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ABSTRACT

The Robbins—Monro (RM) recursive procedure for estimating the root, 8, of an
unknown regression function, M, takes the form X 4= X, = a Y, - Here Y  isan
unbiased (conditional upon the past) estimate of the M(X ) and {a,} is a positive
sequence tending to 0. It is known that XIl is an asymptotically efficient estimate of &
if ay =1/ (M(f)n). In an earlier paper, Frees and Ruppert showed that if a = a/n for
any @ greater than 1/(2M(6)), then an asymptotically efficient estimate of § can be
obtained by fitting a least—squares line to {(Yi’ Xi): i=1,..,n}. Moreover, by choosing
a large, one may obtain a more precise estimate of M(ﬂ) which may also be of interest.

This paper studies the RM process when a = Dn~ ¢, 1/2<a<1 and D> 0.
For such o the RM process differs in several interesting ways from the case a = 1. The
results of Frees and Ruppert are extended to the case 1/2 < a < 1. The estimate of M(6)
converges to rate O((log n)_l/ 2) if a=1, but at rate O(n(a“l)/ 2) for ¢ in (1/2, 1).
This suggests using o < 1 when one is interested both in estimating ¢ and in estimating
M in a neighborhood of 4.

Perhaps the most surprising result is that when « isin (1/2, 1), then the
arithmetic mean, X = nly X, is an asymptotically efficient estimate of 4 regardless of

the choice of D!



1. INTRODUCTION.
Robbins and Monro (1951) introduced the following problem. For each real x,
suppose we can perform an experiment with a response, y.,, having distribution FX. The

expected response is then
e )
M(x) = [ ydF(y).
-0

In many applications, say to process control or bioassay, a real number < is chosen and it

is desired to estimate an unknown § satisfying
M(§) =~.

By replacing y with (y —7) we can assume, without loss of generality, that v=0.
The Robbins—Monro procedure for estimating 6 lets X1 be an arbitrary initial

estimate of @ and updates by the recursion

Xn+1 = Xn_'a‘nYn :

Here a, is a suitable positive sequence of real numbers, and YIl has distribution FX .
n

It was established by Blum (1954), that under mild conditions on M and the variance

function

-0

2= [Ty -Mx)?dF() ,

that Xn -+ 6, a.s., if



(1) Ya =ow
and

2) Sa 2 <ow.
Hanson and Goodsell (1976) further investigate consistency.

Chung (1954) showed that if a = Dn % for D>0 and 1/2< @< 1,o0r
D > 1/(2M(6)) and a =1, then

(3) 22X, |~ 0 —2—N(0, ¢(a, D)),
where
(4) o*(, D) = Doy /(2ML(9)) if 1/2< a<1

= D% /(2M(OD —1) if a=1.

Fabian's (1968) Theorem 2.2 now provides a quicker proof of (1.3) — (1.4). These results
suggest that @ =1 is optimal, and that D =1 /M(6), which minimizes 02(1, D), is
optimal when a = 1. Venter (1967.) proposed a scheme where D is replaced by a
consistent sequence of estimators, Dn’ of 1/M(#4), and Lai and Robbins (1979,1981)
investigate in detail methods for estimating M(6) so that X, has minimal asymptotic
variance. Procedures that estimate M(#) to achieve minimal asymptotic variance are

called adaptive.



The results of Fabian (1983) (see also Fabian and Hannan (1987)) show that
adaptive Robbins—Monro procedﬁres are LAM (locally asymptotically minimax) when
F ()= o[(- —M(x)/o,)], ® being the standard normal distribution. If F_ is
non—Gaussian, then one can still obtain an LAM procedure by suitable transformation of
the observations, Y . See Fabian (1973,1983). The point of Fabian's LAM results is
that adaptive Robbins—Monro procedures are asymptotically efficient within the class of all
possible estimation methods.

Because Robbins—Monro procedures use the last observation, X]:l 417 to estimate 4,
to obtain efficiency, Xn must converge to ¢ as rapidly as possible, and then the "design",
{Xi: i=1,..,n} ishighly concentrated about . This concentration can be a problem if
one wishes to estimate M(:) in a neighborhood of 4, say by estimating M(#) and using a
linear approximation. Frees and Ruppert (1987) note that the problem can be resolved by
using an estimate of 6 based on the entire sequence {(Yi’ Xi): i=1,..,n}

1

Frees and Ruppert (1987) consider the case where a_ = Dnn"' and

n
D - D > 1/(2M(6)). They show that if one fits a least—squares line to

{(Y,X):i=1,..,n} andlets § be the zero of this line, then
v (0,- 0 -2 N, o /M(9)?) .

Therefore, bn is asymptotically equivalent to the adaptive RM procedure, even if X 0 is
not efficient because D # 1/M(#). Moreover, there are potential advantages to a choice of
D besides 1/M(4). First, it may be possible to use D o= D for some constant D,
provided one can choose D>1 /(2M(6)). Such procedures are easy to implement. More
importantly, large values of D lead to more precise estimates of M(6). In many
applications, e.g., bioassay, # is a convenient location parameter describing the regression

function M, but a scale parameter such as M(6) is also of major interest.



For estimation purposes, if a, = Dn"'l, then the larger the value of D the better.
This fact leads one to consider a, = Dn"'a, a < 1, the topic of the present paper.

Here it is shown that if 1/2 < @ < 1, then although X = converges to 6 only at
rate n'a/ 2, there exist two simple, asymptotically efficient estimators of 6. The first is

X

nel where

and the second is the least—squares estimator proposed by Frees and Ruppert (1987).
Thus, we extend the Frees and Ruppert results from a¢=1 to 1 /2 < a< 1. The
discovery that Xn is efficient was quite surprising to me, although I was not aware of
related work of Bather (1988) at that time.

Another reason for using a < 1 is to increase the rate at which the large deviation

probability
P(|X, -0 > c)

converges ‘to 0 for fixed, positive c; see sections 4 and 6.

In section 2, notation and assumptions are presented. Section 3 contains
representation theorems that elucidate the structure of the processes {Xn}, {Xn}, and
the sequence of least—squares estimators. This section also gives the basic results on
asymptotic distributions. Section 4 contains a simulation study. Section 5 contains the

proofs and several technical lemmas. Section 6 is a discussion and summary.



2. NOTATION, DEFINITIONS, AND ASSUMPTIONS.

All random variables are defined on a probability space (2, &, P). All relations
between random variables are meant to hold with probability 1. [x] is the greatest integer
less than or equal to x. "O(-)" and "o(-)" notation have their usual meaning, and we
write X ~Y if Xn/Yn +1. Wewrite X, Z.x if X, converges in distribution to

X.

ASSuMPTION 2.1: Let D be a positive number, let a bein (1/2,1),let M map Rl to
[Rl, let {F:n2 0} be an increasing sequence of o—sub—algebras of &,let X; bean

5‘6 measurable random variable, and for each n2> 1 let

(1) Xpi1=Xp— Do~ % {M(X_) + ¢}

ASSUMPTION 2.2: Let

(1) E%-16n=0 forall n>1,
let

(2) Vax%"len—» 0% >0 as n-o,
let 6> a +— 1, and let

(3) sup g1 e 140H0) <.

AssuMpTION 2.3: Let @ be the unique solution to

(1) M(0) =0,



and let M have two continuous derivatives in a neighborhood of 6. Let M(#6) be

positive.
ASSUMPTION 2.4: Let Xn - 0.

DEFINITIONS 2.5: Define Y =M(X)) + ¢,

and

ReMARKS 2.6: Equation (2.1.1) can be written X, =X —Dn *Y . B and § are,
respectively, the least—squares estimates of slope and intercept when Y is regressed on X
using a straight—line model. bn is the root of the least—squares line. The smoothness
assumption 2.3 and the consistency assumption 2.4, make the use of the straight—line
model reasonable. See Wu (1985) and Frees and Ruppert (1987) for further discussion.
Assumption 2.4 follows from standard results, e.g., Theorem 1 of Robbins and Siegmund

(1971) (see their application 4) and additional, mild assumptions on M.



DEFINITIONS 2.7: Let f; = M(6), and let By=— B, 0.
REMARK 2.8: £ (x) = fB;(x—0) = f; + fx is the tangent line to M at (6, M(9)).

DEFINITION 2.9: For positive integers i and k > i define

k —
(1) c(i, k) = exp (DB, e_§+1€ )

3. MAIN RESULTS.

THEOREM 3.1: Assume 2.1, 2.3, and 2.4. Then

_nl L —Q
(1) Xn+1 — 0= B {Bn (Xn -0) - § Di "B 14
0 0 i=n,
where
j —y o -
2) B, =11 {1-Dir®M()}}
j+1 -____no i

for a sequence 51 such that

(3) |6, — 0] < |X,-4|
and
(4) ng = inf {n: Di"*M(§) <1 for all i2n}.



COROLLARY 3.2: Assume 2.1, 2.2, 2.3, and 2.4. Then

n

(1) X §=-D ¥ c(i,n)i % +o(1).
n+1 i=1 1

Moreover,

(2) Xo41— §=—Dn Y c(i,n)g+ o(1),

i=N(n
where N(n) = [n—Kn%logn] and K is a sufficiently large positive constant.

THEOREM 3.3: Assume 2.1, 2.2, 2.3, and 2.4. Then

_ n
(1) 22X, -0 =-1/(Bp'/?) I o),
@) w12 (5~ ) =-1/(8, 0D 3¢+ 0@®D Zogym) ,
i=1
and
n
I (X9
(3) B, -8, == + 0™ %105 0)3/%) .
I X - 9)?
1=

COROLLARY 3.4: Assume 2.1, 2.2, 2.3, and 2.4. Then, letting 02 = 020,



1) 2R, -0 -2 N0, P8,

n+1
2) o'/2 (4, - 0) =2 N, 1)
and
) 2(1=)/2 (3, — g) =24 N(o, 2(1 — @)/D) .

DiscussioN 3.5: Equations (3.1.1) —(3.1.4) hold for =1 and have been used by many
authors beginning with Sacks (1958). However, B behaves differently in the case
o =1 compared to a < 1, and in the former case instead of (3.2.1) holding, Ruppert

(1982, Theorem 4.2) has shown that

n Dg,—1
—6=-0!D ® (i/n) ' ¢+o(l).
i=1

i=

(1) X11+1

The above expression shows that (X s f) is essentially a weighted average of

€, -+ » €, In contrast, when @< 1 equation (3.2.2) shows that (X 417 6) is
essentially a weighted average of only the last (Kn%®log n) of the ¢;. The asymptotic
distributions given in (1.3) — (1.4) can be easily derived from (1) and (3.2.2). If

0 <p; <py<1,then (3.2.2) shows that X npl]

[npl] are asymptotically

uncorrelated if o€ (—%——, 1), but (1) shows these to be asymptotically correlated if
a=1.

Result (3.4.2) holds when a =1 provided that D > 1/(28;) (Frees and Ruppert
(1987)), but (3.4.1) will not hold if o= 1. In fact, letting A =Dg, -1, (1) implies

that



n

Kk
2) X —fg=—n1D T k1 ¥ (i/k)Pe +o(1)
n k=1 i= !

n n
=—n7lp T (3 KA

)€ + o(1)
i=1 k=1

vn (2 é_l (/0> =1} & +0(1) .

Since (3.4.1) and (3.4.2) hold forall D> 0 and a in (1/2,1), (3.4.3) suggests
taking a closeto 1/2 and D large. Clearly, further research is necessary to guide the
choice of @ and D in practical situations where n is finite. Some work along this

direction appears in the next section. If a =1, then
1 N
(log m) /2 (B, - 8,) —Z N(0, (22— 1)/(a))?)

(Frees and Ruppert (1987), equation (2.2)), which when contrasted with (3.4.3) shows the

potential of using a < 1.

4. MONTE CARLO

A small simulation study was performed using the regression function

o %

M MO0 = TR

The results reported here are for x = 3. The algorithm (2.1.1) was replaced by

X =X1—-.5, and

2

X D vy n>2,

A
=X, = | 5= ; M2
n+1 n [(5nv5)n“ : n}_A

10



where 6= .01, A=1, and
1
[,u]_1 =(—-AVp ANA.

Here Bn is the least—squares slope estimator:

e

i=1 i n
Experimentation showed that truncating Bn below by ¢ and truncating the step size at
+ A resulted in an algorithm that was much less variable than the untruncated version.

Except for the truncation points, § and A, the algorithm is scale equivariant, i.e.,
equivariant to the transformation Y - bY, b # 0. Without scale invariance, the
algorithm's performance would depend crucially on the product (DM(6)), and a value of
D that worked well in the simulations for a particular M could not be recommended for
other M.

The conditional distribution of Yn’ given the past, was normal with mean M(Xn)
and standard deviation 21{ . The number of observations was N = 10, 40, or 250. There
were 500 simulations for N = 10 and 250 for the other sample sizes.

The parameters D and a were varied as shown in Table 1. Two values, .75 and
1.5, were used for Xl’ but they produced similar results, so only X1 = 1.5 was reported
in Table 1. That table contains the root mean square errors (RMSE) for three estimators
of & Xyyq (RM), XN+1 (X), and BN (LS). In the computation of X, the first two
X's, X1 and X2 = X1 —.5, were excluded. The following conclusions can be reached
from examination of Table 1:

(1) When N =10 or 40, LS with @=.6 and D=1 or 1.5 is superior to best RM

estimator.

11



(2) When N = 40 or 250, then RM with a = .6 is less efficient than o = 1. This agrees
with asymptotics. However, when a =1, then RM with D = 1.5 is slightly more
efficient than D = 1, in disagreement with asymptotics but similar to the findings of
Frees and Ruppert (1987).

(3) When N = 250, the best LS and best RM estimators are roughly comparable, LS
being only slightly more efficient.

(4) As predicted by asymptotics, X with a =1 is inefficient, but X with a=.6 and
D = 1.5 is an excellent estimator, comparable to the best RM and LS estimators.

Squared bias is a very small proportion, often less than one—hundredth, of the mean
square errors in Table 1. For this reason, bias was not reported.

Table 2 reports the standard deviation and bias of BN as an estimator of M(4).
Typically, BN is positively biased. This cannot be due to the nonlinearity of M, since
M reaches its maximum at @ so the bias due to nonlinearity is downward. Because Xn
is a function of ej,....e;_;, BN is biased even if M is linear; see Walters (1985) who
discovered this bias in control problems similar to stochastic approximation.

Increasing the sum of squares, ZI;Ll (Xi —-X)2, by using @ = .6 and/or D = 1.5
and/or X1 = 1.5 tends to decrease both the standard deviation and bias of BN’
especially for N = 40 or 250. (Note that if the bias were due to nonlinearity then we
would expect the bias to increase with the sum of squares.) It is interesting that if
X, =75, then one needs almost 250 observations to achieve the same accuracy as n = 10
and X1 = 1.5.

To increase nonlinearity, s in (1) was changed from 3 to 1. The extra nonlinearity
increased the variability of all three estimators of 4, but did not substantially change

their relative efficiencies. The effect on Bn was to decrease both variance and bias,

especially bias.

12



Large deviations
Another potential use of & < 1 is for control problems where one needs to keep XIl

close to @ for all n. Lai and Robbins (1979,1981) suggest the control loss
- 2
(2) ,21 X;—0
==

for which @« =1 and D =1 is asymptotically optimal, but in many situations a large
deviation of X from @ will be of particular concern. For example, an excessive drug
dosage may cause death, while a slightly suboptional dosage may have no serious

consequences. In such situations, the loss is better measured by the rate at which
(3) P(IXn—GI > c)

(or perhaps P(X —f0> ¢)) converges to 0 for some fixed constant c.

Table 3 reports Monte Carlo estimates of (3) for a= .6 and 1, ¢ = .1, .2, 4, .6,
and .8, D=1, n=5,10, and 20, and X1 = .75 and 3.0. All estimates are based on
2000 simulations.

When n =5, then Xn is more concentrated about § when « = .6 than when
a=1. When n =10, then a=.6 and a=1 produce comparable results for X1 = .75,
but when X, =3 then X is more concentrated around ¢ for a = .6.

When X1 = 3, then
P(|X5 -4 > .8

is much smaller for @ = .6 than a= 1.

13



In summary, X = approaches a fixed neighborhood, say [ —c, 6§+ c], more
rapidly for @ = .6 than a =1, and this effect is most pronounced when X1 is far from
9 and c islarge. This finding agrees with theoretical results of Berger (1978); see

section 6.

5. PROOFS AND TECHNICAL COMPLEMENTS.
5.1 PRrOOF oF THEOREM 3.1: By (2.11) and assumptions 2.3 and 2.4, there exist § such

that |6 — 6] < |X;—6| and X ;= X, — Do *(M(8))X,, + €;), 50 that

(1) Bpr1Xnt1 = ByXy ~BpyiD Ilmaen .

Iterating (1) back to ny, (3.1.1) is proved. o

LEMMA 5.2: Assume 2.1, 2.2, 2.3, and 2.4. Then

(1) lim sup na/2an - 6| /[(1 — a)log n]1/2 = (D/ﬂ1)1/2o .

n 0

Proor: By Theorem 3.1, the lemma is a special case of the following lemma with Hi =D,
vi=€, N=0, A=-—a,and c= Dﬁl . The extra generality of Lemma 5.3 will be used

later. To verify (5.3.3), use assumption (2.4) to show that

1—a

—a »
log B;, ; ~D I,’-%-n ¢ M(5£)~Dﬂ1+_——a—. o
=T

LemMA 5.3: Let o bein (1/2,1). Let {#_} be an increasing sequence of o—algebras,

and let (Vi’ yi) be a martingale difference sequence such that

14



(1) S?Eu%Fu“mﬁmg<m

for some 6> ¢ — 1, and

@ B(v2 | $uq) 1" >0.

Let Li and Bi +1 be yi—l meagurable, let Li—eL for a positive constant L, let ¢ > 0,

and let
(3) log B, ~ci' "*/(1-a).

Finally, let Yn = LnnA B n+1Vn for some real A, and define

Then

(4) lim sup =—1/3

"Proor: Define
2

n-:

By Theorem 3 of Stout (1970),

15



|W_!
(3) lim sup ————=1
N+ Sn'm

if

(6) 5 (K8, 22 E (Y2 Y2

2
. >s K, /u [yn+1}<oo
n=

for a sequence {Kn} such that K is g _, measurable and K -0. We will use

K, = (logn) /2. Let m(n) = [n—n%(logn)’] and D =c/(1—a). Since

o) @5 PABY Bl (B P @ /By

2 2A § ,—2Dn o)

~Bpm

i=m(n)

2B2
-1

2A 2.2
it follows that, s a+1 D ‘o {L®n" / (2D)} and u ~2logy By 4 ~2 (1 — a) log n.

Next, choose § > « ~ —1 sothat (1) holds. Then

CE(YE1vE> K2/l | g, ) <B(vEHOW2  2K2)0 ) g

_ 0 (n20—0ad g2 28

+1(10g n)
and

(K5,) 2 --0(aogn) B 2 o (2A+0))

—1

so that (6) holds since 6§ > @ ~ — 1. Moreover,

16



1/2

(7) su [ {n2TY2B L [2(1-a)log n)'/2} ~ Hy / (2D)

n+1[

as n-w, and (4) follows from (5) and (7). o

LEMMA 5.4: Assume 2.1, 2.2, 2.3, and 2.4. Then (3.3.1) holds and

1/2,<

n/4X_ - 6)

1 i L = 7
) e (2 log,m)/2 ~ F1

Proor: (1) follows from (2.2.2), (3.3.1), and the LIL for martingales, so it suffices to
prove (3.3.1).
We first note that, without loss of generality, we can assume that M is linear. To

. *
see this, note that if M’ (x) = M(6)(X — ), X, =X, and

* * — KK
Xp41 =X, —Dn M (X)) + ¢},

%
then X satisfies the hypothesis of Lemma 5.2 so (5.2.1) holds with Xn replaced by
*
Xn. Therefore, there exists a positive constant such that

X 1-Dn~®M(0)) |X, ~X, | + Ko 2¥logn

*
n+1 ~ Xpg1l £(

for all large n. Then by Chung's Lemma (Fabian (1971), Lemma 3.1),

a *
o [X,-X,|
(2) lim sup <.
N - logn

17



% -1 o _x
Define X =n I X;. By (2)

=

n
/2% —%7| = 0@ Y2 10gn T 7% =0@ M2 logn) = o(1),

1=

_* _
soif (3.3.1) holds for X , then (3.3.1) also holds for X .

We now proceed under the assumption that M is linear. By (3.3.1)

3 3 (X H={3% Bl}B (X -0-D3F i®(Z Bi“)
— 0 = -6 — i B¢ -
k=n0 k+1 k=n0 k+1 Iy o i=n0 k=i °“k+1 !

Since M is linear,

(4) log Bj+1 =Dp, g? 7% 4+ 0( % E—Za) .
é=no 4‘,’=n0

Therefore, if (k —j) > j% (log j)z, then

B. log j
“k+1
and if 0 < (k —j) <j% (log j)z, then
B'+1 v , ~2a . -
(6) g =c(ik) {1+ OG % (k— )} -

k+1

Next, using the notation q(i) = [i + % (log i)2]

18



(7) 1,121 % 3 {—gi—i‘l——-c(i,k)]eil

i)
- 2.
i=n, k=i

n q
<% i‘”"[(

02 (k—1))] || + O(1)

_o(3 () -1 + 0@ = o(a!/?)

1—-n0

since a> 1/2. It follows from (5) and (6) that

(o 1]
(8) I By _H_l converges.

k=n o

Also, by (2.9.1)

min ( a ,q(1))

n _ ., I n o _
9 T T%{Zcik}e~E 1% c(i,k)} e
i=n k=i i=n k=1 !
0 0
n min (n,q(i)) _ 1 b
~3 i exp (DA% (x—i))dx] ¢~ (DB T ¢
1=Ilo 1 1=n0
By (3), (7), (8), and (9) it follows that
~1/2 & 1 -
n Yy X —f))=—————— ¥ € +0(1),
k=n0( k+1 ) ﬁl‘/ . i=1 ! ®

which proves (3.3.1) . o

19



5.5 PrOOF oF COROLLARY 3.2: (3.2.1) and (3.2.2) follow from (3.1.1), (5.4.4), and
(5.4.5). o |

LEMMA 5.6: Assume 2.1, 2.2, 2.3, and 2.4. Then

1 B (X—f)~ B (X._X)2. D0
(1) j=1( i~ )~j=1( i n) "2 —a)°

ProoF: Define
= -1
[masx {(1 — DI~ ¥I(4,), 1/2)]
where § is given by Theorem 3.1. From (3.1.1) —(3.1.2) it follows that

-1 —
(2) Xy =Hy {p,— I DHi %}

L3

1

n
)
=1

for some random variable p_. Let C=D/(1-a), §=(1-a), and

3) r =H_exp(~CnP) .

For n sufficiently large

n n—

T~ Tpel = {[1 —Dn % M(&n)]"lexp [—C(nﬂ_ (n— 1)/3)] - 1} . Hn——l exp (—C(n — 1)5)

i {[1 =D Mg - Cp’ Tt + 0 - 1] o

20



so that

(4)

Let

It follows from (2) that

(5)

Define

(6)

—2a
™~ Ty = O(n o)

J
§.=p — % Dr.exp (CiP) i %
N
n+1 n
% xX2= 3 rlexp (—2cjﬂ)52
j=2 1 =1

o v}
)= 5 e (—2ck?) .
=j

Following Lai and Robbins (1979, proof of Theorem 4(i)), we have

(7) 5 7 exp (2057 =

j=1

2 52 -2 5

2 2 _
From Tj - Tj—l = (Tj-—-

n A
= 3 a(){rP -} 8+
=2 J J J

5 2{a() - a(i + 1)} 87
I

2

n
o 2 @2 _ g2
22 a(j) Tj-l(sj Sj——l)

=Q; + Qg+ Qg+ Qy, say.

-2 2

(7 + 757y 15y and (4) it follows that

21



n -
(8) 3 a(i)| 'r - 132 —o( T a(j) i2®72%8% 1+ 0(1).
=2 1 =2 b7

Next

(9) a(j) = exp (21) 5 exp (-200 - )
~ exp (-2CP)* / (2D) ,

s that by (5) and (8)

(10) —of ¥ x2) +0(1).
j=2

By Lemma 5.3 with A=-o¢, B = Hi’ Li =1, and V= € it follows that

i+1

(11) = 0(H,_ "% (1og n)/?)

whence

(12) = O(exp (-2CnPn® 772 §%) = 0(H % §2) = O(log n) .
Now

2a2

Q, -—Ea(J)T D22 exp(2CJ) 6

J-—-— J

22



-2 2 a,(J)'r 1 1DT exp (CJ‘B)J €; =T, +T,, say.
=2 - J

By (9)

(13) Tyv—=,

by the martingale convergence theorem and (2.2.2). By (9) and (11)

n
T,=0( 5 7% r e (-0 (og '/ HGe)
j=2

for a sequence of {G_} suchthat G is F_, measurable and G, = O(1). Therefore,

n—

(14) Ol( S5 log i)/ 2(logy n)1/2] = o(1=)/2 (10g m))
J._..

by a law of the iterated logarithm for martingales, e.g., Stout (1970, Theorem 3). By (5),
(7), (10), (12), (13), and (14)

n 2

2 _ (1—-a)/2 l1—a
jil Xj"l”l 0( Z XJ+1)+O(H 10gn)+—-§(—f—-_—_-—a-)—— ;
so that
n 2
2 Do 1-a
(15) 5 XJ-H. T —a "

j=1

The lemma follows from (15) and (5.4.1). o
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5.7 Proor oF THEOREM 3.3: (3.3.1) was proved in Lemma 5.4
n

Define €, = n oy ¢, Then by assumption (2.3) and (4.6.1), we have
i=1
(1) Y, =X, -0+ + B
Next
n _ n = 92

n n
+(1/2) T M)XK )X - 0%+ T (X, -X )

where 7, - 0. By (5.2.1) and (5.4.1)

3) .Izl:l X, —X_|(X; 0 = 032+ (105 )3/ |

1=

Then (2), (3), (3.3.1), and (5.6.1) imply (3.3.3). From (3.3.3) and the law of the
iterated logarithm for martingales,

(4) B, — 8, = 072 (tog, 1)1/?) + 0(u™*/2 (10g )*/?)
= 0(a(@™D)/2 (10g, n)1/%) ,

since —a<—1/2< a—1. By (1)
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_ B -8 ; _
= (X, — O) 1ﬁ Ly+ Bn +0(@™Y

-~

1 1

and (3.3.2) follows from (4) and (5.4.1). o

5.8 ProoF oF COROLLARY 3.4: The corollary is consequence of the CLT for martingales,
e.g., Corollary 3.1 of Hall and Heyde (1980). Only the proof of (3.4.3) is nontrivial.

Define

&(X, - ) o179/

ni n 2
(X, - 6)
i=1
By (2.2.2) and (5.6.1)
n 2 _l-a
2 s n 2(1 — a)
(1) i§1 E [Xni l ‘?i—l] Y 2 ~ D
= 2 (X, - 0)
i=1
By (2.2.3), (5.4.1), and (5.6.1)
- 2 -1 1 3
(2) 121 EX; (Xl > 6 | 1< 121 E[| X7 | &_4]=0(1).

By (1) “and (2), the assumptions of Hall and Heyde's Corollary 3.1 hold with

?72=2(1—01)/D, 7 &,and k, =n. o

,1
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6. DISCUSSION AND SUMMARY

This paper examines the Robbins—Monro procedure when the "tuning constants",
{an}, converge to 0 at rate n~ % 1/2 < o< 1. It is well-known that for such a,, X, is
not asymptotically efficient. However, we have found that an asymptotically efficient
estimate can be constructed by fitting a least—squares line to all the data. Also the sample
mean of Xl,...,Xn 41 is asymptotically efficient.

There are two advantages of using o < 1: (1) the least—squares estimate of M(6)
is improved and, (2) the rate at which the large—deviation probability, P( [Xn — 4| > c),
¢ > 0, converges is improved, at least under some circumstances.

Berger's (1978) large—deviation theorem gives a theoretical underpinning to (2).

Suppose that P(|€ | <L) =1 for some L <o and M is monotonic with M(w) = sup
X

M(x).
Suppose = 1. If M(x) < L, then by Komlo's and Révész (1972) for all ¢ >0
and 6§>0
P(X, — > o) < exp(—aM(/1h)
for all large n. This rate can, of course, be arbitrarily slow if M(w)/L is small enough.

Now suppose 1/2 < @ < 1. Then for all ¢ there exists 7> 0 such that

P(X, - 0> ¢) < exp(-m>*Y)

for all large n (Berger, 1978, Theorem 3.1).
Recently, Bather (1988) has studied a procedure that, in our notation, can be

written as



His heuristic argument suggests that Xn is asymptotic optimal if a, = an % 0<a<l.
Bather advocates these estimators because of their simplicity. X n from an ordinary

(nonadaptive) RM process with 1/2 < @ < 1 can be recommended for the same reason.
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Table 1: RMSE of three estimators of @

o D Method N=10 N=40 N=250
.6 1 RM 463 .265 138
X .393 185 .065
LS .406 167 .063
1.5 RM 534 323 .169
X .369 173 .064
LS .390 .166 .063
1 1 RM 437 .200 .067
X 488 287 .100
LS 528 .182 067
1.5 RM 426 181 067
X 422 229 079
LS 436 .169 .065

Fisher information bound 316 .158 .063



Table 2: Standard deviation and bias of BN

N =10 N =40 N = 250
D X0=.75 X0=1.5 X0=.75 X0=1.5 XO=.75 X0=1.5
1 sd .158 .105 139 .084 .093 .069
bias .108 .039 .086 .032 .066 .040
1.5 sd 154 .102 .130 .082 077 .060
bias .100 .038 073 .030 .047 .031
1 sd 154 110 143 .093 123 .081
bias .106 .037 105 .039 JA11 .053
1.5 sd .160 -106 154 .089 121 079
bias JA11 .039 112 .038 111 .053



Table 3: Estimates of large deviations probabilities

X1 = .75
=5 n=10 n=20
a=.6 a=1 a=.6 o=1 o=.6 o=1
A .860 .890 812 .838 710 750
2 .699 776 .618 .663 475 516
4 436 .522 313 .358 172 177
.6 .247 .299 135 .161 .058 .044
.8 124 .158 .066 .063 .020 .010
X1 =3
n= n=10 n=20
o=.6 a=1 a=.6 o=1 o=.6 =1
1 924 978 .826 .900 .754 .790
2 .849 .954 .671 794 .529 584
4 .688 .892 374 565 .225 253
.6 .483 .786 .186 356 074 .080
.8

318 .658 .090 172 .021 .012



