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Room-acoustic energy decay analysis of acoustically coupled-spaces within the Bayesian
framework has proven valuable for architectural acoustics applications. This paper describes an
efficient algorithm termed slice sampling Monte Carlo (SSMC) for room-acoustic decay parameter
estimation within the Bayesian framework. This work combines the SSMC algorithm and a fast
search algorithm in order to efficiently determine decay parameters, their uncertainties, and
inter-relationships with a minimum amount of required user tuning and interaction. The large
variations in the posterior probability density functions over multidimensional parameter spaces
imply that an adaptive exploration algorithm such as SSMC can have advantages over the exiting
importance sampling Monte Carlo and Metropolis—Hastings Markov Chain Monte Carlo algorithms.
This paper discusses implementation of the SSMC algorithm, its initialization, and convergence

using experimental data measured from acoustically coupled-spaces.
© 2009 Acoustical Society of America. [DOI: 10.1121/1.3158934]
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I. INTRODUCTION

Bayesian probabilistic inference has been increasingly
applied in acoustics applications ranging from architectural
acoustics, © geo-acoustic inversion, source tracking,”’ and
underwater acoustics applications.%9 The Bayesian formal-
ism specifically applied to decay time evaluation in acousti-
cally coupled-spaces has proven to be a useful framework for
analyzing Schroeder decay functions'® from room impulse
response measurements. This framework allows one to esti-
mate not only the decay parameters from the Schroeder de-
cay model,' but also to determine the decay order,’ quantify
uncertainties of decay estimates, and determine the inter-
relationship between multiple decay parameters.” Due to
computational demands, it is common to use Markov chain
Monte Carlo (MCMC) and Monte Carlo (MC) algorithms
such as importance sampling Monte Carlo (ISMC)
inttagrzltion3’6’11 for numerical calculation within the Bayesian
framework. ISMC integration and MCMC algorithms repre-
sent effective approaches to estimate the decay parameters,
quantify the estimate uncertainties, and determine decay
inter-relationships in cases where it is possible to properly
initialize these algorithms. Using an analytic example and
sample posterior probability density functions (PPDFs) of
acoustically coupled rooms, this paper discusses the diffi-
culty in choosing a good ISMC sampling or MCMC proposal
distributions, which often require significant user effort. A
deterministic fast search (FS) algorithm,12 which is less de-
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pendent on user initialization, is only able to estimate decay
parameters; however, it cannot quantify uncertainties in the
estimates nor can it determine inter-relationships between
decay parameters. For data analysis, the uncertainties and
inter-relationships of relevant parameters are of as the same
importance as the parameters themselves.

This paper describes an efficient algorithm termed slice
sampling Monte Carlo (SSMC), recently introduced by
Neal,"” as a generic sampling method. The paper shows how
the SSMC algorithm combined with the FS algorithm12 can
be applied to Bayesian analysis of acoustically coupled-
spaces. The SSMC algorithm has not yet been documented
(at least to the best knowledge of the authors) in acoustic
applications. As Bayesian inferential methods have increas-
ingly found applications in acoustics research, the introduc-
tion of the SSMC algorithm in the context of architectural
acoustics may also benefit acousticians who are working on
Bayesian methods in other acoustics applications. Specifi-
cally, the significance of this work for architectural acousti-
cians is that an increased accuracy, higher efficiency, and
critically less user-interaction within the Bayesian frame-
work can be achieved for sound energy decay analysis, par-
ticularly for multiple-slope decays, often encountered in
acoustically coupled-spaces.mf17 High efficiency is required
in practice, since architectural acousticians often need to ana-
lyze multiple decay times and related parameters, along with
their uncertainties over 6—8 octave bands or over 10-22
third-octave bands. Reducing the required user tuning and
interaction is beneficial to acousticians who are unaccus-
tomed with ISMC and MCMC algorithms but who still
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require the benefits of Bayesian analysis.

This paper is organized as follows, Sec. II briefly de-
scribes Bayesian formulation of a PPDF over the decay pa-
rameter space. Section III discusses the difficulties in choos-
ing an appropriate ISMC sampling distribution and the
related problem in choosing an appropriate proposal distri-
bution in MCMC algorithms (focusing on the commonly
used Metropolis—Hastings algorithm). Section IV discusses
implementation aspects of the SSMC algorithm used in this
work. Section V shows the results of the SSMC/FS algorithm
applied to experimentally obtained Schroeder decay func-
tions. Section VI concludes the paper.

Il. BAYESIAN FORMULATION

A detailed explanation in the Bayesian framework is
given in the papers by Xiang and Jasa;'? this paper begins
with a brief review on the Schroeder decay function model
for determining the decay parameters in acoustically
coupled-spaces. A linear parametric model GA approximates
the experimental data D as follows:

D=GA +e, (1)

with an error e where A is a vector of m weighting coeffi-
cients and G is a K X m discretized model matrix, with the
Jjth column of G given by

tx— 1ty for j=0

2
exp(-13.84/T;) for j=1,2,...,m—1. @

Gi(T; 1) = {
T;in Eq. (2) is the jth decay time parameter to be determined
for 0=j=m-1, Ty=%, 0=k=K-1, and ?¢ represents the
upper limit of Schroeder’s integration and K is the number of
data points of the Schroeder decay function. The validity of
this model for determining the decay times in acoustically
coupled-spaces has been experimentally verified (especially
when 7y is large) in Ref. 11. This work applies a Bayesian
analysis to the decay model in Eq. (1) as briefly summarized
below. Prior to analysis, the error components e; are only
known to be of a finite amount of energy. With this being the
only information / available, the application of the principle
of maximum entropy18 leads to assignment of a likelihood
function

I(T,A, 0

D.1) = (\2m0) ¥ <_eTre> 3
)= (N2mo)™ exp| =5~ |. 3)
where T is the vector of the decay times and A is a vector of
linear coefficients and Tr denotes a matrix transpose. Both A
and T are decay parameters that the authors wish to find. The
parameter o~ in Eq. (3) represents a finite but unspecified
error variance. In room-acoustics practice, acousticians are
challenged to estimate decay parameters for multiple-sloped
sound energy decays. For a double-sloped decay [m=3 in
Eq. (2)] this results in a likelihood function over a six-
dimensional parameter space, with ¢ being one additional
parameter along with three linear (A;) and two (nonlinear)
decay time (7;) parameters. At this point it is possible to
marginalize over the error variance leaving the likelihood in
terms of the decay times and the linear coefficients as shown
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in Appendix A. This results in a likelihood function in the
form of a student-7 distribution

K12
I(T,A|D,I) = (277)‘1(/21“(5) 0 S

> (4)

with

0= (5)

and gamma function I"(x).

The PPDF of T,A given data D and the available back-
ground information 7 as noted by p(T,A|D,) are defined by
the likelihood and prior probability 7(T,A|l) of the decay
parameters

p(T,A|D,I) = %I(T,A|D,I)7T(T,A|I), (6)
where
Z:Jl(T,A|D,I)7T(T,A|I)d(T,A). (7)

As p(T,A|D,I) of Eq. (6) cannot be represented in closed
form due to the nonlinear nature of the model given in Eq.
(2), it is convenient to form a compact representation based
on T,A [one example being the mean and/or covariance of
T,A as was done in Ref. 11]. In order to simplify the nota-
tion in the remainder of the paper, a compact representation
will be denoted by

L= f F(T,A)p(T,A|D,Dd(T,A)

- % f f(T,A)I(T,A|D,I)m(T,A|d(T,A), (8)

where f(T,A) of Eq. (8) is used to define a particular com-
pact representation. Details of these compact representations
(specifically the mean and covariance of T,A) using experi-
mentally obtained data will be shown in Sec. V. In order to
simplify the notation the authors combine the decay time and
linear coefficients T,A into a single parameter vector X
when there is no need to distinguish between the two and the
background information / is also dropped for the remainder
of the paper for simplicity.

lll. DIFFICULTIES WITH TWO COMMON MONTE
CARLO ALGORITHMS

ISMC and MCMC algorithms both rely on choosing ini-
tial probability distributions representing the prior knowl-
edge of the PPDF to be estimated. This section discusses
potential difficulties in choosing these initial distributions.
The initial distributions are denoted by either a sampling
distribution for the ISMC algorithm or proposal distribution
for the MCMC algorithm.
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A. ISMC integration algorithms

The work by Xiang et al."! used ISMC integration in
which the ISMC sampling distribution g(X), with a support
greater than p(X|D), is applied to the integral of Eq. (8) as
follows:

p
L=Jf(X)g—g(X)dX=ff(X)W(X)g(X)dX, )
with w(X)=p(X|D)/g(X). The ISMC sampling distribution
g(X) can be effectively replaced with the approximation (see
Appendix B)

(X|D)
(X)

1 M-1
§(X) = MZ X -X,), (10)
r=0

where 8(X-X,) is a Dirac delta function centered at the
sample X, drawn from the sampling distribution g(X), and
M is the number of such samples used. Using the approxi-
mation ¢(X) the representation of Eq. (9) is given by

M-1
L~ e > J FX)w(X)8(X - X,)dX
M r=0

M-1

1
=ﬂ%ﬂ&N@J (11)

The formalism of Eq. (I11) using Eq. (10), termed ISMC
integration, has been presented as opposed to defining “esti-
mators” of L as is commonly found in statistical literature,lg
for the benefit of readers who are not well versed with sta-
tistical terminology.

The difficulty of choosing an appropriate ISMC sam-
pling distribution g(X) in high dimensions has been shown
in Ref. 19. The difficulty can be demonstrated with an ex-
plicit numerical example (see Appendix C) to show that the
difficulty still exists even in low dimensions. The following
illustrative example shows how ISMC estimates can be very
sensitive to poor choices of sampling distributions in terms
of placement as well as variance. To highlight the difficulties,
Fig. 1 illustrates a marginal PPDF p(T|D) evaluated for two
different room impulse responses experimentally measured
in real halls. Figure 1(a) shows a very sharply peaked PPDF
while Fig. 1(b) shows a very narrow, elongated PPDF along
one dimension. The ellipsoids marked in the figures concep-
tually indicate sampling distributions for ISMC. The ISMC
sampling distribution marked by A, with a support greater
than but similar to the actual PPDF p(T|D), is ideal for
precise, unbiased estimations using ISMC integration. The
ISMC sampling distribution B, with a support much greater
than the actual PPDF p(T|D) still results in a reasonable
ISMC integration estimate, but is less efficient as more
samples will be required to obtain a good result. The ISMC
sampling distribution C, with a support less than the actual
PPDF p(T|D), will lead to failure of ISMC integration esti-
mates as the variance of the estimates as given by Eq. (C2)
will likely be unbounded. Figure 1 uses two actual PPDFs
evaluated from experimentally measured results to demon-
strate that a sampling distribution marked by A is in practice
hardly possible without any prior knowledge on the sharp-
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FIG. 1. (Color online) Marginalized PPDF p(T|D) evaluated for two dif-
ferent room impulse responses experimentally measured in real halls with
ellipsoids indicating proposal distributions for ISMC integration. Proposal
distributions marked by A, with support greater than the PPDF p(T|D), is
ideal for precise, unbiased estimations using ISMC integration. Proposal
distribution B, with a support greater than the PPDF p(T|D) still results in
reasonable ISMC estimates, but is less efficient. Proposal distributions C,
with a support less than the PPDF p(T|D), will lead to failure of ISMC
estimates.

ness (spreading), orientation, location, and size of actual PP-
DFs. In light of these difficulties, creating an efficient auto-
mated procedure for determining decay parameters and their
reliability estimates from Schroeder decay curves using
ISMC integration will be difficult, since the location of the
PPDF mode, its shape, its orientation, and its size may not be
known when the ISMC sampling distribution has to be se-
lected.

B. MCMC algorithms

An alternative to an ISMC integration approach is a
MCMC algorithm such as the popular Metropolis—Hastings
algorithm.19 The Metropolis—Hastings algorithm generates
dependent samples X, from the PPDF p(X|D) using only
knowledge of the likelihood and the prior /(X|D)m(X). As
was done with the ISMC algorithm in Eq. (10), these
samples can then be used to form an approximation of the
PPDF p(X|D) by

M-1

pX|D) =+~ 55X -X,), (12

r=0

which can estimate the representation of Eq. (8) by a Monte
Carlo approximation

1M—l 1M—l
Lzﬂgo fX)8(X-X,) =A—4§)f(x,). (13)

The Metropolis—Hastings algorithm generates a sequence of
samples X, through the parameter space by a random walk.
At each step of the algorithm a sample S, in the parameter
space is chosen with probability distribution given by A(S,
—X,), where h(X) is a user defined proposal distribution. The
sample S, is accepted (i.e., X,,;=S,) with a probability
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FIG. 2. (Color online) Example of potential problems in choosing a pro-
posal distribution for the Metropolis—Hastings MCMC algorithm with sym-
metric normal proposal distribution. Circles show one standard deviation
distance from the mean. (a) Small tailed proposal distribution 4(T) with too
small support in comparison to the PPDF p(T|D) results in most of the
proposed MCMC samples S, being accepted but with a slow exploration of
the PPDF p(T|D). (b) Heavy tailed proposal distribution with excessive
support in comparison to the PPDF p(T|D) results in majority of the pro-
posed MCMC samples S, being rejected, which also results in a slow ex-
ploration of the PPDF p(T|D).

p(Sr|D)h(Sr - Xr)
! l’p(xr|D)h(Xr_ Sr) ' (14)

and rejected (i.e., X,,;=X,) otherwise. Both p(S,|D) and
p(X,|D) of Eq. (14) are evaluated from the posterior distri-
bution. The proposal distribution 4#(X) is commonly chosen
to be a symmetric function in which case A(S,-X,)=h(X,
-S,) and so Eq. (14) reduces to

| . p(S,|D)
mm{l’p(xrlm} (1

[see Appendix D for details on the validity of the acceptance
probability of Eq. (14)]. While the proposal distribution A(X)
is not explicitly present in Eq. (15), the choice of A(X) will
have a large impact on the efficiency of the Metropolis—
Hastings algorithm. If 4(X) has much thicker tails than the
PPDF p(X|D) then the acceptance probability of Eq. (15)
will be very low for most of the proposed samples S,, which
results in X, =X, for most r, and so the algorithm will not
explore the parameter space efficiently. Similarly if 4(X) has
much thinner tails than the PPDF p(X|D) then
p(S,|D)/p(X,|D)=1 and so almost all of the proposed
samples S, will be accepted; however, the algorithm will still
explore the parameter space very slowly as p(X,.;|D)
=p(S,|D)=p(X,|D). Figure 2 conceptually shows an ex-
ample of two symmetric normal proposal distributions super-
imposed on two different PPDFs with dashed-line circles in-
dicating a distance of one standard deviation from the mean.
Figure 2(a) illustrates a thin tailed proposal distribution in
comparison with the PPDF shown, which results in a slow
exploration of the PPDF even though most of the proposed
samples are accepted. Figure 2(b) shows a case where the
proposal distribution has a thicker tail in one dimension than
the PPDF, which will cause most of the proposed samples to
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be rejected, again resulting in a slow exploration of the
PPDF.

IV. THE SLICE SAMPLING MONTE CARLO
ALGORITHM

As shown in Sec. III, both the Metropolis—Hastings
MCMC algorithm and the ISMC algorithm suffer from the
requirement of a good initialization of proposal/sampling
distributions. For efficiently determining the representation
of Eq. (8) it is important to use an algorithm that is less
dependent on good initialization than either the Metropolis—
Hastings MCMC or ISMC integration algorithms. The
SSMC algorithm as presented by Neal"® was developed, in
part, to minimize the effect of the proposal distributions on
efficiency of the algorithm.

A. The SSMC algorithm

The fundamental principle of the SSMC algorithm is to
introduce an auxiliary probability distribution, which will aid
generating samples from the desired distribution. As an ex-
ample consider a one-dimensional PPDF p(X|D). One can
define an auxiliary distribution" by

)_{1 if 0<y<pX|D)

X,y|D . 16
Py 0 otherwise. (16)
Marginalization over the variable y results in
p(XD)
fp(X,y D)dy = f ldy = p(XD), (17)
0

which is the desired posterior distribution. As in any Monte
Carlo approach the marginalization can be implemented by
sampling from the joint distribution p(X,y|D) and ignoring
the parameter y. The multidimensional PPDF p(X,y|D) of
Eq. (6) can be handled in the same manner by simply apply-
ing the auxiliary distribution of Eq. (16) to each component
X; individually

D) 1 if 0<y<p(Xj|D)
“lo otherwise,

pXj.y (18)
as is done in Gibbs sampling approach.3’7’19 A key element of
the SSMC algorithm is that it effectively replaces the sam-
pling distribution (ISMC) or proposal distribution (MCMC)
algorithms with a uniform proposal distribution; its spread-
ing is adaptively constrained by the PPDF to be sampled.
The principle benefit of this approach is that it allows for an
adaptive tuning within the SSMC algorithm (which is diffi-
cult to achieve with other MCMC algorithms). This paper
presents a simplified SSMC algorithm as discussed in Ref.
13, in which the adaptive tuning of the auxiliary variable is
achieved using an interval doubling technique. Other more
elaborate versions of the SSMC algorithm, as well as proofs
of validity of the algorithm, are described in the original Ref.
13. As with the Metropolis—Hastings algorithm, the SSMC
algorithm has a update rule, which defines a new sample
X, in the parameter space given the current sample X,. The
authors present the simplified SSMC algorithm and update
rule below.
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Algorithm 1. Simplified slice sampling: Return sample X,,, given
sample X, drawn from the distribution p(X|D).

1: y=a random value from uniform distribution
[0,p(X,|D)]
u=a random value from uniform distribution [0,1]
x=X,—(1-u)w
X=X, +uw
while p(x;|D)=y do
Xj=X—w
end while
while p(x,|D)=<y do
X=X+ W
end while
: while 1 do
x"=a random value from uniform distribution
[xx,]
13:  if p(x’|D)=y then
14: return X, ;=x'
15:  else
16: if p(x'|D)=p(x;|D) then
17: x=x'
18: end if
19: if p(x'|D)=p(x,|D) then
20: x=x'
21: end if
22:  end if
23: end while

D AR A Al

—_ =
Y22

B. A graphical illustration of the SSMC algorithm

Figure 3(a) shows a unimodal marginal PPDF p(X|D)
with an initial starting sample given by X,, and the value of y
randomly chosen from the uniform distribution defined over
[0,p(X,|D)], which corresponds to step 1 of Algorithm 1.
Figure 3(b) shows the “slice” S of the parameter space de-
fined as the region where p(X|D)>y. Figure 3(c) shows the
random stepping out procedure of steps 3—10, which have
been done through an interval doubling approach.13 The re-
sult is that the bounding interval B contains the slice S. Fig-
ure 3(d) shows a randomly selected point X’ chosen within
the bounding interval B. As the point X’ is not inside the
slice S the bounding interval is shrunk to where the point X’
defines a new boundary point [in this case the new value for
x; for the interval B’ as is shown in Fig. 3(e) corresponds to
steps 11-23 in Algorithm 1]. Finally, Fig. 3(f) shows a ran-
domly selected point X” drawn from B’ also contained in the
slice S. This point X" is accepted as a new sample X,. The
process is then iterated with X; as the initial sample of the
algorithm.

An important feature of the SSMC algorithm is that it
generates samples relying only on a uniform proposal distri-
bution whose variance is determined adaptively. In other
words, SSMC can explore the PPDF efficiently by updating
knowledge from the PPDF to be sampled while the sampling
is in progress.
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FIG. 3. Iterative steps of the slice sampling illustrated using an exemplary
unimodal PPDF. One-dimensional parameter X is used for an illustrative
discussion. For the experimental data discussed in Sec. V X=A; (with j
=0,1,2) or X=T, (with k=1,2), respectively. (a) Unimodal PPDF p(X|D)
with an initial starting sample given by X, and the randomly chosen value of
v, which corresponds to step 1 of Algorithm 1. (b) Slice S of the parameter
space defined as the region where p(X|D)>y, namely, S={X:p(X|D)>y}.
(c) Random stepping out procedure of steps 3—10, which have been done
through an interval doubling approach. (d) Randomly selected point X’ cho-
sen within the bounding interval B. As the point X' is not inside the slice S
the bounding interval is shrunk to where the point X’ defines a new bound-
ary point [in this case the new value for x; for the interval B’ as is shown in
(d) and corresponds to steps 11-23]. (e) Randomly selected point X” drawn
from B’ also contained in the slice S. This point X” is accepted as a new
sample X;. The process is then iterated with X as the initial sample of the
algorithm.

C. Initialization and convergence of the SSMC
algorithm

The SSMC algorithm still requires the user to specify
the interval doubling parameters wr, and Was where wr, and
w,  correspond to the estimate of the spread of the PPDF
p(ﬁ(|D) in each of the 7; and A; parameters, respectively.
The choice of wy can, in principle, be chosen fairly well
based on the expected precision in architectural acoustics
practice. In the practical implementation of SSMC, a rough
estimation of the reverberation time, in case of a single-slope
energy decay, can be easily deduced using a small early-
decay portion of the decay function, while its standard de-
viation 7 is expected about 1% of the reverberation time 7 to
be determined, which leads to a proper choice of wy. In case
of a double-slope energy decay, the primary decayj time T
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can be easily estimated in the same way as for the reverbera-
tion time in the single-slope case, and the secondary decay
time T, is expected to be larger than T, (see Ref. 2); how-
ever, the standard deviation 7, of T, is expected to be in the
same order or even larger than 7 of 7}, which means a
similar order of wr, and wr, can be straightforwardly chosen
in the practical implementation of the SSMC algorithm in
order to reach the expected precision in architectural acous-
tics practice. An important advantage of the SSMC algorithm
over ISMC integration or conventional MCMC algorithms
(such as Metropolis—Hastings) is that the w; and w, are
adjusted dynamically by the algorithm, and so the SSMC
algorithm is less sensitive to a poor choice of these values. In
fact, wr, and Wy, can be updated dynamically from sample to
sample based on information gained during shrinking steps
of the previous samples. This fact is especially beneficial as
choosing values for the Wa, parameters is more difficult than
for wr, parameters and good rules of thumb are as of yet
unknown. Section V will elaborate on the initialization of the
interval doubling parameter w using experimentally mea-
sured data. As with all other MCMC algorithms the effi-
ciency of the SSMC algorithm will depend on the initial
starting sample X,. If the sample X, is in a region of low
PPDF values, the algorithm will take longer to converge to
the PPDF and so many of the initial samples do not represent
the PPDF well. This problem is often alleviated using a
“burn-in” phase, in which sample X is chosen after a certain
amount of initial samples X_,,,...,X_; are discarded. The
burn-in phase of the algorithm can be avoided using the FS
algorithm12 to choose the initial sample X, for both the linear
A and decay time T parameters. The ability to choose the
initial parameters T and A using the FS algorithm and the
ability of the SSMC algorithm to overcome poor choices for
wr, and Wa, allows for a combined algorithm, which is espe-
cially useful in architectural acoustics practice. As with other
MCMC algorithms, the dependent samples X, generated by
the SSMC algorithm can be used to approximate the repre-
sentation of Eq. (8); however, proving when the calculated
representation of Eq. (8) has converged is an open research
problem (a problem shared by all MCMC and MC algo-
rithms). Section V B discusses one particular heuristic
method to detect convergence.

V. EXPERIMENTS

An intimate performance hall (Susan Howorth Theater)
in Powerhouse Arts Center, Oxford, MS is coupled to a re-
verberant gallery. The gallery and the theater measures are
213X 122X74 m® and 21.3X16.2X7.63 m’, respec-
tively (see a sketch in Fig. 4). With doors closed, the natural
reverberation times averagely amount to 1.5 s for the pri-
mary space (theater) and 3.9 s for the secondary space (gal-
lery), respectively. In the acoustically coupled-spaces, when
the primary space possesses shorter nature reverberation
times than the secondary space, energy decays often exhibit
double-sloped decay behaviors.” To investigate the energy
decay characteristics, an omni-directional sound source is
placed at the middle of the stage, whereas an omni-
directional microphone as a sound receiver is located at
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FIG. 4. Plane view of the Susan Howorth Theater in Powerhouse Arts
Center, Oxford, MS. Two doors couple the theater and a reverberant gallery.
Sound source is positioned on the stage, room impulse responses at receiver
positions near two doors are measured, and the current paper focuses on one
data set at the position marked by a solid-line symbol.

many strategic positions as indicated in sketch (Fig. 4).
Room impulse responses are measured. In order to analyze
decay characteristics over architectural acoustics-relevant
frequency ranges, each room impulse response is first (oc-
tave) band-pass filtered. Schroeder integration is then applied
to the room impulse responses for each octave band. A five-
parameter model representing a double-slope decay associ-
ated with two decay times is used for energy decay analysis
based on Schroeder integration results

F(tk,T,A) =A0(IK— tk) +A1 eXp(— 138tk/T1)
+A2 CXp(— 138[k/T2) (19)

This model has exemplary illustrative purpose, as it is of
both practical importance to architectural acousticians and
sufficiently complex to demonstrate the benefits of the com-
bined SSMC/FS algorithm in creating a method for estimat-
ing decay times with a minimum of user interaction. In the
following the authors discuss the measurement results from a
specific location being close to an opening door (door 2) to
the gallery. The authors use exemplary data, which are a
room impulse response band-pass filtered at 250 Hz octave
band [see Fig. 5(a)] for the following discussion. Figure 5(b)
illustrates the resulting Schroeder decay curve. The likeli-
hood and posterior are determined as described in Sec. II,
which results in a PPDF over a six-dimensional space when
including variance o° as a unknown parameter using Eq. (3),
or with o being removed by marginalization using Eq. (4)
the PPDF is defined over a five-dimensional parameter space
given by the decay times T and linear coefficients A.

A. Initializing the SSMC/FS algorithm with
experimental data

Applying the FS algorithm to the experimental data re-
sulted in an initial estimate of both the decay time and linear
parameters. The initial estimates 77=1.5 s and 7,=3.3 s
and Ag=—4.0e—-8, A;=0.2486, and A,=0.0613, for a decay
data segment starting —5 dB until the end of the decay trace
[see Fig. 5(b)], are then used as the initial starting point of
the SSMC algorithm. Decay time interval doubling values of
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FIG. 5. (Color online) Room impulse response and corresponding decay
curves experimentally measured in Howorth Theater. (a) Room impulse re-
sponse after octave band-pass filtering. (b) Schroeder decay curve evaluated
from the room impulse response compared with the Bayesian decay model
curve determined by the SSMC/FS algorithm.

wr,=0.03 and wy, =0.1 are chosen based on the discussion
given in Sec. IV C. Figures 6(c) and 6(e) show the marginal
distributions of the decay time parameters 7| and T, created
from samples generated by the SSMC algorithm. The value
of wr,=~0.03 is approximately three times that of the spread
for Ty, while the value of WTZ%O.I is a good guess to the
spread of T,. The linear coefficient doubling values are as-
signed values of wy =1, wy =1, and wy =1. Figures 6(a),
6(b), and 6(d) show the marginal distributions of the linear
parameters A, A, and A, created from samples generated by
the SSMC algorithm. The values of w, and w,  are approxi-
mately 30 times that of the spread for A;,A,~=0.03, while
the value of w, is approximately 3X 10° times that of the
spread for A,=~3 X 1077. This poor choice of wa, =1, wy,
=1, and w,_=1 represents a typical case in which an acous-
tician would have difficulty in assigning these parameters
with good initial values. The SSMC algorithm, however, can
compensate for this poor choice as will be shown in Sec.
V B.

B. Convergence and decay parameter estimation for
the experimental data

The SSMC algorithm is asymptotically guaranteed to
converge and produce a sequence of M dependent samples
Xy,Xj, ..., X, from the PPDF p(X|D). There is, however,
no indication as to how many samples are required to prop-
erly represent the PPDF in order to calculate the representa-
tion of Eq. (13). Convergence can be heuristically deter-
mined by finding the number of samples M such that all
desired moments of Eq. (13) have converged within a pre-
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FIG. 6. Marginal histograms (MHs) of decay parameters from samples gen-
erated by SSMC/FS algorithm from experimental data measured in Susan
Howorth Theater. (a) MH for A,. (b) MH for A,. (c) MH for T}. (d) MH for
A,. (e) MH for T).

defined tolerance. For the experimental data the means and
covariances of the decay times and linear parameters were
used to assess convergence of the SSMC algorithm. Specifi-
cally the SSMC algorithm was deemed to converge when the
quantities

l M-1
<X]> = E g Xj,r’ (20)
1 M=2
(X;0) = " > (X, — (XN (X, — (X)) (21)
r=0

change less than 0.1%, where X is any decay time 7, or
linear parameter A, and X; , denotes the jth component of the
rth sample. For the experimental data in Fig. 5, the
SSMC/FS algorithm converged within ~12 000 samples. It
is useful in this context to provide the acousticians with the
histogram outputs given in Fig. 6. As the likelihood function
I(X|D) given by Eq. (4) is a student-T type distribution and
the PPDF is given by p(X|D)«/(X|D)m(X), histograms
which follow the shape of a student-7" distribution provide
added evidence that the SSMC/FS algorithm has converged.
The moment estimates of Egs. (20) and (21) were then
used as the decay parameter estimates once convergence was
determined. Specifically for decay times, the mean
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TABLE 1. Decay parameters estimated from one measurement in the Susan Howorth Theater. Decay times (7}
and T,) along with their standard deviations (Std; and Std,) derived from covariance matrix of slice sampling.
Level difference defined by AL=10 log(A,/A,), A, is used to estimate the peak-to-noise ratio (PNR) (Ref. 1).
Cross-correlation coefficients (CCCs) are listed in the last column.

Band T, Std, T, Std, AL PNR

(Hz) (s) (s) (s) (s) (dB) (dB) cce

125 1.83 5.55% 1072 3.96 5.04% 107! 17.3 64.3 0.79

250 1.47 1.65Xx 1072 3.27 1.93x 107! 5.73 54.9 0.83

500 1.48 5.88x 1072 4.46 4.86x 107! 12.75 49.1 0.77

1000 1.49 5.24X 1072 5.15 7.67X 107! 15.84 50.1 0.85

2000 1.32 236X 1072 2.97 5.96 X 1072 13.46 52.0 0.78

4000 0.94 247X 1072 2.61 3.93x 107! 16.54 52.2 0.81
A M (MPPDs) over two-dimensional (2D), zoomed-in parameter
(T))= o 2 T;, (22) spaces from the experimental data. The MPPDs are gener-
r=0 ated by exhaustive sampling of the PPDF p(X|D) for all 2D
and covariance MPPDs over {Ag, A}, {Ag. T}, {Ao. Tob, {Ag.Aq}, {A1L T}
{Al ,Tz}, {A1 ,Az}, {Tl ,Az}, {Tl ,Tz}, and {Az, Tz}, respec-
A A tively. Parameters other than the pair shown were fixed to the

Ci) = E (T =TT, = (T) (23) Y P

(where T, denotes the jth decay time component of the rth
sample) glven the M samples used in assessing convergence
were used as estimates of the decay times T. From the ex-

pected covariance matrix <é>=[<éjk)], the individual vari-
ances 7/2 and the standard deviation 7; of each decay time T;
were estimated as discussed in Ref. 11. The expected stan-
dard deviation T; Serves a reliability estimate, since it is a
measure of “error bar” of the estimated decay time (f}),

while the inter-relationship between the decay times is mea-

sured by cross-correlation coefficient (CCC) C el VC jjé‘kk.ll
The error bars and CCCs for the experimental example are
listed in Table I.

For the linear parameters, the mean

M-1
" 1
<Aj> = M z) Aj,r (24)

and standard deviation

Std(4)) = \/ —2 (A;,- 4y (25)

(where A; , denotes the jth linear parameter component of the
rth sample) given the M samples used in assessing conver-
gence were used as estimates of the linear parameters A. The
means and standard deviations for the linear parameters for
the experimental data taken at 250 Hz are shown in Table II.
Figure 7 shows marginal posterior probability distributions

TABLE II. Means () and standard deviations (Std) of the linear parameters
Ay, A, and A, estimated from the acoustical measurement in the Howorth
Theater using the SSMC/FS algorithm, for 250 Hz octave-band evaluation.

Parameter I Std

A -2.91x1078 3.44%1078
A 0.2417 0.0044
A, 0.0688 0.0044
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mean values determined by Eq. (20) and given in Tables I
and II. Estimated parameters listed in Tables I and II, when
comparing with Fig. 7, indicate that the combined SSMC/FS
algorithm successfully estimated the decay parameters and
that the FS algorithm chose a good initial starting point for
the SSMC algorithm. Figure 7 also shows that exhaustive
sampling of the parameter space is not feasible without very
good prior knowledge of the spread of the PPDF in all the
dimensions. For example, exhaustive sampling over a five-
dimensional space ranging between —0.5¢—7=A(=0.5¢-7,
0.1=A,=10, 0.1=T7,=5.0, 0.001=A,=0.1, and 1=T,
=10 (reasonable estimates of the parameter ranges for this
acoustics problem), with each range partitioned into an ap-
propriate number of cells to sample the marginal parameter
distribution of Fig. 6, would require approximately 4 X 10'?
samples compared to the 12 000 required for the SSMC/FS
algorithm. Thus the SSMC/FS algorithm provides an effi-
cient solution to the decay parameter estimation problem.
Figure 7 also shows that choosing appropriate MCMC pro-
posal or ISMC sampling distributions for the linear and de-
cay time parameters can be difficult as there are large varia-
tions in sharpness (spreading) of the MPPDs, and in their
orientations. While good MCMC proposal distributions
could potentially be found by using initial runs or adaptive
ISMC algorithms could be developed, in real experimental
data, these variations also change from frequency band to
frequency band, and from data to data, as such this task using
ISMC or MCMC would be most likely require a significantly
increased user tuning compared to the SSMC/FS algorithm.

It is unlikely that any type of initial processing used to
define a MCMC proposal distribution and/or ISMC sampling
distribution would not have an analog method to better
choose the initial proposal distribution required by the
SSMC algorithm as well, although this is a topic beyond the
scope of the current work. Assessing SSMC convergence
with the above heuristic scheme can be problematic for a
PPDF with multiple modes or large areas with similar prob-
ability magnitude, where convergence of the representation
will not give an indication that the SSMC algorithm has not
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FIG. 7. (Color online) Marginal posterior probability
AI - i e distributions (MPPDs) over 2D (zoomed-in) parameter
spaces from experimental data. Parameters other than
the pair shown are fixed to the mean values (see Tables
I and II). (a) MPPD over {A,,A,}. (b) MPPD over
0.22 = {A,,T,}. () MPPD over {Ay,A,}. (d) MPPD over
1 (h) (i) {A;,T,}. (e) MPPD over {A,,T,}. (f) MPPD over
{A,,T,}. (f) MPPD over {A,,T,}. (g) MPPD over
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sufficiently explored the PPDF p(X|D). As discussed in Sec.
IV, however, it is possible to focus on one mode of the
PPDF; combining this fact with the use of the FS algorithm
to initialize the SSMC algorithm in a region were the PPDF
p(X|D) is significant allows for this heuristic scheme to be
useful in practice. As assessing the convergence of MCMC
and ISMC algorithms is also an open problem, the heuristic
scheme discussed here is not considered as a drawback of the
SSMCY/FS algorithm in comparison to those algorithms.

VI. SUMMARY

This paper has shown that the SSMC algorithm is a
suitable method for helping to automate the process of deter-
mining the decay parameter estimates in acoustically
coupled-spaces with a minimum of user interaction and tun-
ing. This paper has discussed potential problems with defin-
ing ISMC sampling distributions and MCMC proposal dis-
tributions when there was limited prior knowledge of the
sharpness/position and orientation of the PPDF. In order to
overcome this difficulty the SSMC algorithm was introduced
in Sec. IV. The SSMC algorithm can overcome poor initial-
ization of the proposal distribution through an adaptive pro-
cess. In addition, Sec. IV also discussed how the FS algo-
rithm could be combined with the SSMC algorithm to further
improve SSMC performance by ignoring the burn-in phase
and also improving the assessment of convergence for the
SSMC algorithm. The SSMC/FS algorithm is applied to ex-
perimental data measured in Susan Howorth Theater in Sec.
V. The plots of the MPPDs shown in Fig. 7 and the results in
Tables I and II have demonstrated that the SSMC/FS algo-
rithm is successful in estimating the decay parameters in an
efficient manner as the number of samples required is on
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eight orders of fewer samples than possible through a deter-
ministic exhaustive search algorithm, even with a relatively
poor choice of initialization parameters. Figure 7 also illus-
trates the difficulty of defining ISMC sampling and MCMC
proposal distributions for experimental data with a minimum
of user tuning, which is especially important to acousticians
who are unfamiliar with MCMC and ISMC algorithms, since
large variations of posterior probability distributions in
sharpness, orientation, position, and size can be encountered
in the practice from data to data. A heuristic approach to
assessing convergence of the SSMC/FS algorithm is also dis-
cussed. Choosing better heuristics specifically geared toward
specific acoustics applications is an open problem not dis-
cussed in this paper.

In conclusion, the SSMC/FS algorithm is efficient in
problems where good initialization of ISMC or MCMC al-
gorithms is difficult, although it is possible that estimation of
decay parameters in acoustically coupled-spaces (and other
acoustics problems) could also be accomplished with a simi-
lar efficiency with better prior information about the nature
of the PPDF and/or better expertise with MCMC and ISMC
algorithms.
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APPENDIX A

Marginalizing the likelihood given by Eq. (3)

D) = (\270)* (‘eTre>
) =(\N2mo)™ ex

' Pl
over the standard deviation o can be accomplished by inte-
grating the [(T,A,o|D,I) over o using Jeffress’ prior18 1/0,
which results in

I(T,A, 0

(A1)

* 1
I(T,A|D.I) = f (\r’%U)_K exp(— 2)—610', (A2)
0 0‘2 g
where Q=e""e/2, then the identity'
e —(n+1/2)
J ¥ exp(-= OxH)dx=T(n+1/2) 3 (A3)
0
implies that
K —K/2
I(T,AD,I) = (277)-K/2F<5)QT, (A4)

which is Eq. (4).

APPENDIX B

Consider the PDF g(X) and the cumulative density func-
tion (CDF) G(X) related by

X
G(X)=f g(S)ds, (Bla)
X =-L6x) (B1b)
§(X) =~ G(X).

The representation of Eq. (9) can be determined using either
the PDF or the CDF

L= J JX)w(X)g(X)dX = f JX)w(X)dG(X),  (B2)

where the CDF representation allows for both continuous
and discrete distributions. The stepwise approximation
M

GX) =~ S u(X-X,), (B3)

r=1
where u(X) is a unit step function
1 if X=0
u(X) = (B4)

0 otherwise,

is equivalent to creating a discrete or sampled approximation
of the continuous CDF G(X). Thus the representation of Eq.
(9) is approximated by the sampled or discrete form of G(X)
as follows:

M
L~ 52 f FX)wX)du(X - X,). (B5)
r=1

Using Egs. (Blb) and (B3) and the property 8(X-X,)
=(d/dX)u(X-X,) the approximated representation in Eq.
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TABLE III. Required number of samples M of the importance sampling for
30,,/\VM <0.01 given the absolute mean |u| of the proposal distribution.

|l M

1 1.55X10%
2 4.83 X 100
5 6.49 X 10*15

(B5) can again be written with respect to the PDF g(X). This
results in Eq. (10) as follows:
LM
g(X) = 2 X -X,). (B6)

r=1

APPENDIX C

The following example illustrates the difficulties of
choosing an importance sampling distribution (ISD) g(X) in
low dimensions. When generating independent samples from
g(X) is possible, the accuracy of the approximating represen-
tation is given by the central limit theorem'’

|LM—L|—>N<0,%) as M — o, (1)
\’

where N(u,o) is a normal distribution with mean w and
standard deviation o, with

o = f (fX)p(X))*

2
W(X) dx - (L)". (C2)

Consider the estimation of the normalizing constant

Z=f ]@g(X)dX (C3)
8(X)

of a one-dimensional normal distribution with an unknown
mean u and identity standard deviation. The ISD is a zero-
mean, normal distribution with an identity standard devia-
tion. Using Eq. (C2), one can find the variance of the esti-
mate as a function of w given by

() = exp(p?) - 1. (C4)

Table III shows the number of samples M rrequired to achieve
a standard statistical accuracy of 30,,/ VM <0.01 (a statisti-
cal 99.7% confidence interval that the result is correct) for
different values of |u/. It is clear that the computational load
required for the chosen ISD g(X) becomes infeasible as |ul
increases.

APPENDIX D

This appendix presents a heuristic explanation of the
acceptance probability given in Eq. (15) shown in Sec. IIL
For simplicity, the authors consider symmetric MCMC pro-
posal distributions and a discrete parameter space. A MCMC
transition kernel K(X,U)=h(X-U) defined by a symmetric
proposal distribution #(X—U)=h(U-X) [as is shown in Fig.
2, for example] represents the probability of moving from
one point X in the parameter space to another U. One must
design the MCMC kernel K(X,U) such that p(X) (the distri-
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bution of interest) is the unique invariant distribution of the
kernel (see Ref. 19 for complete discussion of Markov chains
and MCMC). The detailed balance property

h(X - U)p(X) = h(U - X)p(U) (D1)

allows for p(X) to be the desired invariance distribution.
Thus detailed balance with a symmetric kernel implies that

p(X)=p(U) (D2)

and so p(X) is the uniform distribution. In order to generate
samples from the desired invariant distribution p(X), the
MCMC transition kernel must be modified by the addition of
an acceptance probability A(X,U), which determines when a
move from a point X to a proposed point U generated from
the kernel K(X,U) is accepted. Adding the acceptance prob-
ability, the detailed balance property becomes

AX,U)h(X -U)p(X) =A(U,X)h(U - X)p(U) (D3)
and so
AX,U)p(U) =A(U,X)p(X). (D4)

Choosing the acceptance probability A(X,U),A(U,X) so
that 0=A(X,U),A(U,X)=<1 and satisfying the constraint
given by Eq. (D4) result in A(X,U)[p(X)/p(U)]=1 and so
AX,U)=[p(U)/p(X)]. Thus setting A(X,U)=1 when
p(U)=p(X) results in the proposed move U with higher
probability always being accepted. Otherwise the proposed
move U is accepted with probability A(X,U)=p(U)/p(X).
This results in the acceptance probability for the MCMC
algorithm given by

p(U)>. D3)

A(X,U) m1n<1,p(X)
It is important to note that the details of the symmetric pro-
posal distribution 2(X-U) do not effect the ability of the
MCMC algorithm to correctly sample the desired distribu-
tion p(X); however, the efficiency of the sampling is greatly
dependent on the choice of the proposal distribution used
(discussed in Sec. III).
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