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Ž .The partly linear additive Cox model is an extension of the linear
Cox model and allows flexible modeling of covariate effects semiparametri-
cally. We study asymptotic properties of the maximum partial likelihood
estimator of this model with right-censored data using polynomial splines.

ŽWe show that, with a range of choices of the smoothing parameter the
.number of spline basis functions required for estimation of the nonpara-

metric components, the estimator of the finite-dimensional regression
parameter is root-n consistent, asymptotically normal and achieves the
semiparametric information bound. Rates of convergence for the estima-
tors of the nonparametric components are obtained. They are comparable
to the rates in nonparametric regression. Implementation of the estima-
tion approach can be done easily and is illustrated by using a simulated
example.

1. Introduction. The partly linear additive Cox model is an extension of
Ž .the Cox 1972 model, in which the log-relative risk takes the partly linear

additive form. So the conditional hazard of the failure time given the covari-
Ž . d Jate value z � x, w � R � R is modeled as

� �1.1 � t x , z � � t exp x� � � w � ��� �� w ,Ž . Ž . Ž . Ž . Ž .Ž .0 1 1 J J

where � is the unknown baseline hazard function, � is a d-dimensional0
regression parameter and � , . . . , � are unknown and smooth functions. In1 J
many situations, our main interest is in estimating the regression parameter
�, which provides a concise and easily interpretable measure of the effect of
the covariate X in the presence of the auxiliary covariate W. For instance,
when X is a treatment covariate and W is a vector of covariates describing
other characteristics of the patients, � can be interpreted as a measure of the
treatment effect after adjusting for the effect of W. Although a categorical-type
covariate X is our main motivation for this model, X can also be a continu-
ous-type variable or a mixture of the two types. In the proportional hazards
model framework with multidimensional covariates, this model allows flexi-
ble modeling of the covariate effect and at the same time maintains the
features of being parsimonious and easy to interpret enjoyed by the Cox
model.

Received January 1998; revised May 1999.
AMS 1991 subject classifications. Primary 62G05, 62G20; secondary 62G07, 62P99.
Key words and phrases. Additive regression, asymptotic normality, right-censored data,

partial likelihood, polynomial splines, projection, rate of convergence, semiparametric informa-
tion bound.

1536



PARTLY LINEAR ADDITIVE COX MODEL 1537

Ž .Model 1.1 is closely related to the partly linear Cox model,

� �1.2 � t x , w � � t exp x� � b � ,Ž . Ž . Ž . Ž .Ž .0 0

where b: R J � R. In this model, no further assumption is made on the form
of b. For high-dimensional covariate W, it may require unrealistic large
samples to estimate this model because of ‘‘curse of dimensionality.’’ Indeed, a

Ž . Ž .range of models between and beyond 1.1 and 1.2 can be considered. For
example, an ANOVA type decomposition for b can be considered, and model
Ž .1.1 can be viewed as a first order approximation. Interaction between the
variables in X and W can also be considered. Excellent discussions on these

Ž .issues can be found in Stone 1984, 1994 . We focus on the partly linear
Ž . Ž .additive model 1.1 because it directly generalizes the linear Cox model. See

Ž .also the discussions in Hastie and Tibshirani 1986, 1990 .
Many authors have considered nonparametric and semiparametric model-

ing of covariate effects on the censored failure time. For example, Sasieni
Ž . Ž .1992a, b calculated an information bound for estimating � in model 1.2
and suggested using a spline-based partial likelihood to estimate this model.
His calculation suggests that it is possible to estimate � at the usual root-
n rate of convergence despite the presence of two nonparametric func-
tions and despite that the function b cannot be estimated at the root-n rate.

Ž . �Ž .Grambsch, Therneau and Fleming 1990 and Fleming and Harington 1991 ,
�Section 4.5, pages 163�168 proposed using smoothed martingale residuals to

explore the functional form of the covariate effect in the Cox model. The
martingale residual approach was further discussed by Grambsch, Therneau

Ž . Ž .and Fleming 1995 . Hastie and Tibshirani 1986, 1990 have considered a
fully nonparametric additive Cox model in exploratory data analysis. Their
estimation approach is to maximize a penalized partial likelihood. Kooper-

Ž .berg, Stone and Truong 1995 considered a general nonparametric hazard
regression problem. Their approach is to maximize the likelihood function
over an approximating parameter space consisting of sums of tensor products

Ž .of polynomial splines as in Stone 1994 . They established the rate of conver-
gence of their estimator. Several generalizations of the Cox model have also

Ž .been studied in the literature. For example, O’Sullivan 1993 considered the
proportional hazards model with a fully nonparametric relative risk function.
He obtained the rate of convergence of the penalized partial likelihood

Ž .estimator uniformly with respect to the penalty parameter. Sasieni 1992a
calculated the information bound for the continuously stratified Cox model
and suggested a simple form of kernel-smoothed partial likelihood estimator.

Ž .Dabrowska 1997 proved asymptotic normality of the estimators of the
regression parameter and the stratified cumulative hazard in this model
based on a general kernel-smoothed partial likelihood. A survey of other
regression models for censored survival data can be found in Andersen,

�Ž . �Borgan, Gill and Keiding 1993 , Chapter VII .
In this paper, we study the asymptotic properties of the partial likelihood

Ž . Ž .estimator of � and � , . . . , � of model 1.1 using polynomial splines. The01 0 J
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use of polynomial splines in estimating the fully nonparametric additive Cox
Ž .model based on the partial likelihood was first suggested by Stone 1986b . It

appears that systematic study of this estimation approach for the partly
Ž .linear additive model 1.1 has not been done in the literature. Although

previous results on the asymptotic normality of the maximum partial likeli-
Ž . � Ž .hood estimator in the linear Cox model Tsiatis 1981 , Andersen and Gill

Ž .� Ž .1982 and the information calculation see Section 4 suggests that � should
be estimable at the usual root-n rate of convergence in the present model, the
proof is complicated by the presence of the nonparametric component � ’s inj
the partial likelihood and the fact that their estimators converge at rates
slower than root-n. We deal with these difficulties by using some results from
empirical process theory and the projection idea in information calculation for
semiparametric models. Under appropriate conditions, we show that, with a

Žrange of choices of the smoothing parameter the number of B-spline basis
.functions required for estimation of the nonparametric components, the

maximum partial likelihood estimator of � is root-n consistent, asymptoti-
cally normal and achieves information bound, although the convergence rate
of the estimator of the nonparametric part is slower than root-n. The result
that a range of the smoothing parameter is allowed for the asymptotic

ˆ ˆnormality of � suggests that the first-order asymptotic performance of � isn n
relatively insensitive to the specification of the smoothing parameter. This
differs from nonparametric curve estimation in which the optimal choice of
the smoothing parameter is required to achieve the optimal rate of conver-
gence. Rates of convergence for nonparametric component estimators are also
obtained. These rates are comparable to those obtained in nonparametric
regression.

The organization of this paper is as follows. Section 2 describes the
estimator using polynomial splines. An example is included to illustrate the
computation of the estimator in Splus. The main results are stated in Section
3. In Section 4, we calculate the information bound for � in the partly linear
additive Cox model. Section 5 contains proofs of the main results. Section 6
briefly discusses some aspects of incorporating time-dependent covariates in

Ž .model 1.1 . Several technical details are put together in the Appendix.

2. Definition and computation of the estimator. Let T u and T c be
the failure time and censoring time, respectively. The observable random

Ž . � � 4 d�J � u c4 � uvariable is T, �, Z � R � 0, 1 � R , where T � min T , T , � � I T
c4 Ž . d J u� T , Z � X, W with X � R , W � R . Throughout, we assume that T

c Ž .and T are conditionally independent given the covariate Z. Let T , � , Z ,i i i
i � 1, . . . , n be an independent random sample identically distributed as
Ž .T, �, Z .

� � JWe assume that W takes values in a, b where a and b are finite
� �numbers. Let a � � � � � ��� � � � � � b be a partition of a, b into0 1 K K�1

� . � �K subintervals I � � , � , t � 0, . . . , K � 1 and I � � , � , whereK t t t�1 K K K K�1
v �K � K � n with 0 � v � 0.5 is a positive integer such that max �n 1� k � K�1 k

� Ž �v .� � � O n . The precise range of v will be given in Theorem 3.3 ink�1
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Section 3. Let SS be the space of polynomial splines of order l � 1 consistingn
Ž .of functions s satisfying i the restriction of s to I is a polynomial of orderK t

Ž . � �l for 1 � t � K ; ii for l � 2 and 0 � l � l � 2, s is l times continuously
� � Ž .differentiable on a, b . This definition is phrased after Stone 1985 , which is

�Ž . �a descriptive version of Schumaker 1981 , page 108, Definition 4.1 .
� � JLet 	 be the collection of functions � on a, b with the additive formn

Ž . Ž . Ž .� w � � w � ��� �� w , where each component � belongs to SS . Ac-1 1 J J j n

�Ž . �cording to Schumaker 1981 , page 117, Corollary 4.10 , there exists a local
� 4basis B , 1 � t � q for SS , where q � K � l. Thus for any � � SS , wet n n n n j n

can write
qn

2.1 � z � b B z , 1 � j � J .Ž . Ž . Ž .Ýj j jt t j
t�1

� 4Let b � b : 1 � j � J, 1 � t � q be the collection of all the coefficients injt n
Ž .the representation 2.1 . Under suitable smoothness assumptions, � ’s can0 j

be well approximated by functions in SS . Therefore, we seek a member of 	n n
along with a value of � that maximizes the partial likelihood function.

ˆ ˆ ˆ ˆ ˆŽ . � 4Specifically, let 
 � � , b with b � b : 1 � j � J, 1 � t � q be then n n jt n
value that maximizes

n
��1l � , � � n � X � � � WŽ . Ž .Ýn i i i½

i�1

��log exp X � � � W ,Ž .Ý k k 5
k : T �Tk i

2.2Ž .

Ž . J Ž . Ž .with � W � Ý � W , 1 � i � n where � is given in 2.3 , with respecti j�1 j ji j

Ž . d qnto �, b � R � R . Because the regression function � ’s can only be identi-j
fied up to an additive constant, we will center the estimators of � ’s asj
follows. Let

q �nn ˆÝ � � WŽ .i�1 i jn ji� �ˆ ˆ� z � b B z and � � .Ž . Ž .Ýjn j jt t j jn nÝ �i�1 it�1

The resulting estimator of � is defined to bej

� �ˆ ˆ� z � � z � � , 1 � j � J .Ž . Ž .jn j jn j jn

ˆ ˆ� n ˆ Ž .So � is a centered version of � and satisfies Ý � � W � 0, 1 � j � J.jn jn i�1 i jn ji
ˆ ˆ� ˆ�Ž .Notice that � , � , . . . , � maximizes the partial likelihood if and only ifn 1n J n

ˆ ˆ ˆŽ .� , � , . . . , � maximizes the partial likelihood. The use of this particularn 1n J n
form of centering instead of the usual centering by average is to simplify the
asymptotic analysis; see the comments in Section 3.

To make statistical inferences about �, it is necessary to know or to
ˆapproximate the sampling distribution of � . As stated in the next section,n

ˆthe distribution of � can be approximated by a normal distribution in then
large sample sense. Unfortunately, the variance matrix of this normal distri-
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bution cannot be expressed in terms of quantities that can be easily esti-
Ž .mated. We suggest using the inverse of the observed partial information

matrix, taking into account that we are also estimating the ‘‘nuisance’’
ˆ Ž .parameter b, to estimate the variance matrix of � as in the linear Coxn

model. This variance estimator is available from any program that fits the
Cox regression model. We have not been able to prove the consistency of this
variance estimator. Heuristics based on the finite-dimensional parametric
model and some limited simulation suggest that this estimator should work
well. An example is given at the end of this section.

� 4We have used a prespecified partition � , 1 � t � K and fixed basist n
functions. It is probably preferable to adaptively select the partition and the
basis functions. Large sample theory of data-driven procedures for the pre-
sent problem appears to be extremely difficult and is beyond the scope of this
paper. On the other hand, if our main purpose is to estimate �, then any

� 4reasonable choice of � , 1 � t � K may work well. This is because as longt n
as it guarantees that the estimators of � ’s converge at a certain rate, whichj

1	2 ˆ 1	2may be much slower than n , then � has n rate of convergence and isn
asymptotically normal. See Theorem 3.3 and Remark 3.1 in Section 3, where

ˆthe range of K that ensures asymptotic normality of � is given.n n

Although other estimation approaches can also be used, such as the
Ž .penalized partial likelihood method used by Hastie and Tibshirani 1990 and

Ž .O’Sullivan 1993 , the above method has the advantage that it can be
implemented with the existing Cox regression program. For example, in

� Ž . �Splus Version 3.4, 1996 MathSoft Inc. , two functions coxph and bs can
accomplish most of the computation, where coxph is for fitting the Cox model
and bs creates a basis matrix for polynomial splines. For the bs function, it
has arguments for knots placement and degree of the polynomials. The
default value 3 of degree gives the cubic-spline basis. There are two ap-
proaches to the placement of knots. The first is to explicitly specify the knots

Ž Ž ..such as bs x, knots� 2, 4, 6 which places three knots at three points 2, 4
and 6. A simpler way is to specify the degrees of freedom. For example,

Ž .bs x, df� 6 places the knots at the twenty-fifth, fiftieth and seventy-fifth
percentile of x. Detailed description of these two functions can be found in
the help file of Splus.

We now give a simple simulated example. The model we used to generate
the pseudo-random numbers is

�� t x , w , w � � exp � x � � w � � w ,Ž . Ž .Ž . Ž .1 1 0 1 1 2 2

Ž . Ž .2 Ž . Žwhere � � 1 and where � w � 1.5 w � 1.2 and � w � 2 log 200 �1 1 1 2 2
Ž .3. Ž .w � 1.2 . The joint distribution of X, W , W is multivariate normal with2 1 2

Ž . Ž .mean 0, 1.2, 1.2 , standard deviation 0.6, 0.6, 0.6 and all the pairwise corre-
lations equal to 0.6. The baseline � is taken to be a constant equal to0

Ž . Ž . Ž .exp �12 where 12 is approximately the expectation of X � � W � � W .1 1 2 2
Ž .The distribution of the censoring time given x, w , w is exponential with1 2

Ž .mean equal to exp 2 � 7.39. So the censuring distribution does not depend
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on the parameters of the distribution of T. The expected censoring rate is
20%. The following three commands complete the main part of the computa-
tion:

Ž . Ž .p1� bs w1,df� 6 ; p2� bs w2,df� 6
Ž .sim.dat� list time� T, status� censor.ind,x, p1,p2
Ž Ž .sim.fit� coxph Surv time,status � x� p1� p2,sim.dat,

.iter.max� 20

Here T is the vector of the simulated event times, censor.ind is the
censoring indicator. Surv is a Splus function that generates the appropriate
response variable for coxph.

To examine the performance of the estimator of � in this example, 1000
datasets are generated. In each dataset, the sample size n � 140. Table 1

ˆsummarizes the results. We also computed the estimator � using the truec
ˆform of � and � . This estimator serves as a bench mark for evaluating � .1 2 n

In the table, mean is the average of the 1000 estimated � ’s; bias is the
difference between the mean and the generating value � � 1; sd is
the sample standard deviation of the 1000 estimated � ’s, which represents
the true variability of the estimators; and mean se is the average of 1000
standard error estimates of the estimated � from coxph. It is seen that the

ˆperformance of � in terms of bias and sd is slightly worse than, butn
ˆ ˆcomparable to, that of � . This is expected because � is estimated under thec c

generating model. Observe that the standard error estimate based on the
Ž .observed partial information works well for this example.

3. Main results. In this section, we state the results on the information
ˆ ˆbound, the asymptotic distribution of � and rate of convergence of � ’s. Wen jn

first state the conditions for the asymptotic results. These conditions combine
the usual conditions in the asymptotic studies of nonparametric regression
estimators and the Cox regression model with right-censored data.

Ž �Let k be a nonnegative integer, and let � � 0, 1 be such that p � k � �
� � Žk .� 0.5. Let AA be the class of functions h on 0, 1 whose kth derivative h

exists and satisfies a Lipschitz condition of order � ,

�Žk . Žk . � � � �h s � h t � C s � t for s, t � 0, 1 .Ž . Ž .

TABLE 1
Summary of the example

mean bias sd mean se

�̂ 1.04 0.04 0.20 0.19n

�̂ 1.01 0.01 0.16 0.15c
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Ž . Ž . ŽB1 i The regression parameter � belongs to an open subset not neces-0
. d Ž . Ž .sarily bounded of R , and each � � AA for 1 � j � J; ii E � X � 0j

� Ž .�and E �� W � 0, 1 � j � J.j J

The requirement that � not be on the boundary of the parameter space is0
standard for asymptotic normality. The smoothness assumption of � ’s is alsoj

Žoften used in nonparametric curve estimation. Usually, p � 1 i.e., k � 0 and
. Ž .� � 1 or p � 2 i.e., k � 1 and � � 1 should be satisfied in many situations.

These two cases roughly correspond to assuming that � ’s have boundedj
Ž .Ž .first-order derivative or bounded second order derivative. B1 ii requires the

covariate X and the regression function to be suitably centered. Because the
regression functions can only be identified up to a constant, centering re-
moves this ambiguity. Observe that the partial likelihood does not change

Ž .when each X is centered by the sample version of E � X ; therefore, thisi
Ž .centering does not impose any real restriction. Centering by E � X or

� Ž .� Ž . � Ž .�E �� W instead of the simpler E X or E � W simplifies informationj j j j

calculation and asymptotic analysis; see Sections 4 and 5.

Ž . u cB2 The failure time T and the censoring time T are conditionally inde-
pendent given the covariate Z.

Ž . Ž .B3 i Only the observations for which the event time T , 1 � i � n is in ai
� �finite interval, say 0, � , are used in the partial likelihood. At this point

Ž . � Ž . Ž .� , the baseline cumulative hazard function  � � H � s ds � �. ii0 0 0
The covariate X takes values in a bounded subset of Rd, and the

� � Jcovariate W takes values in a, b .
Ž . Ž . Ž � .B4 There exists a small positive constant � such that i P � � 1 Z � �

Ž . Ž c � .and ii P T � � Z � � almost surely with respect to the probability
measure of Z.

Ž .Condition B2 is sufficient for the censoring mechanism to be noninforma-
Ž .Ž .tive, which is often assumed in analyzing right-censored data. B3 i is a

major technical assumption, which avoids the unboundedness of the partial
likelihood and the partial score functions at the end point of the support of

Ž .Ž .the observed event time. Condition B3 ii places the boundedness condition
on the covariates, which is unpleasant, but it is not too restrictive in many
situations because one is often able to put some bound on the covariates. A
similar assumption is often used in asymptotic analysis of nonparametric
regression problems.

Ž .Ž .Condition B4 i ensures that the probability of being uncensored is
Ž .Ž .positive regardless of the covariate value. Condition B4 ii prevents censor-

Ž . Ž .ing from being too heavy. Conditions B3 and B4 were also used by Sasieni
�Ž . �1992b , Appendix as sufficient conditions to ensure that the sumspace of
the tangent spaces for the hazard and the regression functions be closed, so
that the projections and information bound are well defined.

Ž . Ž .B5 Let 0 � c � c � � be two constants. The joint density f t, w, � � 1 of1 2
Ž . Ž . Ž . � �T, W, � � 1 satisfies c � f t, w, � � 1 � c for all t, w � 0, � �1 2

� � J0, 1 .
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Ž .Ž .This condition and the centering condition in B1 ii are needed for the
model to be identifiable. Note that weaker conditions can be formulated if

Ž .only identifiability is required. However, B5 is also used in information
bound calculation and in obtaining the rate of convergence for the estimator
of each nonparametric component in the model.

Ž .B6 Let q � 1 be a positive integer. For 1 � j � J, the qth partial derivative
Ž . Ž .of the joint density f t, x, w, � � 1 of T, X, W, � � 1 with respect to t

� Ž .or w exists and is bounded. For discrete covariate X, f t, x, w, � � 1j
Ž 2 . Ž . �is defined to be � 	� t � w P T � t, X � x, W � w, � � 1 .

This condition is used in showing that the partial score functions of the
nonparametric components in the least favorable direction are nearly zero,
which is a key step in proving the root-n convergence rate and asymptotic
normality of the finite-dimensional estimator.

Ž . Ž � Ž ..Let r z � exp x� � � w , and let

t
�3.1 M t � M t Z � �1 � 1 r Z d uŽ . Ž . Ž . Ž . Ž .H�T � t � �T � u � 0

0

be the usual counting process martingale associated with the Cox model.
	 	 	 	Throughout, Let � denote the Euclidean norm, and let � denote the2

L -norm with respect to a probability measure which should be clear in the2
	 	context. Also, let � denote the supremum norm.�

Ž . Ž .THEOREM 3.1. Under conditions B1 to B5 , the efficient score for estima-
Ž .tion of � in the partly linear additive Cox model 1.1 is

�
� � �l T , � , Z � X � a t � h W dM t ,Ž . Ž . Ž . Ž .Ž .H�

0
� Ž . � Ž . � Ž . Ž � � � .where h w � h w � ��� �h w and a , h , . . . , h are the unique L1 1 J J 1 J 2

functions that minimize
2E� X � a T � h W � ��� �h W .Ž . Ž . Ž .1 1 J J

� � Ž . � � Ž . � �Here a can expressed as a t � E X � h W T � t, � � 1 . The informa-
tion bound for estimation of � is


2 
2� � �I � � E l T , � , Z � E � X � a T � h W ,Ž . Ž . Ž . Ž .Ž .�

where x
2 � xx� for any column vector x � Rd.

Ž . Ž .THEOREM 3.2. Suppose that conditions B1 to B5 hold and 0 � v � 0.5.
Then

2
� � �2 v p �Ž1�v .ˆ ˆE� X � � � W � X � � � W � O n � n .Ž . Ž . Ž .Ž .n n p

Ž .Furthermore, if I � is nonsingular, then

ˆ 2 �2 v p �Ž1�v .	 	� � � � O n � nŽ .n p
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and

ˆ 2 �2 v p �Ž1�v .	 	� � � � O n � n , 1 � j � J .Ž .2jn j p

ˆ p	Ž1�2 p.Ž .If v � 1	 1 � 2 p , the rate of convergence of � is n which is thejn
same as the optimal rate in nonparametric regression. The following theorem

ˆ 1	2 Ž .states that the rate of convergence of � achieves n under condition B6n
Ž . Ž .in addition to conditions B1 � B5 .

Ž . Ž . Ž .THEOREM 3.3. Suppose that conditions B1 � B6 hold and that I � is
Ž .nonsingular. If v satisfies the restrictions 0.25	p � v � 0.5 and v q � p �

Ž .0.5, where p is the measure of smoothness of � defined in B2 , and q isj
Ž .defined in B6 , then

n
��1	2 �1ˆ'n � � � � n I � l T , � , Z � o 1 � N 0, � ,Ž . Ž . Ž . Ž .Ž . Ýn � i i i p d

i�1

�1Ž .where � � I � .

REMARK 3.1. It is interesting to notice that the n1	2 rate of convergence
ˆand asymptotic normality of � hold for a range of the number of knotsn

Ž v. 1	2K � O n , although the rate of convergence of g is slower than n . Hereˆn jn
v plays the role of a smoothness parameter. The range of v that ensures

ˆasymptotic normality of � depends on p and q, where p measures then
smoothness of the nonparametric parameters and q can be regarded as a
measure of the smoothness of the model. If p � 1 and q � 1, then asymptotic

ˆnormality of � holds for 1	4 � v � 1	2. If p � 2 and q � 2, then asymp-n
ˆtotic normality of � holds for 1	8 � v � 1	2.n

Ž .For estimating � ’s, the optimal choice of v is v � 1	 1 � 2 p . This choicej
of v satisfies the restriction on v stated in Theorem 3.3. With this choice,

ˆ 1	2 p	Ž1�2 p.both � and g achieve the optimal rates of convergence, n and n ,ˆn n
respectively.

ˆREMARK 3.2. Because � achieves this information lower bound and isn
asymptotically linear, it is asymptotically efficient among all the regular

Ž .estimators. See for example, Van der Vaart 1991 and Bickel, Klaassen,
�Ž . Ž .�Ritov and Wellner 1993 , Chapter 3 in particular, Section 3.4 for a

systematic discussion on the information bounds for finite-dimensional pa-
rameters in infinite-dimensional models.

4. Information bound calculation. In this section, we calculate the
information bound for the estimation of � given in Theorem 3.1. General
theory on the asymptotic information bound for parameters in infinite-di-

Ž .mensional models can be found in Van der Vaart 1991 and Bickel, Klaassen,
Ž .Ritov and Wellner 1993 . The calculation here is based on the approach of

Ž .Sasieni 1992b , who carried out information calculation in the partly linear
Ž .Cox model 1.2 in which projection onto a sumspace of two nonorthogonal L2
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spaces was calculated. We extend this method to the partly additive model
Ž .1.1 in which projection onto the sumspace of J � 1 nonorthogonal L spaces2
needs to be calculated.

We start with the log-likelihood function and the score functions associated
with the parameters. The log-likelihood for a sample of size one is, up to an

Ž .additive term not dependent on �, �,  ,
� �l � , � ,  � � log � T � � X � � � W �  T exp X � � � W ,Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .where � W � � W � ��� �� W . Consider a parametric smooth sub-1 1 J J
� 4 � 4model � : � � R and � : � � R, 1 � j � J in which � � � andŽ� . jŽ� . j Ž0.j

� � � andjŽ0. j

� log �Ž� .
�t � aŽ . ��0

��

and
��jŽ� .j �w � h w , 1 � j � J .Ž . Ž .� �0j j jj��j

Ž . Ž � Ž .. Ž .Recall r z � exp x� � � w and M is the martingale defined in 3.1 . The
score operators for the hazard  and regression functions � and the scorej

Žvector for � are the partial derivatives of the likelihood l �, � , . . . ,1Ž� .1

.� ,  with respect to �, � , . . . , � and � evaluated at � � 0, � �J Ž� . Ž� . 1 J 1J

0, . . . , � � 0,J

� �
˙4.1 l a � �a T � r Z Y t a t d t � a t dM t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H

0 0

�
˙4.2 l h � h W � � r Z  T � h W dM t , 1 � j � J ,Ž . Ž . Ž . Ž .Ž . Ž .H� j j j j jj

0

�
˙4.3 l � X � � r Z  T � X dM t .Ž . Ž . Ž . Ž .H�

0

Ž Žu.. � � 2Ž .� 4 0 Ž Žu.. � � Ž .�Define L P � a: E �a T � � , and L P � h : E �h W � 0;2 T 2 W j j jj� 2Ž .� 4E �h W � � , 1 � j � J. Letj j

˙ Žu.A � l a: a � L P� 4Ž .  2 T

and

˙ 0 Žu.H � l h : h � L P , 1 � j � J .½ 5ž /j � j j 2 Wj j

� � � ˙ � ˙ � ˙ �Ž .Let h � h , . . . , h and l h � l h � ��� �l h . To calculate the infor-1 J � � 1 � J1 J

Ž . Ž � �mation bound for �, we need to find the least favorable direction a , h ,1
� ˙ ˙ � ˙ �.. . . , h such that l � l a � l h is orthogonal to the sumspace A � A �J �  � 

Ž � � � .H � ��� �H . That is, a , h , . . . , h must satisfy1 J 1 J

� � Žu.˙ ˙ ˙ ˙E l � l a � l h l a � 0, a � L P ,Ž .½ 5�  �  2 T

� � 0 Žu.˙ ˙ ˙ ˙E l � l a � l h l h � 0, h � L P , 1 � j � J .ž /½ 5�  � � j j 2 Wj j
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Ž . Ž . Ž .By the martingale representations given in 4.1 , 4.2 and 4.3 , these two
equations can be written as

� � �4.4 E X � a � h � ��� �h dM a dM � 0,Ž . Ž .H H1 J

� � �4.5 E X � a � h � ��� �h dM h dM � 0, 1 � j � J .Ž . Ž .H H1 J j

Ž . � d�J qBy Lemma 1 of Sasienin 1992b , for any measurable � : R � R � Rk
� 2Ž .�satisfying E � T, Z � �, k � 1, 2,j

4.6 E � t , Z dM t � t , Z dM t � E �� T , Z � T , Z ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H1 2 1 2

Ž .provided that the compensator of M is absolutely continuous. So 4.4 and
Ž .4.5 are equivalent to

� � � Žu.E � X � a � h � ��� �h a � 0, a � L P ,Ž . Ž .1 J 2 T

� � � 0 Žu.E � X � a � h � ��� �h h � 0, h � L P , 1 � j � J .Ž . ž /1 J j j 2 Wj

Ž � � � .Therefore, we can take a , h , . . . , h to be the solution to the following1 J
equations:

� � � Žu.�4.7 E X � a � h � ��� �h T � t , � � 1 � 0 a.s. P ,Ž . 1 J T

� � � Žu.�4.8 E X � a � h � ��� �h W � w , � � 1 � 0 a.s. P ,Ž . 1 J j j Wj

1 � j � J .

It follows that a� � h� � ��� �h� is the projection of X onto the sumspace1 J

Ž Žu.. 0 Ž Žu.. 0 Ž Žu..L � L P � L P � ��� �L P .2 T 2 W 2 W1 J
Ž .We now show that, under condition B3 , the sumspace L is closed, so that

the projection is well defined. According to Proposition 2, part A, of Bickel,
�Ž . �Klaassen, Ritov and Wellner 1993 , Appendix 4, pages 440 and 441 it
Ž Žu.. 0 Ž Žu..suffices to show that for a � L P and h � L P , 1 � j � J,2 T j 2 Wj

2	 	E � a � h � ��� �h1 J

2 2 2	 	 	 	 	 	� c E � a � E � h � ��� �E � h½ 51 J

4.9Ž .

Ž . Ž . Ž .for a constant c � 0. Under conditions B4 and B5 , 4.9 follows from
Ž . Ž . Ž � � � .Lemma 1 of Stone 1985 . Moreover, because of 4.9 , a , h , . . . , h is1 J

unique, and the population version of the back-fitting algorithm, which is the
Ž .inner loop of the ACE algorithm of Breiman and Friedman 1985 , converges

Ž � � � .to a , h , . . . , h .1 J
˙ Ž .The above calculation directly projects l onto the sumspace A. By 4.6 ,�

the problem is transformed to the calculation of the projection of X onto the
sumspace L. Because L has a more transparent structure than A, the
calculation becomes much easier. Also, with A, it is easier to formulate
appropriate conditions so that the projection is well defined and unique.
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A different approach is first to eliminate the hazard function by projecting
˙ ˙the scores l and l onto the tangent space for the hazard and then� � j

˙projecting the residual of the projection of l onto the sumspace generated by�
˙the residual scores of the projection of l . This route was used by Sasieni� j

Ž .1992b . An advantage of this approach is that it is more naturally related to
the partial likelihood.

We now outline this approach for the present model. Let S be an operator
Ž .taking measurable functions of Z to functions of t defined by Sa t �

� Ž . Ž . � Ž . � Ž . � Ž . kE a Z r Z 1 and let S t � E r Z 1 . Denote S t � SZ , k ��T � t � 0 �T � t � k 1

�Ž . �0, 1. A useful identity due to Sasieni 1992b , Lemma 2 is
Sa tŽ .

�4.10 � E a Z T � t , � � 1 .Ž . Ž .
S tŽ .0

Ž . Ž .By Proposition 1 iii of Sasieni 1992b , regression scores orthogonal to the
tangent space for the hazard are

Shj˙ ˙ �K h � l h � l � D h z , t dM t z ,Ž . Ž .Hj j � j  j jj ž /S0

0 Ž Žu.. Ž Žu..where D : L P � L P is defined byj 2 W 2j

Shj
�D h w , t � h w � t � h w � E h T � t , � � 1 ,Ž . Ž . Ž .Ž .j j j j j j j jS0

1 � j � J .
˙In other words, K ’s are the residual scores of the projection of l onto thej � j

Ž . Ž .tangent space for the hazard. By Theorem 1 ii of Sasieni 1992b , the
˙residual scores of the projection of l onto the tangent space for the hazard is�

S1
�K � i � i � D z , t dM t z ,Ž . Ž .H� �  Xž /S0

where
S1

�� �D z , t � z � t � z � E Z T � t , � � 1 .Ž . Ž .X S0

Ž . 0 Ž Žu..In the remainder of this section, let h � h , . . . , h where h � L P ,1 J j 2 Wj
� Ž �denote Kh � K h � ��� �K h . The least favorable direction is h � h ,1 1 J J 1

� . � 0 Ž Žu... . . , h with h � L P that minimizesJ j 2 Wj

	 	 24.11 E K � Kh .Ž . �

Equivalently, h� is the direction such that K � Kh� is orthogonal to Kh for�

Ž . 0 Ž Žu.. �all h � h , . . . , h with h � L P . Therefore, h must satisfy1 J j 2 Wj

� 0 Žu.4.12 E K � Kh K h � 0 for every h � L P , 1 � j � J .Ž . Ž . ž /� j j j 2 Wj

To see that such an h� exists, denote Dh� � D h� � ��� �D h� . By Lemma 11 1 J J
Ž .of Sasieni 1992b , as in the proof of Proposition 2 of the same article, we

have
�� �E K � Kh K h � E D D � Dh h .Ž .Ž .� j j j X j
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Therefore,

D� D � Dh� � 0 a.s.� P Žu. , 1 � j � J .Ž .j X Wj

Ž .By Lemma 3 of Sasieni 1992 ,

� � �D D w � E X � E X T � t , � � 1 W � w , � � 1 ,Ž . Ž .j X j j j

� � � � � �D Dh w � E h W � E h W T � t , � � 1 W � w , � � 1 .Ž . Ž . Ž .Ž .j j j j

Therefore, h� satisfies

� � � �E X � h W � E X � h W T � t , � � 1 W � w , � � 1Ž . Ž .Ž . j j

� 0 a.s.� P Žu. .Wj

4.13Ž .

for 1 � j � J. Let

� � �4.14 a t � E X � h W T � t , � � 1 .Ž . Ž . Ž .

Ž . Ž . Ž . Ž .It is seen that 4.13 and 4.14 are equivalent to 4.7 and 4.8 .

5. Rate of convergence and asymptotic normality. In this section,
we prove Theorems 3.2 and 3.3. In the proof of Theorem 3.2, we first obtain a
suboptimal convergence rate by taking advantage of the concavity of the
partial likelihood. This enables us to work in a sufficiently small neighbor-
hood of the parameters. We then use Theorem 3.4.1 of Van der Vaart and

�Ž . �Wellner 1996 , pages 322�323 to obtain the rates of convergence. The proof
Ž .of Theorem 3.3 is based on Theorem 6.1 of Huang 1996 , which provides a set

of sufficient conditions for the maximum likelihood estimator of the finite-
dimensional parameter in a class of semiparametric models to satisfy a
central limit theorem. Although we are dealing with a partial likelihood, the
approach there can be adapted to the present situation.

Ž . �Throughout this section, denote the regression function by g z � x� �
Ž . Ž . Ž . Ž . Ž .� w with � w � � w � ��� �� w . To avoid confusion, let � , � be1 1 J J 0 0

Ž . � Ž .the true parameter value. Denote g z � x� � � w . By Lemma A.5, there0 0 0
	 	 Ž �v p �Ž1�v .. Ž . �exists � � 	 such that � � � � O n � n . Let g z � x��n n n 0 p n 0

�ˆ ˆŽ . Ž . Ž .� � w . Also denote the estimator of g by g z � x� � � w .ˆn 0 n n n
Ž .Let P be the empirical measure of T , � , Z , 1 � i � n and let P be then i i i

Ž . Ž .probability measure of T, �, Z . Let P be the subprobability empirical� n
Ž .measure of T , � � 1, Z , 1 � i � n and let P be one subprobabilityi i i �

Ž .measure of T, � � 1, Z . It is convenient to use linear functional notation.
�1 n Ž .So, for example, P f � Hf dP � H� f dP � n Ý � f T , � , Z for any f� n � n n i�1 i i i i

such that this integral is well defined.

5.1. Rate of convergence. Throughout this subsection, we assume that
Ž . Ž . Ž .conditions B1 to B5 hold and 0 � v � 0.5. For 0 � t � � , let Y t � 1�T � t �
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Ž .and Y t � 1 , 1 � j � n. Denotej �T � t �j

n
�1S t , g � n Y t exp g Z ,Ž . Ž . Ž .Ž .Ý0 n j j

5.1 j�1Ž .
S t , g � EY t exp g ZŽ . Ž . Ž .Ž .0

and
n

�1� �S t , g h � n Y t h Z exp g Z ,Ž . Ž . Ž .Ž .Ž .Ý1n j j i
5.2 j�1Ž .

� �S t , g h � EY t h Z exp g Z .Ž . Ž . Ž . Ž .Ž .1

Ž .Ž .Let � be given in condition B3 i . The logarithm of the partial likelihood is
n

�1M g � n 1 � g Z � log S T , g .Ž . Ž . Ž .Ýn �0 � T �� � i i 0 n ii
i�1

Ž . � Ž . Ž .� Ž . � Ž .Denote m t, x, g � g z � log S t, g 1 and m t, x, g � g zn 0 n 0� � t �� � 0
Ž .�� log S t, g 1 . Then0 �0 � t �� �

M g � P m �, g .Ž . Ž .n � n n

Let
M g � P m �, g .Ž . Ž .0 � 0

For notational convenience, in the remainder of the proofs including those in
this section and in the Appendix, we will drop the indicator function 1�0 � t �� �
in the summation and integration or in the integrand of the subprobability
measure P or the empirical measure P .� � n

LEMMA 5.1. Let q � K � l be the number of polynomial spline basisn n
functions defined in Section 2:

	 	 2 �1g � g � o q .ˆ Ž .2n n p n

Ž . 	 	 Ž .Subsequently, by Lemma 7 of Stone 1986a , g � g � o 1 .ˆ �n n p

d 	 � Ž .	 2 Ž �1 .PROOF. Let b � R and � � 	 be such that x b � � z � O q .2n n n n
Ž . � Ž . Ž . Ž .Denote h z � x b � � z . Let H � � M g � � h . The derivative ofn n n n n n

H isn

�1 nn1 n Ý Y t h Z exp g � � h ZŽ . Ž . Ž .Ž .j�1 j n j n n i�H � � � h Z �Ž . Ž .Ýn i n i �1 nn n Ý Y t exp g � � h ZŽ . Ž . Ž .j�1 j n n ii�1

� �S �, g � � h hŽ .1n n n n� P h � .� n n S �, g � � hŽ .0 n n n

Ž . � Ž .By concavity of M g , H � is a nonincreasing function. Therefore, to proven n
� Ž .the lemma, it suffices to show that for any � � � � 0, H � � 0 and0 n 0

� Ž .H �� � 0 except on an event with probability tending to zero, becausen 0
	 	then g must be between g � � h and g � � h , and so g � g �ˆ ˆ 2n n 0 n n 0 n n n
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	 	� h . Let b � g � � h , and let20 n n n 0 n

� � � �S �, b h S �, b hŽ . Ž .1 n n 1n n n
A t � � .Ž .n S �, b S �, bŽ . Ž .0 n 0 n n

By adding and subtracting terms, we have

� �S �, b hŽ .1 n n�H � � P A � P � P h �Ž . Ž .n 0 � n n � n � n S �, bŽ .0 n

� �S �, b hŽ .1 n n� P h �� n S �, bŽ .0 n

� I � I � I .1n 2 n 3n

� � � Ž . �The first term I � sup A t . Write1n 0 � t �� n

S t , b S t , b A tŽ . Ž . Ž .0 n 0 n n n

� �� S t , b h S t , b � S t , b� 4Ž . Ž . Ž .1 n n 0 n n 0 n

� � � �� S t , b S t , b h � S t , b h� 4Ž . Ž . Ž .0 n 1n n n 1 n n

� J t � J t .Ž . Ž .1n 2 n

Ž . 	 	 1	2 	 	 Ž .By Lemma 7 of Stone 1986a , h � cq h � O 1 . By Lemma A.1,� 2n n n p

� Žusing Corollary A.2 on the bracket number for MM and using sup S t,2 0 � t �� 1
.� � � 	 	 Ž �1	2 .b h � h � O q , we have2n n n n

�1	2 1	2 �1	2 0 .5 �1	2	 	sup J t � O 1 h n q � q log q � O nŽ . Ž . Ž .Ž .21n p n n n n p
0�t��

and
�1	2 �1	2 1	2 0 .5 �1	2sup J t � O 1 n q q � log q � O n .Ž . Ž . Ž .Ž .2 n p n n n p

0�t��

Ž �1	2 . Ž . Ž .Thus I � O n , since inf S t, b S t, b � 1	c for some con-1n p 0 � t �� 0 n 0 n n 1

Ž �1	2 .stant c � 0. Likewise, the second term I � O n . For the third term,1 2 n p
because

� �S �, g hŽ .1 0 n
P h � � 0,� n S �, gŽ .0 0

we have, by adding and subtracting terms,

� � � �S �, b h S �, g hŽ . Ž .1 n n 1 n n
I � �P �3n � S �, b S �, gŽ . Ž .0 n 0 n

� � � �S �, g h S �, g hŽ . Ž .1 n n 1 0 n� P � .� S �, g S �, gŽ . Ž .0 n 0 0

By Lemma A.4, using P g � 0 and P h � 0, as in the proof of Lemma� n n � n n
A.6, we have

I � �c � q�1 � O n�1q � �c � n�v � O n�Ž1 �v . .Ž .Ž .3n 2 0 n p n 2 0 p
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Therefore, because 0 � v � 0.5, we have,

H � � � �c � n�v � O n�1	2 � O n�Ž1 �v . � 0,Ž . Ž . Ž .0 2 0

except on an event with probability converging to zero. Similarly, we can
�Ž .show that H �� � 0 with high probability. This completes the proof of the0

lemma. �

PROOF OF THEOREM 3.2. We first prove that

E sup M g � M g � M g � M gŽ . Ž . Ž . Ž .Ž .n n n 0 0 n
	 	�	2� g�g ��2n

�1	2 '� n � q � log 1	� .Ž .ž /n

5.3Ž .

Observe that

M g � M g � M g � M gŽ . Ž . Ž . Ž .Ž .n n n 0 0 n

V � P � P m �, g � m �, gŽ . Ž . Ž .� n � 0 0 n

S �, g S �, gŽ . Ž .0 n 0� P log � log� n S �, g S �, gŽ . Ž .0 n n 0 n

5.4Ž .

� I g � I g .Ž . Ž .1n 2 n

�Ž . �For the first term I , by Van der Vaart and Wellner 1996 , Lemma 3.4.1 ,1n

�1	2 1	2E sup I g � n m � .Ž .1n n
	 	g�g ��2n

For the second term I , we have, for a constant c � 0,2 n 1

S �, g S �, gŽ . Ž .0 n 0
� �sup I � 2 sup log � log2 n S �, g S �, gŽ . Ž .	 	 	 	 0 n n 0 ng�g �� 0�t�� , g�g ��2 2n n

S �, g S �, gŽ . Ž .0 n 0� c sup �1 S �, g S �, gŽ . Ž .	 	 0 n n 0 n0�t�� , g�g ��2n

� c n�1	2� q1	2 � log0 .5 ��1Ž .Ž .1 n

with probability arbitrarily close to one for n sufficiently large, where the last
Ž .inequality follows from Lemma A.3 i . Therefore, by Van der Vaart and

�Ž . �Wellner 1996 , Theorem 3.4.1, pages 322 and 323 , choosing the distance dn
2Ž . Ž Ž . Ž ..defined in that theorem to be d g , g � � P m �, g � P m �, g , weˆ ˆn n n � 0 n � 0 n

have
2�r P m �, g � P m �, g � O 1 ,Ž . Ž .Ž .ˆ1n � 0 n � 0 n p

where r satisfies1n

r 2 r�1q1	2 � r�1 log1	2 r � O n1	2 .Ž .Ž .1n 1n n 1n 1n

It follows that r � q�1	2 n1	2 � nŽ1�v .	2. Therefore, by Lemma A.6, for a1n n
constant c � 0,2

	 	 2 �Ž1�v . �2 v pc g � g � O n � n .Ž .ˆ 22 n n p
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	 	 2 Ž �2 v p �Ž1�v ..Because g � g � O n � n , we have�n 0 p

	 	 2 �Ž1�v . �2 v pg � g � O n � n .Ž .ˆ 2n 0 p

Ž . Ž .By conditions B4 and B5 , it follows that
2

� � �Ž1�v . �2 v pˆ ˆE� X � � � W � X � � � W � O n � n .Ž . Ž . Ž .Ž .n n 0 0 p2

� � Ž . � Ž . � Ž .Therefore, for the projections a and h w � h w � ��� �h w defined1 1 J J
in Section 4,

�� � ˆE� X � a T � h W � � �Ž . Ž .Ž . Ž .n 0

2�� � ˆ ˆ� a T � h W � � � � � W � � WŽ . Ž . Ž . Ž .Ž . Ž . Ž .n 0 n 0 2

2�� � ˆ� E� X � a T � h W � � �Ž . Ž .Ž . Ž .n 0 2

2�� � ˆ ˆ� E� a T � h W � � � � � W � � WŽ . Ž . Ž . Ž .Ž . Ž . Ž .n 0 n 0 2

� O n�Ž1 �v . � n�2 v p ,Ž .p

Ž . Ž .where the first equality follows from orthogonality given in 4.7 and 4.8 .
� Ž � Ž . � Ž ..�
2Because E � X � a T � h W is assumed to be nonsingular, it fol-
ˆ 2 �Ž1�v . �2 v p	 	 Ž .lows that � � � � O n � n . This in turn implies2n 0 p

2 �Ž1�v . �2 v pˆE� � W � � W � O n � n .Ž . Ž . Ž .n 0 p2

Ž . Ž . Ž .Thus by Lemma 1 of Stone 1985 , B4 and B5 ,
2 �Ž1�v . �2 v pˆE � W � � W � O n � n , 1 � j � J .Ž . Ž . Ž .jn j p2

The result follows. �

5.2. Asymptotic normality and efficiency. Throughout this section, we
Ž . Ž .assume that conditions B1 � B6 hold. The proof of Theorem 3.3 is built on

the following three lemmas.
Ž . JLet u � t, x, w . For a real-valued function h of w � R , define

� �S t , g hŽ .1n� �s u , g h � h w �Ž . Ž .n S t , gŽ .0 n

and
� �S t , g hŽ .1� �s u , g h � h w � ,Ž . Ž .

S t , gŽ .0

Ž . Ž .where S and S , k � 0, 1 are defined in 5.1 and 5.2 , but now we take hk n k
J Ž .to be a function of w � R . To simplify and slightly abuse the notation, for a

d Ž .vector x � R and the identity map I x � s, denote

� � � �S t , g I S t , g IŽ . Ž .1n 1� � � �s u , g x � x � and s u , g x � x � .Ž . Ž .n S t , g S t , gŽ . Ž .0 n 0

Ž . Ž .We also write s u, �, � � s u, g and so on.n n
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As in likelihood estimation, we shall call the derivatives of the partial
Ž .likelihood with respect to the parameters partial score functions. The score

function based on the partial likelihood for � is

˙ � �l � , � � P s �, � , � x .Ž . Ž .n� � n n

The score function based on the partial likelihood for � in a direction h � 	n n
is

˙ � � � �l � , � h � P s �, � , � h .Ž . Ž .n� n � n n n

ˆ ˆŽ . Ž .By the definition of � , � i.e., it maximizes the partial likelihood ,n n

˙ ˆ ˆ ˆ ˆ � �5.5 l � , � � P s �, � , � x � 0,Ž . ž / ž /n� n n � n n n n

and for any h � 	 ,n n

˙ ˆ ˆ ˆ ˆ� � � �5.6 l � , � h � P s �, � , � h � 0.Ž . ž / ž /n� n n n � n n n n n

Ž .The first key step Lemma 5.2 in proving Theorem 3.3 is to show that the
˙ ˆ ˆŽ .partial score function l evaluated at � , � along the least favorablen� n n

direction is nearly zero.

� � Ž . � Ž . � Ž . ŽLEMMA 5.2. Let h be defined by h w � h w � ��� �h w note that1 1 J J
.this is different from the notation we used in Section 4 ,

˙ ˆ ˆ � ˆ ˆ � �1	2� � � �5.7 l � , � h � P s �, � , � h � o n .Ž . Ž .ž / ž /n� n n � n n n n p

Ž . Ž . Ž .PROOF. By condition B6 , and equations 4.7 and 4.8 , it can be shown
that h� is qth differentiable and its qth derivative is bounded. Thus accord-

�Ž . � �ing to Corollary 6.21 of Schumaker 1981 , page 227 there exists an h � 	n n
such that

	 � � 	 �qh � h � O q .Ž .�n n

Ž .By 5.6 ,

˙ ˆ ˆ � ˙ ˆ ˆ � ˙ ˆ ˆ �� � � � � �l � , � h � l � , � h � l � , � hž / ž / ž /n� n n n� n n n� n n n

� �� � � �S �, g h S �, g hŽ . Ž .ˆ ˆ1n n 1n n n� �� P h � h � �� n n ž /S �, g S �, gŽ . Ž .ˆ ˆ0 n n 0 n n

� �� �S �, g h � hŽ .ˆ1n n n� �� P h � h �� n n S �, gŽ .ˆ0 n n

� I � I � I ,1n 2 n 3n

where
� �� �S �, g h � hŽ .ˆ1 n n� �I � P � P h � h � ,Ž .1n � n � n S �, gŽ .ˆ0 n

� � � �� � � �S �, g h � h S �, g h � hŽ . Ž .ˆ ˆ1 n n 1n n n
I � P �2 n � n S �, g S �, gŽ . Ž .ˆ ˆ0 n 0 n
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and
� �� �S �, g h � hŽ .ˆ1 n n� �I � P h � h � .3n � n S �, gŽ .ˆ0 n

By the maximal inequality in Lemma A.1 and some entropy calculation
Ž �1	2 .similar to those in Corollary A.1, it follows that I � o n . By Lemma1n p

Ž . Ž �1	2 . Ž .A.3 ii , I � o n . Now consider the third term I . By 4.10 ,2 n p 3n

� �� �S �, g h � hŽ .1 0 n� �P h � h �� n S �, gŽ .0 0

� � � � �� E � h � h � E � h � h T � t , � � 1 � 0,Ž . Ž .Ž .n n

so we have
� � � �� � � �S �, g h � h S �, g h � hŽ . Ž .ˆ1 0 n 1 n n

I � P � .3n � S �, g S �, gŽ . Ž .ˆ0 0 0 n

By Lemma A.4, there exists a constant c � 0 such that

� � 	 � � 	 	 	I � c h � h g � g .ˆ� 23n n n 0

�q v Ž �v p �Ž1�v .	2 . Ž �1	2 .Therefore, I � n O n � n � o n by the restriction on3n p p

v stated in Theorem 3.3. This proves the lemma. �

LEMMA 5.3.

� � � �P s �, g x � s �, g x� 4Ž .Ž .ˆ� n n n n 0

� � � � �1	2� P x �, g x � s �, g x � o n� 4Ž . Ž .Ž .ˆ� n 0 p

5.8Ž .

and

� � � � � �P s �, g h � s �, g h� 4Ž .Ž .ˆ� n n n n 0

� � � � � � �1	2� P s �, g h � s �, g h � o n .� 4Ž . Ž .Ž .ˆ� n 0 p

5.9Ž .

Ž . Ž .PROOF. We only prove 5.9 , because the proof of 5.8 is similar. The right
Ž .side of 5.9 is bounded by the sum of two terms,

� �� � � �I � P � P s �, g h � s �, g h� 4Ž . Ž .Ž .ˆ1n � n � n 0

and
� � � �� � � � � � � �I � P s �, g h � s �, g h � s �, g h � s �, g h .Ž . Ž .� 4Ž . Ž .ˆ ˆŽ .2 n � n n n n 0 n 0

� Ž .� � � Ž .� � �� 2For I , by Lemma A.4 in the Appendix, P s �, g h � s �, g h �ˆ1n n 0
Ž	 	 2 . Ž .O g � g , and the �-bracketing number of the class of functions S � �ˆ 2n 0 1

� Ž .� � � Ž .� � � 	 	 4 Ž . Ž .s �, g h � s �, g h : g � g � � � G is q log �	� � log 1	� . The20 0 n
Ž Ž . Ž .. Ž 1	2 0.5Ž ..corresponding entropy integral J �, S � , L P is � q � log 1	� .� 1 2 n

Therefore, by Lemma A.1 and Theorem 3.2, for r � nŽ1�v .	2 � nv p,n

�1	2 �1 0 .5 �1	2EI � O 1 n r q � log r � o n .Ž . Ž . Ž .1n n n n
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For I , the integrand of the empirical measure is2 n

� � � � � �S t , g h S t , g hŽ .Ž .ˆ1n n 1n 0
II t � �Ž .2 n S t , g S t , gŽ .Ž .ˆ0 n n 0 n 0

� �� � � �S t , g h S t , g hŽ .Ž .ˆ1 n 1 0� � .
S t , g S t , gŽ .Ž .ˆ0 n 0 0

It is shown in Lemma A.7 in the Appendix that
�1	2sup II t � o n .Ž . Ž .2 n p

0�t�t

This completes the proof. �

LEMMA 5.4.

� � � � � �P s �, g x � h � s �, g x � h� 4Ž .Ž .ˆ� n 0


2 2 2� ˆ ˆ ˆ	 	 	 	� �� �P s �, g x � h � � � � O � � � � � � �� 4Ž .ˆ Ž . 2ž /� n n 0 n 0 n 0


2� �1	2ˆ� �� �P s �, g x � h � � � � o n .� 4 Ž .Ž .ˆ Ž .� n n 0 p

PROOF. By Lemma A.4 in the Appendix, we have

� � � � � �P s �, g x � h � s �, g x � h� 4Ž .Ž .ˆ� n 0

� ˆ� � � �� �P s �, g x � h s �, g x � � �Ž . Ž . Ž .� 0 0 n 0

� ˆ� �� P s �, g x � h s �, g � � �Ž . Ž .� 0 0 n 0

ˆ 2 ˆ 2	 	 	 	� O � � � � � � � .2ž /n 0 n 0

Ž .However, by 4.12 in Section 4,
� ˆ� �P s �, g x � h s �, g � � � � 0Ž . Ž .� 0 0 n 0

and

2� �� � � � � �P s �, g x � h s �, g x � P s �, g x � h .� 4Ž . Ž . Ž .� 0 0 � 0

ˆ 2 �1	2 ˆ 2 �1	2	 	 Ž . 	 	 Ž .Because � � � � o n and � � � � o n by Theorem 3.2,2n 0 p n 0 p
the lemma follows. �

PROOF OF THEOREM 3.3. By Lemmas 5.2, 5.3 and 5.4 and using the same
�Ž . �proof of Huang 1996 , Theorem 6.1 we have


2� �1	2 1	2ˆ� � � �n P s �, g x � h � � � � n P s �, g x � h � o 1 .� 4Ž . Ž . Ž .Ž .� 0 n 0 � n n 0 p

ˆSo asymptotic normality of � follows directly by the martingale central limitn
ˆtheorem. However, the following argument shows that � is asymptoticallyn

linear in the efficient influence function. Let

t
M t � � 1 � Y u exp g Z d u , 1 � i � n.Ž . Ž . Ž . Ž .Ž .Hi i �T � t � i 0 i 0i

0
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We can write
1	2 � � �n P s �, g x � hŽ .� n n 0

�n � �� S t , g x � hŽ .1n 0��1	2� n X � h W � dM t .Ž . Ž .Ý H i i iS t , gŽ .0 0 n 0i�1

Thus
1	2 � � �n P s �, g x � hŽ .� n n 0

�n � �� S t , g x � hŽ .1 0��1	2� n X � h W � dM tŽ . Ž .Ý H i i iS t , gŽ .0 0 0i�1

� �n � � � �� S t , g x � h S t , g x � hŽ . Ž .1 0 1n 0�1	2� n � dM t .Ž .Ý H iS t , g S t , gŽ . Ž .0 0 0 0 n 0i�1

Because
2� �n � � � �� S t , g x � h S t , g x � hŽ . Ž .1 0 1n 0�1n �Ý H S t , g S t , gŽ . Ž .0 0 0 0 n 0i�1

� Y u exp g Z d u � 0,Ž . Ž . Ž .Ž .i 0 i 0 p

by Lenglart’s inequality as stated in Theorem 3.4.1 and Corollary 3.4.1 of
Ž . �Ž .Fleming and Harrington 1991 or Andersen, Borgan, Gill and Keiding 1993 ,

�page 86 we have
1	2 � � �n P s �, g x � hŽ .� n n 0

�n � �� S t , g x � hŽ .1 0��1	2� n X � h W � dM t � o 1 .Ž . Ž . Ž .Ý H i i i pS t , gŽ .0 0 0i�1

Ž .However, by 4.10 ,

� � �S t , g x � hŽ .1 0 � ��� E X � h W T � t , � � 1 � a t .Ž . Ž .
S t , gŽ .0 0

By the definition of the efficient score function l�, we have�

n
� ��1	2' � �n P s �, g x � h � n l T , � , Z � o 1 � N 0, I � .Ž . Ž . Ž . Ž .Ž .Ý� n 0 � i i i p d 0

i�1

Therefore, the result follows. This completes the proof. �

6. Concluding remarks. In this paper, we studied asymptotic proper-
ties of the maximum partial likelihood estimator of the partly linear additive
Cox model using polynomial splines for the nonparametric regression compo-
nents. We have elected to consider only the model with time-independent
covariates in the random right-censorship setting, because this type of data
arises often in practice and because the technical details involved already
appear to not be straightforward. It seems that the results can be extended to
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Žthe multiplicative intensity model with time-dependent covariates and a
. Ž .partly linear regression function as described by Andersen and Gill 1982 . If

methods similar to the present one are to be used, two aspects not discussed
in this paper need to be addressed. First, the information bound calculation
Ž .or the similar type of projection calculation must be done for partial score
operators and partial score functions involving time-dependent covariates.
This calculation will be helpful in separating the root-n consistent estimator
from estimators with lower rates of convergence. Second, there should be a
maximal inequality similar to Lemma A.1 for martingale integrals indexed by
classes of functions with appropriate bracketing entropy numbers. This type
of inequality is useful in establishing rates of convergence and controlling
remainder terms in the asymptotic normality proof.

APPENDIX

Technical lemmas. In this Appendix we collect several lemmas that are
used in the previous sections.

Ž . � 2 4 	 	For any probability measure Q, define L Q � f : Hf dQ � � . Let � 22

	 	 Ž 2 .1	2be the usual L -norm, that is, f � Hf dQ . For any subclass FF of22
Ž . Ž Ž .. �L Q , define the bracketing number NN � , FF, L Q � min m: there exist2 � 2

f L, f U, . . . , f L, f U such that for each f � FF, f L � f � f U for some i, and1 1 m m i i
U L �	 	 4 Ž Ž ..f � f � � . Denote J �, FF, L Q � H 1 � log N � , FF , L Q d� .' Ž .Ž .2i i � 2 0 � 2
The following lemma used in the previous sections is Lemma 3.4.2 of van

Ž .der Vaart and Wellner 1996 . Let X , . . . , X be i.i.d. random variables with1 n
distribution Q, and Q be the empirical measure of these random variables.n

' Ž . 	 	 � �Denote G � n Q � Q , and G � sup G f for any measurable classFFn n n f � FF n
of functions FF.

LEMMA A.1. Let M be a finite positive constant. Let FF be a uniformly0
2 2 	 	bounded class of measurable functions such that Qf � � and f � M .� 0

Then

J � , FF , L QŽ .Ž .� 2� 	 	E G � C J � , FF , L Q 1 � M ,Ž .Ž .FFQ n 0 � 2 02ž /'� n

where C is a finite constant not dependent on n.0

LEMMA A.2. For any � � 0, let

� 	 	 	 	� � x� � � w : � � � � � , � � SS , � � � � � , 1 � j � J .Ž .� 42n 0 j n j 0 j

Then, for any � � �,

log N � , � , L P � c q log �	� .Ž . Ž .Ž . Ž .Ž .� n 2 n

Ž .Recall that q � K � l � 1 is the number of spline basis functions.n n
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�Ž . �PROOF. By the calculation of Shen and Wong 1994 , page 597
Ž Ž .. Ž Ž ..log N � , SS , L P � c q log �	� . Therefore, the logarithm of the brack-� n 2 1 n

eting number of the class

	 � � z : � z � � z � ��� �� z : � � SS , 1 � j � JŽ . Ž . Ž . Ž .� 4n 1 1 J J j n

Ž Ž .. Ž . � 	 	 4is also c q log �	� . Since the neighborhood B � � � : � � � � � in2 n 0
d Ž .dR can be covered by c �	� balls with radius � , the logarithm of the3

Ž . Ž .�bracketing number of � is bounded by c q log �	� � c log �	� �n 2 n 3
Ž . � 4cq log �	� for c � max c , c . �n 2 3

As a consequence of Lemma A.2, we have:

Ž . � Ž . Ž .COROLLARY A.1. Let m t, �, x, z; �, � � x� � � z � log S t; �, � ,0 0
Ž . Ž � Ž .. Ž .m t, x, z; s, �, � � 1 exp x� � � z , and m t, x, z; s, �, b, � �1 �� � t � s � 2

Ž . Ž � Ž ..1 h z exp x� � � z . Define the classes of functions�� � t � s �

	 	 	 	MM � � m : � � � � � , � � � � � ,� 4Ž . 20 0 0 0

	 	 	 	MM � � m : 0 � s � � , � � � � � , � � � � �� 4Ž . 21 1 0 0

and
	 	 	 	 	 	MM � � m : 0 � s � � , � � � � � , h � � , � � � � � .� 4Ž . 2 22 2 0

Then for any � � �,
log N � , MM � , L P � c q log �	�Ž . Ž . Ž .Ž .� 0 2 0 n

and

log N � , MM � , L P � c q log �	� � log �	� , j � 1, 2,Ž . Ž . Ž . Ž .Ž .� j 2 j n

Consequently,
J � , MM , L P � c q1	2�Ž .Ž .� 0 2 0 n

and
1	2 1	2J � , MM , L P � c q � � � log 1	� , j � 1, 2.Ž . Ž .Ž .� j 2 j n

PROOF. Because exp is monotone, by Lemma A.2, the entropy of the class
Ž � Ž .. � Ž .consisting of functions exp x� � � z for x� � � z � � is bounded byn

Ž .cq log �	� . The �-bracketing entropy of the indicator functions 1 ,n �� � t � s �
� � Ž . Ž .s � 0, � , is bounded by log �	� . The class MM � is obtained by multiplying1
Ž � Ž ..exp x� � � z by 1 ; therefore, its bracketing entropy is bounded by�� � t � s �

Ž . Ž .the sum of cq log �	� � c log �	� . �n

Ž .LEMMA A.3. i Let c be a finite constant and � be a small positive
constant. Define the class of functions

� 	 	 	 	GG � g : g z � x� � � w , � w � 	 , g � g � � , g � c .� 4Ž . Ž . Ž . �n n

Then
S t ; g S t ; gŽ . Ž .0 n 0

sup �
S t ; g S t ; gŽ . Ž .� � 0 n 0 0 0A.1Ž . t� 0, 1 , g�GG

� �n�1	2O q1	2 � log0 .5 ��1 .Ž .Ž .p n
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Ž .ii Suppose h � 	 is a sequence of uniformly bounded functions andn n
	 	 Ž �1 .h � O q . Then2n n

� � � �S t ; g h S t ; g hŽ . Ž .1n n n 1 n n �1	2A.2 sup � � o n .Ž . Ž .pS t ; g S t ; gŽ . Ž .� � 0 n n 0 nt� 0, 1

Ž .PROOF. i Because

S t ; g S t ; g S t ; g S t ; g � S t ; g S t ; gŽ . Ž . Ž . Ž . Ž . Ž .0 n 0 0 n 0 n 0 n n 0� �
S t ; g S t ; g S t ; g S t ; gŽ . Ž . Ž . Ž .0 n n 0 n 0 n n 0 n

and because the denominator on the right side is bounded away from zero
with probability tending to one, we need only to consider the numerator.
Write

S t ; g S t ; g � S t ; g S t ; gŽ . Ž . Ž . Ž .0 n 0 n 0 n n 0

� S t ; g S t ; g � S t ; g � S t ; g � S t ; gŽ . Ž . Ž . Ž . Ž .0 n 0 n 0 n n 0 0 n

� S t ; g � S t ; g S t ; g � S t ; g .Ž . Ž . Ž . Ž .0 n n 0 n 0 0 n

The first term on the right side is
�1	2 1	2 0 .5 �1P � P y t exp g z � exp g z � n �O q � log � .Ž . Ž . Ž . Ž .Ž .� 4Ž . Ž .Ž .n n p n

Ž . Ž . Ž �1	2 1	2 .Because S t; g � S t; g � O n q , and0 n n 0 n p n

1	22�S t ; g � S t ; g � E Y t exp g � exp g � C E g � g ,� 4Ž . Ž . Ž . Ž . Ž . Ž .0 0 n n n

� Ž . Ž .�� Ž . Ž .� Ž �1	2 1	2 .we have S t; g � S t; g S t; g � S t; g � O n q � .0 n n 0 n 0 0 n p n
Therefore,

S t ; g S t ; g � S t ; g S t ; g � n�1	2�O q1	2 � log0 .5 ��1 .Ž . Ž . Ž . Ž . Ž .Ž .0 n n 0 0 0 n 0 0 n p n

Ž .ii Write

� � � �S t ; g h S t ; g hŽ . Ž .1n n n 1 n n�
S t ; g S t ; gŽ . Ž .0 n n 0 n

� � � � � �S t ; g S t ; g h � S t ; g h � S t ; g hŽ . Ž . Ž . Ž .0 n 1n n n 1 n n 1 n n

� S t ; g � S t ; gŽ . Ž .0 n n 0 n� .
S t ; g S t ; gŽ . Ž .0 n 0 n n

Because g � g , the denominator of the right side of this equation isn p 0
bounded away from zero. The first term in the numerator is equal to

P � P y t h z exp g z � o n�1	2 .� 4Ž . Ž . Ž . Ž . Ž .Ž .� n � n n p

The second term in the numerator is equal to
�1	2EY t h z exp g z P � P y t exp g z � o n .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n � n � n p

This completes the proof. �
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LEMMA A.4. For a number 0 � s � 1, let

� �S t ; g � sd hŽ .1 0
H t , s � .Ž .

S t ; g � sdŽ .0 0

Ž . Ž . Ž . � Ž .�Denote W t � Y t exp g � sd 	 S g � sd . We haves 0 0 0

�
H t ; s � E W t h Z d Z � E W t h Z E W t d ZŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .s s s� s

� E W t h Z � E W t h Z d Z � E W t d ZŽ . Ž . Ž . Ž . Ž . Ž . Ž .� 4Ž . Ž .s s s

and
2�

2H t ; s � E W t h Z d Z � 2 E W t d Z E W t h Z d ZŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .s s s2� s
2� E W t h Z E W t d ZŽ . Ž . Ž . Ž .s s

2� 2 E W t h Z E W t d Z .Ž . Ž . Ž . Ž .s s

The lemma follows by direct calculation of the derivatives. Details are
omitted.

LEMMA A.5. Let 1 � j � J be the integer associated with the jth covariate
� Ž .�W . Suppose that � � GG and E �� W � 0. There exists a � � SS withj j n n

P � � 0 and� n n

	 	 �v p �Ž1�v .	2� � � � O n � n .Ž .�n p

�Ž . �PROOF. According to Corollary 6.21 of Schumaker 1981 , page 227 there
� 	 � 	 Ž �v p. �1 nexists a � � SS such that � � � O n . Let n � n Ý � . Let�n n n � i�1 i

� �1 �1 n � Ž . � �1 �� � � � n n Ý � � W � � � n P � ; then P � � 0. Be-n n � i�1 i n ji n � � n n � n n
� � � � � � � �cause � � � � � � � � P � , we only need to considern n � n n

P � � � P � P � � � P � � � � .Ž . Ž .� n n � n � n � n

Ž . � Ž �1	2 v	2 . � Ž � . � Ž .	 � 	Since P � P � � O n n , and P � � � � E � � � � ��� n � n p � n n
Ž �v p.O n , the lemma follows from the triangle inequality. �

Ž . Ž . Ž .LEMMA A.6. Denote m t, � , x, z; g � g z � log S t; g . Let � be a pos-0 0
	 	 � Ž .�itive constant. For any g with g � g � � and E � g Z � 0, there exist�n

constants 0 � c , c � � such that1 2

	 	 2 �2 v p �Ž1�v .�c g � g � O n � nŽ .21 n

� P m �; g � P m �; gŽ . Ž .� 0 � 0 n

	 	 2 �2 v p �Ž1�v .� �c g � g � O n � n .Ž .22 n p

PROOF. Let g be the true value and let h � g � g . First consider0 0

L s � P m �; g � sh � P m �; g .Ž . Ž . Ž .1 � 0 0 � 0 0
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Ž .The first and the second derivatives of L s are1

�L s � P h � H t , s ,Ž . Ž .1 � 1

2
 2L s � �P E W t h Z � EW t h Z .Ž . Ž . Ž . Ž . Ž .½ 5� s s

In particular,
� �L 0 � P h � E h T � t , � � 1 � 0Ž . Ž .�

and
2
 2L 0 � �P E W t h Z � EW t h ZŽ . Ž . Ž . Ž . Ž .½ 5� 0 0

2� �P EW t h Z � EW t h Z .Ž . Ž . Ž . Ž .½ 5� 0 0

Ž .By the definition of W t ,0

� �E W t Z � z � P T � t Z � z exp g z 	S t , g .Ž . Ž . Ž . Ž .Ž .0 0 0 0

So there exist constants c � c � 0 such that1 2

�c � E W t Z � z � c .Ž .2 0 1

It follows that
2 2c P E h Z � EW t h Z � P EW t h Z � EW t h ZŽ . Ž . Ž . Ž . Ž . Ž . Ž .½ 51 � 0 � 0 0

2� c P E h Z � EW t h Z .Ž . Ž . Ž .2 � 0

Ž . Ž . Ž . � Ž . � � � Ž .�Now by 4.10 , EW t h Z � E h Z T � t, � � 1 , and E �h Z � 0, we0
have

2P E h Z � EW t h ZŽ . Ž . Ž .� 0

22� P �E h � 2 Eh Z E �h Z � P EW t h ZŽ . Ž . Ž . Ž .� � 0

22� P Eh � P EW t h Z .Ž . Ž .� � 0

Furthermore, by Lemma A.4,
3 2 2Ž3. � � � � � � � �L s � O 1 P h � P h P h � O 1 �P h .Ž . Ž . Ž .� � � �

It follows that

	 	 2 	 	 2�c g � g � P m �, g � P m �, g � �c g � g .Ž . Ž .2 21 0 � 0 � 0 0 2 0

The same argument as above gives that
2 �2 v p �Ž1�v .	 	P m �; g � P m �; g � O 1 g � g � O n � n ,Ž . Ž . Ž . Ž .2� 0 n � 0 0 p n 0 p

where the second equality follows from Lemma A.5. Finally, since

P m �; g � P m �; gŽ . Ž .� 0 � 0 n

� P m �; g � P m �; g � P m �; g � P m �; g ,Ž . Ž . Ž . Ž .� 0 � 0 0 � 0 0 � 0 n
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and by the triangle inequality,

	 	 2 	 	 2 	 	 2 	 	 2 	 	 2g � g � g � g � g � g � g � g � g � g ,2 2 2 2 2n n 0 0 n n 0

the lemma follows in view of Lemma A.5. �

LEMMA A.7. Let

� � � � � �S t , g h S t , g hŽ .Ž .ˆ1n n 1n 0
I t � �Ž .2 n S t ; g S t ; gŽ .Ž .ˆ0 n n 0 n 0

� �� � � �S t , g h S t , g hŽ .Ž .ˆ1 n 1 0� � .
S t ; g S t ; gŽ .Ž .ˆ0 n 0 0

We have
�1	2sup I t � o n .Ž . Ž .2 n p

0�t�1

Ž . Ž . Ž .� � � Ž .PROOF. Write S t, g � S g , S t, g h � S g and so on. Let0 0 0 0 1 0 1 0

A t � S g � S g � S g � S g ,Ž . Ž . Ž .Ž . Ž .ˆ ˆ1n 1n 0 1n n 1 0 1 n

A t � S g � S g S g � S g ,Ž . Ž .Ž . Ž . Ž .ˆ ˆ ˆ2 n 1 n 1 0 0 n 0 n n

A t � S g � S g � S g � S g ,Ž . Ž . Ž .Ž . Ž .ˆ ˆ3n 0 n 0 0 n n 0 0 0 n

A t � S g � S g S g � S g ,Ž . Ž . Ž . Ž .Ž .ˆ4 n 0 0 0 n 1n 0 1 0

A t � S g � S g S g � S g ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ5n 0 0 0 n 0 n 0 n n

A t � S g � S g S g � S g ,Ž . Ž . Ž . Ž .Ž .ˆ6 n 0 0 0 n 0 0 0 n 0

A t � S g S g S g S g .Ž . Ž . Ž .Ž . Ž .ˆ ˆ7n 0 0 0 n 0 n 0 0 n n

Some algebra shows that

A t I t � S g S g S g A t � S g S g A tŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .ˆ7n 2 n 0 0 0 n 0 n 0 1n 0 0 0 n 0 2 n

� S g S g S g A t � S g S g A tŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆ1n 0 0 0 0 n 3n 0 0 0 n 4 n

� S t , g S g A t � S g S g A t .Ž . Ž . Ž . Ž . Ž .Ž .ˆ0 0 1 0 5n 1 0 0 n n 6 n

Ž .Because there exists a constant c � 0 such that inf A t � c, and0 � t �1 7n

�1	2sup A t � o n , 1 � j � 6,Ž . Ž .jn p
0�t�1

the lemma follows from the triangle inequality. �
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