirani (1993), which widen the scope of applications by allowing regression
coefficients to depend on certain covariates.

A varying-coefficient model has the form

n(u, x) = g{m(u, x)} = > a;(u)z; (L.1)

=1
for some given link function g(-), where x = (21, ..., #,)7, and m(u, x) is the mean regression
function of the response variable Y given the covariates U = uand X = x with X = (X, ..., Xp)T.

Clearly, model (1.1) includes both the parametric generalized linear model (McCullagh and Nelder
1989) and the generalized partially linear model (Chen 1988; Speckman 1988; Green and Silverman
1994; Carroll, Fan, Gijbels and Wand 1997).

A motivation of this study comes from an analysis of environmental data, consisting of weekly
measurements of pollutants and other environmental factors, collected in Hong Kong from January
1, 1994 to December 31, 1995 (Courtesy of Professor T. S. Lau). Of interest is to examine the
association between the levels of pollutants and the total number of weekly hospital admissions for
circulatory and respiratory problems. It is natural to allow the association to change over time (see
Figure 3(a) below). Such a problem can be tackled by using model (1.1) as follows. The log-link is
used, U is the time covariate, and X denotes the levels of pollutants. The conditional distribution of
the number of weekly hospital admissions given the covariates is modeled as a Poisson distribution
with the mean function given by (1.1). In another context, one is interested in studying how the
variables such as burn area and gender affect survival probabilities for different age of burn victims.
Detailed analyses of these two data sets will be reported in §3.

In the least-squares setting, model (1.1) with the identity link was introduced by Cleveland,
Grosse and Shyu (1992) and extended by Hastie and Tibshirani (1993) to various aspects. Re-
cently, some new developement has been made to the model (1.1). Kauermann and Tutz (1999)
proposed a graphical procedure to diagnose the discrepancy between the parametric model and the
smoothing alternative by using the local likelihood smoothing. Furthermore, a two-step estimation
procedure was proposed by Fan and Zhang (2000) to deal with the situations where coefficient
functions admit different degrees of smoothness. An advantage of model (1.1) is that by allowing
the coefficients {a;(-)} to depend on U, the modeling bias can be reduced significantly and the
“curse of dimensionality” is avoided.

Varying-coefficient models are a simple and useful extension of classical generalized linear mod-
els. This extension admits simple interpretation. The models are particularly appealing in lon-
gitudinal studies where they allow one to explore the extent to which covariates affect responses
changing over time. See Hoover et al. (1998), Brumback and Rice (1998) and Fan and Zhang
(2000) for details on novel applications of the varying-coefficient models to longitudinal data. For
nonlinear time series applications, see Chen and Tsay (1993) and Cai, Fan and Yao (1998) for



statistical inferences based on the functional-coefficient autoregressive models. Cai, Fan and Yao
(1998) gave an extensive study on the advantages of the varying-coefficient model over the para-
metric model based on the predictive utility. For applications in finance and econometrics, we refer
to the unpublished papers by Hong and Lee (1999) and Lee and Ullah (1999).

Estimation of the coefficient functions in (1.1) is obtained by using local smoothing techniques.
By localizing data around u, model (1.1) is approximately a generalized linear model. One can find
its local maximum likelihood estimate (MLE) using an iterative algorithm. Note that the local MLE
for the varying-coefficient model is indeed solving the local likelihood equations. Thus, our local
likelihood method can be regarded as a special case of the general local estimation equation method
proposed by Carroll, Ruppert and Welsh (1998). Hence, the bandwidth involved can be selected
by the empirical bias method proposed in that paper. In order to obtain the estimated coefficient
functions, we need to solve hundreds of local maximum likelihood problems. The computation
can be expensive, depending on the convergence criterion. Computational burden becomes even
more severe when a cross-validation method is used to select a smoothing parameter. To reduce
computational costs, we propose a one-step local MLE. The idea is not novel since it was first
used by Bickel (1975) in the parametric setting, but implementations and insights are. We will
show that computational costs can be reduced significantly and the resulting one-step estimator is
demonstrated, both asymptotically and empirically, to be as efficient as the fully iterative MLE.

Associated with inferences on the varying-coefficient models are the standard errors of the
estimated coefficient functions. Consistent estimates are derived. Our simulation studies show that
the estimated standard errors are very accurate for most applications. Another important issue
arises regarding whether some of the coefficient functions in model (1.1) are actually varying, or
whether some of covariates are statistically significant. A nonparametric maximum likelihood ratio
test is proposed and its null distribution is estimated by using a conditional bootstrap method.
Our simulation shows that the resulting testing procedure performs well.

One of our goals is to estimate efficiently the coefficient functions {a;(-)} in model (1.1) by using
a nonparametric method. Our methods are directly applicable to situations in which one can not
specify fully the conditional log-likelihood function {(v, y), but can model the relationship between
the mean and variance by Var(Y | U = u, X = x) = 0?V{m(u, x)} for a known variance function
V() and unknown o. In this case, one needs only to replace the log-likelihood function {(v, y) by
the quasi-likelihood function Q(-, -), defined by aa—MQ(,u,y) = % It is assumed throughout this
paper that the conditional log-likelihood function ((v, y) is known and linear in y for fixed v. This
assumption is satisfied for the canonical exponential family, which is the focus of this paper.

The paper is organized as follows. §2 discusses estimation methods and inference tools, and
presents some asymptotic properties of the one-step and local MLEs. In particular, formulas
for consistent standard errors of the estimated coefficient functions are derived, a nonparametric
maximum likelihood ratio test is proposed, and strategies are given for the implementation of a
one-step estimator. In §3, we study some finite sample properties of the one-step and local MLEs
using two simulated examples. Furthermore, our methodology is illustrated through analysis of
the aforementioned environmental and survival datasets. Finally, technical proofs are given in the
Appendix.



2 Modeling Procedures

For simplicity, we consider only the case that u is one-dimensional. Extension to multivariate u
involves no fundamentally new ideas. However, implementations with u having more than two
dimensions may have some difficulties due to the “curse of dimensionality.”

2.1 Local MLE

We will use a local linear modeling scheme, though general local polynomial methods are also
applicable. The local linear fittings have several nice properties such as high statistical efficiency (in
an asymptotic minimax sense), design adaptation (Fan 1993) and good boundary behavior (Ruppert
and Wand 1994; Fan and Gijbels 1996). Suppose that a;(-) has a continuous second derivative.
For each given point ug, we approximate a;(u) locally by a linear function a;(u) ~ a; + b; (u — uo)

for w in a neighborhood of ug. Based on a random sample {(U;, X;, Y;)}7_,, we use the following
local likelihood method to estimate the coefficient functions

n p
Kn(a,b) = % Zﬁ [g_l {Z(a]‘ + b]‘(Ui — uo))XZ']‘} , Y, I(h(UZ' — uo), (2.1)

=1 7=1
where K1,(-) = K(-/h)/h, K(-) is a kernel function, h = h,, > 0 is a bandwidth, a = (ay, ..., a,)"
and b = (by, ..., b,)T. Note that a; and b; are dependent on ug, and so is {,(+, -). Maximiz-
ing the local likelihood function (,(a, b) gives estimates a(ug) and b(ug). The components in
a(ug) give an estimate of ay(ug), ..., ap(up). For simplicity of notation, we denote 8 = B(ug) =
(a1, ...y ap, by, ..., bp)T and write the local likelihood function (2.1) as (,,(83). Likewise, the local

MLE is denoted by By = Bure(uo).

2.2 One-step local MLE

The local MLE can be costly to compute. This is particularly the case for the varying-coefficient
models. In order to obtain the estimated functions {a;(-)}, one needs to maximize the local like-
lihood (2.1) for usually hundreds of distinct values of ug, with each maximization requiring an
iterative algorithm. Moreover, the computational expense further increases with the number of
covariates p. To ameliorate this expense, we propose to replace the iterative local MLE by the
one-step Newton-Raphson estimator, which has been frequently used in parametric models (Bickel
1975; Lehmann 1983). We prove Theorem 2 below that the one-step local MLE does not lose any
statistical efficiency provided that the initial estimator is good enough.

Let (/,(3) and (!(3) be the gradient and Hessian matrix of the local log-likelihood ¢,,(3). Given
~ ~ ~ T
an initial estimator B, = By(uo) = (ﬁ(uo)T, b(uo)T) , one-step of the Newton-Raphson algorithm
produces the updated estimator,

Bos = ao - {K;z/ (Bo) }_1 K;z (Bo) ’ (2-2)



thus featuring the computational expediency of least-squares local polynomial fitting. In univariate
generalized linear models, Fan and Chen (1999) carefully studied properties of the local one-step
estimator. In that setting, the least-squares estimate serves a natural candidate as an initial
estimator, however, in the multivariate setting, it is not clear how an initial estimator can be
constructed.

Note that K%’(ﬁo) can be nearly singular for certain ug, due to possible data sparsity in certain
local regions, or when the bandwidth is too small. Seifert and Gasser (1996) and Fan and Chen
(1999) explored the use of the ridge regression as an approach to handling such problems in the
univariate setting. We extend their ideas in §3.

2.3 Sampling properties

We now derive the asymptotic distributions of the local MLE ﬁMLE and the one-step estimator
Bos. We demonstrate that the one-step estimator performs as well as the local MLE as long as the
initial estimator B, is reasonably accurate.

Define py = [u* K(u)du and vy = [u* K?(u)du. Let H = diag(1, k) ® I, with ® denoting
the Kronecker product. Let fy(-) denote the marginal density of U,

()= E{p(U, X)X X" |U = u}, (2.3)

and

p(u, x) = [g1 {m(u, x)}]> Var{Y|U = u, X = x} (2.4)

with ¢1(s) = g((s)/¢'(s) and go(-) being the canonical link. Note that p(u, x) = V{m(u, x)} for
the canonical exponential family with the canonical link function. The asymptotic properties of
ﬂMLE and ﬁos are described in the following theorems, with conditions and proofs discussed in the
Appendix.

Theorem 1. Suppose that Conditions (1) — (7) in the Appendix hold and that h = h,, — 0 and
nh — oo as n — oc. Then

Vnh [H {BMLE(UO) - 5(uo)} = =) " ((M§ ) aiﬁgzgg) + 0p(h2)]

pz — p3) \(pa — pa pr2) &
= N (0, a7t AATY) (2.5)

with I'(ug) given by (2.3),

Vg I
vy Iy

A= fuluo) (;1 Z;) ® T(uo) and A= fy(uo) (



Furthermore, if K (-) is symmetric,

ik | Bue(o) — alug) — 2"2 a’(ug) + 0p(h*)|  — N(0, (uo)), (2.7)

where

Y(uo) = 1o F_l(uo)/fU(uo). (2.8)

Note that the bias and variance expressions in Theorem 1 can be deduced from the general
theorem from Carroll, Rupport and Welsh (1998). However, the main difference here is that we
establish the results in terms of asymptotic normality, while they established them for the general
case using conditional expections.

Theorem 2. Under the assumptions in Theorem 1, then ﬁos has the same asymptotic distribution
as ﬁMLE, provided that the initial estimator ﬁo satlsﬁes

H (B, —B) = 0, {h* + (nh)™"/?} . (2.9)

As a consequence, the fully iterative MLE and the one-step estimate share the same asymptotic
properties provided that (2.9) is fulfilled, which provide the theoretical basis for the use of the
one-step approach in practice. The asymptotic mean squared error (MSE) of the two estimators

a]‘7MLE(U0) and aj7os(U0) is

4

_ h 2 " 2 Vo szj(uo)
MSE = —- i3 {%‘(Uo)} + wh fulug)’

when K(-) is symmetric, where 67, (ug) is the j-th diagonal element of I'"!(ug). Then, the MSE is
of order n=4/% if the optimal bandw1dth [vo 0%, (uo)/{p3 (a?(u,))? fur(uo)}]Y® n=1/% is used.

2.4 Standard errors

Since the local likelihood (2.1) is a weighted likelihood function of a parametric generalized linear
model, the covariance matrix of 3, can be estimated from conventional techniques. Let ¢;(s, y) =

(07/0s7) £ {g="(s), y} and

p

o) = = & 30 [ S 4a00) X + D000 = w0, ¥,

7=1

i ()

(2.10)




where A®? denotes A AT for a matrix or vector A. Then, the covariance matrix of By, can be
estimated as

~

S*(ug) = L(uo) ™" Aluo) T(ug) ™", (2.11)

where

Aua) = 3 300 | D4 00) X + By (w0)(U — w0)),

— =

KiiUs = w) (Xz (Ui}ii uo)/h)®2 '

In the implementation in §3, a ridge regression technique is employed and hence the matrix f(uo)
in (2.11) is slightly modified to reflect this change.

The explicit formula for the asymptotic covariance matrix in (2.8) provides an alternative es-
timate of the asymptotic covariance matrix of a(ug) (not full vector By ) S(ug). Therefore, a
direct estimate of S(ug) is S(ug) = vo Ls(ug)™", where T's(ug) is the p X p upper corner submatrix
of T(ug) given by (2.10).

2.5 Hypothesis testing

When fitting a varying-coeflicient model, one naturally asks whether the coefficient functions are
actually varying or whether any particular covariate is significant in the model. For simplicity of
description, we only consider the first hypothesis testing problem

Ho:a1(u) =ay, -, ap(u) = ap, (2.12)

though the technique also applies to other testing problems. A useful procedure is based on the
nonparametric likelihood ratio test statistic

T = 24(Hy) - ((Ho)}, (2.13)

where ((Hgp) and ((Hy) are respectively the log-likelihood functions computed under the null and
alternative hypotheses.

For parametric models, the likelihood ratio statistic follows asymptotically a y?-distribution
with degrees of freedom f — r, where » and f are the number of parameters under the null and
alternative hypotheses. For the nonparametric alternative, the effective number of parameters f
tends to infinite. Thus, the test statistic will be asymptotically normal, independent of the values
ai, -+, a,. For the rigorous justification, we refer to the paper by Fan, Zhang and Zhang (1999)
who considered sieve likelihood ratio tests in a general setting and demonstrated that the Wilks’
type of phenomenon holds for a large variety of nonparametric problems. This in turn suggests
that we can use the following conditional bootstrap to construct the null distribution of 7. Let {a;}
be the MLE under the null hypothesis. Given the covariates (U;, X;), generate a bootstrap sample
Y* from the given distribution of Y with the estimated linear predictor 7(U;, X;) = Z§:1 a; X5
and compute the test statistic 7 in (2.13). Use the distribution of 7™ as an approximation to the



distribution of 7. This method is valid since the asymptotic null distribution does not depend on
the values of {a;} (Fan, Zhang, and Zhang, 1999).

Note that the above conditional bootstrap method applies readily to the Poisson and Bernoulli
distributions, since in these cases the distribution of Y does not involve any dispersion parameters.
It is really a simulation approximation to the conditional distribution of T’ given observed covariates
under the particular null hypothesis: Hg : a;(u) = @; (j =1, ---, p). As pointed out above, this
approximation is valid under both Hgy and H; as the null distribution does not asymptotically
depend on the values of {a;}. In the case where model (1.1) involves a dispersion parameter (e.g.,
the Gaussian model), the dispersion parameter should be estimated based on the residuals from
the alternative hypothesis. This is again due to the Wilks type of results demonstrated by Fan,
Zhang and Zhang (1999).

For testing the hypothesis such as a,(-) = 0, the above conditional bootstrap idea contin-
ues to apply. In this case, the data should be generated from the mean function g{m(u, x)} =
pByh 1 a;(u)z;, where @;(-) is an estimate under the alternative hypothesis.

2.6 Implementation of one-step local MLE

Suppose that we wish to evaluate the functions a(-) at grid points u;, j =1, ..., ngid. Our idea
of finding initial estimators is as follows. Take a point u;,, usually the center of the grid points.
Compute the local MLE BMLE(uio) Use this estimate as the initial estimate for the point wu;, 41
and apply (2.2) to obtain ﬂos(uzﬁ_l) Now, use Bqg(uig+1) as the initial estimate at the point ;12
and apply (2.2) to obtain Bq(ui,12) and so on. Likewise, we can compute Bos(uiy—1), Bos(tig—2),
etc. In this way, we obtain our estimates at all grid points.

There are a couple of possible variations to the above technique. The first one is to calculate a
fresh local MLE as a new initial value after iterating along the grid points for a while. For example,
if we wish to evaluate the functions at 200 grid points and are willing to compute the local maximum
likelihood at five distinct points. A sensible placement of these points is w29, uso, U100, U140 and
u1g0. Use for example ﬂMLE(UGO) along with the idea in the last paragraph to compute ﬁos(uz) for
1 =40, ..., 79. In our implementation, this modified technique is used.

Another useful modification is to use a two-step method. We use the scenarios given in the last
paragraph as an illustration. After obtaining BMLE(UE;()), say, we apply (2.2) to obtain Bos(um)-
Regarding Bog (et ) as an initial value, we use (2.2) to obtain a “two-step” estimator B (ue1 ). Now,
use Bps(ue1) as an initial value for the grid point ugy and iterate (2.2) twice to obtain Bpg(ues) and
so on. This implementation requires approximately twice as much effort to compute the estimates as
the one-step method. However, our empirical studies show that there are no significant differences
between the two procedures. See §3 for details.

The theoretical basis for the above “one-step” and the “two-step” procedures is as follows.
When the grid points are sufficiently fine, By p(ui,) will be very close to By (i +1). Indeed,

when the grid span is of order O {h?1 +(n hn)_l/z} which usually is true for most applications,

BMLE(uio) satisfies the condition given in Theorem 2. Therefore, aos(ui0+1) is as efficient as the
fully-iterative local MLE at the point u;,41. Using the same reasoning, BOS(uio-I-?) is as efficient as
the local MLE at the point v = u;,+2 and so on. The same arguments are still applicable for the
two-step estimator. A refresh start is needed because of stochastic error accumulation as iterations
along grid points march on.



Based on the above theoretical considerations, we suggest a very simple rule of thumb for
choosing the number of grid points: ngiq = max{200,IQR?/h?}, where IQR is the interquantile
range of Uy, ---, U,. In such a way, approximation errors between estimates at two consecutive grid
points are of order O(h?), satisfying the critical condition (2.9).

3 Simulations and Applications

In this section, we first discuss how to implement the one-step procedure for the Bernoulli and
Poisson models. We then illustrate the performance of the proposed one-step method and compare
it with the two-step estimator and the fully-iterative local MLE. The performance of estimator a(-)
is assessed via the square-Root of Average Square Errors (RASE)

p Tgrid
RASE? = nziq > > {aj(we) — aj(wp)}, (3.1)
7=1 k=1
where {ug, k =1, ..., ngq} are the grid points at which the functions {a;(-)} are estimated.

In the following two simulated examples, the covariates Xy and X, are standard normal random
variables with correlation coefficient 271/2 and U is uniformly distributed over [0, 1], independent of
(X1, X2). Three bandwidths will be employed to represent widely varying degrees of smoothness.
Over this range of bandwidths, we compare the performances among the one-step, the two-step
and the fully iterative local MLE methods. The Epanechnikov kernel K(u) = 0.75(1 — u?)4 and
Ngria = 200 are used.

3.1 Logistic Regression

For a Bernoulli distribution, the one-step estimator is given by

3 7 Hn,Ov Hn,l ! Vn,0
ﬁOS B ﬁO —I_ (Hn,lv Hn,2) (Vn,l ’ (32)

where H,, ; = Y7, Kp(U; — uo)pio(1 — pio)(U; — uo Y X;XT, j =0, 1, 2, pio satisfies logit (pio) =
2=t {%yo +bjo(Ui — UO)} Xijoand v ;= S0y Kn(Ui = uo)(Yi = pio)(Us — uo )Xy, j = 0, 1. The
two-step estimator 3TS is obtained by iterating the equation (3.2) twice and the local MLE is

obtained by iterating equation (3.2) until convergence.

In practice, the matrix in (3.2) can be singular or nearly singular when the local data are sparse.
To attenuate this difficulty, one may follow the idea of ridge regression (Seifert and Gasser 1996;
Fan and Chen 1999). Then an issue arises on how to choose the ridge parameters. Note that the
k-th diagonal element of H, ; (j = 0 and 2) is approximately of order

E (le U = Uo) Po(1 = po) hj_l/ujl((u) du N with Do =



where N = nh fy(up) and X = L3 | X;. The parameter N can be intuitively understood as the
effective number of local data points. This motivates us to use the ridge parameter

1 < - o .
Tk = (;ZX?k) po(1 = po)h’ l/ujlﬁ(u) du
=1

for the k-th diagonal element of H, ;. Using such a ridge parameter will not alter the asymptotic
behavior and will prevent the matrix from becoming nearly singular when N is small. However, it
affects and indeed ameliorates the finite-sample properties of estimators for small-sample sizes.

Example 1. Take X = (1, X1, X3)7 and the coefficient functions in (1.1) are given by
ap(u) = exp(2u — 1), ai(u) = 8u(l —u), and az(u)=2 sin’(27u). (3.4)

Figure 1(a) depicts the marginal distributions for the ratios of the overall RASE defined in (3.1),
using three bandwidths h = 0.1, 0.2 and 0.4. It is evident that the performance of the one-step,
the two-step and the fully iterative estimators are comparable for a wide range of bandwidths. As
expected, the performance of the two-step estimator is closer to that of the local MLE. Figures
1(b)—(d) give the estimate of the coefficient functions from a typical sample. The typical sample
is selected in such a way that its RASE-value is the median in the 400 RASE-values. Table 1
summarizes the simulation results with @ and ¢ denoting the mean and standard deviation of the

Table 1. Bivariate summary of simulation results for logistic regression model

MLE One-step Two-step

n h u o u o O u o O
0.10 2.2278 | 2.0874 | 1.8537 | 0.9759 | 0.8656 | 2.1244 | 1.5315 | 0.8274
400 0.20 1.0669 | 0.4491 | 1.0576 | 0.4378 | 0.9991 | 1.0669 | 0.4491 | 1.0000
0.40 0.9454 | 0.1600 | 0.9447 | 0.1593 | 1.0000 | 0.9454 | 0.1600 | 1.0000
0.075 | 1.2451 | 0.6639 | 1.1644 | 0.3767 | 0.8342 | 1.2256 | 0.5301 | 0.9656
800 0.15 0.7280 | 0.2573 | 0.7234 | 0.2459 | 0.9993 | 0.7280 | 0.2573 | 1.0000
0.30 0.7433 | 0.1009 | 0.7429 | 0.1005 | 1.0000 | 0.7433 | 0.1009 | 1.0000

RASE in 400 simulations. Here, p, indicates the correlation coefficient between the RASE of the
MLE and the RASE of the one-step (or two-step) method. Note that the correlation coefficients
are close to one which indicates that the one-step and two-step methods follow closely the MLE.
Note also that the larger the bandwidths, the larger the correlation coeflicients. This is due to the
fact that a larger bandwidth implies more local data points, which makes the asymptotic theory
more relevant. As expected, the correlation coefficients for the two-step method are larger than
those of the one-step method, since the former is closer to the MLE.

We now test the accuracy of our standard error formula (2.11). The standard deviation, denoted
by SD in Table 2, of 400 estimated @;(ug), based on 400 simulations, can be regarded as the true
standard errors. The average and the standard deviation of 400 estimated standard errors, denoted
by SD, and S Dy, summarize the overall performance of the standard error formula (2.11). Table
2 presents the results at the points ug = 0.25, 0.50 and 0.75. It suggests that our standard error
formula somewhat underestimates the true standard deviation, though the difference is within two
standard deviations of the Monte Carlo errors. The bias becomes smaller as the number of local
data points n h,, goes up (see the last two situations). This is consistent with our asymptotic theory.



Table 2. Standard deviations of estimators for logistic regression model

Eo(u) 81 (u) Eg(u)

n | h u 5D 5D, (SDsia) 5D 5Dy (SDsa) 5D 5D, (SDsia)
0.25 | 0.3185 | 0.2673 (0.0470 0.4890 | 0.4069 (0.0776 0.5082 | 0.3986 (0.0893
400 0.2 0.50 | 0.3410 | 0.2782 (0.0451 0.5413 | 0.4330 (0.0809 0.4135 | 0.3568 (0.0591
0.75 | 0.4315 | 0.3542 (0.0776 0.5372 | 0.4542 (0.0996 0.5809 | 0.4431 (0.0969
0.25 | 0.2294 | 0.2051 (0.0231 0.3424 | 0.3201 (0.0447 0.3317 | 0.2956 (0.0403

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
400 | 0.3 [0.50 | 0.2570 | 0.2315 (0.0315) | 0.3931 | 0.3538 (0.0527) | 0.3490 | 0.3122 (0.0431)
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0.75 | 0.2850 | 0.2686 (0.0423 0.3929 | 0.3581 (0.0557 0.3788 | 0.3328 (0.0500
0.25 | 0.2418 | 0.2214 (0.0214 0.3638 | 0.3460 (0.0501 0.3804 | 0.3486 (0.0532
800 | 0.15 | 0.50 | 0.2249 | 0.2196 (0.0233 0.4040 | 0.3569 (0.0512 0.3124 | 0.2812 (0.0356
0.75 | 0.3146 | 0.2928 (0.0478 0.4209 | 0.3804 (0.0667 0.3987 | 0.3781 (0.0631

Next, we conduct a simulation study to see whether the asymptotic null distribution of the test
statistic 7" defined in (2.13) depends on the values of {a;} under Hy (see (2.12)) and the limiting
conditional null distributions are dependent on the covariate values. To this end, we compute
the unconditional null distribution of T" with n = 400, via 1000 Monte Carlo simulations, for 5
different sets of values of {a;}. These sets of parameters are quite far apart. The resulting 5
densities are depicted in Figure 1(e) (thick curves). They are very close, which suggest that the
asymptotic null distribution is not very sensitive to the values of {a;}. To validate our conditional
bootstrap method, five typical data sets were selected from our previous 400 simulations. The
estimated conditional bootstrap null distributions, based on 1000 bootstrap samples, are plotted
as thin curves in Figure 1(e). Six empirical percentiles for five different sets of values of {a;} and
covariates are listed in Table 3. Both Figure 1(e) and Table 3 shows that they are very close

Table 3. Six empirical percentiles for logistic model

10 25 50 75 90 95
Conditional bootstrap
7.9579  10.7189  14.2569  18.2625  22.2566  24.9903
8.2450 11.0170 14.6601 18.4897  22.4177 25.5829
8.0004 10.9871 14.2667 18.0413  22.5517  25.1661
8.7738 11.4311 14.8061 18.5209  22.7029 25.3781
8.7906 11.4672 14.9130 18.6168  22.3256 24.7104
Unconditional bootstrap
7.6381 10.7167  14.5487 18.6276  22.2205  24.4597
7.3478  10.1290  13.9934  17.9622  21.8270  24.4429
7.7238 11.3849  14.6151 18.4796  22.5899  24.7270
8.8042 11.3762 14.8076 18.7571  22.0560  25.1550
8.7865  11.3472  14.5975 18.5198  23.1476  25.8297

to the true null distribution. This demonstrates empirically that our bootstrap method gives a
reasonably good approximation to the true null distribution even when the data were generated
from an alternative model (3.4).

To examine the power of the proposed test, we consider the following null hypothesis

Hy:a;(u)=140;, j=0,1,2, versus Hy:a;(u)+#0;, for at least one j.
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The power functions are evaluated under a sequence of the alternative models indexed by
Hy:aj(u) = ajo+ B(a)(v) —aj), j=0,1,2 (0<B<0.8),

where {a?(u)} are given in (3.4) and ajo = E{a;(U)}. Figure 1(f) depicts the five power func-
tions based on 1000 simulations for the sample size n = 400 at five different significance levels:
0.5, 0.25, 0.10, 0.05, and 0.01. When 8 = 0, the special alternative collapses into the null hypoth-
esis. The powers at 3 = 0 for the above five significance levels are respectively 0.532, 0.281, 0.101,
0.047 and 0.012. This shows that the conditional bootstrap method gives the right levels of test.
The power functions increase rapidly as § increases. This in turn shows that the test proposed in
§2.5 works well.

3.2 Poisson regression

For a Poisson model with the canonical link, by straightforward calculation, the one-step estimator
is given similarly to (3.2) but now H, ; = Y7o, Kn(U; — uo)Aio(U; — uo)]XiXiT, j =0,1,2,
No = exp Y7 {ajo + bio(Us = wo)} X, and viy = YIny Kn(Ui = uo)(Vi = Ao)(Ui = uo)' X,

j =0, 1. Using the same arguments as in the previous section, the ridge parameters
1 & ~ , , ~ _
w= =S x2 )% hf‘l/ VK (u)d ith Ao =exp (a1 X 3.5
ik (n ; zk) 0 w K(u)du wi 0 = exp (ao ) (3.5)

are employed to alleviate the possible singularity of matrix H, ; (j = 0 and 2) in (3.2).

Example 2. The conditional distribution of ¥ given covariates U, X; and X, is taken to be
Poisson with the following linear predictor

n(u, x) = 5.5+ 0.1{ag(u) + a1(u) 1 + az(u) x2},

where the coefficient functions ag(u), ai(u) and ag(w) are the same as those in Example 1. The
coefficients 5.5 and 0.1 are chosen so that the range of simulated data is close to that of the
environmental data in §3.3.

Figure 2 and Table 4 summarize the result for n = 200. It shows again that the one-step, two-

Table 4. Bivariate summary of simulation output for Poisson regression model

MLE One-step Two-step

n h u o u o O u o O
0.075 | 0.3632 | 0.0692 | 0.3468 | 0.0562 | 0.8691 | 0.3632 | 0.0692 | 1.0000
200 0.15 0.3220 | 0.0510 | 0.3202 | 0.0504 | 0.9925 | 0.3220 | 0.0510 | 1.0000
0.30 0.5852 | 0.0425 | 0.5835 | 0.0426 | 0.9990 | 0.5852 | 0.0425 | 1.0000
0.075 | 0.2309 | 0.0352 | 0.2279 | 0.0347 | 0.9866 | 0.2309 | 0.0352 | 1.0000
400 0.15 0.2581 | 0.0325 | 0.2571 | 0.0322 | 0.9942 | 0.2581 | 0.0325 | 1.0000
0.30 0.5603 | 0.0292 | 0.5581 | 0.0293 | 0.9988 | 0.5603 | 0.0292 | 1.0000

step and the iterative local MLE have comparable performance. A typical estimated function with
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bandwidth h = 0.15 is presented in Figures 2(b)—(d). Because of different noise-to-signal ratios, the
functions here are indeed estimated better than those given in Example 1. Similar to Example 1,
we summarize the performance of our estimated standard error formula (2.11) in Table 5. Clearly,

Table 5. Standard deviations of estimators for Poisson regression model

ao (u) a(u) a(u)
n h u SD | 8D.(SDwa) | SD | SDu (SDwta) | SD | SDa (SDra)
0.25 | 0.0105 | 0.0092 (0.0013) | 0.0148 | 0.0118 (0.0024) | 0.0156 | 0.0126 (0.0026)
200 | 0.15 | 0.50 | 0.0094 | 0.0088 (0.0011) | 0.0148 | 0.0112 (0.0022) | 0.0150 | 0.0118 (0.0024)
0.75 | 0.0100 | 0.0088 (0.0011) | 0.0142 | 0.0112 (0.0023) | 0.0151 | 0.0119 (0.0023)
0.25 | 0.0094 | 0.0085 (0.0012) | 0.0130 | 0.0106 (0.0021) | 0.0136 | 0.0107 (0.0022)
400 | 0.075 [0.50 | 0.0093 | 0.0083 (0.0011) | 0.0127 | 0.0104 (0.0022) | 0.0130 | 0.0105 (0.0021)
0.75 | 0.0090 | 0.0081 (0.0011) | 0.0137 | 0.0101 (0.0022) | 0.0133 | 0.0102 (0.0022)

our estimated standard errors are very close to the true ones.

Similar to Example 1, the procedure of testing hypothesis is applied to this example. Both
unconditional and conditional estimated densities of 1" are displayed in Figure 2(e). Six empirical
percentiles are listed in Table 6. The corresponding power functions are presented in Figure 2(f).

Table 6. Six empirical percentiles for Poisson model

10 25 50 75 90 95
Conditional bootstrap
12.1646  15.1401 18.6981  22.6260 26.1432  28.8494
11.7506  14.5010 18.0994  22.3809 26.1237 29.4936
11.7946  14.7005 18.3495  22.2918  26.0064  29.2165
11.4662  14.6917 18.2475  22.4623  27.0587  29.6887
11.9894  14.7869  18.5571  22.3593  26.7014  29.7923
Unconditional bootstrap
11.9492 14.7920 18.5509 22.3383  26.7474 28.8094
11.1599  14.7156  18.7054  22.2915 26.6170  28.9831
11.4378  14.8132 18.4080 22.3890 26.5858  29.4816
11.8238  14.6817  18.5090 22.7050 26.4776 29.3814
11.8365  14.9721 18.7674  22.9402 26.5929  28.9815

The same conclusions as those in Example 1 can be drawn for the Poisson regression model. In
particular, the test has the correct levels of significance. See the power functions in Figure 2(e) at

3 =0.

3.3 Real-data examples

Example 3. We illustrate in this example our proposed procedure via an application to the
environmental data set mentioned in the introduction. Of interest is to study the association
between levels of pollutants and number of total hospital admissions for circulatory and respiratory
problems on every Friday from January 1, 1994 to December 31, 1995 and to examine the extent
to which the association varies over time. The covariates are taken as the levels of pollutants
sulfur dioxide X3 (in ug/m?®), nitrogen dioxide X3 (in wg/m?>) and dust Xy (in wg/m?>). Since
the admissions “events” occur at certain points in time, it is reasonable to model the number of
admissions as a Poisson process and use the Poisson regression model with the mean A(¢, x) given
by

log{A(t, x)} = a1(t) + az(t) x2 + as(t) 3 + a4(t) z4. (3.6)
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A multifold cross-validation method is used to select a bandwidth. We partition the data into
@ groups — the j** group consisting of data points with indices

d;={20k+j, k=1,2,--}, j=0,---,Q —1.

For each 7, the j-th group of data is deleted and model (3.6) is fitted for the remaining data. Then
the deviance (McCullagh and Nelder 1989, p.34) or the sum of squares of Pearson’s residuals is
computed. This leads to two cross-validation criteria

Q-1
CVi(h) = > 2 [@/Z log{yi/y-a;(Us, Xi)} = {4 — Y4, (Us, Xi)}] :

j=0 i€d,

and

Q-1 - 2
Yi — Y-a, (Ui, X,
CVQ(h)zzz{ _ i )}7
J=0 i€d,

Y-a, (Ui, X;)

where y_y (U;, X;) is a fitted value with the data in d; deleted. In the implementation, we choose
@ = 20. Figure 3(b) depicts the cross-validation functions C'Vi(h) and C'V,(h) which give the
optimal bandwidth h = 0.1440 x 105. To see how sensitive the above partition is to the CV curves,
the data set is randomly partitioned into 20 groups, and then cross-validation scores are computed
based on the same procedure described above. The results are depicted in Figure 3(c), which, in
conjunction with Figure 3(b), shows that the cross-validation functions is not very sensitive to the
partition. The estimated coefficient functions based on the one-step procedure are summarized
in Figure 4 since the results based on both the one-step and the fully iterative methods are very
close. They describe the extent to which the association between the pollutants and the number of
hospital admissions vary over time. The figure shows clearly that the coeflicient functions vary with
time. The two dashed curves are the estimated function plus/minus twice the estimated standard
errors. They give us an idea of the pointwise confidence intervals with bias ignored.

A question arises whether or not the data are highly correlated. To check for the serial corre-
lation, Pearson’s residuals are computed. The time series plot of the residuals is given in Figure
5(a) and the plot of the corresponding autocorrelation coefficients against time lag is presented in
Figure 5(b). There is no pattern in Figure 5(a). Thus, Figure 5(a) together with Figure 5(b) lead
to the conclusion that there is no evidence that the data are serially correlated.

We now apply the procedure proposed in §2.5 to testing whether the coeflicients are actually
time varying. The MLE under the null hypothesis is (5.4499, —0.0025, 0.0015, —0.0005) with
an estimated standard deviation (0.0195, 0.0006, 0.0006, 0.0005). The test statistic (2.13) is
T = 389.41. Based on 1000 bootstrap replications, the sample mean and sample variance of T™*
are 26.64 and 48.40, respectively. The distribution of 7" is approximated by a Y? distribution with
degrees of freedom 27 (see Figure 6). The p-value is close to zero, which strongly rejects the null
hypothesis. Therefore, it suggests that the varying-coefficient model gives a much better fit than
the parametric model.

Now we use our testing approach proposed in §2.5 to check whether there is any covariate that
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can be deleted from the model. We start with X, since the parametric Poisson model concludes that
the dust level (X4) is not statistically significant. To examine if the variable X4 is significant in the
varying-coefficient model, we apply the idea in §2.5 to testing the hypothesis: the function a4(-) is
zero. The maximum likelihood ratio test statistic is T' = 20.1847. Based on 1000 bootstrap samples,
the p-value is 0.321 (the sample mean and variance of 7™ are 17.7352 and 37.1976, respectively).
Therefore, the variable Xy can be dropped from the varying-coefficient model. After deleting the
variable dust level (X4), we apply the same procedure as above to test whether X3 is statistically
significant in the varying-coefficient model. That is to test Hg : log{A(¢, x)} = a1(t) + az(t) 22
against Hq @ log{\(t,x)} = a1(t) + az(t)z2 + as(t)xzs. As a result, the maximum likelihood
ratio test statistic is 7" = 39.7473 and the p-value is 0.039 (the sample mean and variance of 7™
are 27.5071 and 39.5808, respectively), based on 1000 bootstrap samples. Therefore, the variable
nitrogen dioxide (X3) is significant at the significant level 0.05. By the same token, the variable
sulfur dioxide (X3) is significant too.

Example 4. Now we apply the methodology proposed in this paper to analyze the data set:
Burns data, collected by General Hospital Burn Center at the University of Southern California.
The binary response variable Y is 1 for those victims who survived their burns and 0 otherwise, and
covariates X1=age, Xo=sex, X3 = log(burn area+1) and binary variable X4 =Ouzygen (0 if oxygen
supply is normal, 1 otherwise) are considered. We are interested in studying how burn areas and
the other variables affect survival probabilities for victims at different age groups. This naturally
leads to the following varying-coefficient model

logit{p(z1,z9, 23, 74)} = ay(@1) + ag(w1) 22 + az(z1) v3 + as(v1) 24. (3.7)

Figure 7 presents the estimated coefficients for model (3.7) via the one-step approach with band-
width h = 65.7882, selected by a cross-validation method.

A natural question arises whether the coefficients in (3.7) are actually varying. To see this, we
consider the parametric logistic regression model

logit{p(z1, x2, 3, 24)} = Bo + S1 21+ Ba g + B33+ Ba 2y (3.8)

as the null model. As a result, the MLE of (8g, ---, £4) in model (3.8) and its standard deviation
are (23.2213, —6.1485, —0.4661, —2.4496, —0.9683) and (1.9180, 0.6647, 0.2825, 0.2206, 0.2900),
respectively. The test statistic T proposed in §2.5 is 54.9601 with p-value 0.000, based on 1000
bootstrap samples (the sample mean and variance of 7™ are 5.9756 and 10.7098, respectively).
This implies that the varying-coefficient logistic regression model fits the data much better than
the parametric fit. It also allows us to examine the extent to which the regression coefficients vary
over different ages.

To examine whether there is any gender gap for different age groups or if the variable X4 affects
the survival probabilities for different age of burn victims, we consider testing hypothesis Hy :
both ay(-) and a4(-) are constant under model (3.7). The corresponding test statistic 7" is 3.2683
with p-value 0.7050, based on 1000 bootstrap samples. This in turn suggests that the coefficient
functions ay(-) and a4(-) are independent of age and indicates that there are no gender differences
for different age groups.

Finally, we examine whether both covariates sexz and Ozygen are statistically significant in model
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(3.7). The likelihood ratio test for this problem is 7" = 11.2727 with p-value 0.0860, based on 1000
bootstrap samples (the sample mean and variance of 7™ are 5.2867 and 9.7630, respectively). Both
covariates sex and Ozygen are not significant at level 0.05. This suggests that gender and oxygen
do not play a significant role in determining the survival probability of a victim.

Appendix: Proofs

Before we present the proofs of the theorems, we first impose some regularity conditions. To this
end, let us recall that g¢;(s, y) = (87/3s7) { {g7(s), y}. Note that gx(s, y) is linear in y for fixed s
such that

qailgim(u, x)}, m(u, x)] =0 and qlg{m(u, x)}, m(u, x)] = —p(u, x), (A1)

where p(u, x) is defined in (2.4). Note that we use the same notation as in §2.
Conditions:

(1) The function ¢a(s, y) < 0 for s € ® and y in the range of the response variable.

(2) The functions fy(u), I'(u), V(m(u, x)), V'(m(u, x)) and ¢"”’(m(u, x)) are continuous at the
point w = ug. Further, assume that fy(ug) > 0 and T'(ug) > 0.

(3) K(-) has a bounded support.

(4) af(-) is continuous in a neighborhood of ug for j =1, ..., p.
(5) E{|X|?|U = u} is continuous at the point u = uq.

(6) E(Y*|U = u, X = x) is bounded in a neighborhood of u = ug.

Condition (1) guarantees that the local likelihood function (2.1) is concave. It is satisfied for
the canonical exponential family with a canonical link. Note that Condition (2) implies that ¢, (-, ),
q2(+,+)s q3(+,+), p'(+,) and m/(-,-) are continuous.

Proof of Theorem 1: Recall that B, maximizes (2.1). Let 7(ug, u, X) = i {aj(uo) +
a’(uo)(u — ug)} x;, and

T
B =771 (B = arluo), -, By — ap(t0), h(Bprr — af(uo)), -, h(fay — alug)))
where v, = (n h)_l/Q. It can easily be seen that Zle{aj +b0;(U; —wo)} Xi5 = T(uo, Uy, Xi) +

T
Yo BT Z;, where Z; = (XZT, ((U; = uo)/h) XZT) . Then, the local likelihood function ¢,,(3) defined
n (2.1) becomes

LB = S g {tuon U X0) 49, 87 2.} V] KT - wo),
=1
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which is a function of 3%, denoted by (,,(87). Let

ok

B =770 (B — arluo). oo By — ap(uo). b (Bps = @4 (00)) ooy b (B — )

Then @* maximizes £(,(3") since @ maximizes (2.1). Equivalently, @* maximizes the following
normalized function

n

G =3 (o™ (Tluo) + 7. 87 2:) , Vif — {7 @lwo)), Vi}] KA(U: = wo)/h},

=1
where 7;(ug) = T(uo, Ui, X;).

We remark that Condition (1) implies that £} (-) is concave in 8”. Using the Taylor expansion
of {{g7'(-), y}, we have

GE) =W B+ mT A +”n S tn v} (672) K- w/n},  (A2)

=1
where .
Wi = 70 > qu {7i(wo), Yi} Zi K {(U; —uo)/h}, (A.3)
=1
2 n
= 77% Z {7 (o), Y3} Z: Z1 K {(U; — uo)/h},
and 7; is between 7;(ug) and 77;(ug) + Vx ﬁ*T Z;. Note that
(An)ij = (EAL)i; + 0, [{Var(A,)5317] .

Now the mean in the above expression equals

E(Ay) = b7 E g {T7(uo, U, X), m(U, X)} K {(U = uo)/h} ZZ7].

By a Taylor series expansion of 7(u, x) with respect to u around |u — ug| < h and the first result
n (A.1), we have
h% (u — ug)*

O o, %) + o(12),

77(“7 X) = ﬁ(uov U, X) +
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where 1;/(u, x) = (8%/0u?)n(u, x) = 3"_; @’(u)z;, which implies that

h? (u — ug)?

ql{ﬁ(uov U, X)v m(uv X)} = p(uv X) 9 771/:(“07 X) + 0(h2)7 (A4)
and
q2{ﬁ(u07 U, X)v m(uv X)} = —p(u, X) + 0(1) (A5)
Then, using the second equality of (A.1) and (A.5), we obtain
L _
E(A) — = fuluo) ® T(ug) = — A, (A.6)
M1 p2

where I'(ug) is given in (2.3) and A is defined in (2.6). Similar arguments show that Var{(A,);;} =
O {(nh)~'}. Therefore,
A, = —A+o0,(1). (A.7)

Since K(-)is bounded, ¢s(-, -) is linear in Y7 and E(|Y1|| U1, X1) < oo, the expected value of the
absolute value of the last term in (A.2) is bounded by

O (n 32 Blas(m, Y1) X3 K {(U = uo)/h} |) = O(3) (A8)

by Condition (5). Therefore, the last term in (A.2) is of order O,(7,). This, in conjunction with
(A.2), (A.6) and (A.7), implies that

6B =W B~ ST A+ o).

An application of the quadratic approximation lemma (see, for example, Fan and Gijbel 1996,
p.210) leads to

B =AW, 4 0,(1), (A.9)

if W, is a sequence of stochastically bounded random vectors. The asymptotic normality of 3*
follows from that of W,,. Hence, it remains to establish the asymptotic normality of W,.

Note that the random vector W, is a sum of i.i.d. random vectors. In order to establish its
asymptotic normality, it suffices to compute the mean and covariance matrix of W,, and check the
Lyapounov condition. To this end, by (A.4), we have

EW,) = ny,Elq {7(u, U, X), m(U, X)} Z K {(U - uo)/h}]
- %7(:0) (Zi) @ T(uo)a”(uo) {1+ o(1)}. (A.10)
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Similarly, by (A.10) and the definition of ¢;(-, -), one has

Var(W,) = A7 E g} 7o, U, X), ¥)} 227 K*{(U = uo)/h}]

= folu) (ZT ”1)  T(uo) {1+ o(1)} = A+ o(1), (A1)

vy

where A is defined in (2.6). By the Cramér-Wold device, in order to derive the asymptotic normality
of W, it suffices to show that for any unit vector d € R?7,

(a7 Var(w,)d} " {a"w, —a" Bw)) 2 N(0, 1), (A.12)
This, conjunction with (A.9), (A.10), and (A.11), implies that
- B5YL/2
B - %A‘l Juluo) (ZQ) ® D(uo)a(uo) {1 +0(1)} = N (0, ATTAATY). (A.13)
3

Therefore, the assertion in (2.5) holds true. To prove (A.12), we need only to check Lyapounov’s
condition for that sequence. To do so, let & = ¢ {7;(uo), Y;} 47 Z; K {(U; — ug)/h}. Then,
dTW, = v, X", &. Tt suffices to show that nvy2 E|6]> — 0 as n — oo. Similar to (A.8),
one can show that nvy2 F|&]° = O(y) — 0. If K(-) is symmetric, then gy = 0, so that (2.7) holds
true. This completes the proof of the theorem. 0

Proof of Theorem 2: Recall that

J=1

1 n P i
t(B) = hR {9_1 (Z(% +b; (U — UO))Xij) ; Yz} K3, (U; = uo).
=1
For any 3 satisfying H (ﬁ - ﬂ) =0, (h2 +(n h)_1/2), one can easily show that

H 0 (B) HTY = H'(B)H ™ +0,(1)

1 & ~ L
= - > {ZiTﬁ, Y} H'Z,Z; H' Ky(U; — uo) + 0,(1), (A.14)

=1

~ T
where Z; = (XiT,(Ui - uo)XiT) . By computing the mean and variance of H™1 £/(3)H™1, we
obtain

1

H' 0 (B)H = B lqz{ZTﬂ, v} ((U )/h)®2 9 XXT K(U = uo)| + 0,(1)

18



- E [qz {#o mwx} () o xX mw - zm)] +o,(1)

= —A+o,(l), (A.15)

~ ~ S\ -1 ~
where A is defined in (2.6). Recall that Bog = By — {K% (ﬁo)} o, (ﬂo) (see (2.2)). By the Taylor
expansion, we have

0 (Bo) = B+ (87) (Bo—8).

where ﬁ* lies between 3 and 30 and hence satisfies H (E* — ﬂ) =0, (h2 + (n h)_l/z). Then,

some algebraic computations show that

H (B, - 8) - H {¢/(B,)} HH"¢, (B,)
o (3} o 3) ] w (3, )
~u{e(B)) HE (). (A.16)

H (Bos - 8)

Therefore, by (A.15) and (A.16), we have

H (305 - ﬁ) =ATTHT L (B) {1+ 0,(1)} + 0, (hz +(n h)—l/z) 7

which, in conjunction with (A.3), (A.9), (A.12) and (A.13), implies that

Vi H (Bos = B) = AT W, + 0,(1) = B + 0,(1). (A.17)
Therefore, Bos has the same asymptotic distribution as BMLE- 0
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Figure 1: Simulation results for FErample 1 with sample size 400. (a) The boxplots for the ratios
of RASE of the one-step and two-step local likelihood approaches to that of the local MLE of a(u),
using bandwidths (from left to right) h = 0.10, 0.20 and 0.40. (b), (¢) and (d) Typical estimates of
ag(u), a1(w) and ax(u), respectively, with bandwidth h = 0.2. Solid curve — true function; dashed
curves (from shortest to longest dash) are the one-step, two-step and local MLE, respectively. (e)
The estimated densities of T' for unconditional null distributions (thick curves) and for conditional
null distributions (thin curves). (f) The power functions of the test statistic T.
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Figure 2: Simulation results for Example 2 with sample size 200. The caption is similar to Figure
1.
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Figure 3: (a) The scatterplot of log transformation of environmental data set studied in §3.3. The
curve is the estimate of a1(t) + az(t) Z1 + as(t) T2 + a4(t) T3, where T; is the average pollutant
level z;. (b) The plot of the cross-validation functions CVi(h) (solid line) and C'V,(h) (dashdot
line) against bandwidth. (c) The same as those in (b), but the cross-validation is based on random
partitions of the data set.
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Figure 4: The estimated coefficient functions via the one-step approach with bandwidth chosen by
the C'V. The dashed curves are the estimated function plus/minus twice estimated standard errors.
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Figure 5: (a) The time series plot of Pearson’s residuals. (b) The plot of the autocorrelation
coefficients versus time lag. The two dashed curves are £1.96/\/n, where n is the sample size.
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Figure 6: The estimated density of T by Monte Carlo simulation. The solid curve is the estimated
density, and the dashed curve stands for the density of chi-squared distribution with degrees of
freedom 27.
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Figure 7: The estimated coefficient functions (the solid curves) via one-step approach with bandwidth
chosen by the C'V. The dot curves are the estimated functions plus/minus twice estimated standard
errors.
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