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This paper discusses ef®cient estimation for a class of nonlinear time-series models with unknown

error densities. It establishes local asymptotic normality in this semi-parametric setting. This is then

used to describe ef®cient estimates and to discuss the question of adaptation. Stein's necessary

condition for adaptive estimation is satis®ed if the error densities are symmetric, but is also satis®ed

in some models with asymmetric error densities. The paper gives several methods of constructing

ef®cient estimates. These results are then applied to construct ef®cient estimators in SETAR(2; 1, 1),

EXPAR(1) and ARMA(1, 1) models. We observe that adaptation is not possible in the SETAR(2; 1, 1)

model with asymmetric errors while the ef®cient estimators in the ARMA(1, 1) model are adaptive

even for asymmetric error densities. Section 8 contains a result that is useful in verifying the

continuity of the stationary density with respect to the underlying parameters.
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1. Introduction

The construction of estimators that are asymptotically ef®cient in the presence of in®nite-

dimensional nuisance parameters has been the focus of numerous researchers in the last three

decades ± see, for example, the recent monograph by Bickel et al. (1993) and the references

therein. The present paper is concerned with the construction of such estimators in a class of

nonlinear time-series models.

To describe these models, let R denote the set of real numbers, and let m and p be

positive integers. Let F be a class of Lebesgue densities, È be an open subset of Rm,

P � fPW,ö: (W, ö) 2 È 3 F g be a family of probability measures, X 1ÿ p, . . . , X 0, X1, X 2,

. . . be random variables and, for each j � 1, 2, . . . , let hj be a measurable map from

R p� jÿ1 3 È into R. Let X j � (X 1ÿ p, . . . , Xj)
T, j � 0, 1, . . . , and

H j(W) � h j(X jÿ1, W), W 2 È, j � 1, 2, . . . :
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The time series fX j: j > 1ÿ pg is assumed to have the following structure: under each

PW,ö 2 P, the random vector X0 has a Lebesgue density gW,ö, and the random variables

å j(W) � X j ÿ H j(W), j � 1, 2, . . . , (1:1)

are independent with common density ö and independent of X0.

By selecting appropriate functions hh ji one can obtain various models studied in the

time-series literature such as the well-known ARMA models and the class of nonlinear

autoregression (NLAR( p)) models, where

H j(W) � h(X jÿ p, . . . , X jÿ1, W)

for some known function h from R p 3 È. Examples of NLAR( p) models are the SETAR(2;

1, 1) and EXPAR(1) models. The SETAR(2; 1, 1) model is obtained by taking m � 2, p � 1

and

h(x, W) � W1xI[x < 0]� W2xI[x . 0], (1:2)

while the EXPAR(1) model is obtained by taking m � 3, p � 1 and

h(x, W) � (W1 � W2 eÿW3 x2

)x: (1:3)

Tong (1990) discusses these and many other nonlinear time-series models.

Suppose now that the true parameter is (è, f ). The problem of interest is the construction

of ef®cient estimators of è in the presence of the nuisance parameter f . Such estimates

have been constructed for AR and ARMA models in two papers by Kreiss. In fact his

estimates are adaptive, i.e., they are asymptotically as ef®cient as in the case of known f .

Kreiss (1987a) provides adaptive estimates for parameters in ARMA models when the error

densities are assumed to be symmetric; Kreiss (1987b) constructs adaptive estimates of

parameters in AR models without this symmetry assumption. Jeganathan (1995) describes

an extension of the construction of Kreiss (1987a) to the present models with symmetric

errors and addresses various other inference issues for general time-series models. See also

Koul and P¯ug (1990) for adaptive estimation in explosive autoregression.

After the ®rst draft of this paper, we became aware of the preprint by Drost et al. (1994).

This preprint deals with adaptive estimation of (a part of) the parameter of interest in more

general time-series models than considered here (our model is a subclass of their location±

scale model) and shows how a sample splitting technique used in i.i.d. models by Schick

(1986) can be used to construct adaptive estimates for these models. The authors then apply

their construction to ARMA, TAR and ARCH models. In particular, they show that adaptive

estimation of the full parameter of interest is possible in ARMA models. The possibility of

adaptive estimation was already observed in an earlier paper (Drost et al. 1993) by these

authors.

Since adaptive estimation is not always possible, Jeganathan (1995) imposed symmetry

conditions and Drost et al. (1994) could only estimate the component of the parameter of

interest which is adaptively estimable. In contrast, we consider ef®cient estimation in

general. This allows us to estimate the full parameter of interest and gives us the freedom

to consider general error models. Our estimates will be automatically adaptive if the

necessary condition for adaptation is met.
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We give three constructions of ef®cient estimates. The construction given in Section 4 is

similar to that of Drost et al. (1994). It uses the sample splitting technique and shows that

ef®cient estimation is possible under minimal assumptions. We feel that sample splitting

should be avoided in moderate sample sizes. A small simulation study is included which

supports our belief. Therefore we give two more constructions that avoid this technique at

the expense of additional assumptions. The construction in Section 5 does so for adaptive

estimation in symmetric error models. It adopts the construction from Kreiss (1987a) and

®xes an erroneous argument in Jeganathan (1995). Section 6 gives a construction for error

models whose densities have zero means and ®nite variances but are not necessarily

symmetric. One encounters such error models in ARMA and NLAR models.

Our asymptotic considerations are based on the local asymptotic normality (LAN) of our

models. Various LAN results have been proved in special cases by several authors ± see

Akritas and Johnson (1980), Swensen (1985), Kreiss (1987a), Hwang and Basawa (1993),

Drost et al. (1994) and Jeganathan (1995). These results do not allow for a parametrization

of the error density, and only Drost et al. (1994) and Jeganathan (1995) prove uniformity in

the parameter of interest. However, the latter two papers give LAN for other time-series

models. In contrast, we prove LAN in both the parameter of interest and the nuisance

parameter, with uniformity in the former. This semi-parametric version is needed to

characterize ef®cient estimates and to describe Stein's (1956) necessary condition for

adaptive estimation. The uniformity is helpful in the construction of ef®cient estimates.

One of the assumptions used to obtain LAN is the assumption that the initial distribution

has negligible effect. In our case this is guaranteed by the L1-continuity of the map

(W, ö) 7! gW,ö at (è, f ). The veri®cation of this condition in stationary AR and ARMA

models is rendered feasible because of the causality of these processes but its veri®cation in

general nonlinear time-series models is far from being routine. For this reason, Section 8

provides suf®cient conditions for the L1-continuity in stationary and ergodic NLAR(1)

models. Neither Drost et al. (1994) nor Jeganathan (1995) address this issue.

Our paper is organized as follows. Section 2 proves LAN for the semi-parametric time-

series models considered here. It includes a discussion about the veri®cation of the

suf®cient conditions for NLAR models. Section 3 addresses the question of ef®cient

estimation of è. It begins by characterizing asymptotically ef®cient estimates for general

error models. It then discusses Stein's (1956) necessary conditions for adaptive estimation.

It is seen that this condition holds if F contains only symmetric error densities, but may

fail otherwise. In particular, it is observed that without the symmetry assumption Stein's

necessary condition is not satis®ed in the SETAR(2; 1, 1) model, but is satis®ed in the

ARMA(1, 1) model when the error distributions have zero means and ®nite variances. The

former is a new observation and the latter was already observed by Drost et al. (1993).

Section 4 constructs asymptotically ef®cient estimates using a sample splitting technique.

The discussion on this construction is brief because this is the same approach as taken by

Drost et al. (1994). This section then gives such estimates for SETAR(2; 1, 1), (restricted)

EXPAR(1) and MA(1) models.

In Sections 5 and 6 we show that under additional assumptions ef®cient estimates can be

constructed without the sample splitting technique. Section 5 does so for adaptive

estimation in symmetric error models. It concludes with a simulation study that shows
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superiority of these estimates over the ones based on the sample splitting technique. Section

6 gives a construction avoiding the sample splitting for error models whose densities have

zero means and ®nite variances but are not necessarily symmetric. This construction is used

in Section 7 to construct an ef®cient and adaptive estimate of the parameter of an

ARMA(1, 1) model. Our construction differs from those in Kreiss (1987a) and Drost et al.

(1994) in that it is based on the actual observations, while their constructions require

observation of past error variables which are not available. Our proof gives also the

argument for the continuity of the stationary densities, an issue omitted by both papers.

Thus we give a complete argument for the construction of asymptotically ef®cient

estimators in truly stationary ARMA models based on the actual observations under

minimal assumptions.

Throughout this paper, è and f are ®xed and F denotes the distribution corresponding to

f . The expectation under PW,ö is denoted by EW,ö, (W, ö) 2 È 3 F . For convenience, PW, f

and EW, f are abbreviated by PW and EW, respectively. By a local sequence we mean a

sequence hèni in È such that
���
n
p

(èn ÿ è) is bounded. For a local sequence hèni and a

sequence fang of positive numbers, oèn
(an) (Oèn

(an)) denotes a sequence of random

variables fîng such that aÿ1
n în converges to 0 (is bounded) in Pèn

-probability. The

distribution of a random variable X under a probability measure P is denoted by L(X jP).

The multivariate normal distribution with mean ì and covariance matrix W will be denoted

by N (ì, W ).

In what follows we shall often work with (submodels of) the error models F 0 and F �
0 ,

where F 0 is the set of all Lebesgue densities that have zero means, ®nite variances and

®nite Fisher information for location, and F �
0 consists of all positive densities in F 0.

2. Local asymptotic normality

In this section we provide suf®cient conditions for the desired LAN of our model and discuss

them in NLAR models. From now on we assume the following.

Assumption 2.1. The density f has ®nite Fisher information for location, i.e., f is absolutely

continuous with a.e.-derivative f 9 and

J �
�

l 2 dF ,1, where l � ÿ f 9

f
: (2:1)

Moreover, �
jgW, f (x)ÿ gè, f (x)j dx! 0, as W! è: (2:2)

Assumption 2.2. There exist a í 2 Rm, a positive de®nite m 3 m matrix M and measurable

functions _h j from R p� jÿ1 3 È to Rm, j � 1, 2, . . . , such that for all local sequences hWni
and hèni
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Xn

j�1

jH j(Wn)ÿ H j(èn)ÿ (Wn ÿ èn)T _H j(èn)j2 � oèn
(1), (2:3)

max
1< j<n

1���
n
p i _H j(èn)i � oèn

(1), (2:4)

1

n

Xn

j�1

_H j(èn) � í� oèn
(1), (2:5)

1

n

Xn

j�1

_H j(èn) _HT
j (èn) � M � oèn

(1), (2:6)

where _H j(W) � _h j(X jÿ1, W) for j � 1, 2, . . . and W 2 È.

The quantities í and M may depend on the parameter value è. But since è is ®xed

throughout, we have suppressed this dependence. Let us now introduce the parametrization

of the error density.

De®nition 2.3. By an s-dimensional path we mean a map ç 7! fç from a neighbourhood Ä
of the origin in Rs into F such that f0 � f . The path ç 7! fç is said to be æ-smooth if æ is

a measurable function from R to Rs such that
�

iæi2 dF ,1,
�
ææT dF is non-singular, and� �����������

fç(x)
p ÿ

���������
f (x)

p
ÿ 1

2
çTæ(x)

���������
f (x)

p� �2

dx � o(içi2): (2:7)

The path ç 7! fç is said to be æ-regular if it is æ-smooth and if�
jgW, fç (x)ÿ gè, f (x)j dx! 0, as W! è and ç! 0: (2:8)

Now let ç 7! fç be an s-dimensional æ-smooth path. De®ne (m� s)-dimensional random

vectors

S j(W, æ) � _H j(W)l (å j(W))

æ(å j(W))

� �
, j � 1, 2, . . . ,

and an (m� s) 3 (m� s) matrix

V (æ) � JM í
�

l æT dF�
l æ dFíT

�
ææT dF

� �
:

Let Pn
W,ç be the restriction of PW, fç to the ó-®eld generated by Xn. For W1, W2 2 È and ç 2 Ä,

let Ën(W1, W2, ç) denote the log-likelihood ratio of Pn
W2,ç to Pn

W1,0:

Ën(W1, W2, ç) �
Xn

j�1

log
fç(X j ÿ H j(W2))

f (X j ÿ H j(W1))
� log

gW2, fç(X0)

gW1, f (X0)
:

We are now ready to state and prove the following LAN result.

Ef®cient estimation in time series 251



Theorem 2.4. Suppose Assumptions 2.1 and 2.2 hold, the path ç 7! fç is æ-regular and V (æ)

is positive de®nite. Let hèni be a local sequence and hvni � h(tn, un)i be a bounded

sequence in Rm 3 Rs. Then

Ën èn, èn � 1���
n
p tn,

1���
n
p un

� �
� 1���

n
p

Xn

j�1

vT
nSj(èn, æ)ÿ 1

2
vT

nV (æ)vn � oèn
(1), (2:9)

and

L
1���
n
p

Xn

j�1

S j(èn, æ)jPèn

 !
) N (0, V (æ)): (2:10)

Consequently,

1���
n
p

Xn

j�1

(S j(èn, æ)ÿ S j(è, æ))� JM�
l æ dFíT

� � ���
n
p

(èn ÿ è) � oè(1): (2:11)

Proof. Let çn � nÿ1=2un, än � nÿ1=2 tn and Z n, j � nÿ1=2S j(èn, æ), j � 1, . . . , n. Our proof

utilizes the martingale central limit theorem ± see Corollary 3.1 in Hall and Heyde (1980) ±

and a proper application of Theorem 3.10 in Fabian and Hannan (1987). More precisely, we

shall apply their theorem with Èn � ft: t � èn 2 Èg3 Ä, è � 0, En,( t,u)(:) �
�

. dPn
èn� t,u,

Un, j � Z n, j and M n � nI m�s, where I m�s denotes the (m� s) 3 (m� s) identity matrix. In

view of these results it suf®ces to verify

Eèn
(Z n, jjX jÿ1) � 0, j � 1, . . . , n, Pèn

a:s:, (2:12)

Ln(a) �
Xn

j�1

Eèn
(i Z n, j i2 I[i Z n, j i . a]jX jÿ1) � oèn

(1), a . 0, (2:13)

Xn

j�1

Eèn
(Z n, j ZT

n, jjX jÿ1) � V (æ)� oèn
(1), (2:14)

� �������������������
gèn, fç n

(x)
q

ÿ ����������������
gèn, f (x)

p� �2

dx�
Xn

j�1

�
w2

n, j(y) dy � oèn
(1), (2:15)

where

wn, j(y) � [ fçn
(yÿ H j(èn � än))]1=2 ÿ [ f (yÿ H j(èn))]1=2 ÿ 1

2
���
n
p vT

n _sn, j(yÿ H j(èn))

with

_sn, j(y) � _H j(èn)l (y)

æ(y)

� � ���������
f (y)

p
, y 2 R:
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Straightforward calculations and Assumption 2.2 yield (2.12) and (2.14). Verify that

Ln(a) � 1

n

Xn

j�1

�
1fi _sn, j i . a

����
nf
p

g(y)i _sn, j(y)i2 dy

<
2

n

Xn

j�1

i _H j(èn)i2

�
1f2Bnjl j. agl 2 dF � 2

�
1f2iæi . a

���
n
p g iæi2 dF, a . 0,

with Bn � max1< j<n nÿ1=2 i _H j(èn)i. Thus (2.13) follows from (2.1), (2.4), (2.6) and the

®niteness of
� jjæjj2 dF. The ®rst integral on the left-hand side of (2.15) tends to zero by

(2.8). To deal with the second term, set æ� � æ
����
f
p

=2, î � l
����
f
p

=2 and Rn, j � H j(èn � än) ÿ
H j(èn) and conclude from (2.3) and (2.4) that Rn � max1< j<n i Rn, j i � oèn

(1). Now bound

the second term in (2.15) by 4(Tn,1 � Tn,2 � Tn,3 � Tn,4), where

Tn,1 �
Xn

j�1

�
( f 1=2

çn
ÿ f 1=2 ÿ çT

næ�)2(yÿ H j(èn � än)) dy

� n

�
( f 1=2

çn
ÿ f 1=2 ÿ çT

næ�)2(y) dy! 0

by the æ-smoothness of the path ç 7! fç;

Tn,2 � iun i2

n

Xn

j�1

�
iæ�(yÿ H j(èn � än))ÿ æ�(yÿ H j(èn))i2 dy

< iun i2 sup
j tj<Rn

�
iæ�(yÿ t)ÿ æ�(y)i2 dy � oèn

(1)

in view of Rn � oèn
(1) and Theorem 9.5 in Rudin (1974);

Tn,3 �
Xn

j�1

�
( f 1=2(yÿ Rn, j)ÿ f 1=2(y)ÿ Rn, jî(y))2 dy

<
Xn

j�1

R2
n, j

�1

0

�
(î(yÿ tRn, j)ÿ î(y))2 dy dt

<
Xn

j�1

R2
n, j sup
j tj<Rn

�
(î(yÿ t)ÿ î(y))2 dy � oèn

(1)

by Assumption 2.1, (2.3), (2.6) and Theorem 9.5 in Rudin (1974); and

Tn,4 �
Xn

j�1

(Rn, j ÿ äT
n

_H j(èn))2

�
î2(y) dy � oèn

(1)

by (2.3). This completes the proof. u
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Remark 2.5. Inspection of the above proof shows that (2.5) is not needed if un � 0. Of

course, the case un � 0 has already been obtained by Drost et al. (1994) and Jeganathan

(1995).

Remark 2.6. On Assumption 2.2. If Assumption 2.1 holds and (2.3), (2.4) and (2.6) are met

with èn � è, then an application of Theorem 2.4 with un � 0 and èn � è yields that

L(XnjPWn
) and L(XnjPè) are mutually contiguous for each local sequence hWni. Thus, under

Assumption 2.1, to verify Assumption 2.2 it suf®ces to show that (2.3)±(2.6) hold with

èn � è and that

1

n

Xn

j�1

i _H j(èn)ÿ _H j(è)i2 � oè(1): (2:16)

In particular, consider a stationary and ergodic NLAR(1) process where H j(W) �
h(X jÿ1, W) for some function h from R 3 È to R. Assume that there exists a function _h
from R 3 È into Rm such that Eè i _h(X 0, è)i2 ,1, Eè

_h(X0, è) _hT(X 0, è) is positive

de®nite,

Eè(h(X 0, W)ÿ h(X 0, è)ÿ (Wÿ è)T _h(X0, è))2 � o(iWÿ èi2) (2:17)

and

Eè i _h(X 0, W)ÿ _h(X 0, è)i2 ! 0 as W! è: (2:18)

In the presence of Assumption 2.1, these conditions imply Assumption 2.2 with í �
Eè

_h(X 0, è) and M � Eè
_h(X0, è) _hT(X 0, è).

Remark 2.7. On (2.2) and (2.8). Consider again a stationary and ergodic NLAR(1) process so

that H j(W) � h(X jÿ1, W) for some function h from R 3 È to R. Assume that there is a

positive constant A and a measurable non-negative function ø such that

jh(x, W)j < Aø(x), x 2 R, (2:19)

and

jh(x, W)ÿ h(x, è)j < iWÿ èi Aø(x), x 2 R, (2:20)

for all W close to è. It then follows from Lemma 8.2 in the Appendix, that (2.2) is implied by

lim sup
W!è

EWø(X 0) ,1, (2:21)

and, for a æ-smooth path ç 7! fç, (2.8) is implied by

lim sup
W!è,ç!0

EW, f n
ø(X 0) ,1: (2:22)

In the AR(1) model one has È � (ÿ1, 1), h(x, W) � Wx, EW,öjX 0j <
� jxjö(x) dx=(1ÿ jWj)

and EW,ö(X 2
0) � � x2ö(x) dx=(1ÿ W2). Thus (2.19), (2.20) and (2.22) hold with A � 1 and

ø(x) � jxj and one obtains (2.8) for every smooth path that also satis®es

lim sup
ç!0

�
jxj fç(x) dx ,1: (2:23)
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The following result can be used to verify (2.22) if no closed form for EW,öø(X0) is

available. Suppose the densities in F are positive, ø(x)!1 as jxj ! 1 and�
ø(y� h(x, W))ö(y) dy < C � (1ÿ 2ä)ø(x), x 2 R, (2:24)

for positive constants C and ä. Then for all suf®ciently large K,

EW,öø(X 0) <
1

ä
(C � (1ÿ ä) sup

jxj<K

ø(x)): (2:25)

This can be derived from Theorem 1 in Tweedie (1983). Indeed, if K is large enough so that

C < äø(x) whenever jxj. K and if supjxj<K ø(x) ,1, then the assumptions of his theorem

hold with A � [ÿK, K] and g � äÿ1ø and the desired result follows from the bound

established in his proof.

Example 2.8. SETAR(2; 1, 1) model. Take F to be a subset of F �
0 so that F is a set of

positive Lebesgue densities with zero means, ®nite variances and ®nite Fisher information for

location, and take

È � fW 2 R2: W1 , 1, W2 , 1, W1W2 , 1g:
Petrucelli and Woolford (1984) have shown that the SETAR(2; 1, 1) model de®ned by

H j(W) � h(X jÿ1, W), where

h(x, W) � W1xI[x < 0]� W2xI[x . 0], x 2 R,

is ergodic for each (W, ö) 2 È 3 F . Thus we take fgW,ö: (W, ö) 2 È 3 F g to be the

stationary densities. Chan et al. (1985) have shown that the ®niteness of the error variance

implies that Eè(X 2
0) ,1. From this one easily derives (2.17) and (2.18) with

_h(x, W) � xI[x < 0]

xI[x . 0]

� �
:

One also ®nds that

M � Eè
_h(X 0, è) _hT(X 0, è) � EèX 2

0 I[X 0 < 0] 0

0 EèX 2
0 I[X 0 . 0]

� �
is positive de®nite.

Now let a, b, c be positive numbers, c , 1, such that è 2 U , where U �
(ÿac=b, c) 3 (ÿbc=a, c) � È, and set

ø(x) � ajxj, x < 0,

bx, x . 0:

�
Then, for all W 2 U and ö 2 F , one veri®es (2.19) and (2.20) for some A . 0 and calculates�

ø(y� h(x, W))ö(y) dy < (a� b)

�
jyjö(y) dy� cø(x), x 2 R:

Thus, in view of Remark 2.7, for each positive C there is a positive constant KC such that
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EW,öø(X0) <
2

1ÿ c
(a� b)C � 1� c

2
(a� b)KC

� �
for all W 2 U and ö 2 F with

� jyjö(y) dy < C, and this implies (2.2) and (2.8) for all

smooth paths which satisfy (2.23). As f 2 F 0 satis®es (2.1), we see that Assumptions 2.1

and 2.2 hold and that every smooth path which satis®es (2.23) is regular.

Example 2.9. EXPAR(1) model. Let F again be a subset of F �
0 , È � fW 2 R3: jW1j, 1,

W3 . 0g and

h(x, W) � (W1 � W2 eÿW3 x2

)x, x 2 R:

Chan and Tong (1985) have shown that the EXPAR(1) model de®ned by H j(W) � h(X jÿ1, W)

is geometrically ergodic for each (W, ö) 2 È 3 F . We take fgW,ö: (W, ö) 2 È 3 F g to be

the stationary densities. Let a, b, c be positive numbers, a , 1, c , b, such that è 2 U , where

U � (ÿa, a) 3 (ÿb, b) 3 (c, b): Then one veri®es (2.19) and (2.20) for all W 2 U with

ø(x) � jxj and some A . 0. Furthermore, one calculates for W 2 U and ö 2 F that�
jy� h(x, W)j2ö(y) dy <

�
y2ö(y) dy� a2x2 � (2ab� b2) sup

t2R

t2 eÿct2

, x 2 R:

Thus, in view of Remark 2.7, for each B . 0 there exists a K B . 0 such that

EW,öX 2
0 <

2

1ÿ a2
B� (2ab� b2) sup

t2R

t2 eÿct2 � 1� a2

2
K B

 !
for all W 2 U and ö 2 F with

�
y2ö(y) dy < B. By the choice of F , f has ®nite Fisher

information for location. Thus one veri®es with the aid of Remark 2.6 that Assumptions 2.1

and 2.2 hold with

_h(x, W) �
x

xeÿW3 x2

ÿW2x3 eÿW3 x2

0@ 1A
provided M � Eè

_h(X0, è) _hT(X0, è) is invertible, and obtains from Remark 2.7 that every

smooth path which satis®es

lim sup
ç!0

�
x2 fç(x) dx ,1 (2:26)

is regular. It is easy to see that the matrix M is singular if è2 � 0. Of course, this is

intuitively clear; if è2 � 0, then è3 is not identi®able. To avoid this singularity, we shall work

in the following mainly with the EXPAR(1) model in which è3 is known, say è3 � ã. For this

model È � (ÿ1, 1) 3 R and

h(x, W) � (W1 � W2 eÿãx2

)x, x 2 R:

We refer to this model as the restricted EXPAR(1) model.
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3. Ef®ciency considerations

Throughout this section we assume again that Assumptions 2.1 and 2.2 hold. We shall now

discuss ef®cient estimation of è. For this purpose, let Q denote a set of regular paths. For a

path q in Q , we let sq denote its dimension, æq its smoothness parameter,

ôq �
�

l æT
q dF

�
æqæ

T
q dF

� �ÿ1

æq

the projection of l onto the linear span Tq � faTæq: a 2 Rsqg generated by the components

of æq, and

I(q) � JM ÿ í

�
l æT

q dF

�
æqæ

T
q dF

� �ÿ1�
æql dF

 !
íT � JM ÿ ííT

�
ô2

q dF

its information matrix for estimating è. In view of a well-known formula for the determinant

of partitioned matrices, det (V (æq)) � det (I(q)) det (
�
æqæ

T
q dF). This shows that V (æq) is

invertible if and only if I(q) is. As I(q) can be written as M
�

(l ÿ ôq)2 dF �
(M ÿ ííT)

�
ô2

q dF, we see that I(q) is positive de®nite if and only if l 6� ôq or M ÿ ííT

is invertible. Thus V (æq) is invertible if l does not belong to Tq. The invertibility of V (æq) is

required for LAN.

Now let TQ denote the closed linear span generated by [q2Q Tq and l � denote the

projection of l onto TQ . We make the following additional assumption.

Assumption 3.1. The score function l does not belong to TQ . There exists a path q� in Q
such that l � 2 Tq� .

In view of the above discussion, this assumption guarantees the invertibility of V (æq) for

each q 2 Q ; consequently, each path in Q generates a LAN subproblem. Abbreviate I(q�)
by I� so that

I� � JM ÿ ííT

�
l 2

� dF:

By the de®nition of l �, the difference I(q)ÿ I� is non-negative de®nite. Thus the path q�
contains the least amount of information about è and is hence a least favourable path for

estimating è. The matrix I� will be called the ef®cient information (matrix) for estimating è.

By a loss function we mean a Borel measurable function L from Rm into [0, 1) such

that L(x) � L(ÿx) for all x 2 Rm and the set fL < ug is convex for each u . 0. By an

estimate of è we mean a sequence hZ ni of m-dimensional random vectors with Z n a

measurable function of Xn.

Theorem 3.2. Let Assumptions 2.1, 2.2 and 3.1 hold. Let hZ ni be an estimate of è. Then

sup
q2Q

lim
C!1

lim inf
n!1 sup

jjWÿèjj�jjçjj<C=
���
n
p EW,q(ç) L(

���
n
p

(Z n ÿ W)) >

�
L dN (0, Iÿ1

� ) (3:1)
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for every loss function L. Moreover, if hZ ni satis®es���
n
p

(Z n ÿ è)ÿ 1���
n
p

Xn

j�1

Iÿ1

� ( _H j(è)l (å j(è))ÿ íl �(å j(è))) � oè(1), (3:2)

then

L(
���
n
p

(Z n ÿ èn)jPèn,q(u n=
���
n
p

))) N (0, Iÿ1

� ) (3:3)

for every local sequence hèni, every q 2 Q and every bounded sequence un in Rsq , and the

latter implies

lim
C!1

lim sup
n!1

sup
jjWÿèjj�jjçjj<C=

���
n
p EW,q(ç) L(

���
n
p

(Z n ÿ W)) <

�
L dN (0, Iÿ1

� ) (3:4)

for every bounded loss function L and every path q 2 Q .

Proof. The above can be deduced from the results in Schick (1988). Alternatively and more

directly, we can proceed as follows. It follows from Theorem 6 in Fabian and Hannan (1982)

that

lim
C!1

lim inf
n!1 sup

jjWÿèjj�jjçjj<C=
���
n
p EW,q�(ç) L(

���
n
p

(Z n ÿ W)) >

�
L dN (0, Iÿ1

� )

for every loss function L. This immediately implies the lower bound (3.1).

To verify (3.3) ®x a path q in Q . It follows from (3.2) that

L

���
n
p

(Z n ÿ è)
1���
n
p Pn

j�1S j(è, æq)

0@ 1AjPè
0@ 1A) N 0,

Iÿ1

� C

CT V (æq)

� � !
,

where C � [I 0] with I the m 3 m identity matrix. The desired result now follows from

Theorem 2.4 and an application of Le Cam's third lemma ± see Le Cam (1960, Theorem 2.1)

or HaÂjek and SÏidaÂk (1967). Since loss functions are almost surely continuous with respect to

N (0, Iÿ1

� ), as shown in Fabian and Hannan (1982, p. 467), (3.3) implies (3.4). u

De®nition 3.3. In view of the above result an estimate hZ ni of è that satis®es (3.2) will be

called Q -ef®cient or simply ef®cient if Q is clear from the context.

Remark 3.4. Adaptive estimation. Suppose l is orthogonal to TQ . Then l � � 0, the ef®cient

information I� reduces to JM, and every path in Q is least favourable. Note that JM is the

information matrix if the error density is known. This means that there is no loss of

information for not knowing the error density f . To stress this special fact, ef®cient estimates

are called adaptive, or more precisely Q -adaptive. A necessary condition for adaptive

estimation is

í

�
l æT

q dF � 0, for each q 2 Q : (3:5)
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This condition goes back to Stein (1956); see also Fabian and Hannan (1982). Note that (3.5)

is satis®ed if either í � 0 or�
l æq dF � 0, for each q 2 Q : (3:6)

In stationary AR(m) models with centred and square-integrable innovations, one has í � 0,

and adaptive estimates were constructed by Kreiss (1987b) under additional assumptions. If

F contains only densities that are symmetric about zero, then l is odd and each æq is even,

hence (3.6) holds. If F includes asymmetric densities, then typically (3.6) fails to hold and

Stein's condition is equivalent to í � 0. For such error models adaptive estimation is ruled

out if í 6� 0. For example, in the SETAR(2; 1, 1) model one has

í � EèX0 I[X 0 < 0]

EèX 0 I[X 0 . 0]

� �
6� 0,

and adaptive estimation is not possible for F and Q as de®ned in the next example.

Example 3.5. Let F � F �
0 , and let Q be the set of all smooth paths ç! fç which also

satisfy �
x2 fç dx!

�
x2 f (x) dx, as ç! 0: (3:7)

We have already seen that such paths are regular in the SETAR(2; 1, 1) and restricted

EXPAR(1) model. For this given class Q of paths we obtain

TQ � a 2 L2(F):

�
a(x) f (x) dx � 0 and

�
xa(x) f (x) dx � 0

� �
:

Indeed, for every a 2 TQ one can construct a one-dimensional path ç! fç which is a-

smooth and satis®es (3.7). Utilizing the fact that
�

xl (x) f (x) dx � 1, it is easy to verify that

the projection l � of l onto TQ is given by

l �(x) � l (x)ÿ x

ó 2
, x 2 R, (3:8)

where ó 2 denotes the variance of f . The above shows that the class Q satis®es Assumption

3.1. The above also holds for F � F 0.

Remark 3.6. If we let

�Z n(W) � W� Iÿ1

�
1

n

Xn

j�1

( _H j(W)l (å j(W))ÿ íl �(å j(W))), W 2 È,

then we can express (3.2) as
���
n
p

(Z n ÿ �Z n(è)) � oè(1). It follows from (2.11) applied with

the least favourable path q� that ���
n
p

(�Z n(èn)ÿ �Z n(è)) � oè(1) (3:9)
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for every local sequence hèni. Consequently, (3.2) is implied by���
n
p

(Z n ÿ �Z n(èn)) � oèn
(1)

with hèni a local sequence for è. This fact will be exploited in the construction of ef®cient

estimates.

4. On the existence of ef®cient estimates

Throughout this section we assume that Assumptions 2.1, 2.2 and 3.1 hold. We shall now

show how to construct ef®cient estimates if we have available preliminary
���
n
p

-consistent

estimates of the parameter è and appropriate estimates of the score function l and its

projection l � onto TQ . Our construction will adapt the methods proposed by Schick (1986)

in the i.i.d. case. This includes a sample splitting technique and the use of discretized

versions of the preliminary estimate. The idea of discretization goes back to Le Cam (1960)

and has become an important technical tool in the construction of ef®cient estimators in

semi-parametric models; see Bickel et al. (1993) and references therein.

Let h~èni be a preliminary estimate of è and set ån, j � å j(~èn), j � 1, . . . , n. Let hd ni and

hmni be sequences of positive integers such that d n < mn < n, d n=n! 0 and mn=n !
1=2; set N 9n � mn ÿ d n � 1 and N 0n � nÿ mn. We shall estimate l and l � using only the

observations en,2 � (ån,m n�1, . . . , ån,n) if we want to evaluate these estimates at ån, j with

j < mn and only the observations en,1 � (ån,d n
, . . . , ån,m n

) if we want to evaluate these

estimates at ån, j with j . mn. Set

ø̂n, j �
_H j(~èn)LN 0n (ån, j, en,2)ÿ í̂2,n L�, N 0n (ån, j, en,2), j � d n, . . . , mn,
_H j(~èn)LN 9n (ån, j, en,1)ÿ í̂1,n L�, N 9n (ån, j, en,1), j � mn � 1, . . . , n,

�
where

í̂1,n � 1

N 9n

Xm n

j�d n

_H j(~èn), í̂2,n � 1

N 0n

Xn

j�mn�1

_H j(~èn),

and LN and L�,N are measurable functions from R 3 RN to R for each positive integer N.

Finally, de®ne the estimate hè̂ni by

è̂n � ~èn � 1

n

Xn

j�d n

ø̂n, jø̂
T
n, j

 !ÿ1
1

n

Xn

j�d n

ø̂n, j:

Theorem 4.1. Let Assumptions 2.1, 2.2 and 3.1 hold. Suppose that h~èni is a discretized
���
n
p

-

consistent estimate of è and that the functions Ln and L�,n are such that for independent

random variables Y1, . . . , Yn with density f�
(Ln(x, Y1, . . . , Yn)ÿ l (x))2 f (x) dx! 0 in probability, (4:1)
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�
(L�,n(x, Y1, . . . , Yn)ÿ l �(x))2 f (x) dx! 0 in probability, (4:2)

���
n
p �

(Ln(x, Y1, . . . , Yn)ÿ L�,n(x, Y1, . . . , Yn)) f (x) dx! 0 in probability: (4:3)

Then hè̂ni satis®es (3.2) and hence is ef®cient.

Remark 4.2. The proof of this theorem is similar to that of Theorem 3.1 in Drost et al.

(1994) and will not be given here. The fact that d n may not be 1 poses no problems. Our

conditions (4.1)±(4.3) correspond to Condition F of their paper. Indeed, if we interpret their
�ø to be our pair (Ln, L�,n) and their matrix C to be [1 ÿ1], then our (4.1), (4.2) become

their (3.1) and our (4.3) becomes their (3.2). Note also that their Condition H corresponds to

our (2.5).

If d n . 1, our procedure does not utilize the variables ån,1, . . . , ån,d nÿ1: Typically, one

wants d n � 1, but there are cases where it is useful to let d n !1. This is explained in

Remark 4.6 below in the case of an MA(1) process.

Example 4.3. Let us now exhibit functions Ln and L�,n as required in Theorem 4.1. We shall

do so for the symmetric error models and for the error model F 0 and F �
0 . In what follows

hani and hbni are sequences of positive numbers converging to zero, k is a symmetric density

that satis®es Condition K of Schick (1993) such as the logistic density, and f n and f 9n denote

the maps de®ned by

f n(x, y1, . . . , yn) � 1

nan

Xn

j�1

k
xÿ yj

an

� �
and f 9n(x, y1, . . . , yn) � 1

na2
n

Xn

j�1

k9
xÿ yj

an

� �
,

for x, y1, . . . , yn 2 R.

Let us begin with the error model F �
0 and the class Q considered in Example 3.5. It

was shown in Schick (1987, pp. 99±100) that the choice

Ln(x, y1, . . . , yn) � ÿ f 9n(x, y1, . . . , yn)

f n(x, y1, . . . , yn)� bn

(4:4)

satis®es (4.1) if nÿ1aÿ3
n bÿ1

n ! 0. If we now take

L� ,n(x, y1, . . . , yn) � Ln(x, y1, . . . , yn)ÿ x

1

n

Pn
j�1 y2

j

, (4:5)

then (4.3) holds and (4.2) follows from (4.1). The same is true for the larger error model F 0.

Now consider the symmetric error model. In this case f is an even function, l is an odd

function and l � � 0. Thus we can take L� ,n � 0 and take a symmetrized version of the

above choice, namely

Ln(x, y1, . . . , yn) � ÿ f 9n(x, y1, . . . , yn)ÿ f 9n(ÿx, y1, . . . , yn)

bn � f n(x, y1, . . . , yn)� f n(ÿx, y1, . . . , yn)
: (4:6)
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Again, (4.1) holds if nÿ1aÿ3
n bÿ1

n ! 0, and (4.3) holds as Ln is odd in its ®rst argument. Of

course, (4.2) is automatically satis®ed.

Remark 4.4. Candidates for
���
n
p

-consistent estimates are conditional M-estimates. These

estimates are minimizers of the random function

W 7! Qn(W) � 1

n

Xn

j�1

r(X j ÿ H j(W)),

for some given (smooth) function r. If r(x) � x2, then the resulting M-estimator is the

conditional least-squares estimator (CLSE) studied by Klimko and Nelson (1978) and

Tjùstheim (1986).

In the SETAR(2; 1, 1) model the CLSE can be written down explicitly as �èn �
(�èn,1, �èn,2)T, where

�èn,1 �
Pn

j�1 X j X jÿ1 I[X jÿ1 < 0]Pn
j�1 X 2

jÿ1 I[X jÿ1 < 0]
and �èn,2 �

Pn
j�1 X j X jÿ1 I[X jÿ1 . 0]Pn

j�1 X 2
jÿ1 I[X jÿ1 . 0]

,

and it is easily checked that this estimator is
���
n
p

-consistent. Thus the above construction

yields ef®cient estimates for è in the error models F �
0 for the choices of Ln and L�,n given

by (4.4) and (4.5) and an adaptive estimate in the symmetric error model F S � fö 2 F �
0 : ö

symmetric about 0g with Ln as in (4.6) and with L�,n � 0.

Similarly, in the restricted EXPAR(1) model the CLSE is

�èn �
Pn

j�1 X 2
jÿ1

Pn
j�1 X 2

jÿ1 eÿãX 2
jÿ1Pn

j�1 X 2
jÿ1 eÿãX 2

jÿ1
Pn

j�1 X 2
jÿ1 eÿ2ãX 2

jÿ1

" #ÿ1 Pn
j�1 X jÿ1 X jPn

j�1 X jÿ1 eÿãX 2
jÿ1 X j

 !
,

which is easily checked to be
���
n
p

-consistent. Thus the above construction with appropriate

choices of Ln and L�,n yields an ef®cient estimate of è in the error model F �
0 and an

adaptive estimate in the symmetric error model F S .

Remark 4.5. The above remark shows that ef®cient estimates can be constructed in the

SETAR(2; 1, 1) model. One can easily extend our results to more general SETAR models

de®ned by

h(x, è) �
Xk

i�1

(ìi � rix)I[x 2 Ai], x 2 R, è � (ìT, rT)T,

where the intervals A1, . . . , Ak form a partition of R. See Chan et al. (1985) for suf®cient

conditions for ergodicity and stationarity and for
���
n
p

-consistent preliminary estimates in this

model. Thus ef®cient estimates of the full parameter è can be constructed in these models as

well. These estimates, however, will not be adaptive for error models with asymmetric

densities. Drost et al. (1994) show in their Example 4.3 that (ì1 ÿ ì, . . . , ìk ÿ ì, rT)T can

be adaptively estimated where ì � (ì1 � � � � � ìk)=k.

Remark 4.6. Let us now show why it is sometimes useful to have the result available for
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other choices than d n � 1. For this we shall consider a stationary MA(1) process. We shall

show that such a process ®ts our model if we pretend that we can also observe the initial

error variable. This idea goes back to Kreiss (1987a). We then show how the estimate

constructed under this assumption can be modi®ed to use only the actual observations. This

argument requires the fact that d n !1. We should point out that the construction of Kreiss

(1987a) utilizes the initial error variable.

The stationary MA(1) process fYt: t 2 Zg satis®es the structural relation

Yt � ç t � èç tÿ1, t 2 Z,

for some è 2 (ÿ1, 1) and for independent and identically distributed innovations fç t: t 2 Zg
with zero means and ®nite variances. For our purposes we also assume that these innovations

possess a density f in F 0. If we take X0 � ç0 and X j � Y j for j � 1, 2, . . . , and set

H j(W) �
Xj

i�1

(ÿ1)iÿ1Wi X jÿi, W 2 (ÿ1, 1),

then we arrive at our basic model with È � (ÿ1, 1), F � F 0 and initial densities gW,ö � ö.

One veri®es that Assumptions 2.1 and 2.2 hold with

_H j(W) �
Xjÿ1

i�1

(ÿ1)iÿ1 iWiÿ1 X jÿi, W 2 (ÿ1, 1),

and í � 0. Thus the necessary condition for adaptive estimation is satis®ed. Note also that we

have chosen the random variables _H j(W) so that they do not depend on X0. Of course,

preliminary
���
n
p

-consistent estimates exist in this case and can be constructed from the data

X1, . . . , X n only. The above construction with Ln as in (4.4) leads to adaptive estimates.

Since in the present case one can show that í̂i,n � oè(1), i � 1, 2, one can simplify the

construction by replacing L�,n by Ln. The resulting estimate depends on the initial innovation

X0 � ç0. In practice, one does not observe X0. To overcome this hurdle one replaces the

variables ån, j in the construction by the variables ~ån, j which are obtained by substituting 0 for

X0 in the de®nition of ån, j and chooses a preliminary estimate ~èn that does not require the

knowledge of X 0. SinceXn

j�d n

(~ån, j ÿ ån, j)
2 �

Xn

j�d n

~è2 j
n X 2

0 <
~è2d n

n

1� ~è2
n

X 2
0,

one can now use Lemma 10.1 in Schick (1993) to conclude that the estimate based on the

variables ~ån, j is also adaptive provided d n !1 fast enough such that nrd n ! 0 for every

0 , r, 1. The resulting estimate can be written as

~èn �
Pn

j�d n
~øn, jPn

j�d n
~ø2

n, j

,

where

~øn, j � ( _H j(~èn)ÿ í̂1,n)LN 0n (~ån, j, ~ån,mn�1, . . . , ~ån,n), j � d n, . . . , mn,

( _H j(~èn)ÿ í̂2,n)LN 9n (~ån, j, ~ån,d n
, . . . , ~ån,m n

), j � mn � 1, . . . , n:

�
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5. Adaptive estimation in symmetric error models

In this section we shall show that under an additional assumption one can construct adaptive

estimates for symmetric error models without splitting the sample. Our construction is

essentially the same as in Jeganathan (1995), but we need to truncate the _H j in order to

overcome a mistake in his proof. (He erroneously assumes that his variables Untø̂�nt form a

martingale difference; but these variables are not measurable with respect to the given

®ltration.)

One expects that not splitting the sample should result in estimates with a better

performance for moderate sample sizes. A small simulation at the end of this section

supports this in the case considered.

Throughout this section we assume that Assumptions 2.1 and 2.2 hold and that f is

symmetric. In addition, we impose the following condition which allows for the truncation

of _H j.

Condition 5.1. For every local sequence hèni for è and every sequence hcni tending to

in®nity,

1

n

Xn

j�1

i _H j(èn)i2 I[i _H j(èn)i . cn] � oèn
(1): (5:1)

Let hcni be a sequence of positive numbers converging to in®nity and ÷n denote the map

from Rm into Rm de®ned by

÷n(x) � xI[ixi < cn]� cn

x

ixi
I[ixi . cn], x 2 Rm:

Let hd ni be a sequence of positive integers such that d n=n! 0. Set Nn � nÿ d n � 1. Let

h~èni be a preliminary estimate of è. Set

ån, j � å j(~èn) and _H n, j � ÷Nn
( _H j(~èn)), j � 1, . . . , n:

We estimate the score function l by

l^n(x) � LNn
(x, ån,d n

, . . . , ån,n), x 2 R,

where Ln is de®ned in (4.6). De®ne the estimate

è̂n � ~èn � ( Ĵ n M n)ÿ1 1

Nn

Xn

j�d n

_H n, jl^n(ån, j),

where

Ĵ n � 1

N n

Xn

j�d n

l 2̂
n(ån, j) and M n � 1

Nn

Xn

j�d n

_H n, j
_HT

n, j:

The ef®ciency of this estimator is proved in the following theorem.
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Theorem 5.2. Let Assumptions 2.1 and 2.2 and Condition 5.1 hold, and let f be symmetric

about zero. Suppose h~èni is a discretized
���
n
p

-consistent estimator of è and the sequences

hani, hbni and hcni satisfy in addition

nÿ1aÿ3
n bÿ1

n c2
n ! 0: (5:2)

Then hè̂ni satis®es

���
n
p

(è̂n ÿ è)ÿ 1���
n
p

Xn

j�1

(JM)ÿ1 _H j(è)l (å j(è)) � oè(1), (5:3)

and is thus adaptive for symmetric error models.

Proof. For simplicity we shall give the proof only for the case d n � 1. The case d n . 1 is

similar. By the properties of h~èni it suf®ces to verify (5.3) if h~èni is a local sequence.

Therefore, throughout this proof, h~èni will be assumed to be a local sequence. In view of

(2.6), (3.9) and the mutual contiguity of hL(XnjP~èn
)i and hL(XnjPè)i, it suf®ces to verify

Ĵ n � J � o~èn
(1) (5:4)

Dn,1 � 1���
n
p

Xn

j�1

( _H n, jl�n(ån, j)ÿ _H j(~èn)l (ån, j)) � o~èn
(1), (5:5)

Dn,2 � 1���
n
p

Xn

j�1

_H n, j(l^n(ån, j)ÿ l�n(ån, j)) � o~èn
(1), (5:6)

where l�n(x) � ÿ�f 9n(x)=(bn � �f n(x)) and �f n(x � � f (xÿ an t)k(t) dt, x 2 R. Note that the

random variables ån,1, . . . , ån,n are independent under P~èn
. Arguing as in Schick (1987, pp.

99±100) and utilizing (5.2), one obtains�
jl�n(y)ÿ l (y)j2 dF(y) � o(1) (5:7)

and

1

n

Xn

j�1

E~èn
jl^n(ån, j)ÿ �l n(ån, j)j2 � O(nÿ1aÿ3

n bÿ1
n ): (5:8)

Of course, this yields (5.4). For each a 2 Rm, aT Dn,1 is a martingale (for the ó-

®elds generated by X j) with quadratic variation (1=n)
Pn

j�1

�
(aT _H n, j

�l n(y) ÿ
aT _H j(~èn)l (y))2 dF(y). In view of Condition 5.1 and (5.7) this variation tends to zero in

P~èn
-probability. This yields (5.5).

To verify (5.6), let An, j denote the ó-®eld generated by X j and jån,1j, . . . , jån,nj. By the

symmetry of f , under P~èn
, and given An, jÿ1, the random variable sign (ån, j) takes values

ÿ1 and 1 with probability 1=2. By construction, l^n ÿ l�n is odd so that E~èn
[l^n(ån, j) ÿ
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l�n(ån, j)jAn, jÿ1] � 0, j � 1, . . . , n. Thus, for each a 2 Rm of length 1, aT Dn,2 is a

martingale for the ®ltration fAn, j: j � 0, . . . , ng and its quadratic variation

1

n

Xn

j�1

(aT _H n, j)
2(l^n(jån, jj)ÿ l�n(jån, jj))2 <

1

n

Xn

j�1

c2
n(l^n(ån, j)ÿ l�n(ån, j))

2 � o~èn
(1), (5:9)

in view of (5.8) and (5.2). This yields (5.6) and completes the proof. u

Remark 5.3. If the random variables _H1(W), . . . , _H n(W) are independent of the random

variables å1(W), . . . , ån(W) under PW, f for every W and n, then one does not need to truncate

the random variables _H j(~èn) and Condition 5.1 is not required. Indeed, in this case one can

replace (5.9) by

E~èn

1

n

Xn

j�1

(aT H j(~èn))2(l^n(jån, jj)ÿ l�n(jån, jj)2j _H1(~èn), . . . , _H n(~èn)

 !

<
1

n

Xn

j�1

(aT H j(~èn))2 E~èn
(l^n(ån,1)ÿ l�n(ån,1))2 � o~èn

(1),

where h~èni is thought of as a local sequence.

Remark 5.4. In stationary and ergodic NLAR(1) models one can provide simple suf®cient

conditions for Condition 5.1. Suppose there is a map ø such that Eèø(X0) ,1 and

ø(x) > supiWÿèi ,ä i _h(x, W)i2, x 2 R, for some ä. 0. Then Condition 5.1 holds. To see this,

®x a local sequence hèni and a sequence hcni tending to in®nity. It follows from the ergodic

theorem that

lim sup
n

1

n

Xn

j�1

i _H j(èn)i2 I[i _H j(èn)i . cn] < Eèø(X 0)I[ø(X0) . c]

Pè-almost surely for every c . 0. As limc!1 Eèø(X 0)I[ø(X 0) . c] � 0 we ®nd

1

n

Xn

j�1

i _H j(èn)i2 I[i _H j(èn)i . cn] � oè(1):

This and a contiguity argument yield Condition 5.1.

In the SETAR(2; 1, 1) model take ø(x) � x2 to obtain Condition 5.1 from Eè(X 2
0) ,1.

In the EXPAR(1) model take ø(x) � Ax2 for some large positive A to obtain Condition 5.1

from Eè(X 2
0) ,1.

Thus, in the SETAR(2; 1, 1) and the restricted EXPAR(1) model, Condition 5.1 holds and

the above construction, with ~èn a discretized version of the CLSE, produces adaptive

estimates of è under the symmetric error model F � F S � fö 2 F �
0 : ö is symmetric

about zerog.

Remark 5.5. To see whether not splitting the sample is superior in moderate sample sizes, we

have performed a small simulation study in S-PLUS for the AR(1) model with è � 1=2. We
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considered two error densities, the double exponential density ( f (x) � exp (ÿjxj)=2) and the

t(4) density. We performed the simulations for sample sizes n � 100 and n � 200. In all

simulations we took the kernel k(y) � c=(1� y6) and bn � 0:02, but varied the values of the

window length among the values 0.5, 0.6, 0.7, 0.8, 0.9. As preliminary estimate we took the

least-squares estimate whose asymptotic variance is 0.75=n. For each of the different values

of the window length, we simulated N pseudo-samples and constructed the preliminary

estimate and ®ve ef®cient estimates è̂n,1, . . . , è̂n,5 in each pseudo-sample. We took

N � 10 000 when n � 100 and N � 5000 when n � 200. The estimates è̂n,1, è̂n,3 and è̂n,5

are of the form

~èn �
1

n

Pn
j�1 X jÿ1l^n, j

1

n

Pn
j�1 X 2

jÿ1

1

n

Pn
j�1l 2̂

n, j

, (5:10)

and the estimates è̂n,2 and è̂n,4 are of the form

~èn �
Pn

j�1 X jÿ1l^n, jPn
j�1 X 2

jÿ1l 2̂
n, j

, (5:11)

where l^n, j � l^n(ån, j) for è̂n,1 and è̂n,2; l^n, j � l (ån, j) for è̂n,5; l^n, j � Ln=2(ån, j, ån,n=2�1,

. . . , ån,n) if j < n=2 and l^n, j � Ln=2(ån, j, ån,1, . . . , ån,n=2) if j . n=2, for è̂n,3 and è̂n,4 with

Ln as in (4.6). Thus è̂n,1 is as described in this section with d n � 1 and cn � 1 (no

truncation), è̂n,2 is similar, but uses a different estimate of I�, è̂n,3 and è̂n,4 use the sample

splitting technique and only differ by the type of estimate of I�, and è̂n,5 uses the actual

score function and corresponds to the case of known f .

Tables 1±4 list the sample mean square errors of these estimates. In the cases considered,

sample splitting does not fare as well as not splitting. As expected, the estimate è̂n,5 which

uses the actual score function performs the best. In the case of the double exponential

density the improvement of this estimate over the preliminary estimate is about 30% if

n � 100 and 36% if n � 200 (the theoretical asymptotic improvement is 50%); the best

improvements of the estimate è̂n,1 over the preliminary estimate are 23% if n � 100 and

31% if n � 200; while the best improvements of è̂n,3 are 15% if n � 100 and 26% if

n � 200.

Table 1. Sample mean square errors, double exponential density, n � 100

Window

length ~èn è̂n,1 è̂n,2 è̂n,3 è̂n,4 è̂n,5

0.5 0.007 49 0.005 86 0.005 60 0.006 50 0.006 58 0.005 30

0.6 0.007 42 0.005 75 0.005 90 0.006 31 0.006 42 0.005 08

0.7 0.007 52 0.005 84 0.006 02 0.006 36 0.006 49 0.005 29

0.8 0.007 35 0.005 79 0.005 95 0.006 22 0.006 35 0.005 17

0.9 0.007 64 0.006 20 0.006 37 0.006 58 0.006 71 0.005 38
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In the case of the t(4) density the improvement of the estimate è̂n,5 over the preliminary

estimate is about 21% if n � 100 and 25% if n � 200 (the theoretical asymptotic

improvement is 30%); the best improvements of the estimate è̂n,1 over the preliminary

estimate are 16% if n � 100 and 22% if n � 200; while the best improvements of è̂n,3 are

11% if n � 100 and 19% if n � 200. Thus the performance of the unsplit estimate è̂n,1 lies

between that of è̂n,5 and è̂n,3.

From the tables we also see that the estimates of type (5.10), namely è̂n,1 and è̂n,3,

perform slightly better than the corresponding estimates è̂n,2 and è̂n,4 of type (5.11).

Table 2. Sample mean square errors, t(4) density, n � 100

Window

length ~èn è̂n,1 è̂n,2 è̂n,3 è̂n,4 è̂n,5

0.5 0.007 32 0.006 60 0.006 78 0.007 02 0.007 16 0.005 82

0.6 0.007 13 0.006 22 0.006 41 0.006 66 0.006 81 0.005 66

0.7 0.007 32 0.006 28 0.006 44 0.006 66 0.006 80 0.005 76

0.8 0.007 26 0.006 12 0.006 32 0.006 49 0.006 64 0.005 72

0.9 0.007 36 0.006 23 0.006 44 0.006 56 0.006 73 0.005 81

Table 3. Sample mean square errors, double exponential density, n � 200

Window

length ~èn è̂n,1 è̂n,2 è̂n,3 è̂n,4 è̂n,5

0.5 0.003 89 0.002 67 0.002 72 0.002 90 0.002 93 0.002 49

0.6 0.003 72 0.002 60 0.002 63 0.002 80 0.002 83 0.002 34

0.7 0.003 79 0.002 70 0.002 74 0.002 82 0.002 86 0.002 37

0.8 0.003 68 0.002 72 0.002 77 0.002 81 0.002 86 0.002 39

0.9 0.003 75 0.002 84 0.002 88 0.002 96 0.002 99 0.002 43

Table 4. Sample mean square errors, t(4) density, n � 200

Window

length ~èn è̂n,1 è̂n,2 è̂n,3 è̂n,4 è̂n,5

0.5 0.003 70 0.003 03 0.003 08 0.003 23 0.003 26 0.002 79

0.6 0.003 63 0.002 95 0.003 03 0.003 12 0.003 17 0.002 75

0.7 0.003 65 0.002 84 0.002 90 0.002 97 0.003 02 0.002 71

0.8 0.003 66 0.002 93 0.002 99 0.003 03 0.003 08 0.002 77

0.9 0.003 73 0.002 95 0.003 02 0.003 03 0.003 09 0.002 78
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6. Ef®cient estimation in the error models F 0 and F �
0

Throughout this section we assume that Assumptions 2.1 and 2.2 hold and that f has zero

mean and ®nite variance ó 2. We shall now avoid the sample splitting technique and construct

an estimate hè̂ni that satis®es

���
n
p

(è̂n ÿ è)ÿ 1���
n
p

Xn

j�1

Iÿ1

� ( _H j(è)ÿ í)l (å j(è))� í
å j(è)

ó 2

� �
� oè(1) (6:1)

with

I� � JM ÿ ííT J ÿ 1

ó 2

� �
� J (M ÿ ííT)� ííT 1

ó 2
:

Such an estimate is ef®cient for the error models F 0 and F �
0 .

Let cn, d n, Nn, ~èn, ån, j, _H n, j, M n, Ĵ n and l^n be as de®ned in the previous section, but

with Ln now as in (4.4). In addition, set

í̂n � 1

Nn

Xn

j�d n

_H n, j, ó̂ 2
n �

1

Nn

Xn

j�d n

å2
n, j and Î�,n � í̂ní̂T

n

ó̂ 2
n

� Ĵ n(M n ÿ í̂ní̂
T
n):

Finally, let

è̂n � ~èn � 1

Nn

Xn

j�d n

Îÿ1

�,n ( _H n, j ÿ í̂n)l^n(ån, j)� í̂n

ån, j

ó̂ 2
n

� �
:

To prove the ef®ciency of this estimator we need Condition 5.1 and the following additional

condition

Condition 6.1. For every local sequence hèni and some sequence hmni of positive integers

tending to in®nity,

1

n

XX
1<i, j<n,j jÿij. mn

Eèn
(i _H j(èn)ÿ Eèn

( _H j(èn)jBn,i(èn))i2) � o(a2
n), (6:2)

where Bn,i(W) is the ó- ®eld generated by fX0, å1(W), . . . , åiÿ1(W), åi�1(W), . . . , ån(W)g, W 2 È,

i � 1, . . . , n.

Theorem 6.2. Suppose Assumptions 2.1 and 2.2 and Conditions 5.1 and 6.1 hold, f has zero

mean and ®nite variance ó 2, h~èni is a discretized
���
n
p

-consistent estimator of è and the

sequences hani, hbni, hcni and hmni satisfy in addition

nÿ1aÿ4
n bÿ2

n c2
n � nÿ1aÿ3

n bÿ1
n c2

n mn ! 0: (6:3)

Then hè̂ni satis®es (6.1).
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Proof. For simplicity in notation, we shall give the proof only for the case d n � 1. The case

d n . 1 is similar. As in the proof of Theorem 5.2, we may and shall assume that h~èni is a

local sequence. Then the random variables ån,1, . . . , ån,n are independent under P~èn
and

consequently the following facts are obtainable from the arguments of Schick (1987, pp. 99±

100). There is a constant c such that

il^n i1 < caÿ1
n , max

1< j<n
il^n, j i1 < caÿ1

n , (6:4)

il^n ÿ l^n, j i1 < caÿ2
n bÿ1

n nÿ1, il^n, j ÿ l^n, j,i i1 < caÿ2
n bÿ1

n nÿ1, i 6� j (6:5)

E~èn

�
jl^n ÿ l�nj2 dF � O(nÿ1bÿ1

n aÿ3
n ), (6:6)�

(l�n ÿ l )2 dF ! 0, (6:7)

1

n

Xn

j�1

l 2̂
n(ån, j) � J � o~èn

(1), (6:8)

1���
n
p

Xn

j�1

(l^n(ån, j)ÿ l (ån, j)) �
���
n
p �

l^n dF � o~èn
(1), (6:9)

where l�n(y) � E~èn
(l^n(y)),

l^n, j(y) � ÿ

1

na2
n

X
r:r 6� j

k9
yÿ ån,r

an

� �
bn � 1

nan

X
r:r 6� j

k
yÿ ån,r

an

� � , and l^n, j,i(y) � ÿ

1

na2
n

X
r:r 6�i, j

k9
yÿ ån,r

an

� �
bn � 1

nan

X
r:r 6�i, j

k
yÿ ån,r

an

� � ,

for y 2 R and i 6� j.

The independence of ån,1, . . . , ån,n under P~èn
, (2.5) and (5.1) imply that

ó̂ 2
n � ó 2 � o~èn

(1) and í̂n � í� o~èn
(1): (6:10)

Using this, (2.6), (5.1), (6.8) and the non-singularity of I�, one veri®es that

Îÿ1

�,n � Iÿ1

� � o~èn
(1): (6:11)

Let

~Z n � ~èn � Iÿ1

�
1

n

Xn

j�1

( _H n, j ÿ í)l (ån, j)� í
ån, j

ó 2

� �
and

Ẑ n � ~èn � Îÿ1

�,n

1

n

Xn

j�1

( _H n, j ÿ í̂n)l (ån, j)� í̂n

ån, j

ó̂ 2
n

� �
:
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It follows from Remark 3.6 and Condition 5.1 that h~Z ni satis®es (6.1). From (6.10) and

(6.11) one concludes
���
n
p

( Ẑ n ÿ ~Z n) � o~èn
(1). In view of the mutual contiguity of the

sequences hL(XnjP~èn
)i and hL(XnjPè)i and the above results, it suf®ces to prove that���

n
p

(è̂n ÿ Ẑ n) � o~èn
(1):

But, by (6.9), (6.10) and (6.11), this is implied by

1���
n
p

Xn

j�1

_H n, j(l^n(ån, j)ÿ l (ån, j)) �
���
n
p

í̂n

�
l^n dF � o~èn

(1): (6:12)

From a martingale argument, (2.6), (5.1) and (6.7) we obtain

1���
n
p

Xn

j�1

_H n, j(l�n(ån, j)ÿ l (ån, j)) �
���
n
p

í̂n

�
l�n dF � o~èn

(1):

In view of this, (6.12) is now a consequence of

1���
n
p

Xn

j�1

_H n, j(l^n(ån, j)ÿ l�n(ån, j)) �
���
n
p

í̂n

�
(l^n ÿ l�n) dF � o~èn

(1):

By (6.5), (2.6) and (5.1), the latter follows from

1���
n
p

Xn

j�1

_H n, j l^n, j(ån, j)ÿ l�n(ån, j)ÿ
�

(l^n, j ÿ l�n) dF

� �
� o~èn

(1): (6:13)

To prove (6.13), let Dj denote the jth summand in the left-hand side of (6.13) and

Dj,i � E~èn
(DjjBn,i(~èn)). Using conditioning arguments one veri®es for i 6� j that E~èn

DT
i, j Dj

� E~èn
DT

i Dj,i � E~èn
DT

i, j Dj,i � 0, which yields E~èn
DT

i Dj � E~èn
(Di ÿ Di, j)

T(Dj ÿ Dj,i). This

and the Cauchy±Schwarz inequality yield

E~èn

�������� 1���
n
p

Xn

j�1

Dj

��������2 <
1

n

Xn

j�1

E~èn
iDj i2 � 1

n

X
i6� j

E~èn
i Dj ÿ Dj,i i2

<
1� 2mn

n

Xn

j�1

E~èn
jjDj i2 � 1

n

XX
1<i, j<n,j jÿij. mn

E~èn
i Dj ÿ Dj,ijj2:

Verify that E~èn
i Dj i2 < c2

nE~èn

�
(l^n, j ÿ l�n)2 dF and use (6.5) and (6.6) to conclude that

1

n

Xn

j�1

E~èn
iDj i2 < 2Cc2

n(4aÿ4
n bÿ2

n nÿ2 � nÿ1aÿ3
n bÿ1

n ) (6:14)

for some C . 0. Let

~Dj,i � _H n, j,i(l^n, j,i(ån, j)ÿ l�n(ån, j)ÿ
�

(l^n, j,i ÿ l�n) dF),
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where _H n, j,i � E~èn
( _H n, jjBn,i(~èn)). Then by (6.4)

E~èn
iDj ÿ Dj,i i2 < E~èn

i Dj ÿ ~Dj,i i2

< 32c2aÿ2
n E~èn

i _H n, j ÿ _H n, j,i i2 � 2c2
nE~èn

�
(l^n, j,i ÿ l^n, j)

2 dF:

Therefore by (6.2) and (6.5) we obtain

1

n

XX
1<i, j<n,j jÿij. mn

E~èn
i Dj ÿ Dj,i i2 � o(1)� O(c2

n nÿ1aÿ4
n bÿ2

n ):

Combining the above with (6.3), we obtain that E~èn
i(1=

���
n
p

)
Pn

j�1 Dj i2 ! 0. Thus (6.13)

holds, and this completes the proof. u

7. Adaptive estimation in ARMA models

We shall now apply the construction of the previous section in stationary and ergodic ARMA

processes with error model F � F 0. The resulting estimate will also be adaptive as the

necessary condition for adaptation holds in this case. Our construction avoids the sample

splitting trick, does not require the knowledge of initial innovations, and shows that some

assumptions imposed by Kreiss (1987a), namely (A.5) and positivity of the error density, are

not required for the existence of adaptive estimates, nor is symmetry. The latter was also

observed by Drost et al. (1994). Since the constructions in Kreiss (1987a) and Drost et al.

(1994) use the initial innovations, they do not solve the question of adaptive estimation for

truly stationary and ergodic ARMA models, but only for a closely related model.

For simplicity, we only consider the ARMA(1, 1) process. This process fYt: t 2 Zg is

described by the difference equation

Yt ÿ áYtÿ1 � ç t ÿ âç tÿ1, t 2 Z,

where á, â 2 (ÿ1, 1), á 6� â, and fç t: t 2 Zg are independent random variables with

common density f . We assume that f 2 F 0. Then, for each t 2 Z, one has

Yt � ç t � (áÿ â)
X1
i�1

áiÿ1ç tÿi, (7:1)

ç t � Yt � (âÿ á)
X1
i�1

âiÿ1Ytÿi, (7:2)

X1
i�0

âiYtÿi �
X1
i�0

áiç tÿi, (7:3)

where the series converge almost surely and in mean square. One arrives at (1.1) by setting

Xÿ1 � ç0, X j � Y j for j � 0, 1, . . . , and
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H j(W) � (W1 ÿ W2)
Xjÿ1

i�1

Wiÿ1
2 X jÿi � W jÿ1

2 (W1 X0 ÿ W2 Xÿ1), j � 1, 2, . . . :

We take F � F 0, È � f(a, b) 2 (ÿ1, 1)2: a 6� bg and è � (á, â). The initial density has

the following form:

g(a,b),ö(x, y) � 1

jaÿ bj ãa,ö
yÿ x

aÿ b

� �
ö(x), x, y 2 R, (a, b) 2 È,

where ãa,ö is the stationary density of the AR(1) model with parameter a and error density ö.

It was shown in Remark 2.7 that (a, ç) 7! ãa, fç is L1-continuous at (á, 0) for every smooth

path ç! fç satisfying (3.7). From this one derives (2.2) and (2.8) for each such path.

Consequently, every smooth path satisfying (3.7) is regular.

Let _H j denote the gradient of the map (a, b) 7! P jÿ1
i�1 (aÿ b)biÿ1 X jÿi, i.e.,

_H j(a, b) �
P jÿ2

i�0 bi X jÿ1ÿiP jÿ3
i�0 a(i� 1)bi X jÿ2ÿi ÿ

P jÿ2
i�0 (i� 1)bi X jÿ1ÿi

 !
,

and

V j �
P1

i�0â
iY jÿ1ÿiP1

i�0á(i� 1)âiY jÿ2ÿi ÿ
P1

i�0(i� 1)âiY jÿ1ÿi

� �
�

P1
i�0á

iç jÿ1ÿi

ÿP1i�0â
iç jÿ1ÿi

� �
:

By the ergodic theorem nÿ1
Pn

j�1V j ! Eè(V1) and nÿ1
Pn

j�1V jV
T
j ! Eè(V1V T

1 ) almost

surely. Note also that Eè i _H n(è)ÿ Vn i ! 0. Using the above and Remark 2.6 one veri®es

that Assumption 2.2 holds with

í � EèV1 � 0 and M � EèV1V T
1 � ó 2

1

1ÿ á2
ÿ 1

1ÿ áâ

ÿ 1

1ÿ áâ

1

1ÿ â2

2664
3775:

As í � 0, the necessary condition for adaptive estimation holds.

Utilizing the identities (7.1)±(7.3) one veri®es that

_H j(a, b) �
Xjÿ2

i�0

ai

ÿbi

� �
å jÿ1ÿi(a, b)� (bÿ a)ÿ1(b jÿ1aX0 � ba jÿ1 Xÿ1)

(1ÿ j)b jÿ2(aX 0 ÿ bXÿ1)

� �
:

From this one derives that Conditions 5.1 and 6.1 hold for each sequence hmni tending to

in®nity. Thus we can use the construction of Section 5. However, we shall slightly modify

this construction to obtain an estimator that depends on X1, . . . , X n only, and not on X 0 and

Xÿ1. This is necessitated by the fact that one does not observe X0 and Xÿ1 in practice. To

this end, set

~å j(W) � X j ÿ
Xjÿ1

i�0

(W1 ÿ W2)Wiÿ1
2 X jÿi, j � 1, 2, . . . , W 2 È:
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Note that å j(W) and ~å j(W) differ only by the term W jÿ1
2 (W1 X 0 ÿ W2 Xÿ1). Now let ~èn be an

estimate of è based on X 1, . . . , X n only and de®ne the estimate

~è�n � ~èn � 1

Nn

Xn

j�d n

~Iÿ1
n,�( _H n, j ÿ í̂n)~l n(~ån, j), (7:4)

where _H n, j and í̂n are as in Section 6, ~ån, j � ~å j(~èn), ~l n is de®ned as l^n but with ~ån, j

replacing ån, j, and

~I n,� �
1

Nn

Xn

j�d n

~l 2
n(~ån, j)

1

Nn

Xn

j�d n

( _H n, j ÿ í̂)( _H n, j ÿ í̂n)T:

Theorem 7.1. Suppose h~èni is a discretized
���
n
p

-consistent estimator of è and the sequences

hani, hbni, hcni and hd ni are such that

nÿ1c2
n(aÿ4

n bÿ2
n � aÿ3

n bÿ1
n d n)! 0 and aÿ5

n bÿ1
n r

2d n ! 0 for every r 2 (0, 1): (7:5)

Then h~è�n i de®ned by (7.4) is adaptive.

Proof. Note that the assumptions of Theorem 6.2 hold with mn � d n. Thus we only need to

show that ~è�n ÿ è̂n � oè(nÿ1=2). As in the proof of Theorem 6.2, we can assume that h~èni is a

local sequence. Let è�n be de®ned as ~è�n but with ån, j replacing ~ån, j. It is easy to prove that

è�n ÿ è̂n � o~èn
(nÿ1=2). Easy calculations show that Un �

Pn
j�d n

E~èn
(~ån, j ÿ ån, j)

2 � O(r2d n )

for some r 2 (0, 1). From this and Lemma 10.1 in Schick (1993) one obtains thatXn

j�d n

E~èn
(~l n(~ån, j)ÿ l^n(ån, j))

2 < c0(aÿ4
n � aÿ5

n bÿ1
n )U n ! 0:

This lets us conclude that ~è�n ÿ è�n � o~èn
(nÿ1=2). The desired result now follows from

contiguity. u

Remark 7.2. Of course,
���
n
p

-consistent estimates do exist for è and can be calculated from the

sample autocovariances.

8. Appendix

Let ë denote the Lebesgue measure. Let v be a measurable function from R to [1, 1). Let ì
denote the measure with Lebesgue density v. Let Î be an open subset of Rm containing 0.

Let fhî: î 2 Îg be a collection of measurable functions from R to R such that for some

A . 0 and all î 2 Î and x 2 R:

(1) jhî(x)j < Av(x);

(2) jhî(x)ÿ h0(x)j < Aiîiv(x).
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Let f f î: î 2 Îg be a family of Lebesgue probability densities such that�
j fî ÿ f 0j dë! 0: (8:1)

For every î 2 Î , de®ne a bounded linear operator Tî from L1(ì) to L1(ë) by

Tî g(x) �
�

f î(xÿ hî(y))g(y) dë(y):

Recall that the norm of the operator Tî is de®ned by

iTî i � sup

�
jTî gj dë: g 2 L1(ì),

�
jgj dì � 1

� �
:

Lemma 8.1. The operators fTî: î 2 Îg are contractions, i.e., iTî i < 1, and are norm-

continuous at 0, i.e., limî!0 iTî ÿ T0jj � 0.

Proof. The former follows from the bound
� jTî gj dë <

� jgj dë <
� jgj dì. For the latter, ®x

a positive constant K and derive the bound

iTî ÿ T0 i <

�
j f î ÿ f 0j dë� sup

j tj<K iîjj

�
j f 0(xÿ t)ÿ f 0(x)j dë(x)� 2A

K
,

where we use the fact that fjhî ÿ h0j. K iîig � fAv . Kg for î 6� 0. Now use (8.1) and the

pointwise continuity of the translation operator on L1(ë) ± see Theorem 9.5 in Rudin (1974)

± to conclude that limî!0 iTî ÿ T0jj < 2A=K. As K was arbitrary, this yields the desired

result. u

Lemma 8.2. Suppose for each î 2 Î there exists a unique Lebesgue probability density gî
such that Tî gî � gî. Then sup f� jgîj dì: î 2 Îg,1 implies that limî!0

� jgî ÿ
g0j dë � 0.

Proof. Choose a sequence fîng in Î which converges to 0. We shall show that

sup
n

�
jTî n

gîn
(x)j dë(x) ,1, (8:2)

lim
t!0

sup
n

�
jTî n

gî n
(x� t)ÿ Tîn

gîn
(x)j dë(x) � 0, (8:3)

lim
K!1

sup
n

�
jxj>2K

jTî n
gî n

(x)j dë(x) � 0: (8:4)

The FreÂchet±Kolmogorov theorem (see Yosida 1971, p. 275) implies that the sequence

fTî n
gî n
g is sequentially compact in L1(ë). Thus, in view of the identity Tî n

gî n
� gî n

, the

sequence fgî n
g is sequentially compact in L1(ë). Let g be an L1(ë) limit point of this

sequence. Without loss of generality, assume that
� jgî n

ÿ gj dë! 0, otherwise consider a
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subsequence. By Lemma 8.1,
� jTî n

gî n
ÿ T0 gj dë! 0. This leads to the identity g � T0 g.

As g is a Lebesgue probability density, one obtains g � g0.

Let us now show that (8.2)±(8.4) hold. Clearly, (8.2) holds. The statements (8.3) and

(8.4) follow from the bounds�
jTî g(x� t)ÿ Tî g(x)jë(x) <

�
jgj dì

�
j f î(x� t)ÿ fî(x)j dë(x),�

jxj>2K

jTî g(x)j dë(x) <

�
jxj>2K

�
f î(xÿ hî(y))jg(y)j dë(y) dë(x)

<

�
jxj>K

f î(x) dë(x)

�
jgj dë�

�
jhî( y)j>K

jg(y)j dë(y)

<

�
jxj>K

f î(x) dë(x)

�
jgj dì� A

K

�
jgj dì,

and the following facts

lim
t!0

sup
n

�
j fî n

(x� t)ÿ f î n
(x)j dë(x) � 0,

lim
K!1

sup
n

�
jxj. K

j f în
(x)j dë(x) � 0,

which are consequences of (8.1). u
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