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In this paper, we study the estimation for generalized partially linear single-index models, where the system-
atic component in the model has a flexible semi-parametric form with a general link function. We propose an
efficient and practical approach to estimate the single-index link function, single-index coefficients as well
as the coefficients in the linear component of the model. The estimation procedure is developed by applying
quasi-likelihood and polynomial spline smoothing. We derive large sample properties of the estimators and
show the convergence rate of each component of the model. Asymptotic normality and semiparametric ef-
ficiency are established for the coefficients in both the single-index and linear components. By making use
of spline basis approximation and Fisher score iteration, our approach has numerical advantages in terms of
computing efficiency and stability in practice. Both simulated and real data examples are used to illustrate
our proposed methodology.

Keywords: asymptotic normality; generalized linear model; polynomial splines; quasi-likelihood;
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1. Introduction

Generalized linear models (GLM [23]) provide a unified likelihood framework for parametric
regression analysis. They extend linear models to allow for parametrically modeling the relation
between a transformation of the mean response and some covariates. However, the parametric
approach may not always be desirable since the appropriate function form may not be known in
advance and the response may depend on the covariate in a very complicated manner. Different
approaches have been proposed to face this lack of linearity and to solve problems arising when
a misspecified model is fitted. This recognition has motivated the development of non-/semi-
parametric regression techniques with far reaching applications.

On the other hand, another problem when confronted with multiple covariates is the well-
known “curse of dimensionality”. For example, models with one multivariate function can only
accommodate low dimensional covariates. A lot of effort has been devoted to the circumventing
of this difficulty. There are essentially two possible approaches: function approximation and di-
mension reduction [34]. A favorite function approximation technique is the generalized additive
model (GAM) advocated by [10], see also, for example, [12,22,29,35] and the recent comprehen-
sive book by [31] for additional references. GAM replaces the multivariate nonparametric com-
ponent by a sum of univariate functions of the covariates. However, the model with a summand
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of univariate functions does not take into account the interaction effects among covariates. An
attractive dimension reduction method is the single-index model (SIM); see [6,7,14] and [3] for
detailed discussions and illustrations of the usefulness of this model. Over the last two decades,
many authors have devised various intelligent methods to estimate the SIM, for instance, [8,9,
11,15,16,24,33] and [25].

Semiparametric SIMs present an appealing and effective statistical concept to model the re-
lationship between the response variable and multivariate covariates, since it achieves dimen-
sion reduction and relaxes the restrictive parametric assumptions. In this paper, we consider the
generalized partially linear single-index model (GPLSIM) proposed by [2], a realistic and parsi-
monious semiparametric model. The GPLSIM as a natural extension to the SIM allows discrete
explanatory variables to be modeled in the linear part. Various methods have been studied in
depth for the partially linear single-index model (PLSIM), a special case of GPLSIM with an
identity link function. For instance, [26,36] and [20] investigate the PLSIM under independent
setting, while [4] and [21] study the estimation of the PLSIM for longitudinal data case.

Estimation of the single-index link function requires a degree of statistical smoothing. Disre-
garding the great flexibility and easy interpretability, the GPLSIMs haven’t been widely used in
practical data analysis, due to the scarcity of smoothing tools that are not only computationally
expedient but also theoretically reliable, which has motivated the proposed procedures of this
paper.

Two classes of smoothing method which have received much attention in the semiparametric
SIM literature are kernel smoothing and penalized spline smoothing. For example, the kernel
type of smoothing is adopted in [2] and [19], which can become computationally expensive when
extensive iterations are required to update the estimator. The heavy computation burden is also
noticed by a sequence of papers; see, for example, [26] and [32]. Piecewise polynomial functions,
or splines, have been proven to be an extremely powerful method in the statistical literature on
smoothing. Splines are simple, yet eminently practical tool with computational tractability and
statistical efficiency. Yu and Ruppert [36] has presented a thorough account of penalized spline
smoothing methodology for PLSIMs, in which the underlying regression function is assumed
to be a spline function with a fixed number of knots. However, the bias caused by the spline
approximation in developing the asymptotic theory is ignored. In addition, it has been shown
in many contexts of function estimation that, by letting the number of knots increase with the
sample size at an appropriate rate, the spline estimate of the unknown function can achieve the
optimal nonparametric rate of convergence.

In our paper, the estimation is carried out using the regression splines to save the computa-
tional cost. We allow a general link function and the number of knots to increase with the sample
size, which makes our approach fundamentally different from [36]. Our method can be applied
for continuous as well as categorical responses. The application of polynomial spline smooth-
ing makes our approach more stable and computationally expedient. Once the knots sequence
is chosen, we can estimate the parameters and the nonparametric single-index link function si-
multaneously by maximizing the spline approximation of the quasi-likelihood. We make use of
the Fisher scoring algorithm to solve the maximization problem iteratively. We also propose a
generalized cross-validation method to select the number of knots in the spline approximation.

Under regularity conditions, we show that the maximum quasi-likelihood estimators of the
parameters are root-n consistent, asymptotically normal and achieve the information bound. We
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also provide the convergence rate of the nonparametric component estimator. The establishment
of the asymptotic normal distribution of the estimators for the parameters in the GPLSIM is quite
challenging as our estimator is motivated from an approximated model, the standard theory of
the parametric quasi-likelihood estimation does not carry over.

The rest of the paper is structured as the following. In Section 2, we present the generalized
partially linear single-index model. In Section 3, we describe the quasi-likelihood estimation pro-
cedures via polynomial spline smoothing. In Section 4, we state the asymptotic properties of the
proposed estimators. The computing algorithm and its implementations are given in Section 5.
In Section 6, we evaluate the estimation procedure on simulated datasets. We also apply the
model and estimation procedure to analyzing the datasets from the Framingham Heart Study and
the Munich Dust Study. Concluding remarks are given in Section 7. We present the regularity
conditions and technical proofs in Appendix and Supplementary Material [27].

2. Generalized partially linear single-index models

Let Y be the response variable and (X,Z) ∈ Rd1 × Rd2 be the predictor vector with X =
(X1, . . . ,Xd1)

� and Z = (Z1, . . . ,Zd2)
�. We assume the conditional density of Y given (X,Z) =

(x, z) belongs to a canonical exponential family

fY |X,Z(y|x, z) = exp
[
yξ(x, z) −B

{
ξ(x, z)

}+ C(y)
]
, (2.1)

for known functions B and C, and ξ is the natural parameter in parametric GLMs, which is
related to the unknown mean response μ(x, z) = E(Y |X = x,Z = z) = B′{ξ(x, z)}. In parametric
GLMs, the mean function μ is defined via a known link function g by g{μ(x, z)} = α�

0 x + β�
0 z

with coefficients α0 and β0. In this paper, to enhance the model flexibility, we model g(μ) as a
PLSIM:

g
{
μ(x, z)

}= η0
(
α�

0 x
)+ β�

0 z, (2.2)

where α0 is the single-index coefficient vector with dimension d1, β0 is the coefficient vector in
the linear component with dimension d2, and η0 is some unknown and smooth function, referred
to as the single-index link function. For model identifiability, we assume ‖α0‖ = 1 and the first
element of α0 is positive. The GPLSIM includes as special cases the linear model, the SIM, as
well as the partially linear model (PLM) and the PLSIM.

If the conditional variance function Var(Y |X = x,Z = z) = σ 2V {μ(x, z)} for some known
positive function V , then estimation of the mean can be achieved by replacing the conditional
log-likelihood function fY |X,Z(y|x, z) in (2.1) by a quasi-likelihood function Q(m,y), which
satisfies

∂

∂m
Q(m,y) = y − m

σ 2V (m)
.

3. Estimation method

Let (Yi,Xi ,Zi ), i = 1, . . . , n, be independent copies of (Y,X,Z). We assume X is supported
on a d1-dimensional ball. Under some smoothness assumptions, η0(u), u ∈ [a, b], can be well
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approximated by a spline function. Let Sn be the space of polynomial splines on [a, b] of order
r ≥ 1. We introduce a knot sequence with J interior knots

k−r+1 = · · · = k−1 = k0 = a < k1 < · · · < kJ < b = kJ+1 = · · · = kJ+r ,

where J ≡ Jn increases when sample size n increases, and the precise order is given in Condition
(C5) in the Appendix. Then Sn consists of functions s satisfying:

(i) s is a polynomial of degree r − 1 on each of the subintervals Ij = [kj , kj+1), j =
0, . . . , Jn − 1, IJn = [kJn, b];

(ii) for r ≥ 2, s is r − 2 continuously differentiable on [a, b].
We seek a function η ∈ Sn along with a value of α and a value of β that maximize the following

quasi-likelihood function

L(η,α,β) = 1

n

n∑
i=1

Q
[
g−1{η(α�Xi

)+ β�Zi

}
, Yi

]
, η ∈ Sn. (3.1)

Let Nn = Jn + r , and let bj,r (u), j = 1, . . . ,Nn, be the B-spline basis functions of order r .

For any η ∈ Sn, one can write η(u) = γ �B(u), where B(u) = {bj,r (u)}Nn

j=1 is the spline basis,

and γ = {γj }Nn

j=1 is the spline coefficient vector.

Denote θ = (α�,β�,γ �)�, then the maximization problem in (3.1) is equivalent to find a
value of θ to maximize

�(θ) = 1

n

n∑
i=1

Q
[
g−1{γ �B

(
α�Xi

)+ β�Zi

}
, Yi

]
, (3.2)

and we denote the maximizer as θ̂ = (̂α�, β̂
�
, γ̂ �)�. Then the spline estimator of η0(u) is

η̂(u) = γ̂ �B(u).

4. Asymptotic properties of the estimators

In this section, we derive the asymptotic properties of the estimators for the parametric and
nonparametric components.

4.1. Estimation of the nonparametric component

For any measurable functions ϕ1, ϕ2 on [a, b], define the empirical inner product and the corre-
sponding norm as 〈ϕ1, ϕ2〉n = n−1 ∑n

i=1{ϕ1(Ui)ϕ2(Ui)}, ‖ϕ‖2
n = n−1 ∑n

i=1 ϕ2(Ui).
If ϕ1 and ϕ2 are L2-integrable, define the theoretical inner product and the corresponding norm

as 〈ϕ1, ϕ2〉 = E{ϕ1(U)ϕ2(U)}, ‖ϕ‖2
2 = Eϕ2(U) = ∫ b

a
ϕ2(u)f (u)du.

Let h = (b − a)/(Jn + 1) be the distance between neighboring knots. The following theorem
shows the convergence rate of the proposed estimator η̂.
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Theorem 1. Under Conditions (C1)–(C5) in Appendix A.1,

‖η̂ − η0‖2 = OP

{
N

1/2
n

(
hp + n−1/2h−1)},

‖η̂ − η0‖n = OP

{
N

1/2
n

(
hp + n−1/2h−1)}.

4.2. Estimation of the parametric components

The next theorem shows that the maximum quasi-likelihood estimator is root-n consistent
and asymptotically normal though the convergence rate of the nonparametric component η̂

is slower than root-n. For simplicity of notation, let T = (X�,Z�)�, m0(T) = η0(U0) +
β�

0 Z. Denote Uτ ,0 = α�(τ 0)X the true single-index variable. For l = 1,2, let ρl(m) =
{dg−1(m)/dm}l/(σ 2V {g−1(m)}). Further let

ϒ(uτ ,0) = E[Xρ2{m0(T)}|Uτ ,0 = uτ ,0]
E[ρ2{m0(T)}|Uτ ,0 = uτ ,0] ,

�(uτ ,0) = E[Zρ2{m0(T)}|Uτ ,0 = uτ ,0]
E[ρ2{m0(T)}|Uτ ,0 = uτ ,0] ,

	(x) ≡ 	(uτ ,0,x) = x − ϒ(uτ ,0), 
(z) ≡ 
(uτ ,0, z) = z − �(uτ ,0).

Recall for model identifiability, we assume ‖α‖ = 1 and the first element of α is positive.
Following [36], we re-parameterize α using the “delete-one-component” to handle this constrain.
Let τ = (τ1, τ2, . . . , τd1−1)

� and α(τ ) = (
√

1 − ‖τ‖2,τ�)�. Note that τ is unconstrained and
one dimension lower than α. The Jacobian matrix of α(τ ) of dimension d1 × (d1 − 1) is

J(τ ) =
[−(

1 − ‖τ‖2)−1/2
τ�

I(d1−1)×(d1−1)

]
. (4.1)

Another typical “delete-one-component” re-parameterization is α(τ ) = (1 τ�)�√
1+‖τ‖2

with the Jaco-

bian matrix

J(τ ) =
(

−(
1 + ‖τ‖2)−3/2

τ�(
1 + ‖τ‖2)−1/2I(d1−1)×(d1−1) − (

1 + ‖τ‖2)−3/2
ττ�

)
. (4.2)

Finally, let

R(τ ) =
[

J(τ ) 0
0 Id2×d2

]
(4.3)

be the Jacobian matrix of (α�(τ ),β�)�, which is of dimension (d1 + d2) × (d1 + d2 − 1).
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Theorem 2. Under Conditions (C1)–(C8) in Appendix A.1, the constrained quasi-likelihood
estimators α̂ and β̂ with ‖α̂‖ = 1 is asymptotically normally distributed, that is,

√
n

(
α̂ − α0

β̂ − β0

)
−→ N

{
0,R(τ 0)D−1R�(τ 0)

}
,

where R(·) is given in (4.3) and

D = E

[
ρ2
{
m0(T)

}(η′
0(Uτ ,0)J�(τ 0)	(X)


(Z)

)(
η′

0(Uτ ,0)J�(τ 0)	(X)


(Z)

)�]
. (4.4)

4.3. Semiparametric efficient score and information bound

In this section, we derive the semiparametric efficient score and the information bound for the
semiparametric model (2.1) and (2.2).

Theorem 3. We assume that the joint density of the random vector T = (X�,Z�)� exists and
is completely unknown. Under Conditions (C1)–(C8) in Appendix A.1, the efficient score for
estimating α0 and β0 is given by

l̇∗ = {
Y − μ(X,Z)

}
ρ1
{
m0(T)

}(η′
0(Uτ ,0)J�(τ 0)	(X)


(Z)

)
.

Thus, the information bound for α0 and β0 equals D in (4.4).

5. Computational algorithm

The above estimation approach can be easily implemented with the existing GLM in any statis-
tics software. To impose the constraints ‖α‖ and α1 > 0, we consider the re-parametrization of

α, α(τ ), given in Section 4.2. Let θτ = (τ�,β�,γ �)�. Let H(θτ ) = ∂2�(θτ )

∂θτ ∂θ�
τ

be the Hessian

(second derivative) matrix of the quasi-likelihood in (3.2) and let S(θτ ) = ∂�(θτ )
∂θτ

be the corre-
sponding gradient vector.

Denote

ξ i (τ ,β,γ ) =
⎛⎝γ �B′(α(τ )�Xi

)
J�(τ )Xi

Zi

B
(
α(τ )�Xi

)
⎞⎠ ,

where J(τ ) is the Jacobian matrix of α(τ ) of dimension d1 × (d1 − 1); see (4.1) and (4.1), for
example. Then the gradient vector

S(θτ ) = 1

n

n∑
i=1

{
Yi − g−1(mi)

}
ρ1(mi, Yi)ξ i (τ ,β,γ ),
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where mi = γ �B(α�Xi ) + β�Zi , and the Hessian matrix

H(θτ ) = −1

n

n∑
i=1

ρ2(mi, Yi)ξ i (τ ,β,γ )ξ�
i (τ ,β,γ ).

The Fisher scoring update equations become

θ (k+1)
τ = θ (k)

τ +
{

n∑
i=1

ρ
(k)
2 ξ i

(
τ (k),β(k),γ (k)

)
ξ�

i

(
τ (k),β(k),γ (k)

)}−1

(5.1)

×
n∑

i=1

ρ
(k)
1

(
Yi − μ

(k)
i

)
ξ i

(
τ (k),β(k),γ (k)

)
.

5.1. Initial values selection

Unlike [2], we do not require root-n consistent pilot estimators in our procedure. Our algorithm
usually converges within a few steps for reasonable initial values. We recommend repeating the
algorithm by using a variety of initial values.

To obtain a reasonable initial value of θ (0)
τ , we generate i.i.d. standard normal random vec-

tors {αb,1 ≤ b ≤ B} (say B = 200). Normalize αb such that ‖αb‖ = 1, b = 1,2, . . . ,B ,
and impose the constraint that its first element positive. Obtain βb and γ b by maximiz-
ing the quasi-likelihood Qn,b(βb,γ b;Ub) with index values Ub = {Ui,b}ni=1 = {α�

b Xi}ni=1.
Let (αb0 ,βb0 ,γ b0) = argmaxb:1≤b≤B Qn,b(βb,γ b;Ub), then the initial value is set as θ (0)

τ =
(τ�

b0 ,β
�
b0 ,γ

�
b0)

�, where τ b0 = τ (αb0), and τ (·) is the inverse map of α(τ ).

5.2. Knots selection

The spline approximation for the function η(·) requires an appropriate selection of the knot
sequences. Note that the distribution of α�X is unknown, deciding where to place knots can
become problematic. To solve the problem, we first transform the index variable, α�X using a
re-scaled centered Beta{(d1 + 1)/2, (d1 + 1)/2} cumulative distribution function:

F ∗(u) =
∫ u/χ

−1


(d1 + 1)


{(d1 + 1)/2}22d1

(
1 − t2)(d1−1)/2

dt,

for u = α�x with ‖x‖ ≤ χ . Wang and Yang [30] has shown that the probability density func-
tion of the transformed index variable is bounded below and above uniformly for all α. After
the above transformation, one can simply adopt the equally-spaced knots when applying spline
smoothing.

Next, we choose the number of knots, J ≡ Jn, by minimizing the following generalized cross-
validation (GCV) criterion

GCV(J ) = n
∑n

i=1 D(Yi, μ̂i;J )

{n − tr(S(J ))}2
, (5.2)
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where D(Y,μ;J ) is the deviance of Y corresponding to fitting with J knots, and

S(J ) = ξ
(
ξ�Wξ

)−1
ξ�W

is the influence (hat) matrix with ξ = (ξ1, . . . , ξn)
�, and W is a diagonal matrix such that Wii =

ρ2i . Based on the study in [36] and [29], 2 to 12 knots seem to be a good range to evaluate the
above GCV, and the number of interior knots Jn selected is the one with minimum GCV value.

We also investigate another user friendly knots selection method where the number of interior
knots follows

Jn = Cn1/(2r) log(n), (5.3)

where r is the order of B-spline basis function and C ∈ [0.3,1] is a tuning constant whose default
value is 0.6 in our simulation.

Our simulation shows that the estimation results using (5.3) are similar to those using the
GCV method. In the supplementary material, additional simulation works demonstrate that the
estimation outcomes are not very sensitive to the constant C in the range from [0.3,1].

6. Numerical examples

In this section, we illustrate our method by evaluating its performance on the simulated data and
in two real data analysis.

6.1. Simulation

We first conducted some simulation studies to study the finite sample behavior of the proposed
estimators for GPLSIM using a design similar to [2]. We examined the performance with two
popular link functions: identity link and logit link.

Case I: Identity link function. Following [2], we generate the data according to the “sine-
bump” model Yi = sin{π(α�Xi − A)/(B − A)} + βZi + εi , where Xi ’s are trivariate with inde-
pendent uniform (−0.5,0.5) components, Zi = 0 for i odd and Zi = 1 for i even, and εi ’s are
normally distributed with mean 0 and variance 0.01. The parameters are set as α = (1,1,1)�/

√
3

and β = 0.3. We take A = √
3/2 − 1.645/

√
12 and B = √

3/2 + 1.645/
√

12 to ensure that the
design was relatively thick in the tails. We run 200 replications with sample sizes n = 100, 200
and 500.

Case II: Logit link function. The data are generated from model logit{P(Yi = 1|Xi ,Zi)} =
sin{π(α�Xi −A)/(B −A)}+βZi + εi , where all the parameters and variables are defined in the
same way as in Case I. To mimic the Framingham Data and Munich Data, we try larger sample
size, n = 1000, 1500 and 2000, in the example. For each sample size, we run 200 replications.

We apply our proposed method to estimate the GPLSIM with two knots selection mecha-
nisms: formula (5.3) and GCV (methods GPLSIM1 and GPLSIM2, respectively). We compare
the performances of the proposed method with the penalized spline method in [36] (method
GPLSIM3), and the generalized linear model (method GLM). For a fair comparison, in GLM
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we set g{μ(x, z)} = cα�x + β�z with the constraints ‖α‖ = 1 and α1 > 0. For GPLSIM3, the
values of the tuning parameter are selected by the GCV as suggested in [36].

To assess the estimation accuracy, we summarize the results using the estimated bias (Bias),
standard errors (SD) and mean squared error (MSE) for both cases. Tables 1 and 2 report the
estimation results for cases I and II with four different methods. For the logit case, as the penal-
ized spline method in [36] is only developed for the identity link, so we are not able to obtain the
GPLSIM3 in this case. Both tables correspondingly indicate the consistency of α̂ and β̂ as the
bias, SD and MSE decrease as the sample size increasing. Three algorithms for GPLSIM have
comparable performance. The knots selection with formula Cn1/(2r) log(n) by using C ∈ [0.3,1]
is close to the knots selection using the GCV in the range of 2 to 10. The simulation results
of GPLSIM1 presented in Tables 1 and 2 are based on C = 0.6. Additional simulation studies
with C = 0.4 and 0.8 are given in supplementary material; see Tables S.1 and S.2. Compared
with GLM, the GPLSIM estimators significantly over-perform the GLM regardless of sample
sizes and link functions. The poor performance of GLM is because it assumes the single-index
function is linear, thus, completely misspecifies the model.

Figure 1 depicts the estimated mean functions of η in one replication with n = 200 for case I.
One can see that the algorithm described in Section 3 works very well in fitting the data as the fit
is very close to the true mean function.

Finally, we evaluate the computing cost of different methods. The last columns in Tables 1
and 2 report the computing time of one simulation example on an ordinary x64 PC with Intel
Dual Core i5. If using formula (5.3) to select the knots, it takes about one second to compute
the GPLSIM1 in one run of simulation with 200 observations. It takes longer if using the GCV
to select knots, but usually one is able to obtain the result within one minute even for a sample
size of 2000. Overall, the proposed algorithm is fast to compute and usually converges in 5
iterations.

6.2. Example: Framingham data

In this example, we consider the Framingham dataset studied by [2] to illustrate an application
of our proposed method. Cardiovascular disease (CVD) is the leading cause of death and serious
illness in the United States. The objective of the Framingham Heart Study aims at identifying the
common factors that contribute to CVD by following its development over a long period of time
in a large group of participants who had not yet developed overt symptoms of CVD or suffered
a heart attack or stroke. For the purpose of illustration, we use Exam �3 as the baseline [2]. The
dataset includes 1615 men age 31–65, with the outcome indicating the occurrence of coronary
heart disease (CHD).

Let the response Y be the incidence of CHD. Predictors used in this example are patient’s
age, systolic blood pressure (SBP), serum cholesterol level, and smoking status. Each variable is
scaled to lie between 0 and 1. Following [2], we fit the data with GPLSIM by using the contin-
uous variables as the single index components, including X1 = age, X2 = trblood (transformed
systolic blood pressure), and X3 = logchol (log of serum cholesterol). The dummy variable,
“smoker” (smoking status), enters the model as the linear component naturally. We consider the
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Table 1. GPLSIM results of simulation study: Case I (identity link function)

α1 α2 α3 β

n Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE Time

100 GPLSIM1 0.0028 0.0160 0.0003 0.0021 0.0171 0.0003 0.0001 0.0150 0.0002 −0.0016 0.0241 0.0006 0.41
GPLSIM2 −0.0034 0.0159 0.0003 0.0004 0.0165 0.0003 −0.0022 0.0169 0.0003 0.0007 0.0216 0.0005 4.98
GPLSIM3 −0.0016 0.0158 0.0003 0.0002 0.0154 0.0002 0.0007 0.0168 0.0003 −0.0015 0.0213 0.0005 4.13
GLM −0.0417 0.0570 0.0263 0.1385 0.0861 0.0266 −0.2518 0.1649 0.0904 0.0005 0.0892 0.0079 0.00

200 GPLSIM1 −0.0003 0.0104 0.0001 −0.0007 0.0104 0.0001 0.0007 0.0102 0.0001 0.0004 0.0159 0.0003 0.64
GPLSIM2 −0.0006 0.0100 0.0001 −0.0003 0.0112 0.0001 0.0006 0.0101 0.0001 0.0007 0.0165 0.0003 6.94
GPLSIM3 −0.0003 0.0103 0.0001 0.0000 0.0094 0.0001 0.0000 0.0089 0.0001 0.0018 0.0147 0.0002 6.68
GLM 0.0183 0.0984 0.0100 0.1026 0.0614 0.0143 −0.2160 0.1137 0.0595 0.0019 0.0571 0.0032 0.00

500 GPLSIM1 0.0001 0.0064 0.0000 −0.0004 0.0068 0.0000 0.0002 0.0070 0.0000 −0.0001 0.0087 0.0001 1.48
GPLSIM2 −0.0011 0.0066 0.0000 0.0004 0.0065 0.0000 0.0005 0.0068 0.0000 −0.0006 0.0090 0.0001 13.69
GPLSIM3 0.0001 0.0062 0.0000 −0.0008 0.0062 0.0000 0.0000 0.0057 0.0000 −0.0003 0.0092 0.0001 14.48
GLM −0.0021 0.0270 0.0007 0.0674 0.0367 0.0059 −0.2233 0.0765 0.0557 0.0060 0.0366 0.0014 0.00

Table 2. GPLSIM results of simulation study: Case II (logit link function)

α1 α2 α3 β

n Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE Time

1000 GPLSIM1 −0.0587 0.1350 0.0216 −0.0329 0.1334 0.0188 0.0258 0.1875 0.0357 0.0190 0.1397 0.0198 3.72
GPLSIM2 −0.0179 0.1224 0.0152 −0.0237 0.1164 0.0140 0.0029 0.1243 0.0154 −0.0013 0.1229 0.0150 24.99
GLM −0.1404 0.2862 0.1012 0.2141 0.0998 0.0557 −0.3361 0.2215 0.1618 0.0486 0.1196 0.0166 0.00

1500 GPLSIM1 −0.0315 0.1038 0.0117 −0.0116 0.1007 0.0102 0.0154 0.0989 0.0100 0.0001 0.1091 0.0119 5.83
GPLSIM2 −0.0122 0.0944 0.0090 −0.0093 0.0948 0.0090 −0.0019 0.0945 0.0089 −0.0031 0.1139 0.0129 36.46
GLM −0.1156 0.2569 0.0790 −0.2102 0.0934 0.0529 −0.3739 0.1836 0.1733 0.0444 0.1065 0.0133 0.01

2000 GPLSIM1 −0.0262 0.0953 0.0097 −0.0028 0.0748 0.0056 0.0084 0.0923 0.0085 0.0078 0.0988 0.0098 8.02
GPLSIM2 −0.0115 0.0754 0.0058 −0.0012 0.0837 0.0070 −0.0042 0.0821 0.0067 0.0094 0.0877 0.0077 50.37
GLM −0.0684 0.1550 0.0286 0.2025 0.0910 0.0492 −0.3364 0.1630 0.1369 0.0335 0.0832 0.0080 0.01
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Figure 1. Curve estimates for a single replication of the sine-bump function. The solid curves are the true
functions. The dashed curves are the estimated mean functions from GPLSIM for Z = 0 and Z = 1. The
data are shown by squares: Z = 0 and circles: Z = 1.

following GPLSIM for the mean response

logit
{
P(CHD|X,Z)

}= η0
(
αT

0 X
)+ β0Z,

specified as

logit
{
P(disease = 1| age, trblood, logchol, smoker)

}
= η0

(
α01(age) + α02(trblood) + α03(logchol)

)+ β0(smoker).

We apply our proposed polynomial spline GPLSIM method to the data and compare it with the
local polynomial quasi-likelihood GPLSIM method in [2]. As suggested in [2], to avoid problems
with sparse data near the boundaries, we use only those data with a single-index value in range
[0.4,1.2] for estimation. The resulted data set is slightly different from that in [2], where 45 of
the 1615 observations are excluded.

For our method, we fit the model using cubic splines and 3 interior knots selected according
to the GCV criterion in (5.2). We also compare the GPLSIM with the GLM and the generalized
additive model (GAM). In GLM, η0 is assumed to be a constant multiple of identity function,
with the constant determined by the constraints ‖α‖ = 1 and α1 > 0 to make the estimation α̂

comparable to estimates from a single-index model. In GAM, the smoking status enters as a
linear term and X1, X2, X3 enter as nonparametric additive terms.

Table 3 presents the estimation results of each coefficients and their standard errors. The results
for the GPLSIM-local polynomial method are adapted from [2]. From Table 3, we observe that
the polynomial spline estimates for GPLSIM are fairly similar to the local polynomial GPLSIM
estimates. To evaluate the model fits, we also provide the generalized cross validation deviance
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Table 3. Framingham Heart Study Data

Model Method age trblood logchol smoker GCV

GPLSIM Local Polynomial Estimate 0.370 0.650 0.660 0.590 0.513
SD 0.086 0.110 0.120 0.240

Polynomial Spline Estimate 0.370 0.660 0.654 0.553 0.513
SD 0.058 0.094 0.045 0.252

GLM Estimate 0.416 0.597 0.686 0.594 0.548
SD 0.087 0.150 0.181 0.253

GAM Estimate – – – 0.570 0.524
SD – – – 0.325

(GCV) for each method in Table 3. In terms of GCV, both the GPLSIM and GAM over-perform
GLM.

Figure 2 displays the estimates of η0 and the conditional probability of heart disease for
both smokers and nonsmokers. An interesting feature of this figure is the curvature of the η0(·)

Figure 2. Curve estimates for the Framingham Heart Study Data. Left: Curve estimates of the logit
P(heart disease) for the smokers (upper curve) and nonsmokers (lower curve) against the estimated sin-
gle-index described in the text. Right: Upper (lower) curve correspond to the estimates of P(heart disease)
for smokers (nonsmokers) against the estimated single-index described in the text.
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and logit function when the single index is larger than 0.8. Similar findings are also discussed
in [2].

6.3. Example: Munich dust study data

In this example, we use the Munich Dust data analyzed in [2] for another illustration of our
method. It is important to assess the health hazard of specific harmful substances in occupational
medicine. In this data analysis, we consider a specific problem of modeling risk of bronchitis in
a dust burdened mechanical engineering plant in Munich [2].

The regressor variable X1 (trdust) is the logarithm of 1.0 plus the average dust concentration
in the working area over the period of time in question; X2 (duration) is the duration of exposure;
and Z (smoker) is the smoking status. There are 1246 observations: 23% of the workers reported
chronic bronchitis and 74% are smokers. The data were analyzed by [17] as an example of
segmented GLM with additive measurement error and were further explored by [2]. Following
[2], we conduct our analysis using the following GPLSIM

logit
{
P(bronchitis = 1| trdust, duration, smoker)

}
= η

(
α01(trdust) + α02(duration)

)+ β0(smoker),

with cubic splines and 4 interior knots selected according to the GCV criterion in (5.2).
Table 4 presents the model fitting results of GPLSIM, GLM and GAM. In GAM, the smoking

status enters as a linear term and X1, X2 enter as nonparametric additive terms. The results for
the local polynomial quasi-likelihood method are adapted from [2]. We conclude from Table 4
that the GPLSIM and GAM fit the data better than the GLM in terms of GCV. In addition, we
observe that the polynomial spline GPLSIM fit is virtually similar to the local linear GPLSIM fit
in [2].

Figure 3 shows the logit and probability of bronchitis for smokers and nonsmokers, and [2]
gives analogous results. Two important curvatures in these data are depicted in Figure 3, which
can not be well fitted by GLM. Küchenhoff and Carroll [17] suggested that the second curvature

Table 4. Munich Dust Study Data

Model Method trdust duration smoker GCV

GPLSIM Local Polynomial Estimate 0.222 0.975 0.668 1.020
SD 0.089 0.021 0.178

Polynomial Spline Estimate 0.207 0.978 0.673 1.020
SD 0.030 0.006 0.176

GLM Estimate 0.397 0.918 0.682 1.052
SD 0.104 0.142 0.174

GAM Estimate – – 0.714 1.021
SD – – 0.180
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Figure 3. Curve estimates for the Munich Dust Study Data. Left: Curve estimates of the logitP(bronchitis)
for the smokers (upper curve) and nonsmokers (lower curve) against the estimated single-index described in
the text. Right: Upper (lower) curve correspond to the estimates of P(bronchitis) for smokers (nonsmokers)
against the estimated single-index described in the text.

around single index value 0.6 may reflect a threshold effect a threshold concentration, under
which there is no risk due to the substance.

7. Conclusions and discussions

In this paper, we have proposed an effective estimation method for the GPLSIM based on a com-
bination of the polynomial spline smoothing and quasi-likelihood. The contributions we made to
the existing literature can be summarized in three ways: (i) the procedures are computationally
efficient through and stable through “delete-one-component” re-parameterization, spline approx-
imation and Fisher scoring algorithm; (ii) the estimators of the coefficients in the single-index
component and linear component are asymptotically normal and achieve the semiparametric in-
formation bound under some regularity conditions; and (iii) all the parameters in the model can
be estimated simultaneously, and we do not require any root-n consistent pilot estimator for our
estimation. The proposed method greatly enhances the application of GPLSIMs to practical data
analysis. Both the simulation study and empirical data analysis show that the proposed methods
work well for finite samples.

Recently, extensive literatures have developed new semiparametric estimation methods for
longitudinal regression models. For example, [18] considers the PLSIM with longitudinal data
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and proposes the bias-corrected quadratic inference function method. Chen et al. [4] studies the
same model and proposes a combination of the local linear smoothing and generalized estima-
tion equations under a general framework which includes both the sparse and dense longitudinal
data cases. These methods take into account the within-subject correlation information and thus
generally improves the asymptotic estimation efficiency. Our methods can be extended to lon-
gitudinal data settings through marginal models or mixed-effects models. More work, however,
is needed to understand the properties of the estimators in such new settings. Some associated
theoretical properties with respect to model selection and estimation as well as inference need to
be carefully investigated. We will leave this issue for future research.

Appendix

Throughout the article, let ‖ · ‖ be the Euclidean norm and ‖ϕ‖∞ = supa≤m≤b |ϕ(m)| be the
supremum norm of a function ϕ on [a, b]. For any matrix A, denote its L2 norm as ‖A‖2 =
sup‖x‖�=0

‖Ax‖
‖x‖ . Denote ql(m,y) = ∂l/∂mlQ{g−1(m), y}, then

q1(m,y) = ∂/∂mQ
{
g−1(m), y

}= {
y − g−1(m)

}
ρ1(m),

q2(m,y) = ∂2/∂m2Q
{
g−1(m), y

}= {
y − g−1(m)

}
ρ′

1(m) − ρ2(m),

where ρl(m) = {dg−1(m)/dm}l/(σ 2V {g−1(m)}). For easy asymptotic analysis, we adopt the
normalized B-spline space S0

n introduced in [35] with the following normalized basis

Bj,r (u) =√
Nn

{
bj+1,r (u) − E(bj+1,r )

E(b1,r )
b1,r (u)

}
, 0 ≤ j ≤ Nn − 1. (A.1)

A.1. Assumptions

The following are some conditions to obtain Theorems 1 and 2. Let v be a positive integer, let
α ∈ (0,1] be such that p = v + α > 1.5. Let H(p) be the collection of functions g on [a, b]
whose vth derivative, g(v), exists and satisfies the Lipschitz condition of order α,∣∣g(v)

(
m′)− g(v)(m)

∣∣≤ C
∣∣m′ − m

∣∣α, for a ≤ m′,m ≤ b.

Let ε = Y − g−1(m0(T)).

(C1) The function η0 ∈ H(p).
(C2) For m ∈ R and y in the range of the response variable, the function q2(m,y) < 0, and

cq < |qk
2 (m,y)| < Cq (k = 1,2), for some positive constants cq and Cq .

(C3) The vth order partial derivatives of the joint density function of X satisfy the Lipschitz
condition of order α (α ∈ (0,1]). The marginal density function of α�X is continuous
and bounded away from zero and infinity on its support [a, b].
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(C4) For any τ , there exist positive constants cτ and Cτ such that

cτ Id×d ≤ E

{(
1
T

)(
1
T

)� ∣∣∣α�(τ )X = α�(τ )x

}
≤ Cτ Id×d ,

where d = 1 + d1 + d2.
(C5) The number of knots n1/2(p+1) � Nn � n1/8 (p > 3).
(C6) For some constants 0 < Cρ,C∗

ρ,M0 < ∞,∣∣ρ1(m0)
∣∣≤ Cρ and

∣∣ρ1(m) − ρ1(m0)
∣∣≤ C∗

ρ |m − m0| for all |m − m0| ≤ M0.

(C7) For some constants 0 < Cg,C
∗
g ,M1 < ∞, the link function g in model (2.2) satisfies

that | d
dm

g(m)|m=m0 | ≤ Cg and∣∣∣∣ d

dm
g−1(m) −

{
d

dm
g−1(m)

∣∣∣∣
m=m0

}∣∣∣≤ C∗
g |m − m0| for all |m − m0| ≤ M1.

(C8) There exists a positive constant C0, such that E(ε2|Uτ ,0) ≤ C0, almost surely.

The smoothness condition in (C1) describes a requirement on the best rate of convergence that
the single-index function η0(·) can be approximated by functions in S0

n , where S0
n is B-spline

space with the normalized basis (A.1). Condition (C2) is imposed to ensure the uniqueness of
the solution; see, for example, Condition 1a of [2] and Condition (C2) of [28]. Condition (C3)
requires a smoothness condition on the joint and marginal density functions of the covariates,
which is often assumed in asymptotic analysis of nonparametric regression problems; see As-
sumption A2 in [30]. Condition (C4) implies that the eigenvalues of

E

{(
1
T

)(
1
T

)� ∣∣∣α�(τ )X = α�(τ )x

}
are bounded away from 0 and ∞. Condition (C5) gives the rate of growth of the dimension of the
spline spaces relative to the sample size. Conditions (C6) and (C7) describe some requirements
on the link function g.

In Section A.2 below, we define the best spline approximation estimator and state its asymp-
totic distribution. In Sections A.3 and A.4, we prove Theorems 1 and 2, respectively. Lemmas
S.1 to S.7 used in the proofs below are presented in the Supplementary Material.

A.2. Best spline approximation estimator

According to the result of [5] (on 149 page), for any function g ∈ H(p) and n ≥ 1, there exists
a function g̃ ∈ Sn, such that ‖g̃ − g‖∞ ≤ Chp , where C is some fixed positive constant. For
η0 satisfying Condition (C1), we can find γ̃ = {γ̃j }Nn

j=1 and a spline function η̃ = γ̃ �B(u) ∈ S0
n ,

such that ‖η̃ − η0‖∞ = O(hp).
In the following, denote m̃0(t) = η̃(α�

0 x) + β�
0 z, m̃0i ≡ m̃0(Ti ) = η̃(α�

0 Xi ) + β�
0 Zi . Let

(̃α�, β̃
�
)� = argmax‖α‖=1,β

1
n

∑n
i=1 Q[g−1{̃η(α�Xi ) + β�Zi}, Yi].
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Lemma A.1. Under Conditions (C1)–(C5),

√
n

(
α̃ − α0

β̃ − β0

)
−→ N

(
0,R(τ 0)A−1�1A−1R�(τ 0)

)
,

where R(·) is given in (4.3),

�1 = E

[
q2

1

{
m0(T)

}(η′
0(Uτ ,0)J�(τ 0)X

Z

)(
η′

0(Uτ ,0)J�(τ 0)X
Z

)�]
,

and A = (A11 A12
A�

12 A22

)
with

A11 = E
[
ρ2
{
m0(T)

}{
η′

0(Uτ ,0)
}2J�(τ 0)XX�J(τ 0)

]
,

A12 = E
[
ρ2
{
m0(T)

}
η′

0(Uτ ,0)J�(τ 0)XZ�],
A22 = E

[
ρ2
{
m0(T)

}
ZZ�].

The proof of Lemma A.1 is given in the Supplementary Material.

A.3. Proof of Theorem 1

According to Lemma S.5 in the Supplementary Material,∥∥η̂(u;α(̂τ )
)− η̃(u)

∥∥2
2 = ∥∥(γ̂ − γ̃ )�B(u)

∥∥2
2

= (γ̂ − γ̃ )�E

{
1

n

n∑
i=1

B(u)B�(u)

}
(γ̂ − γ̃ )

≤ C‖γ̂ − γ̃ ‖2
2,

thus ‖η̂ − η̃‖2 = OP {N1/2
n (hp + n−1/2h−1)} and∥∥η̂(u;α(̂τ )
)− η0(u)

∥∥
2 ≤ ∥∥η̂(u;α(̂τ )

)− η̃
(
u;α(̂τ )

)∥∥
2 + ‖η̃ − η0‖2

= OP

{
N

1/2
n

(
hp + n−1/2h−1)}+ OP

(
hp

)
= OP

{
N

1/2
n

(
hp + n−1/2h−1)}.

According to Lemma S.3 in the Supplementary Material, one has

sup
η1,η2∈Gn

∣∣∣∣ 〈η1, η2〉n − 〈η1, η2〉
‖η1‖2‖η2‖2

∣∣∣∣= OP

{(
logn

nh

)1/2}
.
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Thus, ‖η̂ − η̃‖n = OP {N1/2
n (hp + n−1/2h−1)}. Then

‖η̂ − η0‖n ≤ ‖η̂ − η̃‖n + ‖η̃ − η0‖n

= OP

{
N

1/2
n

(
hp + n−1/2h−1)}+ OP

(
hp

)
= OP

{
N

1/2
n

(
hp + n−1/2h−1)}.

A.4. Proof of Theorem 2

We use the notation Ûτ = α�(̂τ )X. For any v = (v�
1 ,v�

2 )� with v1 ∈ Rd1 and v2 ∈ Rd2 define

m̂
(
v;α(̂τ ), β̂

)= η̂
{
ûτ + v1J�(̂τ )	(x);α(̂τ ), β̂

}+ v�
2 
(z).

Define

Mn = {
m(x, z) = η

(
α�(τ )x

)+ β�z : η ∈ H(p)
}
.

Note that m̂(v;α(̂τ ), β̂) maximizes l(m) = 1
n

∑n
i=1 Q[g−1{m(Xi ,Zi )}, Yi] for all m ∈Mn when

v = 0, thus ∂
∂v l(m̂)|v=0 = 0, i.e.

∂

∂v1
l(m̂)

∣∣∣∣
v=0

= 0,
∂

∂v2
l(m̂)

∣∣∣∣
v=0

= 0.

Denote by m̂i = η̂(Ûτ ,i;α(̂τ ), β̂) + β̂
�

Zi = γ̂ �B(Ûτ ,i ) + β̂
�

Zi . First,

0 ≡ ∂

∂v1
l(m̂)

∣∣∣∣
v1=0

= 1

n

n∑
i=1

[
Yi − g−1(m̂i)

]
ρ1(m̂i )̂η

′(Ûτ ,i;α(̂τ ), β̂
)
J�(̂τ )	(Xi )

= 1

n

n∑
i=1

[
Yi − g−1(m̂i)

]
ρ1(m̂i)η

′
0(Uτ ,0i )J�(̂τ )	(Xi )

+ 1

n

n∑
i=1

[
Yi − g−1(m̂i)

]
ρ1(m̂i)

[̂
η′(Ûτ ,i;α(̂τ ), β̂

)− η′
0(Uτ ,0i )

]
J�(̂τ )	(Xi ).

Using the following expansion

η̂′(Ûτ ,i;α(̂τ ), β̂
)− η′

0(Uτ ,0i )

= η̂′(Ûτ ,i;α(̂τ ), β̂
)− η̂′(α�(τ 0)Xi;α(̂τ ), β̂

)+ η̂′(Uτ ,0i;α(̂τ ), β̂
)− η′

0(Uτ ,0i )
(A.2)

= η̂′′(α�
τ ,0Xi;α(̂τ ), β̂

){
α(̂τ ) − α(τ 0)

}�Xi + η̂′(Uτ ,0i;α(̂τ ), β̂
)− η′

0(Uτ ,0i )

+ oP

(
n−1/2),
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and Conditions (C3), (C4) and (C7), we have

1

n

n∑
i=1

[
Yi − g−1(m̂i)

]
ρ1(m̂i)

{
η̂′(Ûτ ,i;α(̂τ ), β̂

)− η′
0(Uτ ,0i )

}
J�(̂τ )	(Xi )

= 1

n

n∑
i=1

εiρ1(m̂i )̂η
′′(Uτ ,0i;α(̂τ ), β̂

)
J�(̂τ )	(Xi )X�

i J(τ 0)(̂τ − τ 0)

+ 1

n

n∑
i=1

εiρ1(m̂i)
{
η̂′(Uτ ,0i;α(̂τ ), β̂

)− η′
0(Uτ ,0i )

}
J�(̂τ )	(Xi )

− 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

]
ρ1(m̂i )̂η

′′(Uτ ,0i;α(̂τ ), β̂
)
J�(̂τ )	(Xi )X�

i J(τ 0)(̂τ − τ 0)

− 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

]
ρ1(m̂i)

{
η̂′(Uτ ,0i;α(̂τ ), β̂

)− η′
0(Uτ ,0i )

}
J�(̂τ )	(Xi )

= oP

(
n−1/2).

Thus,

0 = 1

n

n∑
i=1

εiρ1(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )

+ 1

n

n∑
i=1

εi

{
ρ1(m̂i) − ρ1(m0i )

}
η′

0(Uτ ,0i )J�(τ 0)	(Xi )

(A.3)

− 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

]
ρ1(m̂i)η

′
0(Uτ ,0i )J�(τ 0)	(Xi ) + oP

(
n−1/2)

≡ I + II − III + oP

(
n−1/2).

By (S.10) in the supplement, ‖m̂ − m0‖∞ = OP {Nn(h
p + n−1/2h−1)}, so

II = 1

n

n∑
i=1

εiρ
′
1(m0i )(m̂i − m0i )η

′
0(Uτ ,0i )J�(τ 0)	(Xi ) + oP

(
n−1/2)= II∗ + oP

(
n−1/2),

by Condition (C8). Note that the expectation of the square of the kth column of II∗ is

E

{
1

n

n∑
i=1

εiρ
′
1(m0i )(m̂i − m0i )η

′
0(Uτ ,0i )J�(τ 0)	(Xi )ek

}2

= o
(
n−1).
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By Markov’s inequality,

1

n

n∑
i=1

εiρ
′
1(m0i )(m̂i − m0i )η

′
0(Uτ ,0i )J�(τ 0)	(Xi ) = oP

(
n−1/2).

Therefore,

II = oP

(
n−1/2). (A.4)

For the third term, we have

III = 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

]
ρ1(m̂i)η

′
0(Uτ ,0i )J�(τ 0)	(Xi )

= 1

n

n∑
i=1

(m̂i − m0i )ρ2(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )

+ 1

n

n∑
i=1

dg−2(m)

dm2

∣∣∣∣
m=m̄i

(m̂i − m0i )
2ρ1(m0i )η

′
0(Uτ ,0i )J�(τ 0)	(Xi )

+ 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

][
ρ1(m̂i) − ρ1(m0i )

]
η′

0(Uτ ,0i )J�(τ 0)	(Xi )

= III1 + III2 + III3,

where m̄i is between m0i and m̂i .
Similar to (A.2), we have

m̂i − m0i = η̂
(
Ûτ ,i;α(̂τ ), β̂

)− η0(Uτ ,0i ) + (β̂ − β0)
�Zi

= η′(Uτ ,0i )
{
α(̂τ ) − α(τ 0)

}�
	(Xi ) + η̂

(
Uτ ,0i;α(̂τ ), β̂

)− η0(Uτ ,0i )

+ η′(Uτ ,0i )
{
α(̂τ ) − α(τ 0)

}�
ϒ(Uτ ,0i ) + (β̂ − β0)

�
(Ti )

+ (β̂ − β0)
��(Uτ ,0i ) + oP

(
n−1/2),

so

III1 = 1

n

n∑
i=1

ρ2(m0i )
{
η′(Uτ ,0)

}2J�(τ 0)	(Xi )	
�(Xi )J(τ 0)(̂τ − τ 0)

+ 1

n

n∑
i=1

ρ2(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )


�(Zi )(β̂ − β0)

+ 1

n

n∑
i=1

ρ2(m0i )
{
η̂
(
Uτ ,0i;α(̂τ ), β̂

)− η0(Uτ ,0i )
}
η′

0(Uτ ,0i )J�(τ 0)	(Xi )
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+ 1

n

n∑
i=1

ρ2(m0i )
{
η′(Uτ ,0i )

}2J�(τ 0)	(Xi )ϒ
�(Uτ ,0i )J(τ 0)(̂τ − τ 0)

+ 1

n

n∑
i=1

ρ2(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )�

�(Uτ ,0i )(β̂ − β0) + oP

(
n−1/2).

By Lemma S.6 in the Supplementary Material,

1

n

n∑
i=1

ρ2(m0i )
{
η̂
(
Uτ ,0i;α(̂τ ), β̂

)− η0(Uτ ,0i )
}
η′

0(Uτ ,0i )J�(τ 0)	(Xi ) = oP

(
n−1/2),

1

n

n∑
i=1

ρ2(m0i )
{
η′(Uτ ,0i )

}2J�(τ 0)	(Xi )ϒ
�(Uτ ,0i )J(τ 0)(̂τ − τ 0) = oP

(
n−1/2),

1

n

n∑
i=1

ρ2(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )�

�(Uτ ,0i )(β̂ − β0) = oP

(
n−1/2).

Thus,

III1 = 1

n

n∑
i=1

ρ2(m0i )
{
η′(Uτ ,0i )

}2J�(τ 0)	(Xi )	
�(Xi )J(τ 0)(̂τ − τ 0) + oP

(
n−1/2)

+ 1

n

n∑
i=1

ρ2(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )


�(Zi )(β̂ − β0).

By Conditions (C5)–(C7)

III2 = 1

n

n∑
i=1

dg−2(m)

dm2

∣∣∣∣
m=m̄i

(m̂i − m0i )
2ρ1(m0i )η

′
0(Uτ ,0i )J�(τ 0)	(Xi )

≤ C‖m̂ − m0‖2∞ = OP

{
N2

n

(
hp + n−1/2h−1)2}

= oP

(
n−1/2),

and similarly

III3 = 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

][
ρ1(m̂i) − ρ1(m0i )

]
J�(τ 0)	(Xi )

≤ C‖m̂ − m0‖2∞ = oP

(
n−1/2).
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Therefore,

III = 1

n

n∑
i=1

ρ2(m0i )
{
η′(Uτ ,0i )

}2J�(τ 0)	(Xi )	
�(Xi )J(τ 0)(̂τ − τ 0) + oP

(
n−1/2)

(A.5)

+ 1

n

n∑
i=1

ρ2(m0i )η
′
0(Uτ ,0i )J�(τ 0)	(Xi )


�(Z)(β̂ − β0).

Next,

0 ≡ ∂

∂v2
l(m̂)

∣∣∣∣
v2=0

= 1

n

n∑
i=1

[
Yi − g−1(m̂i)

]
ρ1(m̂i)
(Zi )

= 1

n

n∑
i=1

εiρ1(m0i )
(Zi ) + 1

n

n∑
i=1

εi

{
ρ1(m̂i) − ρ1(m0i )

}

(Zi ) (A.6)

− 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

]
ρ1(m̂i)
(Zi ) = IV + V − VI.

Similar to (A.4),

V = 1

n

n∑
i=1

εi

[
ρ1(m̂i) − ρ1(m0i )

]

(Zi ) = oP

(
n−1/2). (A.7)

For term VI, we have

VI = 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

]
ρ1(m̂i)
(Zi )

= 1

n

n∑
i=1

(m̂i − m0i )ρ2(m0i )
(Zi )

+ 1

n

n∑
i=1

dg−2(m)

dm2

∣∣∣∣
m=m̄i

(m̂i − m0i )
2ρ1(m0i )
(Zi )

+ 1

n

n∑
i=1

[
g−1(m̂i) − g−1(m0i )

][
ρ1(m̂i) − ρ1(m0i )

]

(Zi )

= VI1 + VI2 + VI3,

where m̄i is between m0i and m̂i . Note that

VI1 = 1

n

n∑
i=1

(m̂i − m0i )ρ2(m0i )
(Zi )
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= 1

n

n∑
i=1

η′
0(Uτ ,0i )ρ2(m0i )
(Zi )	

�(Xi )J(τ 0)(̂τ − τ 0) + oP

(
n−1/2)

+
{

1

n

n∑
i=1

ρ2(m0i )
(Ti )
(

�(Zi ) + ��(Uτ ,0i )

)}
(̂β − β0)

+ 1

n

n∑
i=1

{
η̂(Uτ ,0i ) − η0(Uτ ,0i )

}
ρ2(m0i )
(Zi )

+ 1

n

n∑
i=1

η′
0(Uτ ,0i )ρ2(m0i )
(Zi )ϒ

�(Uτ ,0i )J(τ 0)(̂τ − τ 0).

By Lemma S.7 in the Supplementary Material, one has

1

n

n∑
i=1

{
η̂(Uτ ,0i ) − η0(Uτ ,0i )

}
ρ2(m0i )
(Zi ) = oP

(
n−1/2),

1

n

n∑
i=1

η′
0(Uτ ,0i )ρ2(m0i )
(Zi )ϒ

�(Uτ ,0i )J(τ 0)(̂τ − τ 0) = oP

(
n−1/2),

1

n

n∑
i=1

ρ2(m0i )
(Zi )�(Uτ ,0i )
�(β̂ − β0) = oP

(
n−1/2).

Hence,

VI1 =
{

1

n

n∑
i=1

ρ2(m0i )
(Zi )
{

(Zi )

}�
}

(β̂ − β0)

+ 1

n

n∑
i=1

η′(Uτ ,0i )ρ2(m0i )
(Zi )	
�(Xi )J(τ 0)(̂τ − τ 0) + oP

(
n−1/2),

and using similar arguments about III2 and III3, we can show |VI2| = oP (n−1/2), |VI3| =
oP (n−1/2). Therefore,

VI =
{

1

n

n∑
i=1

ρ2(m0i )
(Zi )
{

(Zi )

}�
}

(β̂ − β0) + oP

(
n−1/2)

(A.8)

+ 1

n

n∑
i=1

η′(Uτ ,0i )ρ2(m0i )
(Zi )	
�(Xi )J(τ 0)(̂τ − τ 0).
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Combining (A.3)–(A.8), we have

0 = 1

n

n∑
i=1

q1(m0i , Yi)

(
η′

0(Uτ ,0i )J�(τ 0)	(Xi )


(Zi )

)

+
{

E

[
ρ2
{
m0(T)

}(η′
0(Uτ ,0)J�(τ 0)	(X)


(Z)

)

×
(
η′

0(Uτ ,0)	
�(X)J(τ 0)

{

(Z)

}�)]+ oP (1)

}(
τ̂ − τ 0

β̂ − β0

)
+ oP

(
n−1/2).

Applying the central limit theorem and the delta method, we obtain the desired distribution of(α̂−α0
β̂−β0

)
in the original parameter space.

A.5. Proof of Theorem 3

Let π(x, z) be the joint density of T = (X�,Z�)�. Then under the semiparametric model (2.1)
and (2.2), the joint density of (X, Y,Z) is given by

f (x, y, z) = exp
[
yξ(x, z) −B

{
ξ(x, z)

}+ C(y)
]
π(x, z), (A.9)

where ξ(x, z) = g0 ◦g−1{η0(α
�
0 X)+β�

0 Z} with ‖α0‖ = 1 and g0 as the canonical link function.
Define the following submodels:

P1 = {
Model (A.9) with given η0(·)

}
,

P2 = {
Model (A.9) with given α0 and β0

}
,

P3 = {
Model (A.9) with given α0, β0 and η0(·)

}
,

and let Ṗ ⊥ denote the orthogonal complement of Ṗ . The score function for α0 and β0 in the
parametric model P1 is

l̇ = {
Y − μ(X,Z)

}
g′

1

{
η0
(
α�

0 X
)+ β�

0 Z
}(η′

0(U)X
Z

)
.

According to Theorem 3.4.1 of [1], the efficient score for α0 and β0 in model (A.9) is given by

l̇∗ = l̇ − �(l̇|Ṗ2 + Ṗ3),

where �(l̇|Ṗ2 + Ṗ3) is the projection of l̇ into the linear space Ṗ2 + Ṗ3 and

l̇ − �(l̇|Ṗ2 + Ṗ3) = l̇ − �(l̇|Ṗ3) − �(l̇|�Ṗ⊥
3

Ṗ2)

= �
(
l̇|Ṗ ⊥

3

)− �
{
�
(
l̇|Ṗ ⊥

3

)|�Ṗ⊥
3

Ṗ2
}
.
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By Lemma A4 in [13],

�
(
l̇|Ṗ ⊥

3

)= {
Y − μ(X,Z)

}
g′

1

{
η0
(
α�

0 X
)+ β�

0 Z
}(η′

0(U)X
Z

)
,

where U = α�
0 X. Next, we can show that

�Ṗ⊥
3

Ṗ2 = {{
Y − μ(X,Z)

}
g′

1

{
η0
(
α�

0 X
)+ β�

0 Z
}
ψ(U),ψ(·) ∈ L2

}
.

Therefore,

l̇∗ = {
Y − μ(X,Z)

}
g′

1

{
η0
(
α�

0 X
)+ β�

0 Z
}(η′

0(U)
{
X − ϒ∗(U)

}
Z − �∗(U)

)
,

where ϒ∗(·) and �∗(U) satisfies that

E

[
ρ2(·)

(
η′

0(U)
{
X − ϒ∗(U)

}
Z − �∗(U)

)
ψ(U)

]
= 0, ψ(U) ∈ L2.

So

ϒ∗(U) = E{Xρ2(·)|U}
E{ρ2(·)|U} , �∗(U) = E{Zρ2(·)|U}

E{ρ2(·)|U} .

Hence,

l̇∗ = {
Y − μ(X,Z)

}
g′

1(·)
(

η′
0(U)

[
X − E

{
Xρ2(·)|U

}]
/E

{
ρ2(·)|U

}
Z − E

{
Zρ2(·)|U

}
/E

{
ρ2(·)|U

} )
.

It is easy to verify that D = E{l̇∗(l̇∗)�}.
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