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We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial
subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an
efficient derandomization procedure that iteratively replaces random single-qubit measurements by fixed
Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least
as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a
deterministic measurement on only of order logðLÞ copies of a quantum state suffices. In some cases,
for example, when some of the Pauli observables have high weight, the derandomized procedure is
substantially better than the randomized one. Specifically, numerical experiments highlight the advantages
of our derandomized protocol over various previous methods for estimating the ground-state energies of
small molecules.
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Introduction.—Noisy intermediate-scale quantum (NISQ)
devices are becoming available [1]. Though less powerful
than fully error-corrected quantum computers, NISQ devices
used as coprocessors might have advantages over classical
computers for solving some problems of practical interest.
For example, variational algorithms using NISQ hardware
have potential applications to chemistry, materials science,
and optimization [2–10].
In a typical NISQ variational algorithm, we need to

estimate expectation values for a specified set of operators
fO1; O2;…; OLg in a quantum state ρ that can be prepared
repeatedly using a programmable quantum system. To
obtain precise estimates, each operator must be measured
many times, and finding a reasonably efficient procedure
for extracting the desired information is not easy in general.
In this Letter, we consider the special case where each Oj

is a Pauli operator; this case is of particular interest for
near-term applications.
Suppose we have quantum hardware that produces

multiple copies of the n-qubit state ρ. Furthermore, for
every copy, we can measure all the qubits independently,
choosing at our discretion to measure each qubit in the
X, Y, or Z basis. We are given a list of L n-qubit Pauli
operators (each one a tensor product of n Pauli matrices),
and our task is to estimate the expectation values of all L
operators in the state ρ, with an additive error no larger than
ε for each operator. We would like to perform this task
using as few copies of ρ as possible.
If all L Pauli operators have relatively low weight (act

nontrivially on only a few qubits), there is a simple

randomized protocol that achieves our goal quite efficiently:
For each of M copies of ρ, and for each of the n qubits,
we chose uniformly at random to measure X, Y, or Z. Then
we can achieve the desired prediction accuracy with high
success probability if M ¼ Oð3w log L=ε2Þ, assuming that
all L operators on our list have weight no larger than w
[11,12]. If the list contains high-weight operators, however,
this randomized method is not likely to succeed unless M is
very large.
In this Letter, we describe a deterministic protocol for

estimating Pauli-operator expectation values that always
performs at least as well as the randomized protocol and
performs much better in some cases. This deterministic
protocol is constructed by derandomizing the randomized
protocol. The key observation is that we can compute a
lower bound on the probability that randomized measure-
ments on M copies successfully achieve the desired error ε
for every one of our L target Pauli operators. Furthermore,
we can compute this lower bound even when the meas-
urement protocol is partially deterministic and partially
randomized; that is, when some of the measured single-
qubit Pauli operators are fixed, and others are still sampled
uniformly from fX; Y; Zg.
Hence, starting with the fully randomized protocol, we

can proceed step by step to replace each randomized single-
qubit measurement by a deterministic one, taking care in
each step to ensure that the new partially randomized
protocol, with one additional fixed measurement, has suc-
cess probability at least as high as the preceding protocol.
When all measurements have been fixed, we have a fully
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deterministic protocol. In numerical experiments, we find
that this deterministic protocol substantially outperforms
randomized protocols [12–16]. The improvement is espe-
cially significant when the list of target observables includes
operators with relatively high weight. Further performance
gains are possible by executing (at least) linear-depth circuits
before measurements [17–20]. Such procedures do, how-
ever, require deep quantum circuits. In contrast, our protocol
only requires single-qubit Pauli measurements, which are
more amenable to execution on near-term devices.
The manuscript is organized as follows. We first provide

some statistical background, explain the randomized meas-
urement protocol, then analyze the derandomization pro-
cedure. We then provide numerical results showing how the
derandomized protocol improves on previous methods. We
conclude with remarks and outlooks. Further examples and
details of proofs are in the Supplemental Material [21].
Statistical background.—Let ρ be a fixed, but unknown,

quantum state on n qubits. We want to accurately predict L
expectation values

ωlðρÞ ¼ trðOolρÞ for 1 ≤ l ≤ L; ð1Þ

where each Ool ¼ σol½1� ⊗ � � � ⊗ σol½n� is a tensor product
of single-qubit Pauli matrices, i.e., ol ¼ [ol½1�;…; ol½n�]
with ol½k� ∈ fI; X; Y; Zg. To extract meaningful informa-
tion, we perform M (single-shot) Pauli measurements on
independent copies of ρ. There are 3n possible measure-
ment choices. Each of them is characterized by a full-
weight Pauli string pm ∈ fX; Y; Zgn and produces a
random string of n outcome signs qm ∈ f�1gn.
Not every Pauli measurement pm (1 ≤ m ≤ M) pro-

vides actionable advice about every target observable ol
(1 ≤ l ≤ L). The two must be compatible in the sense
that the latter corresponds to a marginal of the former;
i.e., it is possible to obtain ol from pm by replacing
some local nonidentity Pauli matrices with I. If this is
the case, we write ol▹pm and say that measurement pm
“hits” target observable ol. For instance, ½X; I�; ½I; X�;
½X;X�▹½X;X�, but ½Z; I�; ½I; Z�; ½Z; Z� ▹ ½X;X�. We can
approximate each ωlðρÞ by empirically averaging (appro-
priately marginalized) measurement outcomes that
belong to Pauli measurements that hit ol,

ω̂l ¼ 1

hðol; ½p1;…;pM�Þ
X

m∶ol▹pm

Y

j∶ol½j�≠I
qm½j�; ð2Þ

where hðol;½p1;…;pM�Þ¼
P

M
m¼11fol▹pmg∈f0;1;…;Mg

counts how many Pauli measurements hit target observ-
able ol.
It is easy to check that each ω̂l exactly reproduces ωlðρÞ

in expectation [provided that hðol;PÞ ≥ 1]. Moreover, the
probability of a large deviation improves exponentially
with the number of hits.

Lemma 1. (Confidence bound). Fix ε ∈ ð0; 1Þ (accu-
racy) and 1 − δ ∈ ð0; 1Þ (confidence). Suppose that Pauli
observables O ¼ ½o1;…; oL� and Pauli measurements
P ¼ ½p1;…;pM� are such that

ConfεðO;PÞ ≔
XL

l¼1

exp

�
−
ε2

2
hðol;PÞ

�
≤
δ

2
: ð3Þ

Then, the associated empirical averages (2) obey

jω̂l − ωlðρÞj ≤ ε for all 1 ≤ l ≤ L ð4Þ

with probability (at least) 1 − δ.
See Supplemental Material Sec. B.1 for a detailed

derivation [21]. We call the function defined in Eq. (3)
the “confidence bound.” It is a statistically sound summary
parameter that checks whether a set of Pauli measurements
(P) allows for confidently predicting a collection of Pauli
observables (O) up to accuracy ε each.
Randomized Pauli measurements.—Intuitively speaking,

a small confidence bound (3) implies a good Pauli estimation
protocol. But how should we choose our M Pauli measure-
ments (P) in order to achieve ConfεðO;PÞ ≤ δ=2? The
randomized measurement toolbox [12,13,16,22,23] provides
a perhaps surprising answer to this question. Let wðolÞ
denote the weight of Pauli observable ol, i.e., the number
of qubits on which the observable acts nontrivially: wðolÞ ¼P

n
k¼1 1fol½k� ≠ Ig. These weights capture the probability

of hitting ol with a completely random measurement string:
Probp½ol▹p� ¼ 1=3wðolÞ. In turn, a total of M randomly
selected Pauli measurements will, on average, achieve
EP½hðol;PÞ�¼M=3wðolÞ hits, regardless of the actual Pauli
observable ol in question. This insight allows us to compute
expectation values of the confidence bound (3)

EP½ConfεðO;PÞ� ¼
XL

l¼1

ð1 − ν=3wðolÞÞM; ð5Þ

where ν ¼ 1 − expð−ε2=2Þ ∈ ð0; 1Þ. Each of the L terms is
exponentially suppressed in ε2M=3wðolÞ. Concrete realiza-
tions of a randomized measurement protocol are extremely
unlikely to deviate substantially from this expected behavior
(see, e.g., [11]). Combined with Lemma 1, this observation
implies a powerful error bound.
Theorem 1. (Theorem 3 in Ref. [11].)—Empirical

averages (2) obtained from M randomized Pauli measure-
ments allow for ε-accurately predicting L Pauli expectation
values trðOo1ρÞ;…; trðOoLρÞ up to additive error ε given
that M ∝ logðLÞmaxl 3wðolÞ=ε2.
In particular, order logðLÞ randomized Pauli measure-

ments suffice for estimating any collection of L low-weight
Pauli observables. It is instructive to compare this result
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to other powerful statements about randomized measure-
ments, most notably the “classical shadow” paradigm
[12,16]. For Pauli observables and Pauli measurements,
the two approaches are closely related. The estimators (2)
are actually simplified variants of the classical shadow
protocol (in particular, they do not require median of means
prediction) and the requirements onM are also comparable.
This is no coincidence; information-theoretic lower bounds
from [12] assert that there are scenarios where the scaling
M ∝ logðLÞmaxl 3wðolÞ=ε2 is asymptotically optimal and
cannot be avoided.
Nevertheless, this does not mean that randomized

measurements are always a good idea. High-weight observ-
ables do pose an immediate challenge, because it is
extremely unlikely to hit them by chance alone.
Derandomized Pauli measurements.—The main result

of this Letter is a procedure for identifying “good” Pauli
measurements that allow for accurately predicting many
(fixed) Pauli expectation values. This procedure is designed
to interpolate between two extremes: (i) completely ran-
domized measurements (good for predicting many local
observables) and (ii) completely deterministic measure-
ments that directly measure observables sequentially (good
for predicting few global observables).
Note that we can efficiently compute concrete confi-

dence bounds (3), as well as expected confidence bounds
averaged over all possible Pauli measurements (5).
Combined, these two formulas also allow us to efficiently
compute expected confidence bounds for a list of mea-
surements that is partially deterministic and partially
randomized. Suppose that P♯ subsumes deterministic
assignments for the first (m − 1) Pauli measurements, as
well as concrete choices for the first (k − 1) Pauli labels of
the mth measurement, see Fig. 1 (center). There are three
possible choices for the next Pauli assignment: P♯½k;m� ¼
W with W ¼ X, Y, Z. For each choice, we can explicitly
compute the resulting conditional expectation value,

EP½ConfεðO;PÞjP♯;P½k;m� ¼ W�

¼
XL

l¼1

exp

�
−
ε2

2

Xm−1

m0¼1

Yn

k0¼1

1fol½k0�▹P♯½k0; m0�g
�

×

�
1 − ν

1fol½k�▹Wg
3wÄkðolÞ

Yk−1

k0¼1

1fol½k0�▹P♯½k0; m�g
�

× ð1 − ν3−wðolÞÞM−m; ð6Þ

where ν¼1−expð−ε2=2Þ, wÄkðolÞ¼wð[ol½kþ1�;…;ol½n�]Þ
and ol½k0�▹P♯½k0; m� if ol½k0� ¼ I or ol½k0� ¼ P♯½k0; m�. This
formula allows us to build deterministic measurements one
Pauli label at a time.
We start by envisioning a collection of M completely

random n-qubit Pauli measurements. That is, each Pauli
label is random and Eq. (5) captures the expected con-
fidence bound averaged over all 3nM assignments. There
are three possible choices for the first label in the first Pauli
measurement: P½1; 1� ¼ X, P½1; 1� ¼ Y, and P½1; 1� ¼ Z.
At least one concrete choice does not further increase the
confidence bound averaged over all remaining Pauli signs,

min
W∈fX;Y;Zg

EP[ConfεðO;PÞjP½1; 1� ¼ W]

≤
1

3

X

W∈fX;Y;Zg
EP[ConfεðO;PÞjP½1; 1� ¼ W]

¼ EP½ConfεðO;PÞ�: ð7Þ
Crucially, Eq. (6) allows us to efficiently identify a
minimizing assignment

P♯½1; 1� ¼ argmin
W∈fX;Y;Zg

EP[ConfεðO;PÞjP½1; 1� ¼ W]: ð8Þ

Doing so replaces an initially random single-qubit meas-
urement setting by a concrete Pauli label that minimizes the
conditional expectation value over all remaining (random)

FIG. 1. Illustration of the derandomization algorithm (Algorithm 1): We envision M randomized n-qubit measurements as a two-
dimensional array composed of n ×M Pauli labels. Blue squares are place holders for random Pauli labels, while green squares denote
deterministic assignments (either X, Y, or Z). Starting with a completely unspecified array (left), the algorithm iteratively checks how a
concrete Pauli assignment (red square) affects the confidence bound [Eq. (3)] averaged over all remaining assignments. A simple update
rule [Eq. (8)] replaces the initially random label with a deterministic assignment that keeps the remaining confidence bound expectation
as small as possible (center). Once the entire grid is traversed, no randomness is left (right) and the algorithm outputs M deterministic
n-qubit Pauli measurements.
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assignments. This procedure is known as derandomization
[24–26] and can be iterated. Figure 1 provides visual
guidance, while pseudo-code can be found in
Algorithm 1. There are a total of n ×M iterations. Step
ðk;mÞ is contingent on comparing three conditional expect-
ation values EP[ConfεðO;PÞjP♯;P½k;m� ¼ W] and
assigning the Pauli label that achieves the smallest score.
These update rules are constructed to ensure that (appro-
priate modifications of) Eq. (7) remain valid throughout
the procedure. Combining all of them implies the
following rigorous statement about the resulting Pauli
measurements P♯.
Theorem 2. (Derandomization promise).—Algorithm 1

is guaranteed to output Pauli measurements P♯ with below
average confidence bound: ConfεðO;P♯Þ≤EP½ConfεðO;PÞ�.
We see that derandomization produces deterministic

Pauli measurements that perform at least as favorably as
(averages of) randomized measurement protocols. But the
actual difference between randomized and derandomized
Pauli measurements can be much more pronounced. In the
examples we considered, derandomization reduces the
measurement budget M by at least an order of magnitude,
compared to randomized measurements. Furthermore,
because Algorithm 1 implements a greedy update pro-
cedure, we have no assurance that our derandomized
measurement procedure is globally optimal or even close
to optimal. Using dynamic programming, the derandom-
ization algorithm runs in time OðnMLÞ; see Supplemental
Material Sec. C 3 for a detailed implementation [21].
Numerical experiments.—The ability to accurately esti-

mate many Pauli observables is an essential subroutine for
variational quantum eigensolvers (VQEs) [4,8–10,27].
Randomized Pauli measurements [11,12]—also known
as classical shadows in this context—offer a conceptually
simple solution that is efficient both in terms of quantum
hardware and measurement budget.

Derandomization can and should be viewed as a refine-
ment of the original classical shadows idea. Supported by
rigorous theory (Theorem 2), this refinement is only
contingent on an efficient classical preprocessing step,
namely, running Algorithm 1. It does not incur any extra
cost in terms of quantum hardware and classical postpro-
cessing, but can lead to substantial performance gains.
Numerical experiments visualized in Ref. [12], Fig. 5, have
revealed unconditional improvements of about one order of
magnitude for a particular VQE experiment [28] (simulat-
ing quantum field theories).
In this section, we present additional numerical studies

that support this favorable picture. These address a slight
variation of Algorithm 1 that does not require fixing the
total measurement budget M in advance. We focus on the
“electronic structure problem”: determine the ground-state
energy for molecules with unknown electronic structure.
This is one of the most promising VQE applications in
quantum chemistry and material science. Different encod-
ing schemes—most notably Jordan-Wigner (JW) [29],
Bravyi-Kitaev (BK) [30] and parity (P) [30,31]—allow
for mapping molecular Hamiltonians to qubit Hamiltonians
that correspond to sums of Pauli observables. Several
benchmark molecules have been identified whose
encoded Hamiltonians are just simple enough for an
explicit classical minimization, so that we can compare
Pauli estimation techniques with the exact answer.
Figure 2 illustrates one such comparison. We fix a

benchmark molecule BeH2, a BK encoding and plot
the ground-state energy approximation error against the

Algorithm 1. The derandomization algorithm proposed in this
work for finding an efficient scheme for measuring a collection of
n-qubit Pauli observables.

Derandomization.

Input: measurement budget M, accuracy ε, and L n-qubit Pauli
observables O ¼ ½o1;…; oL�.

Output: M Pauli measurements P♯ ∈ fX; Y; Zgn×M.
1 function DERANDOMIZATION ðO;M; εÞ
2 initialize P♯ ¼ [½�] (empty n ×M array)
3 for m ¼ 1 to M do ▹ loop over measurements
4 for k ¼ 1 to n do ▹ loop over qubits
5 for W ¼ X, Y, Z do compute
6 fðWÞ ¼ EP½ConfεðO;PÞj

P♯;P½k;m� ¼ W�
7 [see Eq. (6) for a precise formula]
8 P♯½k;m� ← argminW∈fX;Y;ZgfðWÞ
9 output P♯ ∈ fX; Y; Zgn×M

FIG. 2. BeH2 ground-state energy estimation error (in Har-
tree) under Bravyi-Kitaev encoding [30] for different meas-
urement schemes: The error for derandomized shadow is the
root-mean-squared error (RMSE) over ten independent runs.
The error for the other methods shows the RMSE over infinitely
many runs and can be evaluated efficiently using the variance of
one experiment [14].
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number of Pauli measurements. The plot highlights that
derandomization outperforms the original classical shad-
ows procedure (randomized Pauli measurements) [12],
locally biased classical shadows [12], and another popular
technique known as LDF grouping [14,32]. The discrep-
ancy between randomized and derandomized Pauli mea-
surements is particularly pronounced.
This favorable picture extends to a variety of other

benchmark molecules and other encoding schemes, see
Table I. For a fixed measurement budget, derandomization
consistently leads to a smaller estimation error than other
state-of-the-art techniques. One could also repeat the meas-
urement scheme found by the derandomization algorithm
multiple times to improve the estimation error; see
Supplemental Material Sec. C.4 [21]. Finally, we note that
in the presence of measurement noise, the various
approaches we have considered are likely to suffer about
equally, as they were all based on single-qubit Pauli
measurements. One could mitigate such noise by incorpo-
rating recently proposed noise inversion techniques [33,34].
Conclusion and outlook.—We consider the problem of

predicting many Pauli expectation values from few Pauli
measurements. Derandomization [24–26] provides an effi-
cient procedure that replaces originally randomized single-
qubit Pauli measurements by specific Pauli assignments.
The resulting Pauli measurements are deterministic, but
inherit all advantages of a fully randomized measurement
protocol. Furthermore, the derandomization procedure

can accurately capture the fine-grained structure of the
observables in question. Predicting molecular ground-state
energies based on derandomized Pauli measurements
scales favorably and improves upon many existing tech-
niques [11,14,16,32]. Source code for an implementation of
the proposed procedure is available at [35].
Randomized measurements have also been used to esti-

mate entanglement entropy [12,36–38], topological invari-
ants [39,40], benchmark physical devices [12,22,41,42],
and predict outcomes of physical experiments [43].
Derandomization provides a principled approach for adapting
randomized measurement procedures to fine-grained struc-
ture and is closely related to an algorithmic technique—
multiplicative weight update [44]—commonly used in
machine learning and game theory. So far, we have only
considered estimations of Pauli observables, but measure-
ment designvia derandomization should applymore broadly;
we look forward to applying derandomization to other tasks
such as estimating non-Pauli observables and entanglement
entropies. Additional improvements in performancemight be
achieved by modifying the cost function fðWÞ used in
Algorithm 1, for example, by greedily assigning more than
one single-qubit Pauli measurement in each iteration.
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