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Abstract—A k-Range Nearest Neighbor (or kRNN for short)
query in road networks finds the k nearest neighbors of every
point on the road segments within a given query region based on
the network distance. The kRNN query is significantly important
for location-based applications in many realistic scenarios. For
example, (1) the user’s location is uncertain, i.e., user’s location
is modeled by a spatial region, and (2) the user is not willing
to reveal her exact location to preserve her privacy, i.e., her
location is blurred into a spatial region. However, the existing
solutions for kRNN queries simply apply the traditional k-nearest
neighbor query processing algorithm multiple times, which poses
a huge redundant searching overhead. To this end, we propose
an efficient kRNN query processing algorithm in this paper.
Our algorithm (1) employs a shared execution approach to
eliminate the redundant searching overhead, and (2) provides
a parameter that can be tuned to achieve a tradeoff between the
query processing performance and the storage overhead, while
guaranteeing the user’s exact k-nearest neighbors are included
in the query answers. The experimental results show that our
algorithm always outperforms the existing solution in terms of
query response time, and the introduced tuning parameter is an
effective way to achieve the tradeoff between the query response
time and the storage overhead.

I. INTRODUCTION

k-Nearest Neighbor (or kNN for short) query is one of

the most popular query types in location-based services [1],

[2], where a user issues a kNN query to the service provider

for the k-nearest objects of interest to her current location.

With the advances in spatial databases, the kNN query has

been extended from the Euclidean space to the road network

environment [3], [4], [5], where the user can issue the kNN

query to find her k-nearest objects of interest based on the

network distance. The kNN query result over the network

distance or the travel time is more meaningful to the user, since

the user is usually traveling on the road network,. Recently,

the kNN query has been further extended to k-range nearest

neighbor (or kRNN for short) query in the road network. The

main idea of the kRNN query is to find the k-nearest objects

of interest to every point on the road segments within a query

region given by the user. Figure 1 gives an example of a

kRNN query in a road network, where each line represents

a road segment, each circle represents an intersection of road
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Fig. 1: An example of a k-range nearest neighbor query in road
networks.

segments, and the dotted rectangle is the given query region. In

this example, the query answer includes the k-nearest objects

of interest to every point on the road segments, BE, DE, and

EF , which are covered by the query region.

Many research efforts have shown that the kRNN query is

significantly important for many location-based applications:

• Uncertain location. The uncertain location information

is posed by either the imprecision of the positioning

techniques or the discontinuous location updates [6],

[7], [8]. With the imprecise positioning techniques, e.g.,

3G cellular services and Wi-Fi, the user is not able

to acquire her exact location. On the other hand, the

discontinuousness of location update is caused by the

agreement between the user and the service provider to

reduce the location-update frequency in order to reduce

the energy consumption and communication overhead

(e.g., [9], [10]).

• Privacy-aware applications. Due to the possibility of

privacy leakages with a potentially untrusted location-

based server, the user may not be willing to expose

her exact location to the service provider. Many existing

privacy-preserving techniques have been proposed to blur

the user’s exact location into a spatial region (e.g. [11],

[12], [13], [14], [15], [16], [17]).

In these two realistic scenarios, the user’s location is modeled

by a spatial region. The location-based database server only

knows that the user is anywhere within the query region, rather

than an exact location point. Thus, the server has to find the k-

nearest objects of interest to every point on the road segments

within the query region in order to guarantee that the exact

kRNN query answer is included in the query result returned

to the user. It has been proved that the exact answer of the



kRNN query includes (1) the objects within the query region

and (2) the k-nearest objects of each intersection point, i.e.,

termed a boundary point, of the query region and the road

segments in the underlying road network [14].

Unfortunately, existing approaches for kRNN queries that

apply a traditional kNN query processing algorithm in the

road network, i.e., the incremental network expansion (INE)

algorithm [3], to every boundary point incur a huge redundant

searching overhead [11], [12], [14]. We will illustrate the

existing approach based on the INE algorithm using the

example given in Figure 1, where the boundary points of

the query are at the intersections B, D, and F . The existing

approach executes a range query to select the objects on the

road segments within the query region (represented by a dotted

rectangle), i.e., the road segments DE, BE, and EF , to an

answer set; and hence, the answer set includes the object P1.

Then, it executes the INE algorithm for each boundary point.

The kNN query processing for the boundary point D searches

the road segments CD and DE. The kNN query processing

for B searches the road segments AB, BE, DE, CD, EF ,

and FG. Finally, the kNN query processing for F searches the

road segments AB, BE, CD, DE, EF , and FG. The final

answer set includes two objects P1 and P2. As a result, the

total number of road segments processed by the traditional

approach is 17. However, an optimal solution searches only

six road segments, i.e., AB, BE CD, DE, EF and FG,

and each of these road segment is processed once. Therefore,

the redundant searching overhead of the existing approach is

(17−6)/6×100% = 183%. The redundant searching overhead

could become even much worse if the query region contains

more boundary points or the objects are sparsely distributed

in the road networks.

To avoid the redundant searching overhead in the traditional

approach, we propose an efficient algorithm to process kRNN

queries in the road network. The main idea of our algorithm

is to share the execution among the searching process for

each boundary point of the query. Our shared execution

paradigm requires the shortest network distance from each

boundary point to a certain set of objects in order to find

the query answer. Such shortest distances can be either pre-

computed and stored in the main memory or computed on-

the-fly during the query processing. Although pre-computing

all possible required shortest network distances can reduce

query processing time, it incurs very high storage overhead.

To this end, our algorithm also introduces a system parameter

that controls the amount of space for storing the pre-computed

shortest network distance. A larger parameter value achieves

better query processing performance, but it incurs higher

storage overhead. Thus, this parameter can be tuned to achieve

a tradeoff between the query processing performance and the

storage overhead. Our kRNN query processing algorithm is

evaluated through simulated experiments. The experimental

results show that (1) our algorithm always outperforms the

existing solution based on the INE algorithm in terms of both

query processing time and query response time, and (2) the

tuning parameter is an effective way to provide a trade off

between the query response time and the storage overhead.

The rest of the paper is organized as follows: Section II

highlights the related works. Section III gives our system

model. Our proposed kRNN query processing algorithm is

presented in Section IV. The experimental results are given in

Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

In location-based services, processing k-nearest neighbor

(kNN) queries in the road network has been well studied

(e.g., [3], [4], [5], [18], [19], [20], [21], [22], [23]). Among

the existing solutions for kNN queries, the simplest one

is the incremental network expansion (INE) algorithm [3].

The basic idea of the INE algorithm is to incrementally

search the road segments from the query point until the

k-nearest objects of interest of the query point are found.

Since the INE algorithm does not need any pre-computed

shortest distance information, it incurs low storage overhead.

However, the limitation of the INE algorithm is that it cannot

take the advantage of the optimization based on the pre-

computed shortest distance. To overcome this limitation, there

are many kNN query processing algorithms that utilize the pre-

computed network distance to optimize the query processing

(e.g., [4], [5], [18], [19], [20], [21], [22], [23], [24], [25]).

Although these optimized algorithms perform faster than the

INE algorithm, they incur higher storage overhead. In the

worst case, the storage overhead of the algorithm requiring

the pre-computed shortest distance is O(n2), where n is the

number of intersections of the road segments in the underlying

road network .

To our best knowledge, the k-range nearest neighbor

(kRNN) query has been only studied in the context of privacy-

preserving location-based services where the exact location of

a kNN query issuer is blurred into a spatial region [11], [12],

[14], [13]. The basic idea of the existing solutions for the

kRNN query is to execute a spatial range query to retrieve

the objects on the road segments within the query region,

and use the INE algorithm to find the k-nearest objects of

each intersection point, termed a boundary point, of the query

region boundary and the road segments in the underlying road

network. As illustrated in Figure 1, simply applying the INE

algorithm multiple times for processing kRNN queries incurs

a huge redundant searching overhead.

Our kRNN query processing algorithm can distinguish

itself from the existing solutions for the kRNN query, as

it (1) employs a shared execution paradigm to share the

execution of the searching process of each boundary point

of the query to eliminate redundant computational overhead,

and (2) introduces a new tuning parameter to control the

amount of space for storing the pre-computed network distance

in order to achieve a tradeoff between the query processing

performance and the storage overhead. It is important to note

that our algorithm always returns the exact k-nearest objects

of interest to the user within the answer set, regardless of the

actual user location within the query region and the value of

the tuning parameter.



III. SYSTEM MODEL

In this section, we describe the road network and system

model, define the k-range nearest neighbor (kRNN) query and

its answer, and present the formal definition of our problem.

Road network and system model. We model the underly-

ing road network as a weighted undirected graph G = (V,E)
where E is an edge set of the road segments in the road

network, V is a vertex set of the intersection points of the

road segments, and each edge is given the length of its

corresponding road segment as a weight. In this work, we

consider our system with a mobile environment, in which

the mobile user is able to communicate with the service

provider through wireless communication infrastructure, e.g.,

3G cellular services and Wi-Fi.

Definitions. A kRNN query is defined in a form (ID,

Region, ObjectofInterest, k), where ID is the user’s unique

identity, Region is the query region, ObjectofInterest defines

the type of objects of interest of the query, and k is the

required number of nearest objects of interest. The Region of

the kRNN query covers a set of road segments that is referred

to as inside road segments, while each intersection point of the

Region boundary and the road segments in the underlying road

network is referred to as a boundary point. To guarantee that

the kRNN query answer includes the exact k-nearest objects

to the user, regardless of the user’s actual location within the

Region, the correct answer for a kRNN query must include

(a) the objects within the inside road segments, and (b) the

k-nearest objects of each of boundary point [14].

Problem definition. We now give the formal definition of

our problem. Given a k-range nearest neighbor query Q with

a query region Region, the underlying road network G, and a

set of objects of interest of the query O, we want to find the

k-nearest objects in O to every point on the road segments

in G within Q.Region. The key objectives of our algorithm

are to (1) eliminate the redundant searching overhead in the

traditional solution to improve query processing performance,

and (2) design a tuning parameter that controls the amount

of space dedicated to store the pre-computed shortest distance

information to achieve a tradeoff between the query processing

performance and the storage overhead.

IV. EFFICIENT kRNN QUERY ALGORITHM

In this section, we first present the key data structures and

main idea of our k-range nearest neighbor (kRNN) query

processing algorithm. Then, we describe our algorithm with

a detailed example, and the correctness of our algorithm is

proofed at the end of this section.

A. Data Structures

In general, our algorithm has five key data structures.

Shortest distance table. This table stores the pre-computed

shortest network distance between two vertices in the road

network. Each entry in this table is in a form (< x, y >,

d(x, y)), where < x, y > is a key, and d(x, y) is the shortest

distance from x to y. We assume that the shortest distance

is symmetric, i.e., d(x, y) = d(y, x). In addition, we have a

system tuning parameter that controls the size of the shortest

distance table in order to achieve a tradeoff between the

query processing performance and the storage overhead. The

table stores the most frequently accessed shortest distance

information based on historical statistics, and it is updated

periodically, e.g., hourly or daily.

Answer set table. This table contains the data objects that will

be returned to the user. Each entry in this table contains the

data object identity along with its distance to each boundary

point of the query region.

Searching queue. We construct a searching queue for each

boundary point of the query to store the road segments that

will be searched by our algorithm. In the searching queue Qi,

the road segments are sorted by their shortest distance to the

corresponding boundary point, i, in an increasing order. Each

searching queue is associated with two parameters.

• Searching bound. This parameter records the network

distance from the corresponding boundary point to its

k-th nearest object in the answer set table.

• Searched distance. This parameter records the distance

from the corresponding boundary point to the first item

in its searching queue, which also indicates the network

distance this searching queue has covered.

Search collision point table. This table maintains the vertices

of the road segments that are searched by the searching process

of more than one boundary points. Each entry in this table

contains the vertex ID and its distance to each boundary point

of the query.

Searched segment set. This set contains the road segments

that have been searched by the algorithm.

B. Main Ideas

We will discuss the main ideas of our algorithm.

Shared execution. In our algorithm, we share the result of the

searching process of each boundary point of the query to avoid

the redundant searching overhead in the traditional solution.

With this shared execution paradigm, each boundary point is

able to know its distance to the data objects that are found by

the searching process of the other boundary points.

Searching bound. The searching bound is the value to tell the

algorithm to terminate the searching process of a boundary

point. To determine the searching bound of a searching

queue, we have to know the distance from the corresponding

boundary point to each data object that is found by the

algorithm. In the algorithm, such a distance can be either

retrieved from the shortest distance table or calculated based

on the search collision point table on-the-fly along with the

query processing.

Approach 1: Using the shortest distance table. Given a

boundary point b on a road segment vivj and a data object o
on a road segment vpvq , if the shortest distances of the keys

< vi, vp >, < vi, vq >, < vj , vp >, and < vj , vq > are

stored in the shortest distance table, we can easily calculate

the shortest distance from the boundary point to the data

object, i.e., min(d(b, vi) + d(vi, vp) + d(o, vp), d(vi, vp) +
d(b, vi) + d(o, vp), d(vj , vp) + d(b, vj) + d(o, vp), d(vj , vq) +



d(b, vj) + d(o, vp)). Although using the shortest distance

table can improve the query processing performance, storing

the shortest distance of every pair of vertices in the road

network may incur very large storage overhead. To this end, we

introduce a tuning parameter to specify the size of the shortest

distance table; and therefore, tuning this parameter can achieve

a tradeoff between the query processing performance and

the storage overhead. When we need to calculate a shortest

distance, we first check if the shortest distance table has

enough information for computing the shortest distance. If

this is the case, we simply retrieve the four relevant entries

to compute the shortest distance. Otherwise, we calculate the

shortest distance as using the Approach 2.

Approach 2: Using the search collision point table. A

search collision takes place, when the searching process of

a boundary point attempts to search a road segment that

has been searched by the searching process of some other

boundary points. Then, two vertices of such a road segment

that are referred to as search collision points are inserted to

the search collision point table along with its distance to each

boundary point of the query, which is calculated based on the

information of its ancestral search collision point which this

road segment is expanded from. If a data object is found by the

algorithm, we identify its ancestral search collision point from

which the algorithm finds the object, and update the distance

from each boundary point of the query to the object based

on the distance information of this ancestral search collision

point in the search collision point table.

C. Algorithm

Initially, we construct a searching queue for each boundary

point of the query, and then set the searched distance to zero

and the searching bound to ∞ for each searching queue. In

general, our kRNN query processing algorithm has two main

steps.

Step 1. Inside road segment search step. In this step, we

find the data objects within the inside road segments, and insert

them into the answer set table. Then, we calculate the shortest

distance for every pair of boundary points of the query, and

insert each boundary point to the search collision point table

along with its shortest distance to each of the other boundary

points. This step is depicted in Lines 6 to 8 in Algorithm 1. It

is important to note that when the algorithm needs to compute

a shortest distance, it first checks if it can use the first approach

described in Section IV-B to determine the shortest distance;

otherwise, it uses the second approach to do so.

Step 2. Boundary point expansion step. The main purpose

of this step is to search beyond the inside road segments by

iterations. In each iteration, we select the searching queue

with the minimum searched distance to process. If the answer

set table has at least k objects, the searching bound is set

to the distance from the corresponding boundary point to its

k-th nearest data object in the answer set table (Line 13 in

Algorithm 1). Then, we check for the termination condition,

i.e., (1) the searched distance of the selected searching queue

is equal to or larger than the searching bound for all the other

Algorithm 1 Efficient kRNN Query Processing in Road

Networks.
Input: Boundary Point Set B, Inside Road Segment Set R, and
Integer k.

1: Initialize the data structures
2: for Each boundary point bi in B do
3: Create a searching queue Qi for bi
4: end for
5: //Step 1: Inside road segment search step
6: Insert the data objects on the road segments in R to the answer

set table

7: Find the shortest distance of every pair of boundary points in B
8: Insert each boundary point in B to the search collision point

table
9: //Step 2: Boundary point expansion step

10: while Not all Q1, Q2, . . . , Q|B| are terminated do
11: Select Qi with the minimum searched distance
12: if The number of data objects in the answer set table ≥ k

then
13: Set the searched distance of Qi to the shortest distance

from bi to its k-th nearest object in the answer set table
14: end if
15: if Qi meets the termination condition, i.e., its searched dis-

tance ≥ all searching bound or Qi finds k data objects by
itself then

16: Terminate Qi

17: else
18: while Qi searched distance is not changed do
19: S ← the top road segment in Qi

20: if S is in the searched segment set then
21: if S contains data objects then
22: Update the answer set table
23: end if
24: Update the search collision point table
25: Remove S from Qi

26: else
27: Insert the data objects on S to the answer set table
28: Insert S to the searched segment set
29: Insert the adjacent road segments of S into Qi

30: end if
31: end while
32: end if
33: end while
34: Return the data objects in the answer set table to the user

searching queues or (2) no less than k data objects has been

found by selected searching queue itself. If the termination

condition takes place, the searching on the selected searching

queue is terminated and will not be selected to process in

the future executions. Otherwise, the algorithm continues to

process the road segment in the selected searching queue based

on two cases.

Case 1: The road segment is in the searched segment set. In

this case, a search collision takes place, i.e., there are different

shortest pathes from the query region to this road segment. If

there are some data objects on this segment, for each data

object, we update the shortest distance from each boundary

point to the data object in the answer set table if necessary

(Line 22). The two vertices of the segment are inserted into the

search collision point table along with their distance to each

boundary point (Line 24). Then, the road segment is removed



A B

C D

E F G H I

J

3

5

5 4

2

K

3

1

28

12

3

4

3

2

P1

P2

P3

P4

4

L M N O P

Fig. 2: An example of road networks.

from the queue without considering its adjacent road segments

because these adjacent road segments will be searched by the

searching process of some other boundary point (Line 25).

Case 2: The road segment is NOT in the searched segment

set. The data objects found on the road segment are inserted

into the answer set table along with its shortest distance to

each boundary point, and the road segment is inserted into

the searched segment set (Lines 27 to 28). The adjacent road

segments of the processed road segment are inserted into the

searching queue for further processing (Line 29).

Our algorithm repeats this step until all the searching queues

meet the termination condition. After the algorithm terminates,

the objects stored in the answer set table are returned to the

user as a query result.

D. Example for efficient kRNN query processing algorithm

In this section, we give a detailed example to illustrate

our kRNN query processing algorithm. Figure 2 depicts a

road network, where the road segments are represented by

lines, the intersection of the road segments are represented by

circles, and the data objects are represented by triangles. In

this example, the user issues a 2-RNN query with a query

region that contains two road segments HM and LM , which

are represented by dotted lines. The boundary points of this

query are H , L, and M , which are represented by black

circles. In our example, we assume that the tuning parameter

for the shortest distance table is zero, i.e., the shortest distance

table does not have any shortest distance information. Thus,

all shortest distance information required by the algorithm is

calculated based on the search collision point table on-the-fly.

Figure 3 gives the status of the searching queues for each

iteration. In each searching queue, the number under the ID

of the road segment is the shortest distance from the road

segment to the corresponding boundary point. The arrow over

the searching queue indicates the active searching queue,

which has the minimum searched distance, for the current

iteration. Table I depicts the value changes in the searching

bound and searched distance for each searching queue, the

searched segment set, the answer set table and the search

collision point table during the query processing.

Initial step. The initial step (Figure 3a) for the algorithm is

to construct the searching queue for each boundary point, QH ,
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QL and QM . During the inside road segment search step, data

object P3 is found. P3 is inserted into the answer set table with

the shortest distance to all the boundary points, as depicted in

the initial column in Table I. The inside road segments HM
and LM are inserted into the searched segment set, while all

the boundary points are inserted into the the search collision

point table with the shortest distance information to the other

boundary points. For each boundary point, its adjacent road

segments are inserted into its searching queue, as depicted in

Figure 3a. Since we only found one data object, which is less

than the k value, the searching bound of each searching queue

remains ∞.

The first 3 iterations. Since the searched distance of all the

searching queues is initially set to be zero, we can arbitrarily

select any searching queue to start with. For instance, we

start the query processing with QH . In the first iteration,

HI and HG are processed, but no data object is found. Our

algorithm only inserts their adjacent segments into the QH . In

the second iteration, we select QL to process road segments

LG and KL. During this iteration, we find P2 and P1 on

KL and LG, respectively. Since KL and LG are not in

the searched segment set, the distance information of P1 and

P2 is calculated based on the searching collision point that

they expanded from, which is L. The distance information is

calculated by using the sum of the distance information of L
stored in the collision points table and the distance from P1 to

L. The distance from P1 to all the boundary points is updated

in the answer set table, i.e., the distance from P1 to L is 1,

the distance from P1 to H is 10 + 1 = 11 and the distance

from P1 to M is 5+1 = 6. Similarly, the distance information

from P2 to all boundary points are updated in the answer set

table accordingly. Since QL finds two data objects by itself,

it is terminated, as its searching queue is marked by dotted

lines. In the third iteration, QM processes MN . Since we



TABLE I: An example of query procedure in each data structure.

Initial After first 3 After the 4th After the 5th
values iterations iteration iteration

QH QL QM QH QL QM QH QL QM QH QL QM

Searching bound ∞ ∞ ∞ 11 2 6 4 2 6 4 2 5
Searched distance 0 0 0 2 4 4 5 4 4 5 4 7

ID IN ID IN

Searched LM HM LM HM LM HM LM HM

segments set LG LK LG LK LG LK

MN IH MN IH MN IH

HG HG HG NO

Answer set

P1 11 1 6 11 1 6 11 1 6
P2 12 2 7 12 2 7 12 2 7
P3 3 7 2 3 7 2 3 7 2 3 7 2
P4 4 14 9 4 10 5

H 0 10 5 0 10 5 0 10 5 0 10 5
Search collision L 10 0 5 10 0 5 10 0 5 10 0 5

points M 5 5 0 5 5 0 5 5 0 5 5 0
I 2 12 7
N 5 9 4

do not find any data object on road segment MN , we insert

its adjacent road segments to the searching queue. After the

first three iterations, the searched distance (denoted as SD) of

each searching queue is updated, i.e., QH .SD=2, QL.SD=4

and QM .SD=4. Moreover, we have more than k data objects

in the answer set table, the searching bound (denoted as SB)

of each searching queue can be updated, i.e., QH .SB=11,

QL.SB=2 and QM .SB=6.

The 4th iteration. In this iteration, QH is selected to be

processed, because it has the smallest searched distance, as

depicted in Figure 3b. QH searches ID and IN , and finds P4

on IN . The distance information for P4 is calculated based on

its ancestral search collision point H . As a result, the distance

from P4 to H is 0 + 4 = 4, the distance from P4 to L is

10+4 = 14 and the distance from P4 to M is 5+4 = 9. The

searching bound is updated for QH and QM to be 4 and 6,

respectively. The QH .SD is updated to be 5 and ID and IN
are inserted into the searched segment set. After this iteration,

QH .SD is greater than QH .SB, but QH .SD is smaller than

QM .SB; and therefore, QH does not meet the termination

condition.

The 5th iteration. In the fifth iteration, QM is selected to

be processed, as it has the smallest searched distance. NO
is processed first without finding any data object. After that,

QM processes IN . However, IN is already in the searched

segment set, which generates a search collision and makes I
and N search collision points. Both of them are inserted into

the search collision points table and the distance from the point

to every boundary point is calculated. The distance from I to

all the boundary points is first calculated based on the search

collision point H , where it is expanded from. The distances

from to I to H , L and M are updated to be 2, 12 and 7,

respectively. The distance from N to all the boundary points

is calculated based on its ancestral search collision point, M ,

in the same way, which makes the distances to H , L and M
to be 9, 9 and 4, respectively. Then I updates its distances

to each boundary point based on the length of IN and the

distance information of point N in the search collision point

table. The distances calculated through N for I to boundary

points H , L and M are 12, 12 and 7, respectively. Because

all the calculated results are greater than I’s original value,

no update will be made for I . On the other hand, the distance

information for N calculated though I to the boundary points

H , L and M is 5, 15 and 10, respectively. The distance from

N to H is updated to 5, because the new calculated value is

smaller. Moreover, we find P4 is in IN . As the result, the

distance from P4 to M is updated to be 4 + 1 = 5. The

distance from P4 to L is updated to be 9 + 1 = 10. The

distance from P4 to H remains 4 because it is smaller than

9+1 = 10. Then, I and N are inserted into the search collision

point table with the distance information, as shown in Table I

. The searched distance for QM is updated to 7, which is

greater than QM .SB and QH .SB. QM is terminated after this

iteration as the searching bounds of all the searching queues

are less than its searched distance. We mark the queue in

dotted lines, shown in Figure 3c.

The 6th iteration. There is only one active searching queue

QH left. Since QH .SD is greater than the searching bound

of all the other searching queues, it is terminated; as QH

is marked by dotted lines (Figure 3d). As all the searching

queues are done, our algorithm is terminated. The data objects

in the answer set table, i.e., P1, P2, P3 and P4, are returned

to the user.

E. Proof of correctness

In this section, we prove that our kRNN query processing

algorithm always returns the exact k-nearest objects to the user

within the answer set, regardless of the actual user location

within the query region.

Theorem 1. Given a kRNN query with a query region Region
issued by a user residing in Region and a set of objects of

interest O, the answer set A returned by our query processing



TABLE II: Experiment Parameter Settings.

Parameter Default Value Range

Requested data object
number (K value)

10 1 to 20

Total data object number 600 200 to 1000
Query region size (ratio
over total space)

0.018 0.002 to 0.050

algorithm always includes the exact k-nearest objects to the

user.

Proof: Suppose that an object O ∈ O is one of the k-

nearest objects to the user, but O /∈ A. Since our algorithm

selects all the objects within Region to A, O must be outside

Region. Thus, if O is one of the k-nearest objects to the

user, O has to be one of the k-nearest objects to a boundary

point of the query. However, for each boundary point P of

the query, our algorithm searches the road segments from P
with a range of at least the distance from P to its k-th object,

i.e., the termination condition for searching queue P in our

algorithm, and selects all the objects within this range to A.

Since O /∈ A, O is not one of the k-nearest object of any

boundary point. As a result, it contradicts to the assumption

that O is one of the k-nearest objects to the user.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our kRNN

query processing algorithm by comparing with the traditional

solution as a baseline. We also investigate the query perfor-

mance with the impact of the tuning parameter that controls

the size of the shortest distance table and the communication

bandwidth between the user and the database server.

A. Experiment Settings

The road map of Hennepin county, Minnesota, USA, which

contains 39,513 nodes and 54,444 road segments, is used as

the road network in our experiment. We generate 100 kRNN

queries in the road network and use the mean value as the

result for each experiment. Table II summarizes the parameters

we used in the experiment. All the experiments are performed

on a Sun Ultra 27 server with a Quad-core 3.2 GHz Intel Xeon

3570 processor and 6 GB RAM.

In our experiment, we evaluate the performance of our algo-

rithm in terms of three major measures: (1) query processing

time, (2) size of the answer set, and (3) overall response time.

The query processing time is the average time consumed for

the algorithm to finish the query processing. The size of the

answer set is the average number of the data objects returned

to the user. Since our algorithm may return more data objects,

it is used to measure the quality of the answer set. The overall

response time is the average of the sum of the query processing

time and the transmission time of sending the answer to the

user.

The section is organized as follows: First, we compare the

query processing performance of our algorithm with the tra-

ditional solution. Then, we investigate the impact for different

TABLE III: Relationship of area size and the boundary points.

0.002 0.008 0.018 0.032 0.050

Boundary points 4 5 9 12 16
Inside segments 7 9 21 32 52

tuning parameters in our algorithm. Finally, we evaluate the

impact of the communication bandwidth for our algorithm.

B. Comparison with the traditional solution

In this section, we present the results of our algorithm

with the traditional solution with respect to four different

settings: (1) different required numbers of the data objects

(different k values) in the query, (2) different numbers of data

objects in the system, (3) different sizes of query regions,

and (4) different distributions of the data objects in the road

network. We use two extreme cases of our algorithm to

compare with the traditional approach: (a) query processing

with all the shortest distance information, referred as KRNN-

F, and (b) query processing without any shortest distance

information, referred as KRNN-E.

1) Impact of the number of requested data objects: Fig-

ure 4a depicts the performance of our algorithm with different

requested numbers of data objects (k value). As shown in

the result, the query processing time of all the approaches

increases, because a larger k value usually leads to a larger

searching area. Moreover, we notice that the query processing

time of the traditional algorithm increases rapidly as the k
value gets larger. On the other hand, the query processing time

of our algorithm increases relatively slower than the traditional

solution in both extreme cases. The reason of the significant

difference is that a larger k indicates a larger searching area,

and introduces more redundant searching overhead between

the searching process of each boundary point for the traditional

approach. Our algorithm does not have this problem because

the redundant searching overhead is eliminated by our shared

execution paradigm.

2) Impact of the total number of data objects: Figure 4(b)

shows the query processing time of our algorithm with differ-

ent total numbers of data objects in the road network. The

distribution of these data objects is based on the uniform

distribution. As shown in the experimental result, the query

processing time of all the algorithms decreases as the total

number of data objects gets larger. Because the more data

objects in the system, the smaller searching area the query

processing algorithm needs to cover. Moreover, the traditional

algorithm covers a larger search area for each boundary point

in the area of low density data objects, which incurs more

redundant searching overhead.

3) Impact of size of the query region: The query regions are

modeled by circles in our experiment, whose center a location

point that is randomly picked in the road network and the

radius is uniformly selected with a range varied from 1 to 5

times of the average length of the road segments in the road

network, i.e., the ratio of the query region size to the total

system space is varied from 0.20% to 5.00%. The relationship
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Fig. 4: Comparison with the traditional solutions.

between the size of the query region and the average number

of insider road segments and the boundary points is depicted

in Table III.

Figure 4(c) illustrates the query processing time with differ-

ent sizes of query regions. The query processing time of all the

algorithms increases as the size of the query region gets larger.

Because with a larger query region, more boundary points will

be introduced. It is especially a drawback for the traditional

solution, because the more boundary points lead to more over-

laps in the searching space which introduces more redundant

searching overhead. The processing time of the traditional

solution grows linearly with the number of boundary points.

On the other hand, query processing time of our proposed

algorithm grows relatively slower than the traditional solution.

Thus, the proposed algorithm is more scalable in terms of the

query region size. The significant deviation of two extreme

cases of our algorithm is a result of the approximation in the

calculation. The approach without the pre-computed shortest

distance information is likely to generate a larger searching

bound and consume more processing time.

4) Impact of distributions of data objects: Figure 4d de-

picts the impact of different distributions of the data objects

over the road network for the query processing. We evaluate

our algorithm and the baseline solution using two different

distributions: (1) Uniform distribution which means the data

objects in that road network is evenly deployed and no hot spot

in the map. (2) Gaussian distribution with different standard

deviations which means the data objects are deployed densely

in a certain range of location. We use Gaussian distribution

to simulate the hot spot in the road networks, i.e., downtown

areas in the city. The parameter SD on Figure 4d is the standard

deviation value of the Gaussian distribution used for the data

objects deployment over the road network. The smaller value

of SD indicates that the data objects are more likely to be

placed densely in a smaller area.

The result in Figure 4d indicates that the traditional algo-

rithm has a huge impact on the distribution of the data objects.

If the data objects are unevenly distributed in the road network,

the performance of the traditional solution is degraded signifi-

cantly due to the redundant searching overhead. Because in the

Gaussian distribution, the data objects are distributed densely

in a small area. As a result, the searching process for each

boundary point needs to cover that particular area to get the

its k-nearest neighbors which incurs much more redundant

searching overhead. On the other hand, different distributions

of data objects do not have that significant impact on the query

processing time of our algorithm as shown in Figure 4d.

5) Summary: The above experimental results show that

our algorithm always outperforms the traditional solution

significantly in terms of the query processing time, which

is more efficient for the kRNN queries. In most cases, our

algorithm gets over 100% performance gain. Moreover, our

algorithm is more adaptive to the changes in the experimental

parameters than the traditional solution, which indicates our

algorithm is more scalable.

C. Tradeoff between the storage and performance

In this section, we present the results of our algorithm with

different tuning parameters P , which indicates the different

size of the shortest distance table. The tuning parameter P is

set as a percentage value, where 100% indicates that the short-

est distance table contains the shortest distance information for

any two vertexes and 0% indicates that the shortest distance

table does not exist that the all distance information should

be calculated by the search collision points table on-the-fly.

With the settings in our experiment, it costs 980 MB memory

to materialize the full shortest distance table. The entries in

the shortest distance table are ranked by the access frequency

during a warm up process. During the warm up process, we

issues 1000 kRNN queries and ranks the entries in the table

by the number of accesses. Tuning parameter P in the system

indicates that top P percents of the shortest distance table is

materialized.

We evaluate the impact of the tuning parameter with three

different parameter settings: (1) different numbers of the data

objects (different k values) in the query, (2) different numbers

of total data objects in the road network, and (3) different sizes

of query regions. For each of the experiment, we evaluate not

only the query processing time but also the size of the answer

set that returns to user as the quality of the query answers.

1) Impact of the number of requested data objects: Fig-

ure 5a depicts the query processing time for the different

values of the tuning parameter P with different requested

number of data objects (k value). As shown in the figure,

the larger shortest distance table we have, the less query

processing time the algorithm consumes to get the answer

set. Figure 6a illustrates the size of the answer set for the

different tuning parameters with different k values. Observed
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Fig. 6: Answer set size with respect to various tuning parameter values.

from the figure, larger value of the tuning parameter P leads

to a smaller size of the answer set for user. The smaller size

of answer set means a better quality of query answer.

2) Impact of the number of total data objects: Figure 5b

depicts the query processing time for the different values of

the tuning parameter P with different total number of data

objects over the road network. The data objects are uniformly

distributed over the road network in this experiment. As

shown in the figure, with a larger tuning parameter, the query

processing time decreases for all cases. Figure 6b illustrates

the size of the answer set for the different value of tuning

parameters with different total number of data objects over

the road network. The figure confirms that a larger value of

the tuning parameter leads to a smaller size of the answer set

and a better quality of answers for the user.

3) Impact of the query region size: Figure 5c depicts

the query processing time for the different values of the

tuning parameter P with different size of query regions. The

relationship of the query region size and the boundary points

is illustrated in Table III. As shown in the figure, with the

larger shortest distance table in our algorithm, the less query

processing time our algorithm consumes. Figure 6c illustrates

the size of the answer set for the different tuning parameters

with different size of query regions. From the figure, it is

obvious that the larger value of the tuning parameter leads to

a smaller size of the answer set and a better quality of answers

for the user.

4) Summary: As shown in the above experimental results,

the size of the tuning parameter P provides a tradeoff be-

tween the query processing performance (both in the query

processing time and the quality of the answer set) and the

storage overhead. The larger value of the tuning parameter we

choose, the larger shortest distance table we need to maintain.

However, with the larger shortest distance table, the query

performance is improved with less query processing time and

better quality of the answer set.

D. Impact of different communication bandwidth

Due to the approximate result by our search collision

point table based calculation method for the shortest distance

information, the algorithm is likely to return extra data objects

to the user comparing with the optimal solution. We introduce

the overall response time to determine the impact of the extra

number data objects we return to the user. The query response

time is consisted of two parts: (1) the query processing time,

and (2) transmission time for the answer set. The overall

response time is an end-to-end performance metric to measure

the performance of our algorithm. If we return more data

objects to the user, the transmission time increases. In this

experiment, we use the traditional algorithm as the baseline

to compare with the two extreme cases of our algorithm:
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Fig. 7: Object size and bandwidth.

(a) query processing with all the shortest distance information,

referred as KRNN-F, and (b) query processing without any

shortest distance information, referred as KRNN-E.

In our experiment, we consider that there are two different

sizes of each data object, 1 KB and 10 KB. We assume that

the user connects with the service provider through 3G mobile

networks. The download bandwidth is different with different

user mobility speeds, e.g., 128 kbps (e.g., kilo bits per second)

when the user is in a moving vehicle, 384 kbps when the user

is walking and 2 Mbps when the user is staying at the same

place or moving in a very slow speed.

Figure 7 illustrates the overall response time of our algo-

rithm and the traditional solution with different object sizes

and communication speeds. In all the scenarios, although

some extra data objects are given in the answer set by our

algorithm, the overall response time of our algorithm still

outperforms the traditional solution. The closest case in this

experiment is in the scenario when the users are moving

very fast and they ask for the data objects with a large size.

However, the performance of all the test cases is suffered.

Because the transmission time of sending the answer set to

the user dominates the overall response time, which indicates

the system bottleneck is no longer at the query processing time

in the database but the transmission time in the communication

channel.

VI. CONCLUSION

In this paper, we proposed an efficient query processing

algorithm for k-range nearest neighbor (kRNN) queries in road

networks. Our algorithm distinguishes itself from the existing

solution for the kRNN query, as it (1) designs a shared execu-

tion paradigm to eliminate the redundant searching overhead in

the existing solution to improve query processing performance,

and (2) introduces a system tuning parameter that controls

the amount of space dedicated to store the shortest network

distance information for the query processing to achieve

a tradeoff between the query processing performance and

the storage overhead. We evaluate our algorithm extensively

through simulated experiments. The experimental results show

that our algorithm outperforms the existing solution in terms

of query processing time and overall response time, and the

tuning parameter, which specifies the size of the pre-computed

shortest network distance table, is an effective way to achieve

the tradeoff between the query processing performance and

the storage overhead.
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